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Abstract. In [14], Petit et al. shows that under the algebraic geometrical assumption
named ”First Fall degree Assumption”, the complexity of ECDLP over binary extension
field F2n is in O(exp(n2/3+o(1))) where limn→∞ o(1) = 0 and there are many generaliza-
tions and improvements for the complexity of ECDLP under this assumption [10], [11],
[5], [16]. In [13], the author proposes the bit coincidence mining algorithm, which states
that under the heuristic assumption of the complexity of xL algorithm, the complexity
of ECDLP E/Fq over arbitrary finite field including prime field, is in O(exp(n1/2+o(1)))
where n ∼ log2 #E(Fq) ∼ log2 q. It is the first (heuristic) algorithm for solving ECDLP
over prime field in subexponential complexity. In both researches, ECDLP reduces to
solving large equations system and from each assumption, the complexity for solving
reduced equations system is subexponential (or polynomial) complexity. However, the
obtained equations system is too large for solving in practical time and space, they are
only the results for the complexity.
xL algorithm [2], is the algorithm for solving quadratic equations system, which consists
of n variables and m equations. Here, n and m are considered as parameters. Put D =
D(n, m) by the maximal degree of the polynomials, which appears in the computation
of solving equations system by xL. Courtois et al. observe and assume the following
assumption;
1) There are small integer C0, such that D(n, n + C0) is usually in O(

√
n), and the

cost for solving equations system is in O(exp(n1/2+0(1))).
However, this observation is optimistic and it must have the following assumption
2) The equations system have small number of the solutions over algebraic closure. 1

(In this draft we assume the number of the solutions is 0 or 1)
In the previous version’s bit coincidence mining algorithm [13], the number of the
solutions of the desired equations system over algebraic closure is small and it can be
probabilistically controlled to be 1 and the assumption 2) is indirectly true. For my
sense, the reason that xL algorithm, which is the beautiful heuristic, is not widely used
is that the general equations system over finite field does not satisfy the assumption
2) (there are many solutions over algebraic closure) and is complexity is much larger.
In the previous draft [13], I show that the ECDLP of E(Fq) reduces to solving equations
system consists of d − 1 variables and d + C0 − 1 equations where C0 is an arbitrary
positive integer and d ∼ C0 × log2 q. So, the complexity for solving ECDLP is in
subexponential under the following assumption
a) There are some positive integer C0 independent from n, such that solving quadratic
equations system consists of n variables and m = n + C0 equations (and we must
assume the assumption 2)) by xL algorithm, the maximum degree of the polynomials
D = D(n, m), appears in this routine is in O(

√
n) in high probability.

Here, we propose the new algorithm that ECDLP of E(Fq) is essentially reducing to

solving equations system consists of d − 1 variables and b0
2

d equations where b0(≥ 2)
is an arbitrary positive integer named block size and d ∼ (b0 − 1) logb0

q. Here, we
mainly treat the case block size b0 = 3. In this case, ECDLP is essentially reducing to

1 Generally, the number of the equations m is much larger than the number of the variables n, the
number of the solutions seems to be true. However it is not true and the assumption 2) must be
needed. For example considering the equations system consists of the union of random quadratic
equations

p1(
−→
X ) = ... = pn/2(

−→
X ) = 0, pi ∈ F2[x1, ..., xn]

and field equations
x2

1 − x1 = ... = x2
n − xn = 0

where n is even number and
−→
X = (x1, .., xn). From the probabilistic discussion, the average number

of the solution of this equations system is 2n/2, although the number of the equations is much larger
than the number of the variables.



solving equations system consists of about 2 log3 q variables and 3 log3 q equations. So
that the desired assumption 1) is always true. Moreover, the number of the solutions
(over algebraic closure) of this equations system can be probabilistically controlled to
be 1 and the desired assumption 2) is also true.
In the former part of this manuscript, the author states the algorithm for the con-
struction of equations system that ECDLP is reduced and in the latter part of this
manuscript, the author state the ideas and devices in order for increasing the number
of the equations, which means the obtained equations system is easily solved by xL
algorithm.

1 Notation

Let q be a power of prime including prime number and

E/Fq : y2 + ã1xy + ã3y − x3 − ã2x
2 − ã4x − ã6 = 0

be an elliptic curve. We mainly consider the case q being large prime.
For simplicity, we will assume #E(Fq) is prime number.

Problem 1 ((ECDLP)) Let P,Q ∈ E(Fq) such that < P >3 Q. ECDLP is the problem
finding integer n satisfying 0 = Q + nP .

Here, we propose an improved algorithm for solving ECDLP. In this algorithm, for an
arbitrary positive integer b0(≥ 2), ECDLP of E(Fq) is, in about O(1) probability, reducing to
solving quadratic equations system consists of (b0 − 1)l − 1 variable and b0(b0−1)

2 l equations,
where l := blogb0 #E(Fq)c. From the heuristics of xL algorithm, the cost for solving this kind
of equations system is O(exp(#E(Fq)1/2+o(1))) and it is subexponential complexity.

2 L((d + 1)∞ − P0)

Let P0, P1, .., Pd be the d + 1 point in E(Fq)\{∞}. In this section, we further fix P0. Put
(xi, yi) := Pi. Then the space of function field L((d + 1)∞− P0), which means the set of the
elements of function field that has pole only at ∞, the order of the pole at ∞ is ≤ d + 1 and
has zero at P0, is spanned by

(x − x0), (x − x)x, ..., (x − x0)xb(d−1)/2c, (y − y0), (y − y0)x, ..., (y − y0)xb(d−2)/2c.

Then an element of L((d + 1)∞− P0), whose order of the pole at ∞ is exactly d + 1, is
written by the following;
1) In the case d is odd,

φ−→
A

(x, y) := (y − y0)
(d−1)/2∑

i=1

Aix
i−1 + (x − x0)(

d−1∑
i=(d+1)/2

Aix
i−(d+1)/2 + x(d−1)/2)

2) In the case d is even,

φ−→
A

(x, y) := (x − x0)
d/2∑
i=1

Aix
i−1 + (y − y0)(

d−1∑
i=d/2+1

Aix
i−d/2−1 + xd/2−1).

Here, A1, ..., Ad−1 are considered as parameter and φ−→
A

(x, y) is considered as an element
of Fq[A1, ..., Ad−1, x, y].

Remember that we here treat the ECDLP of E(Fq) and find the unknown integer n such
that 0 = Q + nP for given P,Q ∈ E(Fq).



Let b0(≥ 2) be a natural number (we mainly concern the case b0 = 3) and put

l := blogb0 #(Fq)c ∼ logb0 q, d := (b0 − 1)l.

Let ri (i = 1, ..., bol)be random integers and put

P0 := Q, Pj := rjP (j = 1, ..., b0l).

We assume all P0, ..., Pb0l are distinct points in E(Fq)\{∞}, otherwise, take another random
numbers. Here, we call the sequence of the points

{Pb0k+1, ..., Pb0k+b0}

k-th block where k moves 0 ≤ k ≤ l−1. Note that all points P1, ..., Pb0l are the disjoint union
of the k-th blocks.

Definition 1 (Normal decomposition) If there exists lj ∈ {0, 1}, (1 ≤ j ≤ b0l) such that
for ∀k (0 ≤ k ≤ l − 1)

#{i | lkb0+i = 1, 1 ≤ i ≤ b0} = b0 − 1

and P0 is expressed by the form

0 = P0 +
b0l∑
j=1

ljPj ,

we call P0 has normal decomposition into P1, ..., Pb0l.

It means that −P0 is written by the sum of the element of P1, ..., Pb0l and from each block,
b0 − 1 points are used in this sum. Since the number of the selection of b0 − 1 elements from
each block is b0, the number of the expression

b0l∑
j=1

ljPj , lj = {0, 1}, #{i | lkb0+i = 1, 1 ≤ i ≤ b0} = b0 − 1

is
bl
0 ∼ #E(Fq).

So, we have the following

Lemma 1. The average number of the normal decomposition and the probability that normal
decomposition success is around O(1).

Put xj := x(Pj), yj := y(Pj) (j = 0, ..., b0l) .

Definition 2 (Equations system) Put

ψi := ψ
i,
−→
A

= φ−→
A

(xi, yi)(∈ Fq[A1, ..., Ad−1]) (i = 1, ..., b0l),

and consider the equations system

EQS1 := {ψkb0+iψkb0+j = 0 | 0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0}

We will call ψi by the polynomial of point Pi and EQS1 consist of the product of two
polynomials of the points including the same block. Note that EQS1 consists of b0(b0−1)

2 l
quadratic equations.

Suppose that P0 has normal decomposition. Then there is some element f(x, y) in L((d +
1)∞− P0) satisfying

zero of f = {P0} ∪ {Pj | lj = 1}.



Since Pi’s are distinct points, we have

divf = P0 +
b0l∑
j=1

ljPj − (d + 1)∞.

Then, we see that there are some −→a ∈ Ad−1(Fq) such that

divφ−→a (x, y) = P0 +
b0l∑
j=1

ljPj − (d + 1)∞.

For each k-th block (0 ≤ k ≤ l − 1), the number of the points Pb0k+i (1 ≤ i ≤ b0) that are
zero of φ−→a (x, y) is exactly b0 − 1. So, we have

ψkb0+i,−→a ψkb0+j,−→a = 0 (0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0)

and
−→
A = −→a is a solution of EQS1.

Conversely, suppose that EQS1 has some solution
−→
A = −→a ∈ Ad−1(Fq) over algebraic

closure.

Lemma 2. Let ai (i = 1, ..., b0) be the number,satisfying aiaj = 0(1 ≤ i < j ≤ b0). Then
#{i | ai = 0} ≥ b0 − 1.

From this lemma, we see that for each k (0 ≤ k ≤ l − 1),

#{i |ψkb0+i|−→A=−→a = 0} ≥ b0 − 1.

It means that φ−→a (x, y) has zero at more than b0−1 points in every k-th blocks. Since k varies
from 0 to l − 1, φ−→a (x, y) has zero at more than (b0 − 1)l points in P1, ..., Pb0l. However, from
the construction of φ−→

A
(x, y) and P0, ..., Pb0l being distinct points, φ−→a (x, y) has zero at only

(b0 −1)l points in P1, ..., Pb0l and the zeros of φ−→a (x, y) is P0 and the union of the zeros of the
k-th block.

So, put

li :=
{

1 φ−→a (x(Pi), y(Pi)) = 0
0 otherwise ,

and from φ−→a (x(Pi), y(Pi)) = ψi|−→A=−→a , we have

div φ−→a (x, y) = P0 +
b0l∑
j=1

ljPj − (d + 1)∞.

Moreover, since P0, ..., Pb0l are in E(Fq), we have φ−→a (x, y) ∈ Fq[x, y] and −→a ∈ Ad−1(Fq).
Summarizing this, we have the following theorem

Theorem 1. 1. The following two statements are equivalent:
a) EQS1 has some solution −→a ∈ Ad−1(Fq),
b) P0 has normal decomposition.
2. If EQS1 has a solution −→a ∈ Ad−1(Fq), then −→a ∈ Ad−1(Fq).

3 Toy example

Here, we compute toy example. Let E/F727 : y2 = x3 + x + 1. We have #E(F727) = 691 and
it is prime order. Let P = (5, 191), Q = (100, 161) ∈ E(F727) and we will compute discrete



logarithm n i.e, the integer n such that 0 = nP + Q.
Let b0 = 3,l = 6,d = 12 and put P0 = Q = (100, 161),
P1 = 2P = (5, 191), P2 = 22P = (334, 383), P3 = 23P = (431, 228),
P4 = 24P = (607, 76), P5 = 25P = (156, 130), P6 = 26P = (525, 55), P7 = 27P = (613, 305),
P8 = 28P = (647, 58), P9 = 29P = (101, 309), P10 = 210P = (533, 482),
P11 = 211P = (698, 632), P12 = 212P = (422, 186), P13 = 213P = (380, 343),
P14 = 214P = (391, 200), P15 = 215P = (489, 219), P16 = 216P = (233, 692),
P17 = 217P = (632, 149), P18 = 218P = (32, 61).

We have
φ−→

A
(X,Y ) = 726 ∗ A1 ∗ X + 100 ∗ A1 + 726 ∗ A2 ∗ X2 + 100 ∗ A2 ∗ X + 726 ∗ A3 ∗ X3 + 100 ∗

A3 ∗ X2 + 726 ∗ A4 ∗ X4 + 100 ∗ A4 ∗ X3 + 726 ∗ A5 ∗ X5 + 100 ∗ A5 ∗ X4 + 726 ∗ A6 ∗ X6 +
100 ∗ A6 ∗ X5 + A7 ∗ Y + 566 ∗ A7 + A8 ∗ X ∗ Y + 566 ∗ A8 ∗ X + A9 ∗ X2 ∗ Y + 566 ∗ A9 ∗
X2 + A10 ∗ X3 ∗ Y + 566 ∗ A10 ∗ X3 + A11 ∗ X4 ∗ Y + 566 ∗ A11 ∗ X4 + X5 ∗ Y + 566 ∗ X5

and
ψ1 = 95 ∗ A1 + 475 ∗ A2 + 194 ∗ A3 + 243 ∗ A4 + 488 ∗ A5 + 259 ∗ A6 + 30 ∗ A7 + 150 ∗ A8 +
23 ∗ A9 + 115 ∗ A10 + 575 ∗ A11 + 694
ψ2 = 493 ∗A1 + 360 ∗A2 + 285 ∗A3 + 680 ∗A4 + 296 ∗A5 + 719 ∗A6 + 222 ∗A7 + 721 ∗A8 +
177 ∗ A9 + 231 ∗ A10 + 92 ∗ A11 + 194
ψ3 = 396 ∗ A1 + 558 ∗ A2 + 588 ∗ A3 + 432 ∗ A4 + 80 ∗ A5 + 311 ∗ A6 + 67 ∗ A7 + 524 ∗ A8 +
474 ∗ A9 + 7 ∗ A10 + 109 ∗ A11 + 451
ψ4 = 220 ∗ A1 + 499 ∗ A2 + 461 ∗ A3 + 659 ∗ A4 + 163 ∗ A5 + 69 ∗ A6 + 642 ∗ A7 + 22 ∗ A8 +
268 ∗ A9 + 555 ∗ A10 + 284 ∗ A11 + 89
ψ5 = 671 ∗A1 + 715 ∗A2 + 309 ∗A3 + 222 ∗A4 + 463 ∗A5 + 255 ∗A6 + 696 ∗A7 + 253 ∗A8 +
210 ∗ A9 + 45 ∗ A10 + 477 ∗ A11 + 258
ψ6 = 302 ∗ A1 + 64 ∗ A2 + 158 ∗ A3 + 72 ∗ A4 + 723 ∗ A5 + 81 ∗ A6 + 621 ∗ A7 + 329 ∗ A8 +
426 ∗ A9 + 461 ∗ A10 + 661 ∗ A11 + 246
ψ7 = 214 ∗A1 + 322 ∗A2 + 369 ∗A3 + 100 ∗A4 + 232 ∗A5 + 451 ∗A6 + 144 ∗A7 + 305 ∗A8 +
126 ∗ A9 + 176 ∗ A10 + 292 ∗ A11 + 154
psi8 = 180 ∗A1 + 140 ∗A2 + 432 ∗A3 + 336 ∗A4 + 19 ∗A5 + 661 ∗A6 + 624 ∗A7 + 243 ∗A8 +
189 ∗ A9 + 147 ∗ A10 + 599 ∗ A11 + 62
ψ9 = 726 ∗A1 + 626 ∗A2 + 704 ∗A3 + 585 ∗A4 + 198 ∗A5 + 369 ∗A6 + 148 ∗A7 + 408 ∗A8 +
496 ∗ A9 + 660 ∗ A10 + 503 ∗ A11 + 640
ψ10 = 294 ∗A1 + 397 ∗A2 + 44 ∗A3 + 188 ∗A4 + 605 ∗A5 + 404 ∗A6 + 321 ∗A7 + 248 ∗A8 +
597 ∗ A9 + 502 ∗ A10 + 30 ∗ A11 + 723
ψ11 = 129 ∗A1 + 621 ∗A2 + 166 ∗A3 + 275 ∗A4 + 22 ∗A5 + 89 ∗A6 + 471 ∗A7 + 154 ∗A8 +
623 ∗ A9 + 108 ∗ A10 + 503 ∗ A11 + 680
ψ12 = 405 ∗A1 + 65 ∗A2 + 531 ∗A3 + 166 ∗A4 + 260 ∗A5 + 670 ∗A6 + 25 ∗A7 + 372 ∗A8 +
679 ∗ A9 + 100 ∗ A10 + 34 ∗ A11 + 535
ψ13 = 447 ∗A1 + 469 ∗A2 + 105 ∗A3 + 642 ∗A4 + 415 ∗A5 + 668 ∗A6 + 182 ∗A7 + 95 ∗A8 +
477 ∗ A9 + 237 ∗ A10 + 639 ∗ A11 + 2
ψ14 = 436 ∗A1 + 358 ∗A2 + 394 ∗A3 + 657 ∗A4 + 256 ∗A5 + 497 ∗A6 + 39 ∗A7 + 709 ∗A8 +
232 ∗ A9 + 564 ∗ A10 + 243 ∗ A11 + 503
ψ15 = 338 ∗ A1 + 253 ∗ A2 + 127 ∗ A3 + 308 ∗ A4 + 123 ∗ A5 + 533 ∗ A6 + 58 ∗ A7 + 9 ∗ A8 +
39 ∗ A9 + 169 ∗ A10 + 490 ∗ A11 + 427
ψ16 = 594 ∗A1 + 272 ∗A2 + 127 ∗A3 + 511 ∗A4 + 562 ∗A5 + 86 ∗A6 + 531 ∗A7 + 133 ∗A8 +
455 ∗ A9 + 600 ∗ A10 + 216 ∗ A11 + 165
ψ17 = 195 ∗A1 + 377 ∗A2 + 535 ∗A3 + 65 ∗A4 + 368 ∗A5 + 663 ∗A6 + 715 ∗A7 + 413 ∗A8 +
23 ∗ A9 + 723 ∗ A10 + 380 ∗ A11 + 250
ψ18 = 68 ∗A1 + 722 ∗A2 + 567 ∗A3 + 696 ∗A4 + 462 ∗A5 + 244 ∗A6 + 627 ∗A7 + 435 ∗A8 +
107 ∗ A9 + 516 ∗ A10 + 518 ∗ A11 + 582.

EQS1 = {ψ1ψ2 = 0, ψ1ψ3 = 0, ψ2ψ3 = 0, ψ4ψ5 = 0, ψ4ψ6 = 0, ψ5ψ6 = 0, ψ7ψ8 =
0, ψ7ψ9 = 0, ψ8ψ9 = 0, ψ10ψ11 = 0, ψ10ψ12 = 0, ψ11ψ12 = 0, ψ13ψ14 = 0, ψ13ψ15 = 0, ψ14ψ15 =
0, ψ16ψ17 = 0, ψ16ψ18 = 0, ψ17ψ18 = 0}
has a solution
(A1, ..., A11) = (378, 2, 521, 58, 79, 503, 526, 681, 302, 82, 535) ∈ A11(F727)
and we can recover
(l1, ..., l11) = (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1).
Put



n :=
∑11

i=1 li2i mod 691 = 234 and we can check 234P = (100, 566) = −Q and discrete
logarithm is computed.

4 xL algorithm

First, we try to estimate the complexity for solving this equations system by xL algorithm
[2]. In [2], Courtois et al. treat the only case that the equations are of the form ”homogeneous
quadratic polynomial=constant”, but, one can obtain similar results if general quadratic
equations are used.

Algorithm 1 xL algorithm [2]

Notation: K field, X1, ..., Xn variables,
−→
X := (X1, ..., Xn)

pi(
−→
X ) ∈ K[X1, ..., Xn] (i = 1, ..., m) quadratic polynomials

Md := {All monomials of X1, ..., Xn degree ≤ d}
Assumption: n ≤ m

Input: pi(
−→
X ) (i = 1, ..., m)

Output: −→x = (x1, ..., xn) ∈ An(K) satisfying pi(
−→x ) = 0 (i = 1, ..., m)

Set parameter D = D(n, m)
Multiply:

for all m(
−→
X ) ∈ MD−2, p(

−→
X ) ∈ {p1(

−→
X ), ..., pm(

−→
X )} do

Genera all products m(
−→
X )p(

−→
X )

Linearize: Consider each monomial in MD as new variable and perform Gaussian elimination
on the equations obtained in ”Multiply”. The ordering on the monomial must be such that all the
terms containing 1 variable (say X1) are eliminated last
Solve: Assume that Linearize step yields at least one univariate equation in the powers of X1,
Solve this equation.
Repeat: Simplify the equations and repeat the process to find the values of the other variables.

In [2], Courtois et al. observed as follows;
When D = O(

√
n) and m ≥ n, the number of the equations obtained by ”Multiply Step”

is bigger than #MD and so, xL algorithm seems to be work. However, in the case m = n,
simulation(maybe computer experiments) shows the D that xL algorithm works well must be
2n. (Reason is clear, since the equations system have generally 2n solutions in K. From this
observation, xL algorithm is useful only in the case that ”the equations system has only small
number of the solutions over algebraic closure”.) In the case m = n + 1, simulation(maybe
computer experiments) shows the D that xL algorithm works well must be n (in stead of

√
n,

Reason is not clear). In the case m = n + C0 (C0 some small value), D that xL algorithm
works well can be taken O(

√
n).

In his observation, C0 is only small number and so, it is hard to formulate. So, we formulate
the weaker assumption, which means the number of the equations is much larger than that
of variables, by the following Assumption 1;

Assumption 1 Suppose the given equations system has only small number of solutions over
algebraic closure and m is written by m = αn for some constant α > 1 which does not depend
on n. Then there is positive constant β (which does not depend on n) satisfying the following:
Put D := β

√
n, and xL algorithm returns the solution(in high probability).

Assume Assumption 1 and D := β
√

n. we have
#MD =

(
n+D

D

)
¹ nβ

√
n = O(exp(n1/2+o(1))). (Many terms are absorbed into o(1) term.

Then o(1) is Huge, although limn→∞ o(1) = 0. ) In order for performing xL algorithm, the
dominant part is Gaussian elimination of the matrix whose size is about #MD × #MD.
Its cost is (#MD)w where w ∼ 2.7 is the linear algebra constant and it is also written by
O(exp(n1/2+o(1))). Thus we have

Lemma 3. Assume Assumption 1, the complexity of xL algorithm is estimated by O(exp(n1/2+o(1))).



Our equations system EQS1 has d − 1 = (b0 − 1)l − 1 variables and b0(b0−1)
2 l equations.

So, when b0 ≥ 3, the ratio m/n > b0
2 ≥ 1.5. Moreover, for all α(> 1,∈ R), put b0 := d2αe,

the ratio m/n > b0
2 ≥ α. Also, from Lemma 1 and Theorem 1, we see that the number of the

solutions over algebraic closure is small. So, EQS1 satisfies Assumption 1 and we have the
following:

Theorem 2. Under the Assumption 1, the complexity of ECDLP is estimated by
O(exp((log #E(Fq))1/2+o(1))).

5 Rigid algorithm

From the algorithm shown in §2, the following ”Restricted ECDLP” can not reduced to the
suitable equations system. We will construct the equations system for sloving the ”Restricted
ECDLP” below. We also assume #E(Fq) be prime number for simplicity.

Problem 2 ((Restricted ECDLP)) Let P,Q ∈ E(Fq) such that < P >3 Q and N be a
positive integer. Assume that there is (unknown) unique integer n such that 0 = Q + nP and
0 ≤ n < N . Restricted ECDLP is the problem finding integer n satisfying 0 = Q + nP .

Remark that if one takes N = #E(Fq), it it normal ECDLP.
Also fix b0(≥ 2) be a positive integer and put l := blogb0 #E(Fq)c. The restricted ECDLP

is divided by the following small restricted ECDLP

0 = (Q + i(bl
0)P ) + [n mod bl

0]P (0 ≤ i ≤ dN

bl
0

e − 1)

and there exists unique I (0 ≤ I ≤ dN
bl
0
e − 1), such that 0 = (Q + IbN

bl
0
c(bl

0)P ) + nP (0 ≤
n < bl

0)have a solution or both of 0 = Q + nP and 0 = (Q + i(bl
0)P ) + nP (0 ≤ n < bl

0)have
solutions.

Exchanging Q + ibl
0P by Q, we only consider the following ECDLP

Problem 3 ((Restricted ECDLP 2)) Let P,Q ∈ E(Fq) such that < P >3 Q and b0, l be
a positive integer. Assume that there is (unknown) unique integer n such that 0 = Q + nP
and 0 ≤ n < bl

0. Restricted ECDLP is the problem finding integer n satisfying 0 = Q + nP .

Here, we consider the b0-adic expansion of unknown discrete logarithm n.

Definition 1 Let ε
(k)
(n) (0 ≤ ε

(k)
(n) ≤ b0 − 1) be the integer satisfying

n =
l−1∑
k=0

ε
(k)
(n)b

k
0 .

For arbitrary k, i (0 ≤ k ≤ l − 1, 1 ≤ i ≤ b0), put

l
(n)
b0k+i :=

{
1 ε

(k)
(n) = i − 1

0 otherwise
.

Definition 2 For arbitrary k, i (0 ≤ k ≤ l − 1, 1 ≤ i ≤ b0), put

n
(1)
b0k+i := (i − 1)bk

0 , and P
(1)
b0k+i := n

(1)
b0k+iP.

From the definition, we have the following:



Lemma 4.

n =
b0l∑
j=1

l
(n)
j n

(1)
j .

These notations are hard to understand. So, we show small exmple. In the case b0 = 3, l =
3, n

(1)
j are written by the following:

n
(1)
1 = 0, n

(1)
2 = 1, n

(1)
3 = 2, (0-th block),

n
(1)
4 = 0, n

(1)
5 = 3, n

(1)
6 = 6, (1st block),

n
(1)
7 = 0, n

(1)
8 = 9, n

(1)
9 = 18, (2nd block).

If the discrete logarithm n = 19, it is written by

n = 19 = 1 + 0 ∗ 3 + 2 ∗ 32,

and
ε
(0)
(19) = 1, ε

(1)
(19) = 0, ε

(2)
(19) = 2.

Then we have
l
(19)
1 = 0, l

(19)
2 = 1, l

(19)
3 = 0, (0-th block),

l
(19)
4 = 1, l

(19)
5 = 0, l

(19)
6 = 0, (1st block),

l
(19)
7 = 0, l

(19)
8 = 0, l

(19)
9 = 1(2nd block).

Thus we have

19 = 1 + 0 + 18 =
9∑

j=1

l
(19)
j n

(1)
j .

Here, we define the decomposition using P
(1)
1 , ..., P

(1)
b0l .

Definition 3 (Reverse decomposition) If there exists lj ∈ {0, 1}, (1 ≤ j ≤ b0l) such that
for ∀k (0 ≤ k ≤ l − 1)

#{i | lkb0+i = 1, 1 ≤ i ≤ b0} = 1

and Q is expressed by the form

0 = Q +
b0l∑
j=1

ljP
(1)
j ,

we call Q has reverse decomposition into P
(1)
1 , ..., P

(1)
b0l .

Note this definition is different to the previous manuscript. In the previous manuscript,
#{i | lkb0+i = 1, 1 ≤ i ≤ b0} is b0 − 1,which is called normal decomposition. But here it is 1.

Remember n (0 ≤ n < bl
0) be the discrete logarithm. We have

0 = Q + nP = Q +
l−1∑
k=0

ε
(k)
(n)b

k
0P = Q +

l−1∑
k=0

P
(1)

b0k+ε
(n)
(k)+1

= Q +
b0l∑
j=1

l
(n)
j P

(1)
j

and Q has reverse decomposition into P
(1)
1 , ..., P

(1)
b0l .

Conversely, suppose Q has reverse decomposition 0 = Q+
∑b0l

j=1 ljP
(1)
j into P

(1)
1 , ..., P

(1)
b0l ,.

Put n =
∑b0l

j=1 l
(n)
j n

(1)
j and we have 0 ≤ n < bl

0 and 0 = Q + nP . Then we have the following:



Lemma 5. 1. The following two statements are equivalent:
a) There is an integer n satisfying 0 = Q + nP and 0 ≤ n < bl

0,
b) Q has reverse decomposition into P

(1)
1 , ..., P

(1)
b0l .

Definition 4 For arbitrary k, i (0 ≤ k ≤ l − 1, 1 ≤ i ≤ b0), put

n
(2)
b0k+i := n

(1)
b0k+i + bk

0 = ibk
0 , P

(2)
b0k+i := n

(2)
b0k+iP,

n
(3)
b0k+i := n

(2)
b0k+i +

{
1 k:odd
0 k:even = ibk

0 +
{

1 k:odd
0 k:even , and P

(3)
b0k+i := n

(3)
b0k+iP.

Her, the difference n
(2)
b0k+i−n

(1)
b0k+i = bk

0 is called 1st jamming term and the difference n
(3)
b0k+i−

n
(2)
b0k+i =

{
1 k:odd
0 k:even is called 2nd jamming term.

Lemma 6. {n(3)
j | 1 ≤ j ≤ b0l} are distinct.

Further, we will assume the following:

Assumption 2 {P (3)
j | 1 ≤ j ≤ b0l} are distinct.

From above Lemma, it is almost true.
Remark We can continue the discussion if we take

n
(3)
b0k+i := n

(2)
b0k+i + n(k)

where n(k) is some integer dependent on k. In this manuscript, we simply take n(k) :={
1 k:odd
0 k:even . Generally, 2nd jamming term can be taken by this n(k).

From this Remark, if there are some 0 ≤ k1 < k2 ≤ l − 1 and 1 ≤ i1, i2 ≤ b0 satisfying
P

(3)
b0k1+i1

= P
(3)
b0k2+i2

exchanging 2nd jamming term, and the Assumption2 holds. Otherwise in

the case, if there are some 0 ≤ k1 ≤ l − 1 and 1 ≤ i1 < i2 ≤ b0 satisfying P
(3)
b0k1+i1

= P
(3)
b0k1+i2

and P
(2)
b0k1+i1

= P
(2)
b0k1+i2

. So we have (bk1
0 )(i2 − i1)P = 0. In this case ECDLP is very special

and one can easily solve ECDLP.

Definition 5 Put

J1 :=
l−1∑
k=0

bk
0 =

bl
0 − 1

b0 − 1

by the 1
b0

times of the total sum of 1st jamming term and put

J2 := (b0 − 1)b l

2
c

by the b0−1
b0

times of the total sum of 2nd jamming term. Also put

M1 :=
l−1∑
k=0

b0∑
i=1

ibk
0 =

(bl
0 − 1)b0(b0 + 1)

2(b0 − 1)

by the total sum of n
(3)
b0k+i.



Suppose Q has normal decomposition 0 = Q +
∑b0l

j=1 ljP
(1)
j . Then we have

0 = Q +
b0l∑
j=1

ljP
(1)
j = Q − J1P +

b0l∑
j=1

ljP
(2)
j = Q − J1P + M1P +

b0l∑
j=1

(lj − 1)P (2)
j .

Put
l′j = 1 − lj ∈ {0, 1}

and we have each k (0 ≤ k ≤ l − 1) block, we have

#{i | l′b0k+i = 1, 1 ≤ i ≤ b0} = b0 − 1 and#{i | l′b0k+i = 0, 1 ≤ i ≤ b0} = 1.

Return to the formulation of the formula, we have

0 = −Q + J1P − M1P +
b0l∑
j=1

(1 − lj)P
(2)
j = −Q + J1P − M1P − J2P +

b0l∑
j=1

(1 − lj)P
(3)
j

= −Q + (J1 − J2 − M1)P +
b0l∑
j=1

l′jP
(3)
j .

So, put

P0 := −Q(J1 − J2 − M1)P, rj := n
(3)
j , Pj := P

(3)
j (j = 1, ..., b0l),

the algorithm in §2 is available. i.e., P0 has normal decomposition into P1, ..., Pb0l. Put

ψi := ψ
i,
−→
A

= φ−→
A

(x(Pi), y(Pi))(∈ Fq[A1, ..., Ad−1]) (i = 1, ..., b0l),

and consider the equations system

EQS1 := {ψkb0+iψkb0+j = 0 | 0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0}.

Note that EQS1 consists of b0(b0−1)
2 l quadratic equations and (b0 − 1)l − 1 variables and

the restricted ECDLP is reducing to solving this equations system. Also put

l′i :=
{

1 φ−→a (x(Pi), y(Pi)) = 0
0 otherwise ,

then we have a normal decomposition

0 = P0 +
b0l∑
j=1

l′jPj ,

and ECDLP is recovered by

n =
∑

0≤k≤l−1,1≤i≤b0

(1 − l′kb0+i){(i − 1)bk
0}.

Similarly we have the following

Theorem 3. Under the assumption 1, the complexity of solving restricted ECDLP is

exp((log N)1/2+o(1)).



6 Toy example

Here, we compute toy example. Let E/F1073741789 : y2 = x3+x+109. We have #E(F1073741789) =
1073734999 and it is prime order. Let P = (1, 143901150), Q = −700P = (647703549, 245552865) ∈
E(F1073741789) and we will recover discrete logarithm n = 700 i.e, 0 = 700P + Q.
Let b0 = 3,l = 6,d = 12 and put P0 := −Q − (2184 + 6 − 364) ∗ P = (226088430, 436478206)
P1 := P = (1, 143901150)
P2 := 2 ∗ P = (299873831, 928636621)
P3 := 3 ∗ P = (503128344, 969239414)
P4 := 4 ∗ P = (767039651, 913339816)
P5 := 7 ∗ P = (1002246095, 733782485)
P6 := 10 ∗ P = (733179341, 52798551
P7 := 9 ∗ P = (901739418, 109858882)
P8 := 18 ∗ P = (73367306, 298975683)
P9 := 27 ∗ P = (866076745, 131780578)
P10 := 18 ∗ P = (978711160, 864620715)
P11 := 55 ∗ P = (923735979, 1039609632)
P12 := 82 ∗ P = (279349632, 577287516)
P13 := 81 ∗ P = (480576973, 493449251)
P14 := 162 ∗ P = (418886202, 729929637)
P15 := 243 ∗ P = (570168111, 424873673)
P16 := 244 ∗ P = (1019714204, 50723728)
P17 := 487 ∗ P = (241092407, 504678284)
P18 := 730 ∗ P = (333788268, 386257268)

We have
φ−→

A
(X,Y ) == 1073741788∗A1∗XX +226088430∗A1+1073741788∗A2∗XX2 +226088430∗

A2 ∗ XX + 1073741788 ∗ A3 ∗ XX3 + 226088430 ∗ A3 ∗ XX2 + 1073741788 ∗ A4 ∗ XX4 +
226088430 ∗A4 ∗XX3 +1073741788 ∗A5 ∗XX5 +226088430 ∗A5 ∗XX4 +1073741788 ∗A6 ∗
XX6 + 226088430 ∗ A6 ∗ XX5 + A7 ∗ Y Y + 637263583 ∗ A7 + A8 ∗ XX ∗ Y Y + 637263583 ∗
A8 ∗XX + A9 ∗XX2 ∗ Y Y + 637263583 ∗A9 ∗XX2 + A10 ∗XX3 ∗ Y Y + 637263583 ∗A10 ∗
XX3 + A11 ∗ XX4 ∗ Y Y + 637263583 ∗ A11 ∗ XX4 + XX5 ∗ Y Y + 637263583 ∗ XX5

and
ψ1 = 226088429∗A1+226088429 ∗A2+226088429 ∗A3+226088429 ∗A4+226088429 ∗A5+
226088429 ∗ A6 + 781164733 ∗ A7 + 781164733 ∗ A8 + 781164733 ∗ A9 + 781164733 ∗ A10 +
781164733 ∗ A11 + 781164733
ψ2 = 999956388∗A1+560865895 ∗A2+968576376 ∗A3+477394866 ∗A4+252235669 ∗A5+
413913084 ∗ A6 + 492158415 ∗ A7 + 571481171 ∗ A8 + 551121029 ∗ A9 + 823268001 ∗ A10 +
501594843 ∗ A11 + 349808028
ψ3 = 796701875 ∗ A1 + 766405831 ∗ A2 + 1027132502 ∗ A3 + 716438354 ∗ A4 + 447015914 ∗
A5+521745128∗A6+532761208∗A7+505005988∗A8+870485541∗A9+269259172∗A10+
708628250 ∗ A11 + 533404740
ψ4 = 532790568 ∗ A1 + 953692135 ∗ A2 + 208625061 ∗ A3 + 573614824 ∗ A4 + 177893183 ∗
A5+203868720 ∗A6+476861610 ∗A7+63004931 ∗A8+608571849 ∗A9+313556486 ∗A10+
667535215 ∗ A11 + 1036244402
ψ5 = 297584124∗A1+700624089 ∗A2+537562339 ∗A3+841317366 ∗A4+460515561 ∗A5+
357738131 ∗ A6 + 297304279 ∗ A7 + 308615293 ∗ A8 + 141226927 ∗ A9 + 586580448 ∗ A10 +
797428242 ∗ A11 + 163126219
ψ6 = 566650878 ∗A1 + 233980350 ∗A2 + 2349552 ∗A3 + 380208128 ∗A4 + 1015854050 ∗A5 +
156987499 ∗ A6 + 690062134 ∗ A7 + 477240871 ∗ A8 + 676367821 ∗ A9 + 766705898 ∗ A10 +
92471318 ∗ A11 + 906744953
ψ7 = 398090801 ∗A1 + 557621334 ∗A2 + 966407363 ∗A3 + 102032405 ∗A4 + 41149805 ∗A5 +
254997820 ∗ A6 + 747122465 ∗ A7 + 313058754 ∗ A8 + 319254209 ∗ A9 + 260839876 ∗ A10 +
538121333 ∗ A11 + 146610434
ψ8 = 152721124∗A1+277054419 ∗A2+39055253 ∗A3+1023309119∗A4+777639824 ∗A5+
247204648 ∗ A6 + 936239266 ∗ A7 + 973986002 ∗ A8 + 736020831 ∗ A9 + 465924531 ∗ A10 +
150306321 ∗ A11 + 81608701
ψ9 = 433753474∗A1+985435165 ∗A2+241055825 ∗A3+195248984 ∗A4+548549445 ∗A5+
589380119 ∗ A6 + 769044161 ∗ A7 + 1045275912 ∗ A8 + 291960878 ∗ A9 + 637760874 ∗ A10 +



201328562 ∗ A11 + 1048602103
ψ10 = 321119059∗A1+283376342∗A2+232981203∗A3+338231614∗A4+790848784∗A5+
474139666 ∗ A6 + 428142509 ∗ A7 + 359853650 ∗ A8 + 346610100 ∗ A9 + 818740049 ∗ A10 +
107537958 ∗ A11 + 1037457469
ψ11 = 376094240 ∗A1+926778644 ∗A2+75958860 ∗A3+518509838 ∗A4+426098264 ∗A5+
653389532 ∗ A6 + 603131426 ∗ A7 + 907074846 ∗ A8 + 601153885 ∗ A9 + 902541026 ∗ A10 +
483429797 ∗ A11 + 525478439
ψ12 = 1020480587 ∗ A1 + 267964645 ∗ A2 + 975226971 ∗ A3 + 132890043 ∗ A4 + 499781944 ∗
A5+30456621 ∗A6+140809310 ∗A7+655421731 ∗A8+166756042 ∗A9+496439397 ∗A10+
574421574 ∗ A11 + 563373482
ψ13 = 819253246 ∗ A1 + 371332294 ∗ A2 + 168284383 ∗ A3 + 271746380 ∗ A4 + 751211904 ∗
A5 + 349890385 ∗A6 + 56971045 ∗A7 + 917952990 ∗A8 + 803045277 ∗A9 + 31302661 ∗A10 +
857977353 ∗ A11 + 49709379
ψ14 = 880944017 ∗A1 + 403877358 ∗A2 + 444527849 ∗A3 + 363063687 ∗A4 + 4095602 ∗A5 +
895956652 ∗ A6 + 293451431 ∗ A7 + 829411202 ∗ A8 + 990876149 ∗ A9 + 651368586 ∗ A10 +
36129035 ∗ A11 + 750028193
ψ15 = 729662108 ∗ A1 + 660951032 ∗ A2 + 215502507 ∗ A3 + 328959790 ∗ A4 + 273153836 ∗
A5 + 521132947 ∗ A6 + 1062137256 ∗ A7 + 756861618 ∗ A8 + 721088906 ∗ A9 + 816140550 ∗
A10 + 56542021 ∗ A11 + 41073575
ψ16 = 280116015 ∗ A1 + 347477506 ∗ A2 + 741089275 ∗ A3 + 578494533 ∗ A4 + 271590481 ∗
A5 + 607687676 ∗ A6 + 687987311 ∗ A7 + 1037696180 ∗ A8 + 983997075 ∗ A9 + 809799124 ∗
A10 + 457325577 ∗ A11 + 92657733
ψ17 = 1058737812 ∗ A1 + 963328085 ∗ A2 + 122041552 ∗ A3 + 548247200 ∗ A4 + 82872780 ∗
A5 + 847566113 ∗A6 + 68200078 ∗A7 + 488790147 ∗A8 + 71164651 ∗A9 + 307239508 ∗A10 +
107966160 ∗ A11 + 67581091
ψ18 = 966041951 ∗ A1 + 351552123 ∗ A2 + 831558009 ∗ A3 + 1041096055 ∗ A4 + 309522466 ∗
A5 + 1047068892 ∗ A6 + 1023520851 ∗ A7 + 260751606 ∗ A8 + 82001771 ∗ A9 + 430269312 ∗
A10 + 42277896 ∗ A11 + 543975617

EQS1 = {ψ1ψ2 = 0, ψ1ψ3 = 0, ψ2ψ3 = 0, ψ4ψ5 = 0, ψ4ψ6 = 0, ψ5ψ6 = 0, ψ7ψ8 =
0, ψ7ψ9 = 0, ψ8ψ9 = 0, ψ10ψ11 = 0, ψ10ψ12 = 0, ψ11ψ12 = 0, ψ13ψ14 = 0, ψ13ψ15 = 0, ψ14ψ15 =
0, ψ16ψ17 = 0, ψ16ψ18 = 0, ψ17ψ18 = 0}
has a solution

(A1, ..., A11) = (1052610325, 1027299158, 204711428, 665478999, 576105216, 887736260,
977723279, 634207409, 151915098, 706654193, 1065506101)
and we can recover

(l′1, ..., l
′
18) = (1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0).

Put 2

n :=
18∑

j=1

(1 − l′j)n
(1)
j =

5∑
k=0

3∑
i=1

(1 − l′3k+i)(i − 1)bk
0 =

5∑
k=0

3∑
i=2

(1 − l′3k+i)(i − 1)bk
0

= (1− l′2) ∗ 1 + (1− l′3) ∗ 2 + (1− l′5) ∗ 3 + (1− l′6) ∗ 6 + (1− l′8) ∗ 9 + (1− l′9) ∗ 18 + (1− l′11) ∗
27 + (1 − l′12) ∗ 54 + (1 − l′14) ∗ 81 + (1 − l′15) ∗ 162 + (1 − l′17) ∗ 243 + (1 − l′18) ∗ 486 = 700.
and we can check −700P = Q and discrete logarithm is computed.

7 Loss of the equation

Here, we show the following theorem:

Theorem 4. Let EQS1 is the equations system of the ECDLP of E(Fq). Remember that
b0(≥ 2), l ∼ logb0 #E(Fq), d := (b0 − 1)l be fixed integers and P0, ..., Pb0l are some points
in E(Fq). Also remember that the polynomials ψi(∈ Fq[A1, ..., Ad−1], i = 1, ..., b0l) are defined
and the equations system EQS1 is defined by

{ψkb0+iψkb0+j = 0 | 0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0}.
2 From the term (i − 1), the term of i = 1 is erasing



Here, let
EQS1′ := EQS1\{ψ1ψ2 = 0}.

Then, EQS1′ have more than bl−1
0 solutions.

Proof. For arbitrary k-th (1 ≤ k ≤ l − 1) block {Pb0k+i | 1 ≤ i ≤ b0}, , we select b0 − 1
elements {Pb0k+Ij | 1 ≤ j ≤ b0 − 1}. Note that the number of the selections is bl−1

0 . For 0-th
block, we select, b0 − 2 elements P3, ..., Pb0 .

Put

R := −P0 −
b0∑

i=3

Pi −
∑

1≤k≤l−1,1≤j≤b0−1

Pb0k+Ij .

Then there exists some f(x, y) ∈ L((d + 1)∞− P0) such that

div f(x, y) = R + P0 +
b0∑

i=3

Pi +
∑

1≤k≤l−1,1≤j≤b0−1

Pb0k+Ij − (d − 1)∞.

Thus, there exists some −→a = (a1, ..., ad−1) ∈ Ad−1(Fq) such that f(x, y) = φ−→a (x, y). On
the other hand, ψi = φ−→

A
(x(Pi), y(Pi)), we have ψi |−→A=−→a = f(x(Pi), y(Pi)). So, from the

construction of EQS1′, −→a = (a1, ..., ad−1) ∈ Ad−1(Fq) is a solution of EQS1′.

This theorem says that although the average number of the solution of EQS1 is controlled
to be 1, if one equation is dropped, the number of the solutions is very large. In the following,
to avoid this situation, we proposed two devices and ideas and increasing the number of the
equations.

8 Inter block equations system

Here, we state the devices to adding some equations to EQS1 named ”Inter block equations
system”. This devices is mainly useful in the case b0 ≥ 3 and we assume in this section b0 ≥ 3.
Moreover, we assume that the EQS1 has only one solution for simplicity. First, we consider
the normal decomposition of P0

0 = P0 +
b0l∑
j=1

ljPj , lj ∈ {0, 1}, #{i | lkb0+i = 1, 1 ≤ i ≤ b0} = b0 − 1

Let n0 be positive integer and consider the n0 equations f1 = f2 = ... = fn0 = 0 where
each fI is random polynomials of the form

ψk1b0+i1ψk2b0+i2 (0 ≤ k1 < k2 ≤ l − 1, 1 ≤ i1, i2 ≤ b0)

and consider the new equations system

EQS2 := EQS1 ∪ {f1 = 0, ..., fn0 = 0}.

Note that ψk1b0+i1ψk2b0+i2 is the product of two polynomials of the points in the different
block. Let −→a = (a1, ..., ad−1) ∈ Ad−1(Fq) be the unique (unknown) solution of EQS1. From
the construction, in each k-th (0 ≤ k ≤ l − 1) block, there exists some Ik (1 ≤ Ik ≤ b0) such
that

ψkb0+Ik
|−→
A=−→a 6= 0, ψkb0+i|−→A=−→a = 0 for i ∈ {1, ..., b0}\{Ik}.

Then, for each i (1 ≤ i ≤ n0), the probability fi|−→A=−→a = 0 is 1 − 1
b20

and the probability

f1|−→A=−→a = ...fn0 |−→A=−→a = 0 is (1 − 1
b20

)n0 . Since limn→∞(1 − 1
n )n = 1

e ∼ 0.367879 and in the

case n = 9, (1 − 1
9 )9 ∼ 0.346439 and this value is near to 1

e , we have

(1 − 1
b2
0

)n0 = (1 − 1
b2
0

)
b20·

n0
b20 ∼ (

1
e
)

n0
b20 ∼ (0.367879)

n0
b20 .



The we have that the probability that EQS2 has a solution is around (0.367879)
n0
b20 .

For example, take n0 := b2
0 × 10 (resp. n0 := b2

0 × 5), the probability is around 1
22026 (resp.

1
148 and trying to 22026 (resp. 148) times solving ESQ2, we can recover ECDLP. In the case
b0 = 3, adding n0 = 90 equations to EQS1, we can recover ECDLP in 1

22026 probability and
by 22026 times solving EQS2, ECDLP can be recovered.

9 Mirroring equations system

Here, we state the devices to adding some equations to EQS1 named ”Mirroring equations
system”. The new equations system obtained by this devices has n1 times variables of EQS1.
However, if many many equations are lost from this equations system, the original solution can
be recovered. We also assume that the original equations system EQS1 has only one solution
for simplicity. First, we consider the normal decomposition of P0 = P

(0)
0 into P

(0)
1 , ..., P

(0)
b0l ,

0 = P
(0)
0 +

b0l∑
j=1

ljP
(0)
j , lj ∈ {0, 1}, #{i | lkb0+i = 1, 1 ≤ i ≤ b0} = b0 − 1

and ψ
(0)
i ∈ Fq[A

(0)
1 , ..., A

(0)
d−1] be the polynomial of the point P

(0)
i . Original equations system

EQS1 = EQS1(0) is made by

{ψ(0)
kb0+i, ψ

(0)
kb0+j = 0 | 0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0}.

Let n1(≥ 2) be the positive integer and αm(1 ≤ m ≤ n1 − 1) be the random integers
co-prime to #E(Fq). Put

P
(m)
i := αmPi (1 ≤ m ≤ n1 − 1, 0 ≤ i ≤ b0l)

and consider the normal decomposition named mirroring normal decomposition

0 = P
(m)
0 +

b0l∑
j=1

ljP
(m)
j , lj ∈ {0, 1}, #{i | lkb0+i = 1, 1 ≤ i ≤ b0} = b0 − 1

and ψ
(m)
i ∈ Fq[A

(m)
1 , ..., A

(m)
d−1] be the polynomial of the point P

(m)
i . Mirroring equations

system EQS1(m) is made by

{ψ(m)
kb0+iψ

(m)
kb0+j = 0 | 0 ≤ k ≤ l − 1, 1 ≤ i < j ≤ b0}.

From the construction and the assumption that EQS1(0) has unique solution, EQS(m) has
unique solution. Let −→a (m) = (a(m)

0 , ..., a
(0)
d−1) ∈ Ad−1(Fq) be the unique solution of EQS1(m)

and put
−→a all := (a(0)

0 , ..., a
(n1−1)
d−1 ) ∈ An1(d−1)(Fq).

Lemma 7. We have the relation that

ψ
(m1)
i |−→

A (m1)=−→a (m1) = 0 ⇔ ψ
(m2)
i |−→

A (m2)=−→a (m2) = 0

for any 0 ≤ m1, m2,≤ n1 − 1, 1 ≤ i ≤ b0l.

Definition 6 (Mirroring equations system ) Put

ESQ3 := {ψ(m1)
kb0+i1

ψ
(m2)
kb0+i2

= 0 | 0 ≤ k ≤ l − 1, 1 ≤ i1 < i2 ≤ b0, 0 ≤ m1,m2 ≤ n1 − 1}.



From Lemma 7, we have the following

Lemma 8. ESQ3 has a unique solution −→a all ∈ Ad−1(Fq).

Also from Lemma 7, we have the following

Lemma 9. Let M (0 ≤ M ≤ n1 − 1) be a integer. Put

ESQ3(M) := {ψ(m1)
kb0+i1

ψ
(M)
kb0+i2

= 0 | 0 ≤ k ≤ l − 1, 1 ≤ i1 < i2 ≤ b0, 0 ≤ m1 ≤ n1 − 1}.

Note that EQS3(M) is a subset of EQS3. Although the number of the equations is very smaller,
ESQ3(M) has a unique solution −→a all ∈ Ad−1(Fq).

Postscript In this mamuscripts, the author gives the improvements of Bit Coincidence
Mining Algorithm, which state that if the xL algorithm works well, the complexity of solving
DLP of elliptic curve over arbitrary finite field is sub-exponential. However, from my recent
research in this summer vacation, xL algorithm may not works well.
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