Bit Coincidence Mining Algorithm II (Draft)

Koh-ichi Nagao (nagao@kanto-gakuin.ac.jp)

Fac. of Science and Engineering, Kanto Gakuin Univ.,

Abstract. In [14], Petit et al. shows that under the algebraic geometrical assumption
named ” First Fall degree Assumption”, the complexity of ECDLP over binary extension

field Fan is in O(exp(n®/T°M)) where lim,,—. o(1) = 0 and there are many generaliza-
tions and improvements for the complexity of ECDLP under this assumption [10], [11],

[5], [16]. In [13], the author proposes the bit coincidence mining algorithm, which states
that under the heuristic assumption of the complexity of xLi algorithm, the complexity
of ECDLP E/F, over arbitrary finite field including prime field, is in O(exp(n'/>T°")))
where n ~ log, #E(F,) ~ log, q. It is the first (heuristic) algorithm for solving ECDLP
over prime field in subexponential complexity. In both researches, ECDLP reduces to
solving large equations system and from each assumption, the complexity for solving
reduced equations system is subexponential (or polynomial) complexity. However, the
obtained equations system is too large for solving in practical time and space, they are
only the results for the complexity.

xL algorithm [2], is the algorithm for solving quadratic equations system, which consists
of n variables and m equations. Here, n and m are considered as parameters. Put D =
D(n, m) by the maximal degree of the polynomials, which appears in the computation
of solving equations system by xL. Courtois et al. observe and assume the following
assumption;

1) There are small integer Co, such that D(n,n 4+ Cp) is usually in O(y/n), and the

cost for solving equations system is in O(eazp(n”ﬁo(l) .

However, this observation is optimistic and it must have the following assumption
2) The equations system have small number of the solutions over algebraic closure.
(In this draft we assume the number of the solutions is 0 or 1)

In the previous version’s bit coincidence mining algorithm [13], the number of the
solutions of the desired equations system over algebraic closure is small and it can be
probabilistically controlled to be 1 and the assumption 2) is indirectly true. For my
sense, the reason that xL algorithm, which is the beautiful heuristic, is not widely used
is that the general equations system over finite field does not satisfy the assumption
2) (there are many solutions over algebraic closure) and is complexity is much larger.
In the previous draft [13], I show that the ECDLP of E(F,) reduces to solving equations
system consists of d — 1 variables and d + Cy — 1 equations where Cj is an arbitrary
positive integer and d ~ Cy X log, q. So, the complexity for solving ECDLP is in
subexponential under the following assumption

a) There are some positive integer Co independent from n, such that solving quadratic
equations system consists of n variables and m = n + Co equations (and we must
assume the assumption 2)) by zL algorithm, the mazimum degree of the polynomials
D = D(n,m), appears in this routine is in O(y/n) in high probability.

Here, we propose the new algorithm that ECDLP of E(FF,) is essentially reducing to

solving equations system consists of d — 1 variables and %Od equations where bo(> 2)
is an arbitrary positive integer named block size and d ~ (bo — 1)log,, g. Here, we

mainly treat the case block size by = 3. In this case, ECDLP is essentially reducing to

1

! Generally, the number of the equations m is much larger than the number of the variables n, the
number of the solutions seems to be true. However it is not true and the assumption 2) must be
needed. For example considering the equations system consists of the union of random quadratic

equations
— —

P1(X) = ... =pnsp(X) =0, pi € Falz1, ..., z5]
and field equations
2 2
T —T1=..=x, —Tn =0

—
where n is even number and X = (21, .., Z»). From the probabilistic discussion, the average number

of the solution of this equations system is 2"/2, although the number of the equations is much larger
than the number of the variables.



solving equations system consists of about 2logs ¢ variables and 3log; ¢ equations. So
that the desired assumption 1) is always true. Moreover, the number of the solutions
(over algebraic closure) of this equations system can be probabilistically controlled to
be 1 and the desired assumption 2) is also true.

In the former part of this manuscript, the author states the algorithm for the con-
struction of equations system that ECDLP is reduced and in the latter part of this
manuscript, the author state the ideas and devices in order for increasing the number
of the equations, which means the obtained equations system is easily solved by xL
algorithm.

1 Notation

Let ¢ be a power of prime including prime number and
E/F,: y? + dizy + dyy — x° — dox® — dux — dg = 0

be an elliptic curve. We mainly consider the case g being large prime.
For simplicity, we will assume #E(F,) is prime number.

Problem 1 ((ECDLP)) Let P,Q € E(F,) such that < P >> (). ECDLP is the problem
finding integer n satisfying 0 = Q + nP.

Here, we propose an improved algorithm for solving ECDLP. In this algorithm, for an
arbitrary positive integer bo(> 2), ECDLP of E(F,) is, in about O(1) probability, reducing to
solving quadratic equations system consists of (bg — 1)I — 1 variable and %"_UZ equations,
where [ := [log, #F(F,)|. From the heuristics of xL algorithm, the cost for solving this kind

of equations system is O(exp(#E(F,)"/?+°(M)) and it is subexponential complexity.

2 L((d+1)oo — Pp)

Let Py, Py, .., Py be the d + 1 point in E(F,)\{oco}. In this section, we further fix Fy. Put
(x;,y;) := P;. Then the space of function field L((d + 1)oo — Py), which means the set of the
elements of function field that has pole only at oo, the order of the pole at co is < d+ 1 and
has zero at Py, is spanned by

(:I; - CCO)J ((E - JI).’E, ) (LL' - xO)xL(d_l)/2J7 (y - yo)a (y - 90)377 ey (y - yo)xL(d_Q)/QJ .
Then an element of L((d + 1)co — Py), whose order of the pole at co is exactly d + 1, is

written by the following;
1) In the case d is odd,

(d-1)/2 d-1
65 (@ y)i=(—vo) », Aal4(@—m)( DY, Aw D24 @D/
i=1 i=(d+1)/2
2) In the case d is even,
d/2 ‘ d—1 ‘
d7(w,y) = (@ —wo) Y A+ (y—yo)( D AP 42,
i=1 i=d/2+1

Here, Ay, ..., Aq_1 are considered as parameter and q&z(x, y) is considered as an element
of FglAq, ..., Ag_1,2,9].

Remember that we here treat the ECDLP of E(F,) and find the unknown integer n such
that 0 = Q + nP for given P,Q € E(F,).



Let by(> 2) be a natural number (we mainly concern the case by = 3) and put
l:= [logy, #(Fq)| ~logy, ¢, d:= (bo — 1)L.
Let 7; (i = 1, ..., b,l)be random integers and put
Po:=Q, Pj:=r;P (j=1,...,bl).

We assume all Py, ..., Py, are distinct points in E(IF,)\{oco}, otherwise, take another random
numbers. Here, we call the sequence of the points

{Poot1, s Poogktbo }

k-th block where £ moves 0 < k <1 —1. Note that all points P, ..., P, are the disjoint union
of the k-th blocks.

Definition 1 (Normal decomposition) If there exists I; € {0,1}, (1 < j < bol) such that

forVE(O<k<I-1)
#{i | by = 1,1 <0 <bo} = by — 1

and Py is expressed by the form
bol

0: P()“f‘lePj,
j=1

we call Py has normal decomposition into P, ..., Py,;.

It means that — P, is written by the sum of the element of P, ..., P,,; and from each block,
bo — 1 points are used in this sum. Since the number of the selection of by — 1 elements from
each block is by, the number of the expression

bol
> 1Py L ={0,1}, #{i | lnori = 1,1 < i < b} = b — 1
j=1

is .
by ~ #E (Fq)'
So, we have the following

Lemma 1. The average number of the normal decomposition and the probability that normal
decomposition success is around O(1).

Put z; := x(P;),y; == y(P;) (j =0,...,bol) .
Definition 2 (Equations system) Put

Yii=y, 3= b (w4, yi) (€ Fy[A1, ..., Aa—a]) (i =1,...,bol),
and consider the equations system

EQS1 := {{rpg+iVhby+; =00 <k <1 —-1,1<i < j<bo}

We will call ¢; by the polynomial of point P; and EQS1 consist of the product of two
polynomials of the points including the same block. Note that EFQS1 consists of WZ
quadratic equations.
Suppose that Py has normal decomposition. Then there is some element f(z,y) in L((d +
1)oo — Py) satisfying
zero of f ={Py} U{P;|l; =1}.



Since P;’s are distinct points, we have

bol
divf =P+ Y 1P — (d+1)oc.
j=1

Then, we see that there are some @ € AY"1(F,) such that

bol
divgz (,y) = Py + > _ ;P — (d + 1)o0.
j=1

For each k-th block (0 < k <1 — 1), the number of the points Pyt (1 < i < bg) that are
zero of ¢ (z,y) is exactly by — 1. So, we have

Viboti, @ Vbotj,a =0(0 <k <1—1,1<i<j<b)

and A = @ is a solution of EQST.
- _
Conversely, suppose that EQS1 has some solution A = @ € AY"1(F,) over algebraic
closure.
Lemma 2. Let a; (1 = 1,...,bp) be the number,satisfying a;a; = 0(1 < ¢ < j < by). Then
#{ila; =0} > by — 1.

From this lemma, we see that for each k (0 < k <[ —1),
#{i | Vrboril5_— =0} > b — 1.

It means that ¢— (x, y) has zero at more than by — 1 points in every k-th blocks. Since k varies
from 0 to I — 1, ¢z (x, y) has zero at more than (by — 1) points in Py, ..., Py,;. However, from
the construction of ¢—(z,y) and Py, ..., Py, being distinct points, ¢ (z,y) has zero at only

(bo — 12[ points in Py, ..., Py, and the zeros of ¢z (z,y) is Py and the union of the zeros of the
k-th block.
So, put

)

l; == {]‘ ¢?(x(PZ)7y(Pz)) =0

0 otherwise
and from ¢ (2(Py), y(P)) = til;_—, we have

bol
div ¢ (z,y) = Po+ Y _1; P — (d+ 1)oc.
j=1

Moreover, since Py, ..., Py, are in E(F,), we have ¢ (x,y) € Fylz,y] and @ € AY"L(F,).
Summarizing this, we have the following theorem

Theorem 1. 1. The following two statements are equivalent:
a) EQS1 has some solution @ € AY"Y(F,),

b) Py has normal decomposition.

2. If EQS1 has a solution @ € AY"Y(F,), then @ € AT L(F,).

3 Toy example

Here, we compute toy example. Let E/Fro7 : 4% = 2% + 2 + 1. We have #E(Fr27) = 691 and
it is prime order. Let P = (5,191),Q = (100,161) € E(F727) and we will compute discrete



logarithm n i.e, the integer n such that 0 = nP + Q.

Let by = 3,/ = 6,d = 12 and put P0 = Q = (100, 161),

P1=2P = (5,191), P2 = 22P = (334,383), P3 = 23P = (431,228),

P4 =2*P = (607,76), P5 = 2°P = (156, 130), P6 = 26P = (525,55), P7 = 2P = (613, 305),
P8 = 28P = (647,58), P9 = 2°P = (101, 309), P10 = 2'°P = (533, 482),

P11 =21P = (698,632), P12 = 212 P = (422, 186), P13 = 213 P = (380, 343),

P14 = 2P = (391,200), P15 = 215 P = (489, 219), P16 = 215P = (233,692),

P17 =2'TP = (632,149), P18 = 28 P = (32,61).

We have
¢ (X,Y) =726 % Al % X 4100 A1 4 726 * A2 X + 100 % A2+ X 4 726 A3+ X> + 100 *

A3 % X2+ 726 Adx X* 4100 % Ad * X3 + 726 % A5 X° 4+ 100 A5 * X* + 726 A6+ X6 +
100 % A6 % X° 4+ A7*Y + 566+ A7+ A8+ X %Y + 566« A8+ X + A9« X2 %Y + 566 % A9
X2 4+ A10% X3 %Y + 566+ A10% X3 + A1l % X4 %Y 4+ 566 %« A1l % X* + X5 %Y + 566 « X5
and

Y1 =95 % A1+ 475 % A2 + 194 x A3 + 243 x A4 + 488 x A5 + 259 x A6 + 30 x AT + 150 x A8 +
23 % A9 + 115 % A10 + 575 = A1l + 694

Yo = 493 x A1 + 360 * A2 + 285 x A3 + 680 x A4 + 296 * A5 + 719 % A6 + 222 x A7+ 721 x A8 +
177 % A9 4+ 231 % A10 + 92 « A11 + 194

13 = 396 * A1l + 558 * A2 + 588 « A3 + 432 x A4+ 80 x A5+ 311 % A6 + 67« AT+ 524« A8 +
474 % A9+ 7 A10 + 109 « A11 + 451

g = 220 %« A1 + 499 x A2 + 461 x A3 + 659 x A4 + 163 * A5 + 69 x A6 + 642 x A7 + 22 x A8 +
268 * A9 + 555 x A10 4 284 « A11 + 89

s = 671 % A1+ 715 % A2 + 309 * A3 + 222 x A4 + 463 x A5 + 255 * A6 + 696 x A7 + 253 x A8 +
210« A9 + 45 % A10 + 477 « A11 + 258

P = 302 % A1 + 64 %« A2 + 158 x A3 + 72 % A4+ 723 x A5 + 81 x A6 + 621 x A7 + 329 « A8 +
426 x A9 + 461 * A10 + 661 x A11 + 246

Py =214 % A1+ 322 % A2+ 369 * A3 + 100 x A4 + 232 % A5+ 451 « A6 + 144 « A7 + 305« A8 +
126 %« A9 4 176 * A10 4+ 292 x A1l + 154

psig = 180 % AL + 140 * A2 4432 % A3+ 336 x A4+ 19 % A5 + 661 * A6 + 624 x A7 + 243 « A8 +
189 x A9 + 147 x A10 4+ 599 x A11 + 62

P9 = 726 x A1 + 626 x A2 + 704 % A3 + 585 x A4 + 198 x A5 + 369 x A6 + 148 x A7 + 408 x A8 +
496 x A9 + 660 * A10 + 503 x A11 + 640

P10 =294 % A1 + 397« A2 4+ 44 %« A3+ 188 * A4 + 605 x A5 4 404 x A6 + 321 x A7+ 248 x A8 +
597 x A9 + 502 x A10 4 30 * A11 + 723

Y11 = 129 % A1+ 621 % A2 + 166 * A3 + 275 % A4+ 22 % A5+ 89 % A6 + 471 x A7+ 154 x A8 +
623 x A9 + 108 * A10 + 503 x A11 + 680

P19 = 405 % AL + 65 % A2 + 531 x A3 + 166 * A4 + 260 x A5 + 670 x A6 + 25 % A7+ 372« A8 +
679 x A9 + 100 = A10 + 34 * A11 + 535

P13 = 447 % A1 + 469 « A2 4+ 105 x A3 + 642 %« A4+ 415« A5+ 668 * A6 + 182« AT+ 95 % A8+
A4T7 % A9 + 237 x+ A10 + 639 * A11 + 2

Y1g = 436 % A1+ 358 x A2 + 394 % A3 + 657 * A4+ 256 x A5 + 497 x A6 + 39 x A7+ 709 A8 +
232 % A9 + 564 x A10 + 243 * A11 + 503

P15 = 338 x Al + 253 x A2 + 127 x A3 + 308 * A4 + 123 « A5 + 533 * A6 + 58 « A7 + 9 x A8 +
39 % A9 + 169 x A10 + 490 * A11 + 427

16 = 594 % A1+ 272 % A2+ 127 % A3 + 511 * A4 + 562 x A5 + 86 % A6 + 531 x A7+ 133 x A8 +
455 % A9 + 600 * A10 + 216 « A11 + 165

P17 = 195 % A1 + 377+« A2 4 535 x A3 + 65 * A4 + 368 x* A5+ 663 x A6+ 715 % A7+ 413 « A8+
23 x A9 + 723 x A10 + 380 x A11 + 250

15 = 68 x A1+ 722 % A2 4 567 * A3 + 696 x A4 + 462 x A5 4 244 « A6 + 627 x A7 + 435 x A8 +
107 « A9 4+ 516 * A10 + 518 = A11 + 582.

EQS1 = {1h2 = 0,91¢3 = 0,9293 = 0,905 = 0,9496 = 0,506 = 0,793
0, Y799 = 0,81hg = 0,%10%11 = 0, Y19%12 = 0,¥11912 = 0,¥13¢14 = 0, ¥13915 = 0, 14715
0,Y16917 = 0,916¢18 = 0, V17918 =
has a solution
(Al,.., A11) = (378,2,521,58,79,503, 526, 681,302, 82, 535) € Al (Fra7)
and we can recover
(s l1) = (0,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1).
Put



n = Zzlil ;2 mod 691 = 234 and we can check 234P = (100,566) = —Q and discrete
logarithm is computed.

4 xL algorithm

First, we try to estimate the complexity for solving this equations system by xL algorithm
[2]. In [2], Courtois et al. treat the only case that the equations are of the form ”homogeneous
quadratic polynomial=constant”, but, one can obtain similar results if general quadratic
equations are used.

Algorithm 1 xL algorithm [2]

=
Notation: K field, X1, ..., X, variables, X := (X1,..., X},)
—
pi(X) € K[X1,...,Xn] (i =1,...,m) quadratic polynomials
Mg = {All monomials of X3, ..., X,, degree < d}
Assumpii)on: n<m
Input: p;(X) (i =1,...,m)
Output: @ = (21,...,2,) € A"(K) satisfying p;(z) =0 (i = 1,...,m)
Set parameter D = D(n,m)
Multiply:
— — — —
for all m(X) € Mp_o, pLX) i{pl(X), oy pm(X)} do
Genera all products m(X )p(X)
Linearize: Consider each monomial in Mp as new variable and perform Gaussian elimination
on the equations obtained in ”Multiply”. The ordering on the monomial must be such that all the
terms containing 1 variable (say X1) are eliminated last
Solve: Assume that Linearize step yields at least one univariate equation in the powers of Xi,
Solve this equation.
Repeat: Simplify the equations and repeat the process to find the values of the other variables.

In [2], Courtois et al. observed as follows;

When D = O(y/n) and m > n, the number of the equations obtained by ”Multiply Step”
is bigger than #Mp and so, xLL algorithm seems to be work. However, in the case m = n,
simulation(maybe computer experiments) shows the D that xL algorithm works well must be
2". (Reason is clear, since the equations system have generally 2" solutions in K. From this
observation, xL algorithm is useful only in the case that ”the equations system has only small
number of the solutions over algebraic closure”.) In the case m = n + 1, simulation(maybe
computer experiments) shows the D that xL algorithm works well must be n (in stead of /n,
Reason is not clear). In the case m = n + Cy (Cp some small value), D that xL algorithm
works well can be taken O(y/n).

In his observation, Cjy is only small number and so, it is hard to formulate. So, we formulate
the weaker assumption, which means the number of the equations is much larger than that
of variables, by the following Assumption 1;

Assumption 1 Suppose the given equations system has only small number of solutions over
algebraic closure and m is written by m = an for some constant o > 1 which does not depend
on n. Then there is positive constant 3 (which does not depend on n) satisfying the following:

Put D := By/n, and zL algorithm returns the solution(in high probability).

Assume Assumption 1 and D := $y/n. we have
#Mp = ("JBD) =< nPV" = O(exp(n/?t°M)). (Many terms are absorbed into o(1) term.
Then o(1) is Huge, although lim,,_,., 0(1) = 0. ) In order for performing xL algorithm, the

dominant part is Gaussian elimination of the matrix whose size is about #Mp x #Mp.
Its cost is (#Mp)* where w ~ 2.7 is the linear algebra constant and it is also written by

O(exp(n'/?t°M)). Thus we have

Lemma 3. Assume Assumption 1, the complexity of xL algorithm is estimated by O(exp(n'/?+°(1)),



Our equations system FQS1 has d — 1 = (by — 1)l — 1 variables and WZ equations.
So, when by > 3, the ratio m/n > %‘J > 1.5. Moreover, for all a(> 1,€ R), put by := [2a],

the ratio m/n > %" > «a. Also, from Lemma 1 and Theorem 1, we see that the number of the
solutions over algebraic closure is small. So, EQS1 satisfies Assumption 1 and we have the
following:

Theorem 2. Under the Assumption 1, the complexity of ECDLP is estimated by
O(eap((log #E(Fy))"/*oM)).

5 Rigid algorithm

From the algorithm shown in §2, the following ”Restricted ECDLP” can not reduced to the
suitable equations system. We will construct the equations system for sloving the ” Restricted
ECDLP” below. We also assume #E(F,) be prime number for simplicity.

Problem 2 ((Restricted ECDLP)) Let P,Q € E(F,) such that < P >3 Q and N be a

positive integer. Assume that there is (unknown) unique integer n such that 0 = Q +nP and
0 <n < N. Restricted ECDLP is the problem finding integer n satisfying 0 = Q + nP.

Remark that if one takes N = #E(F,), it it normal ECDLP.
Also fix bg(> 2) be a positive integer and put [ := [log;,, #E(F,)]. The restricted ECDLP
is divided by the following small restricted ECDLP

0=(Q+i(By)P)+ [nmodb))P  (0<i< [%1 1)
0

and there exists unique 7 (0 < I < [bﬂﬂ — 1), such that 0 = (Q + ILbﬂLJ(bf))P) +nP (0 <
0 0

n < b)have a solution or both of 0 = Q + nP and 0 = (Q + (b)) P) + nP (0 < n < b}))have
solutions.
Exchanging @ + ib) P by @, we only consider the following ECDLP

Problem 3 ((Restricted ECDLP 2)) Let P,Q € E(F,) such that < P >3 Q and by, be
a positive integer. Assume that there is (unknown) unique integer n such that 0 = Q + nP
and 0 < n < bly. Restricted ECDLP is the problem finding integer n satisfying 0 = Q + nP.

Here, we consider the bp-adic expansion of unknown discrete logarithm n.

Definition 1 Let EE:)) 0 < eEfL)) < by — 1) be the integer satisfying

-1
e S
k=0
For arbitrary k,i (0 <k <1—-1,1<i<by), put

k )
1 = 1 GE")) =il .
bok-+1 0 otherwise

Definition 2 For arbitrary k,i (0<k <1—-1,1<i<by), put
1 . 1 1
nl()ogc—ﬂ—i = (i — 1)bf, and Plfoli+i = ngOLHP.

From the definition, we have the following;:



Lemma 4.
bol

W
j=1

These notations are hard to understand. So, we show small exmple. In the case by = 3,1 =
3, ng-l) are written by the following:

n{ =0,n8” = 1,n{" =2, (0-th block),

n{ =0,n{" = 3,08 =6, (Ist block),

n(71) = O,nél) = 9,nél) 18, (2nd block).
If the discrete logarithm n = 19, it is written by

n=19=1+0%3+2x%32

and (O (1) 2)
€h9) = 1, €(19) = 0, €319y = 2.
Then we have
18199 = 0,13 = 118" = 0, (0-th block),
119 = 1,10 = 0,1 = 0, (1st block),

119 = 0,18 = 0,1{"” = 1(2nd block).
Thus we have

9
19=1+0+18= le(.“’)ng.”.

j=1
Here, we define the decomposition using Pl(l), s Pb(oll)'

Definition 3 (Reverse decomposition) If there exists [; € {0,1}, (1 < j < bol) such that
forvE(0<k<Ii-1)
0 Doy = 1,1 < i< by} =1

and Q is expressed by the form
bol

0=Q+> ;P
j=1

we call QQ has reverse decomposition into Pl(l), - Pb(oll).

Note this definition is different to the previous manuscript. In the previous manuscript,
#{i|lpg+i = 1,1 < i < bg} is bg — 1,which is called normal decomposition. But here it is 1.

Remember n (0 < n < b)) be the discrete logarithm. We have
(n) p(1)
0=Q+nP = Q+Z kP = Q+Z bk+<")+1_Q+Zl P

and () has reverse decomposition into Pl(l)7. Pb(oll)

Conversely, suppose @ has reverse decomposition 0 = Q + Zbol P](l) into P(l) Pb(oll),.

Put n = Z?Oll l;n) §1) and we have 0 < n < b} and 0 = Q 4+ nP. Then we have the following:



Lemma 5. 1. The following two statements are equivalent:
a) There is an integer n satisfying 0 = Q +nP and 0 < n < b,

b) Q has reverse decomposition into Pl(l), e Pb(oll).

Definition 4 For arbitrary k,i (0 <k <1—1,1<1i<1bgy), put

(2) . (1) _ (2 . (2)
bok+i “= Mbok+i T 00 = ibg, Pyoiti = Moy i D

O Ne)) 1 k:odd 1 k:odd 3 (3)
Mbok+i = Mhok+i T {0 keeven — = ibg + 0 keeven® Y Pogkyi = Mpghpil

Her, the difference nl()§36+ifn£i3€+i = bk is called 1st jamming term and the difference nl()§3€+i —

2) {1 k:odd

Mhokti = N0 keeven ™ called 2nd jamming term.

Lemma 6. {ngg) |1 <4 <byl} are distinct.
Further, we will assume the following:
Assumption 2 {Pj(g) |1 <5 <bpl} are distinct.

From above Lemma, it is almost true.
Remark We can continue the discussion if we take

3 2
Nk = Mg+ (k)

where n(k) is some integer dependent on k. In this manuscript, we simply take n(k) :=

1 k:odd . . .
{0 k-oven” Generally, 2nd jamming term can be taken by this n(k).

From this Remark, if there are some 0 < k; < ko <1 —1 and 1 < 41,19 < by satisfying
Pb(flzl i Pb(og’,; 1, €xchanging 2nd jamming term, and the Assumption2 holds. Otherwise in
the case, if there are some 0 < k; <[l —1and 1 < iy < iy < by satisfying Pb((?;ﬁH = Plff,11+i2
and Pb(f,;ﬂl = Pb(fliﬁ_l So we have (b§*)(iz — i1) P = 0. In this case ECDLP is very special
and one can easily solve ECDLP.

Definition 5 Put

I = Z bk: _ b%) -1
A
=0
by the - times of the total sum of 1st jamming term and put

T2 = (o~ 1)L

by the b‘)b—;l times of the total sum of 2nd jamming term. Also put

1—1 b 1
(b —1)b0(b0+1)
T S S EL L
k=0 i=1

by the total sum of nb kﬂ



Suppose @ has normal decomposition 0 = @ + Z?‘):ll leJ(I). Then we have

bol bol bol
0=Q+Y PV =Q- 1P+ ;PP =Q - 1P +MP+> (I, - 1P
j=1 j=1 j=1

Put ,
lj :1—lj 6{0,1}

and we have each k (0 < k <1 — 1) block, we have
#{i |l = 1,1 < i <bo} =bo — 1 and#{i |l ;,; =0,1 <i<bo} =1

Return to the formulation of the formula, we have

bOl bol
0=-Q+hP—MP+Y 1-1,)P? =—Q+ 1P~ MiP — J,P + Y (1—1;)P”
j=1 j=1
b()l
=—Q+(J—Jo—M)P+ > U;PP.
j=1

So, put

Pyi=—Q(J1 — Jo — M) Pyr; :=n'P P = P®  (j=1,....bol),

A J

the algorithm in §2 is available. i.e., P has normal decomposition into P, ..., Py,;. Put
u}i = 77[}272’ = (bZ(‘T(B)a y(B))(e Fq[Ah "'7Ad—1]) (Z = 13 EEEE) bOl)y
and consider the equations system

EQSl = {wkbo+iwkbo+j = O|O <EkE<ZI-1,1<i1<j< bo}

Note that EQS1 consists of WZ quadratic equations and (byp — 1) — 1 variables and
the restricted ECDLP is reducing to solving this equations system. Also put

= {1 o5 (x(F),y(P)) = 0

0 otherwise

then we have a normal decomposition

bol
0="Py+ > 1P,

j=1

and ECDLP is recovered by

n= > (1= lpo ) (0 = 1)}

0<k<1—1,1<i<bg

Similarly we have the following

Theorem 3. Under the assumption 1, the complexity of solving restricted ECDLP is

exp((log N)1/2+o(1),



6 Toy example

Here, we compute toy example. Let E/F1g73741789 : ¥° = 2°+2+109. We have #E (F1073741780) =
1073734999 and it is prime order. Let P = (1, 143901150), Q = —700P = (647703549, 245552865) €
E(F1p73741789) and we will recover discrete logarithm n = 700 i.e, 0 = 700P + Q.

Let by = 3,0 = 6,d = 12 and put PO := —Q — (2184 + 6 — 364) x P = (226088430, 436478206)
P1:= P =(1,143901150)

P2 :=2x P = (299873831, 928636621)

P3:=3x P = (503128344, 969239414)

P4 :=4x P = (767039651,913339816)

P5:=7x P = (1002246095, 733782485)

P6:= 10+ P = (733179341, 52798551

P7:=9x P = (901739418, 109858882)

P8 := 18 x P = (73367306, 298975683)

P9 :=27x P = (866076745, 131780578)

P10 := 18 x P = (978711160, 864620715)

P11 55 % P = (923735979, 1039609632)

P12 82 % P = (279349632, 577287516)

P13 := 81 x P = (480576973,493449251)

P14 := 162 « P = (418886202, 729929637)

P15 243 « P = (570168111, 424873673)

P16 244 x P = (1019714204, 50723728)

P17 := 487 x P = (241092407, 504678284)

P18 := 730 x P = (333788268, 386257268)

We have
qﬁX(X, Y) == 1073741788 A1 X X + 226088430+ A1+ 1073741788 % A2x X X2 + 226088430

A2 % XX 4+ 1073741788 A3+ X X3 + 226088430 * A3 + X X2 4+ 1073741788 x Ad » X X* +
226088430 % Ad x X X3 + 1073741788 A5 % X X° + 226088430 % A5+ X X* + 1073741788 * A6 *
X X6 + 226088430 % A6 % X X° + A7« YY + 637263583 « A7+ A8+ XX % Y'Y + 637263583
A8 XX + A9%x X X2%YY + 637263583 % A9 X X2 + A10x X X3 Y'Y + 637263583 * A10 *
XX34+ A11 % X X4 YY + 637263583 % A1l X X4 + XX« YY + 637263583 X X°

and

1 = 226088429 x A1 4 226088429 « A2 + 226088429 x A3 + 226088429 x A4 + 226088429 x A5 +
226088429 x A6 + 781164733 A7 + 781164733 * A8 + 781164733 * A9 + 781164733 * A10 +
781164733 x A11 + 781164733

o = 999956388 * A1 + 560865895 * A2 + 968576376 + A3 + 477394866 * A4 + 252235669 * A5 +
413913084 * A6 + 492158415 x AT + 571481171 * A8 4+ 551121029 x A9 + 823268001 x A10 +
501594843 x A11 + 349808028

b3 = 796701875 % Al + 766405831 * A2 4+ 1027132502 * A3 + 716438354 % A4 + 447015914
A5+ 521745128 % A6 + 532761208 % A7 + 505005988 % A8 + 870485541 x A9+ 269259172 % A10 +
708628250 * A11 + 533404740

Wy = 532790568 * Al + 953692135 * A2 + 208625061 = A3 + 573614824 * A4 + 177893183 *
A5+ 203868720 % A6 + 476861610 % A7 + 63004931 « A8 + 608571849 x A9 + 313556486 x A10 +
667535215 % A11 + 1036244402

s = 297584124 % A1 4 700624089 « A2 + 537562339 « A3 + 841317366 * A4 + 460515561 x A5+
357738131 % A6 + 297304279 % A7 + 308615293 % A8 + 141226927 * A9 + 586580448 x A10 +
797428242 x A11 + 163126219

g = 566650878 x Al + 233980350 * A2 + 2349552 « A3 + 380208128 « A4 + 1015854050 « A5 +
156987499 x A6 4+ 690062134 x AT + 477240871 x A8 + 676367821 x A9 + 766705898 x A10 +
02471318 x A11 + 906744953

7 = 398090801 * Al 4 557621334 % A2 + 966407363 % A3 + 102032405 * A4 4+ 41149805 « A5 +
254997820 % A6 + 747122465 * A7 + 313058754 * A8 + 319254200 x A9 + 260839876  A10 +
538121333 x A11 + 146610434

by = 152721124 % A1 4 277054419 % A2 4 39055253 % A3 + 1023309119 % A4 + 777639824 % A5+
247204648 * A6 + 936239266 * A7 + 973986002 * A8 + 736020831 * A9 + 465924531  A10 +
150306321 * A11 + 81608701

g = 433753474 % A1 + 985435165 x A2+ 241055825 « A3 + 195248984 s A4 + 548549445 x A5 +
589380119 * A6 + 769044161 x AT + 1045275912 x A8 + 291960878 * A9 + 637760874  A10 +



201328562 * A11 4 1048602103

P10 = 321119059 + A1 4283376342 % A2 + 232981203 + A3+ 338231614 x A4+ 790848784 %« A5+
474139666 * A6 + 428142509 * A7 + 359853650 * A8 + 346610100 = A9 + 818740049 + A10 +
107537958 « A11 + 1037457469

P11 = 376094240 x A1 4 926778644 + A2+ 75958860 * A3 + 518509838 « A4 + 426098264 + A5 +
653389532 « A6 + 603131426 x A7 + 907074846 x A8 + 601153885 x A9 + 902541026 * A10 +
483429797 x A11 4 525478439

P12 = 1020480587 * Al + 267964645 * A2 + 975226971 + A3 + 132890043 * A4 + 499781944 x
A5+ 30456621 « A6 + 140809310 x A7 4 655421731 * A8 + 166756042 * A9 + 496439397 x A10 +
574421574 x« A11 + 563373482

P13 = 819253246 * Al + 371332294 « A2 4 168284383 x A3 4 271746380 + A4 + 751211904
A5+ 349890385 * A6 + 56971045 « A7 + 917952990 * A8 + 803045277 + A9 + 31302661 « A10 +
857977353 x A11 + 49709379

14 = 880944017 « A1 + 403877358 A2 + 444527849 x A3 + 363063687 * A4 4 4095602 « A5 +
895956652 * A6 + 293451431 x A7 4 829411202 x A8 + 990876149 * A9 + 651368586 x A10 +
36129035 * A11 4 750028193

P15 = 729662108 * A1 + 660951032 * A2 + 215502507 % A3 + 328959790 * A4 + 273153836 *
Ab + 521132947 + A6 + 1062137256 * A7 + 756861618 * A8 4 721088906 + A9 + 816140550 *
A10 + 56542021 « A11 + 41073575

P16 = 280116015 * A1 + 347477506 + A2 + 741089275 * A3 + 578494533 » A4 + 271590481
Ab 4 607687676 * A6 + 687987311 x A7 + 1037696180 * A8 + 983997075 x A9 + 809799124 x
A10 + 457325577 « A11 + 92657733

P17 = 1058737812 % A1 + 963328085 * A2 + 122041552 x A3 + 548247200 x A4 + 82872780 *
Ab + 847566113 x A6 4 68200078 + A7 + 488790147 + A8+ 71164651 * A9 + 307239508 « A10 +
107966160 * A11 + 67581091

P18 = 966041951 A1 + 351552123 « A2 + 831558009 * A3 + 1041096055 * A4 + 309522466 =
A5 + 1047068892 x A6 + 1023520851 « A7 + 260751606 * A8 4 82001771 + A9 + 430269312 «
A10 + 42277896 x A11 + 543975617

EQS1 = {1¢s = 0,911p3 = 0,923 = 0,9495 = 0,946 = 0,95106 = =
0, Y7109 = 0,181hg = 0,¢10%11 = 0, Y199¥12 = 0, 911912 = 0, ¢Y13914 = 0, ¢131/)15 = 1415 =
0, Y16¥17 = 0,916¥18 = 0, 17918 = 0
has a solution

(Al,..., A11) = (1052610325, 1027299158, 204711428, 665478999, 576105216, 887736260,
977723279, 634207409, 151915098, 706654193, 1065506101)

and we can recover

(2’1, - l18) =(1,0,1,1,1,0,1,1,0,1,0,1,1,1,0,1,1,0).
Put

18 5 3 5 3
n = Z (1) Z Z 13k+z 1)515 = ZZ( l3k+z)( )bO
j=1

k=0 i=1 k=0 i=2

=(1-05)«1+1-)*24+ 1 —-1)«3+(1—10§)*64+1—15)*«9+ (1 —15)«18+ (1 —11;) *
27+ (1 —j) # 54 + (1 — 19,) * 81 + (1 = l15) % 162 + (1 — I17) * 243 + (1 — l1g) * 486 = 700.
and we can check —700P = @ and discrete logarithm is computed.

7 Loss of the equation

Here, we show the following theorem:

Theorem 4. Let EQS1 is the equations system of the ECDLP of E(F,). Remember that
bo(> 2), I ~ log, #E(Fy), d := (bg — 1)l be fized integers and Py, ..., Pyy are some points
in E(Fq). Also remember that the polynomials 1;(€ Fq[A, ..., Aq—1],i =1,...,b0l) are defined
and the equations system EQS1 is defined by

{Wkbo+iUkbo+; = 0|0 <k <1—-1,1<i<j<bo}.

2 From the term (i — 1), the term of i = 1 is erasing



Here, let
EQS1 := EQS1\{¢1¢)2 = 0}.
Then, EQS1’ have more than bffl solutions.
Proof. For arbitrary k-th (1 < k < 1 —1) block {Pyrti|l < i < by}, , we select by — 1

elements { Py 41, |1 < j < bo — 1}. Note that the number of the selections is byt For O-th
block, we select, by — 2 elements Ps, ..., Py, .

Put
bo
R:=-F - g P — g Pygreyr;-
i—3 1<k<I—1,1<5<bo—1

Then there exists some f(z,y) € L((d+ 1)oo — Fy) such that

bo

div f(z,y) =R+Po+) P+ > Phopi1, = (d—1)oo
i=3 1<k<1-1,1<j<bg—1

Thus, there exists some @ = (ai,...,aq—1) € A4} (F,) such that f(z,y) = ¢=(z,y). On
the other hand, v; = ¢ (x(F;),y(F:)), we have ¢;[5_— = f(z(F),y(F;)). So, from the
construction of EQS1’, @ = (a1, ...,aq—1) € AY"1(F,) is a solution of FQS1’.

This theorem says that although the average number of the solution of EQS1 is controlled
to be 1, if one equation is dropped, the number of the solutions is very large. In the following,
to avoid this situation, we proposed two devices and ideas and increasing the number of the
equations.

8 Inter block equations system

Here, we state the devices to adding some equations to £QS1 named ”Inter block equations
system”. This devices is mainly useful in the case by > 3 and we assume in this section by > 3.
Moreover, we assume that the EQS1 has only one solution for simplicity. First, we consider
the normal decomposition of P,

bol
0="Py+ > 1P, 1; € {0,1}, #{i|lpyri = 1,1 <i <o} = by — 1

Let ng be positive integer and consider the ng equations f; = fo = ... = f,, = 0 where
each f7 is random polynomials of the form

Vkybot+is Vhabotriz (0 <k <k <T—1,1 <y, dp < bo)
and consider the new equations system
EQS2:=EQS1U{f1 =0,..., fn, =0}.

Note that ¥, by+is Ykobe+i, 1S the product of two polynomials of the points in the different
block. Let @ = (ay,...,as—1) € A?"1(F,) be the unique (unknown) solution of EQS1. From
tIﬁzt(:ons‘cruction7 in each k-th (0 < k <1 — 1) block, there exists some I, (1 < I < bg) such
' Vrkbo+1, | 5= 7 0, VYrbo+il 5= = 0 for i € {1,...;b0 \{Ix}.

Then, for each i (1 < i < ng), the probability fi|3_— =0is 1 — % and the probability
=0is (1— —0)"0 Since limy, oo (1 — 2)" = 1 ~ 0.367879 and in the

0.346439 and this value is near to 1 <, we have

1 122 1.2 g
- % ~ (0.367879) " .

0



ng
2

The we have that the probability that FQS2 has a solution is around (0.367879) % .

For example, take ng := b2 x 10 (resp. ng := b2 x 5), the probability is around ﬁ (resp.

ﬁ and trying to 22026 (resp. 148) times solving ESQ2, we can recover ECDLP. In the case

bg = 3, adding ny = 90 equations to EQS1, we can recover ECDLP in Wl% probability and
by 22026 times solving EQS2, ECDLP can be recovered.

9 Mirroring equations system

Here, we state the devices to adding some equations to EQ.S1 named ”Mirroring equations
system”. The new equations system obtained by this devices has n, times variables of EQS1.
However, if many many equations are lost from this equations system, the original solution can
be recovered. We also assume that the original equations system F@QS1 has only one solution

for simplicity. First, we consider the normal decomposition of Py = PO(O) into Pl(o), . Pb((?l),

bol
0=P" + 3 1P 15 € {01}, #{i|lkpgsi = 1,1 <0 < by} = by — 1

j=1

and 1/)1(0) e, [Ago), cey A((io_)l] be the polynomial of the point PZ-(O). Original equations system
EQS1 = EQS1© is made by

(Ul Uiy =010 Sk SI=1,1 <0 < j < bo

Let ni(> 2) be the positive integer and a,,(1 < m < nj; — 1) be the random integers
co-prime to #E(F,). Put

P =a, P, (1<m<n;—1,0<i<bl)
and consider the normal decomposition named mirroring normal decomposition

bol
0=F" + 3 1;P™ 1; € 0,1}, #{i| lipgri = 1,1 < i < bo} = bo — 1

j=1

and 7,/11(7") € F, [Agm),...,AEﬁ)l] be the polynomial of the point Pi(m). Mirroring equations
system EQS10™ is made by

(i) i, =0]0<k<1-1,1<i<j<b).

From the construction and the assumption that FQS1(®) has unique solution, EQS(™) has
unique solution. Let @ (™) = ( ém), cey aggl) € AY"1Y(F,) be the unique solution of EQS1(m)
and put

Tan = (al, .., al" 7Dy € AME@-D(R,).

Lemma 7. We have the relation that
(m1) _ (m2) _
Vi Z iz =09 U F ng) (e = 0
for any 0 < my,mo,<my —1,1 < i < byl.

Definition 6 (Mirroring equations system ) Put

ESQ3 = {0, o), =010 <k <1—1,1<iy <ip <by,0<my,my<n; —1}.



From Lemma 7, we have the following
Lemma 8. ESQ3 has a unique solution @ q; € Adil(Fq).

Also from Lemma 7, we have the following

Lemma 9. Let M (0 < M <ny —1) be a integer. Put

ESQ3™ = {yi) gD =0]0 <k <1—-1,1<4; <iy<bp,0<my <ny— 1}

Note that EQS3™M) s a subset of EQS3. Although the number of the equations is very smaller,
ESQ3™M) has a unique solution @ g € Ad_l(]Fq).

Postscript In this mamuscripts, the author gives the improvements of Bit Coincidence
Mining Algorithm, which state that if the xL. algorithm works well, the complexity of solving
DLP of elliptic curve over arbitrary finite field is sub-exponential. However, from my recent
research in this summer vacation, xLL algorithm may not works well.
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