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Abstract. The implementation of the AES encryption core by Moradi
et al. at Eurocrypt 2011 is one of the smallest in terms of gate area.
The circuit takes around 2400 gates and operates on an 8 bit datapath.
However this is an encryption only core and unable to cater to block
cipher modes like CBC and ELmD that require access to both the AES
encryption and decryption modules. In this paper we look to investigate
whether the basic circuit of Moradi et al. can be tweaked to provide dual
functionality of encryption and decryption (ENC/DEC) while keeping
the hardware overhead as low as possible. As a result, we report an 8-bit
serialized AES circuit that provides the functionality of both encryption
and decryption and occupies around 2645 GE with a latency of 226
cycles. This is a substantial improvement over the next smallest AES
ENC/DEC circuit (Grain of Sand) by Feldhofer et al. which takes around
3400 gates but has a latency of over 1000 cycles for both the encryption
and decryption cycles.
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1 Introduction

There has been extensive research into the construction of compact implemen-
tations of lightweight block ciphers. This line of research has essentially evolved
along two different lines. The first aims to construct proprietary lightweight
block ciphers by optimizing one or several parameters in the design spectrum,
as has been evidenced by numerous such designs proposed in the past few years:
HIGHT [21], KATAN [I1], Klein [18], LED [19], Nockeon [I3], Present [7], Pic-
colo [28], Prince [§], Simon/Speck [6] and TWINE [30]. The second aims at
attempting to implement standardized ciphers like AES 128 [I4] in a lightweight
fashion.

There have been several lightweight implementations of AES proposed in
literature. Some results like [20] and [I0] aim for compact implementations in
ASIC and FPGA platforms respectively (however the work in [20] is for an



encryption only core). The works in [23] and [3I] aim at lowering critical path
and increasing throughput. And the works in [3] and [5] aim to implement circuits
with low energy consumption per encryption operation.

For compact implementations of the dual encryption/decryption circuit, the
following results are known. In [27], the authors propose a 32-bit serial architec-
ture with optimized tower field implementation of the S-box and a combinato-
rial optimization of the Mixcolumn circuit. The size of this implementation was
around 5400 GE (gate equivalents, i.e. area occupied by an equivalent number
of 2-input NAND gates). The “Grain of Sand” implementation [I7] by Feldhofer
et al. constructs an 8-bit serialized architecture with circuit size of around 3400
GE but a latency of over 1000 cycles for both encryption and decryption. Very
recently in [24], the authors report an 8-bit serial implementation that takes
1947/2090 GE for the encryption/decryption circuits respectively. This imple-
mentation makes use of intermediate register files that can be synthesized in the
ASIC flow using memory compilers.

The implementation by Moradi et al. in [26] with size equal to 2400 GE
and encryption latency of 226 cycles is one of the smallest known architectures
for AES. The design combines 8-bit and 32-bit serial datapaths in a manner
that achieves a surprisingly compact implementation. The design uses scan flip-
flops for constructing the registers for the state update and key schedule, a
trick that saves 1 GE per flip-flop used. This implementation also uses a 32
bit Mixcolumn circuit instead of the 8-bit serialized structure of [I7], because
the authors argue that any savings in area achieved by an 8-bit serial circuit is
offset by the additional registers required to store its output. Finally since each
round function in this circuit is implemented in 21 cycles, the control system
is made using a 21 cycle LFSR that generates all timing signals accordingly.
However this circuit is an encryption-only core, and therefore can not be used to
implement modes like CBC [16], COPA [2], ELmD [15], POET [I] that require
access to both AES encryption and decryption functionalities. Therefore area-
wise the three smallest known circuits that perform the dual functionalities of
both encryption and decryption are

A. Grain of Sand implementation [I7] at 3400 GE
B. 8-bit serial implementation in [24] at 4037 GE
C. 32-bit serial implementation in [27] at 5400 GE.

Moreover the Grain of Sand implementation has a latency of over 1000 cycles
for both the encryption and decryption operations and so for efficient lightweight
implementation of all modes that require access to both AES encryption and
decryption it is critical to have an architecture that is both lightweight and
incurs minimal latency.

1.1 Contribution and Organization

In this paper we present Atomic-AES, an 8-bit serial architecture that performs
the dual functionality of encryption and decryption, and has a circuit size of



around 2645 GE and latency of 226 cycles for both encryption and decryption
operations. The circuit is closely related to the 8-bit encryption only serial archi-
tecture presented in [26], and in fact our architecture has the following additional
logic components over the basic circuit proposed by Moradi et al.
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. 2 additional 8-bit multiplexers in the state datapath,

. 3 additional 8-bit xor gates in the key datapath,

. 24 additional and gates in the key datapath,

. 1 additional 8-bit multiplexer, 1 additional 8-bit xor gate, 16 additional and

gates during state-key addition,

. Other additional logic required to implement

a. S-box and its inverse,
b. Mixcolumn and its inverse,
c. Round constants and their inverses.

The paper is organized in the following manner. Section |2] gives some back-

ground and description of the architecture presented in [26]. This would be bene-
ficial for the self-sufficiency and better understanding of this paper. Section[3] de-
scribes the architecture and functioning of Atomic-AES in details, and highlights
some issues related to its implementation. Section[d]tabulates all implementation
results and compares it with previous architectures present in literature. Section
concludes the paper.
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Background and Preliminaries
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Fig.1: The 8-bit serial architecture in [26]



In Figure[l} a pictorial description of the architecture in [20] is given. As can
be seen the basic elements of storage are the 16 byte sized registers made of scan
flip-flops in the state and key path respectively, used to store the intermediate
states and roundkeys. Each round function is calculated in 21 cycles and so it
is important to understand how the data is maneuvered through the registers
during this period. E|

Let us label the 21 cycles per round by the integers 0 to 20. The encryption
process starts with the addition of the whitening key and the S-box computation
of the first round function. In order to do so the finite sate machine (FSM) gen-
erating the round signals is initialized to cycle number 5. So in cycles numbered
5 to 20 (i.e. the very first 16 cycles) the following transformations take place:

Cycles 5 to 20: The 8 bit chunks of plaintext and key are respectively filtered
out of the main state and key multiplexers respectively. They are xored,
and the resultant signal fed to the S-box. The output of the S-box is fed
to the bottom most multiplexer in the state path (marked by SB;jy), from
where it is shifted serially forward in the next round. Effectively, after the
cycle 20 is completed, the state registers would store the value S(PT @ K),
where S(-) denotes the bytewise application of the AES S-box function. In
the same period the 8 bit chunk of the Key is input to key register marked
“33”, from where it is serially forwarded in the next round, much like in the
state register. Therefore, at the end of cycle 20, the Key registers hold the
value of the initial whitening key.

After this the cycle counter is automatically reset to 0, and each 21 cycle round
function is executed 10 times, thus accounting for a total latency of 16+21%10 =
226. During this period the order of operations is as follows:

Shiftrow — Mixcolumn — Add roundkey + S-box of next round

To clarify, let us see the cyclewise description of the data movement:

Cycle 0: This cycle is reserved for the Shiftrow operation. Since each 8-bit
register in the state and key paths are constructed using scan flip-flops, they
have two input data ports which they filter depending on a select signal. As
can be seen in Figure |1} the state registers are connected to facilitate the
Shiftrow operation during cycle 0. The key register is “frozen” in this cycle
and so no data movement takes place. P

Cycles 1 to 4: The Mixcolumn operation is performed during these 4 cycles.
The Mixcolumn circuit used in this architecture is a {0, 1}32 — {0, 1}32 logic
block, and so data from leftmost column (registers marked 00,10,20,30) of
the state is fed as input to the Mixcolumn circuit. In the subsequent cycle
the Mixcolumn output is driven into the rightmost column (registers marked

4Another important point to note is that this particular architecture interprets the AES input
vectors in a row major fashion i.e. the first four bytes are placed in the first row, the second four
bytes in the second row so on. Most AES implementations use a column major ordering.

5Onc way to achieve this is to use a gated clock which does not present a leading edge during
the shiftrow period.



03,13,23,33). This operation carried out over 4 cycles computes the Mixcol-
umn over the entire state. Note that this operation is bypassed in the 10th
encryption round as the Mixcolumn function is omitted in the final round.

During this period, the non-linear function of the Keyschedule operation
is computed in the Key registers. Recall that the non linear operation in the
AES Keyschedule is given as

F(K3) = S(K3 « 8) @ RCON;,

where K3 denotes the third column of the current roundkey, << denotes
the left rotate operation and RCON; is the i*" round constant (note that
the round constant is added to the most significant byte of S(K3 <« 8)).
(K3 <« 8) is a 32 bit value and so S(K3 < 8) implies the S-box function
applied to each of the 4 bytes of the input. In order to implement the rotation
operation, the data is taken from the output of the key register marked “13”
and fed to the S-box. Although the architecture uses only one S-box, in
cycles 1 to 4, the state path operations do not use the S-box circuit and
so the key path S-box operations can be done in this period. The S-box
output is xored to the output of the register “00” and the round constant
and, in the next cycle is driven into the register marked “30”. Note that
since there is “vertical” movement of data in the key registers in this period,
at the end of cycle 4, the four columns of the key register store the values
Ko @ F(K3), Ky, Ko, K3 respectively, where K; denotes the i*" column of
the current roundkey.

Cycles 5 to 20: The bytes of state and roundkey are respectively taken out of
the registers marked “00” of both the state and key paths and xored together
and fed to the S-box. The output of the S-box is again driven into the bot-
tom most state register “33” and serially shifted forward in the subsequent
rounds. This sequence of operations is exactly similar as the ones performed
in the very first 16 cycles, with the only exception that an intermediate state
and roundkey chunks are xored instead of the raw plaintext and key.

The operations in the Key register are a little more interesting during this
period. Note that in order to perform roundkey addition during these cycles,
the data emanating from key register “00” be equal to the current roundkey.
However we have seen that at the end of cycle 4 the columns of the key reg-
isters hold the value Ko D F(Kg), K17K2, Kg. Note that if Ko, Kl, KQ,Kg
and Lg, L1, Lo, L3 denote the 4 columns of the current and next roundkey
then we have

Ly=Ky® F(Ks3), L1 =K1 ® Ly, Ly=Ky® Ly, L3=K3® Lo.

Thus at the end of cycle 4, only the 0 column holds the correct next
roundkey Lg. The problem is solved by having an extra xor gate taking
inputs from the registers “00” and “01” and output feeding into “00”. Since
the movement of data is switched to “horizontal”, this helps to perform



on the fly addition as the key chunks are driven out of the “00” register.
The addition is however not executed at cycles 8,12,16,20 by zeroing the
SELXOR signal because as previously noted, the 0 column already has
the required roundkey. Also after the roundkey addition, each 8-bit key is
circularly shifted back into the key registers through register “33” in order
to facilitate the operations in the next round function.

The *" round in this architecture computes the Substitution layer for the
(i + 1)** AES encryption round. This being so, in the tenth and final encryp-
tion round the only operations that need be performed are Shiftrows and the
final roundkey addition. Thus in the tenth round, the Mixcolumn operation is
bypassed in cycles 1-4 and the output ciphertext is available just after the round-
key addition from cycles 5 through 20.

3 Atomic-AES: Architecture and Dataflow

We will now present a full description of the proposed architecture for Atomic-
AES which provides dual functionalities for encryption and decryption. A dia-
gram for the proposed architecture is presented in Figure [2l The architecture
builds on the basic circuit in [26], and so the functioning of the circuit during
encryption is exactly as described in Section

3.1 Issues with the Decryption Circuit

In order to accommodate decryption operation in the basic circuit of [20], there
are some principal difficulties. We will list them one by one:

1. Shiftrows/Inverse Shiftrows: During the Shiftrow operation the data in
the i'" row is left-rotated by i bytes (0 < i < 3). Hence the Inverse Shiftrow
operation would require the i-byte right-rotation of the i* row data. How-
ever in order to accommodate the Inverse Shiftrow and forward Shiftrow
simultaneously would potentially require another multiplexer at the input of
each 8-bit state register.

2. Forward/Inverse Keyschedule: The AES Keyschedule basically has as a
non-linear shift register like structure, and it is obvious that the key register
structure in [26] was explicitly constructed to accommodate its unique math-
ematical structure, and at the same time produce the current roundkey in an
8-bit serial fashion. It is not immediately clear how the Inverse Keysched-
ule could be arranged in such a circuit without increasing the circuit size
significantly.

3. Sequence of operations during Decryption: The circuit in [26] requires
21 cycles to complete a round function, with the order of operations be-
ing: Shiftrows, Mixcolumn followed by Add roundkey and the S-box layer
of the following round. It is however not clear what order of operations
would achieve the most efficient circuit for decryption. If one chooses to
have roughly the same order of operations i.e. Inverse Shiftrows, Inverse
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Fig.2: The AES 8 bit Encryption/Decryption architecture for Atomic-AES



Mixcolumn followed by Add roundkey and Inverse S-box, then as per the
specification of the Decryption function, we would require the Inverse Mix-
column of the roundkey as well (as described in [27]). This would most
likely require additional cycles to compute the the Inverse Mixcolumn of the
roundkey and thus increase the latency.

3.2 Inverse Shiftrow

An efficient Encryption/Decryption circuit would need to address all the above
issues judiciously. To begin with let us address the issue of Shiftrow /Inverse
Shiftrow. We make the following observations before proceeding;:

Observation 1: For the 01" and the 2" rows of the AES state, Shiftrow and
Inverse Shiftrow bring about the same transformation.

Observation 2: For the 15t and the 3"% rows of the AES state, Shiftrow and
Inverse Shiftrow bring about opposite transformations. Which is to say, that
the Shiftrow operation on the 1%¢ row brings about the same transformation
as the Inverse Shiftrow on the 3™ row and vice versa.

A careful examination of the architecture in [26] reveals that each 8-bit regis-
ter (constructed with scan flip-flops) accepts two inputs (see Figure: one from
the register immediately to its right (the rightmost register accepts its input
from the leftmost register of the row below it), this connection is to facilitate
the serial loading and unloading of the bytes in the state during cycles 5 to
20. The other input facilitates the transfer of data during they Shiftrow cycle.
However, for the first three registers of the 1% row (i.e. “107,“11” and “12”)
the two inputs are actually the same. So in order to accommodate the Inverse
Shiftrow, the second input connection of these three registers can be rewired (see
Figure [2) just like in the third row (since the Inverse Shiftrow of the first and
Forward Shiftrow of the third row are actually identical transformations). For
the last register of this row i.e. “13”, an extra multiplexer with input from “10”
is required. And that solves the problem for the first row.

#|Register] SL | SR | ISR |#|Register] SL | SR | ISR
Row 1 Row 3

1[ 10 11 11 13 1] 30 31 33 31

2] 11 12 12 10 2] 31 32 30 32

3] 12 13 13 11 3] 32 33 31 33

4] 13 20 10 12 [4] 33 [DECour| 32 30

Table 1: Input connections to the 1st and 3rd row state registers during various
stages of the operation. (SL: Serial Loading, SR: Shiftrow, ISR: Inverse Shiftrow)

For the 3"¢ row, the situation is even more straightforward. One of the direct
results of Observation 2, is that the first input connection for the registers



“307, “31” and “32” (used primarily for serial loading of data) can be used for
the dual purpose of performing Inverse Shiftrow. This being the case there is
no need for rewiring the inputs. However just as in the 1! row, for register
“33”, an extra multiplexer with input from register “30” is required. Also as
per Observation 1, no change in wiring or logic is required in the 0t* and 2"¢
rows. In Table[} we summarize the input connections for the first and third row
state registers during the various operation stages. For example during serial
loading/unloading, register ‘13’ accepts data coming from register ‘20’, whereas
it takes data from ‘10°/‘12’ during Shiftrow/Inverse Shiftrow respectively. As
seen in Figure [2], the register ‘33’ takes data from the DECoyr pin during the
serial loading phase (i.e. cycles 5 to 20).

3.3 Inverse Keyschedule

To recall, if Ko, K1, Ko, K3 and Lg, L1, Lo, L3 denote the 4 columns of the current
and next roundkey then we have

LoZKo@F(K;g), Li1=Ki® Ly, Lo=KoP L, L3=K366 Ls.

During decryption, the roundkeys are generated in reverse order and so in the
context of decryption, L = Lg, L1, Lo, L3 is essentially the current roundkey and
K = Ky, K1, K3, K3 is the key to be generated in the subsequent round. So we
rewrite the above relation as

K3z = Lo® L3
Ky=1L® Lo
Ki=Lo® Ly

Ko= F(K3)® Lo = F(Ly & L3) & Ly

So in order to have an Encryption/Decryption circuit we need an architecture
around the key registers that can both (a) generate L given K as input and (b)
generate K given L as input. The basic architecture in [26] all ready achieves
(a) and so we need accommodate (b) i.e. the roundkey generation mechanism
during decryption. We offer the following solution. Place three 8-bit xor gates in
the 3" row of Key registers in the following way (refer to Figure .

1. For 1 < ¢ < 2, the xor gate takes inputs from the key registers “3i” and
“3 i+ 1”7 and feeds its output into register “3:”.

2. The third xor gate takes inputs from the registers “33” and the current
roundkey byte and feeds its output into register “33”.

3. For each of these xor gates, the input coming from register “37” is anded
with a SELgp signal. This is done so that serial loading and unloading can
be done when required by simply zeroing the SELgp signal.

To understand how the Inverse Keyschedule works let us look at the flow of data
in cycles 5 to 20. For the purpose of simplification let Lg;, L1;, Lo;, L3; denote
the 4 key bytes in the column L;, and similarly let Ky;, K1;, Ko;, K3; denote the



4 key bytes in the column K;. Note that the signal SELgp is made 1 only during
cycles 8, 12, 16, 20 of the decryption phase. The flow of data has been explained
in Figure [3
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Fig. 3: Data flow in the Key registers during Decryption

It can be seen that at cycle 8, the three rightmost key registers in the bot-
tommost row have the key bytes Lgg, Lo1, Lo2- At this point SELgp is set to
1. Thus in the next cycle the bottommost key row would contain the bytes
Loo, KOl = LOO () LOla K02 = L01 D L()Q, Kog == L02 (&5) L03 respectively. Similar
additions occur at cycles 12, 16 and 20 and as a result at the beginning of cycle
0 of the next round the four columns of the key register would have the values
Lo, K1, Ko, K3 respectively. Thereafter in cycles 1 to 4, F(K3) is computed in
the same manner as described in the encryption cycles and added to Ly in the
first column. And as a result at the beginning of cycle 5, the key columns contain
Ky = Lo ® F(K3), K1, Ko, K5 which is the complete next roundkey. Since the
complete roundkey is already available, the SELXOR signal controlling the xor
gate in the topmost row is zeroed as the roundkeys are serially driven out for
the add roundkey operation. Thus all the functionalities of Inverse Keyschedule
are completely accommodated using this architecture. Furthermore the complete
decryption roundkey is available from cycles 5 through 20, which is incidentally
the period during which we perform the add roundkey operation.



3.4 Sequence of operations

Unlike ciphers like Midori [4], Prince [§] and Noekeon [I3], AES was not designed
as an efficiently implementable involutive cipher. As a result, the sequence of
operations during the encryption and decryption flow are quite different. The
sequence of operation during the encryption flow is as follows:

1. Add whitening key.
2. Rounds 1 to 9

A. Substitution layer, B. Shiftrows, C. Mixcolumn, D. Add roundkey
3. Round 10

A. Substitution layer, B. Shiftrows, C. Add roundkey

As previously mentioned, the 21 cycle encryption phase is arranged as Shiftrow
— Mixcolumn — Add roundkey + Substitution layer of next round. The de-
cryption flow of operations must exactly be opposite of encryption. Since the
Shiftrows/Inverse Shiftrows can be commuted with S-box/Inverse S-box oper-
ation respectively, we can go with the following composition of one decryption
round (also used in the architecture in [27]):

Inverse Shiftrow — Inverse Mixcolumn — Add roundkey 4 Inverse S-box

This sequence is attractive in this particular architecture because it has exactly
the same order of operations as in encryption, and so it does not need too many
changes in the underlying control system that produces select signals for the
various multiplexers in the circuit. However as mentioned in [27], this sequence
essentially swaps the order of Add roundkey and Inverse Mixcolumn operations.
Since Mixcolumn and hence also Inverse Mixcolumn are linear functions, this
requires the Inverse Mixcolumn function to be operated on the current roundkey
before using it during the Add roundkey operation (since MC~}X + K) =
MC~YX)+MC~1(K)). There are two ways to achieve this: a) use an additional
circuit for Inverse Mixcolumns or b) spend extra cycles to compute the Inverse
Mixcolumn of the current roundkey. Option a increases circuit size and option
b increases latency.

In this paper we propose an alternate sequence of the decryption cycle that
compromises on neither the circuit size nor latency. We propose the following
flow:

Inverse Mixcolumn — Inverse Shiftrow — Inverse S-box + Add roundkey

Since this sequence of operations is essentially the mirror inverse of the AES
encryption round function, no swapping of Add roundkey and Inverse Mixcolumn
is needed, and that obviates the need to calculate the Inverse Mixcolumn of
the roundkey. To better explain the operations, let us present a cycle by cycle
breakdown of the 21 cycle decryption round function. The decryption starts with
the addition of the whitening key. The finite sate machine (FSM) generating the
round signals is again initialized to cycle number 5. So in cycles numbered 5 to
20 (i.e. the very first 16 cycles) the following transformations take place:



Cycles 5 to 20: The 8 bit chunks of ciphertext and key are respectively filtered
out of the main state and key multiplexers respectively They are xored, and
the resultant signal fed to the state registers. Note that in the corresponding
encryption stage, we additionally calculated the S-box of the first round.
Hence in order to accommodate both encryption and decryption we need a
multiplexer after the S-box circuit as shown in Figure [2| The Key bytes are
input to key register “33”, from where it is serially forwarded in the next
round. However as mentioned in the previous subsection, the SELgp signal
is set to 1 at rounds 8, 12, 16, 20 due to which at beginning of the next phase,
the Key four register columns hold the value Lo, K1, Ko, K3 respectively.

After this the cycle counter is automatically reset to 0, and each 21 cycle round
function is executed 10 times. Since the data flow in the key registers have already
explained in the previous subsection, we concentrate on the state register.

Cycles 0 to 3: These cycles perform the Inverse Mixcolumn operation on the
state columns, in exactly the same way forward Mixcolumn is executed in
the encryption stage in cycles 1 to 4. However only in the very first round
the Inverse Mixcolumn operation is bypassed, as required in AES decryption.

Cycle 4: This cycle is reserved for the Inverse Shiftrow operation.

Cycles 5 to 20: The bytes of state are taken out from register “00” and input
into the combined forward and reverse S-box circuit to compute the Inverse
S-box operation. The output of the S-box is then xored with the current
roundkey byte from the key register “00” and circulated serially back into
the state registers via the register marked “33”. Note that the order of S-
box and Add roundkey in the decryption phase is exactly the opposite as the
encryption phase. As a result we employ two 8-bit xor gates, one before and
one after the S-box circuit, for key addition in the encryption and decryption
stages respectively. The xor gate inputs are controlled by and gates as shown
in Figure |2} in order to bypass the addition operation as required.

In the tenth and final round, the decrypted plaintext is made available from
cycles 5 through 20 after the add roundkey operation. The above process is
explained pictorially in Figure [4 We now describe some of the components used
in the circuit.

3.5 S-box

Over the years, there has been substantial research into compact circuit imple-
mentations of the AES S-box [QIT2)2512732]. Almost all of them use the under-
lying algebraic structure of the AES S-box, that essentially combines an affine
transformation with an inverse computation over the AES finite field. However
the architecture due to Canright [I2] remains one of the smallest in terms of
circuit size for the combined Forward and Inverse S-box, and thus this is the
architecture we chose for the combined S-box/Inverse S-box circuit.



ENCRYPTION 0 1-4 5-20

Round
State Add Whitening Key + S-box of 1st round
0
Key Store Key serially
State Shiftrow Mixcolumn Add roundkey + S-box of next round
1-10
Key Frozen Compute F(K3) Compute roundkey + Store it serially
DECRYPTION 0 1-4 5-20
| | | |
Round ! ! I !
0 Store Key serially (with SELgp=1 at 8,12,16,20)
Key
1-10 Frozen Compute F(K3) Store Key serially (with SELgp=1 at 8,12,16,20)
0 Add Whitening Key
State
1-10 Mixcolumn ! Shiftrow! | Inverse S-box + Add roundkey
0-3 4 5-20

Fig. 4: Operation sequences in the Encryption/Decryption stages

3.6 Mixcolumn/Inverse Mixcolumn

In [27], the authors use the following decomposition of the Inverse Mixcolumn
matrix to achieve an efficient implementation:

141113 9 2311 8888 4040
9141113 [1231 8888 0404
1391411 11237 |s888| T |4040
1113 9 14 3112 8888 0404

The xxtime (i.e. multiplication by 4) operation in AES finite field can be imple-

mented in 5 xor gates as shown ( is computed just once and the output
is reused to construct the 5th LSB)

xxtime(br, bg, . ., bo) ~+ bs, ba, by @ br, by ®[ b ® br |, by @ b, bo @ by, [ b @ br |, be

Using this implementation of xxtime, the authors proposed a construction of
Inverse Mixcolumns using 193 xor gates and a 32 bit multiplexer. However a more
efficient implementation is due to Paulo Barreto, which factorizes the Inverse
Mixcolumn matrix as :

141113 9 2311 5040
9141113 (1231 (0504
1391411 1123 4050

1113 9 14 3112 0405



To implement the above circuit, we simply premultiply the input column by the
Circulant(5, 0, 4,0) matrix as follows:

ys = xxtime(x3 @ 1) D x3, Yo = xxtime(za O o) O X2

y1 = xxtime(x3 D x1) D w1, Yo = xxtime(zs B o) D xg

where X = (z3,%2,21,20) and Y = (y3,¥y2,%1,%0) are the input and output
columns of the multiplication block. The multiplication block takes exactly 58
xor gates. Thereafter we choose either X for Mixcolumns or Y for Inverse Mix-
columns, and input the resultant to the AES Mixcolumn circuit, as shown in
Figure p} Since the Mixcolumn circuit can be efficiently implemented in 108
gates, the combined circuit takes 1084+58=166 xor gates and a 32 bit multi-
plexer which is more efficient than the construction in [27].

Multiply By

5040
0504
4050

5

[]
E . oA | [
|:| Mixcolumn |:|
m L]
MC MCour

ju}
=

ENC/DEC

Fig. 5: Mixcolumn/Inverse Mixcolumn circuit

3.7 Round Constants and Control System

We use LUT based round constants. If r is the current round number, then the
encryption operation uses LUT(r), while the decryption operation uses LUT (11—
r). The two signals can be input to an 8-bit multiplexer so that one can be
chosen over the other as required. To further optimize, one can instead place
a multiplexer before the LUT and choose between the 4-bit constants r and
11 — 7, and use the resultant signal as input to the LUT. Since this requires only
a 4-bit multiplexer, it saves us additional area equivalent to a 4-bit multiplexer.
Furthermore, all control signals are generated using a 21 cycle LFSR as described
in [26].

4 Performance Evaluation

In order to perform a fair performance evaluation, we implemented the circuit
using VHDL. Thereafter the following design flow was adhered to for all the



circuits: a functional verification at the RTL level was first done using Mentor
Graphics Modelsim software. The designs were synthesized using the standard
cell library of the 90nm and 65nm logic process of STM (CORE90GPHVT v
2.1.a and COREG65LPLVT v 5.1) with the Synopsys Design Compiler, with the
compiler being specifically instructed to optimize the circuit for area. A tim-
ing simulation was done on the synthesized netlist to confirm the correctness of
the design, by comparing the output of the timing simulation with known test
vectors. The switching activity of each gate of the circuit was collected while
running post-synthesis simulation. The average power was obtained using Syn-
opsys Power Compiler, using the back annotated switching activity. The results
are tabulated in Table 2l

We outline some of the essential lightweight metrics of the known implemen-
tations of encryption/decryption architectures of AES and compare it with our
own. Energy consumption was listed rather than power as it is a measure of the
total electrical work done during one encryption/decryption. Since the circuits
in Table[2| are implemented using different CMOS logic processes, there are most
likely to be wide variations in energy consumption and maximum throughput.
For example the throughput of [24] is quite high as it is implemented using the
standard cell library of the 22nm CMOS logic process which is faster than the
other logic processes listed in the table. The throughput of [27] is also high as it
is a 32-bit serial circuit and thus has considerably lower latency.

In Figure[6] we present a componentwise breakdown of the circuit size. We use
clock gating to generate the clock for the Key registers, since the data movement
has to be frozen for one cycle. Apart from the multiplexers included in the
implementation of the combined Forward and Inverse S-box, Mixcolumn and
Round Constants, a quick glance at Figure [2] tells us that we need

1. Six 8-bit multiplexers around the state register, one 32-bit multiplexer to
bypass the Mixcolumn circuit, one 8-bit multiplexer after the S-box, and
two 8-bit multiplexers to filter the raw key/plaintext (ciphertext) and the
roundkey/state byte respectively.

2. Apart from this six 8-bit xors around the key registers and two 8-bit xors
during state-key addition.

#|Architecture Type Library Area | Latency | Energy |7 Pnax
(GE) | (cycles) (nJ) (Mbps)
1 [8-bit Serial [26] E UMC 180nm | 2400 226 8.4 -
2|Grain of Sand [I7]| ED |Philips 350nm| 3400 |1032/1165|46.4/52.4|9.9/8.8
3 [8-bit Serial [24] ED 22nm 4037 | 336/216 | 3.9/2.5 |432/671
4 |32-bit Serial [27] ED 110nm 5400 54/54 - 311
5 |Atomic-AES ED STM 90nm | 2645 | 226/226 3.3 94.4
STM 65nm 2976 | 226/226 2.2 57.8

Table 2: Performance Comparison of Atomic-AES with previous architectures in
literature (Figures separated by ¢/’ indicate corresponding figures for encryp-
tion/decryption, E: Encryption only, ED: ENC/DEC)



Key Registers (734 GE)

State Registers (732 GE)

"~ Control System (148 GE)

Mixcolumn (323 GE)
- Muxes+Xors+And gates (455 GE)

S-box (253 GE)

Fig. 6: Area requirements of the individual components

3. One input of five out of the six xor gates is controlled by an and gate.

This adds up to around 455 GE for the multiplexers, xor, and gates in the circuit.
The LSFR based control system and the round constants take around 148 GE.
Adding up, this leads to 2645 GE for the entire circuit.

5 Conclusion

In this work, we present a compact architecture for AES that performs the
dual function of encryption and decryption. Such architectures are useful in
lightweight construction of block cipher modes that require access to both the
encryption and decryption modules. We build upon the encryption only archi-
tecture of [26] and show that certain judicious alterations in logic and wiring
can transform the architecture to perform encryption and decryption simultane-
ously. Our circuit has a size of 2645 GE and has a latency of 226 cycles for both
encryption and decryption operations. This is a substantial improvement over
the Grain of sand implementation that has an area of 3400 GE but a latency of
over 1000 cycles for both encryption and decryption.

Acknowledgement: The authors would like to thank the anonymous reviewers
who helped improve the quality and presentation of this paper.
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