Impossibility of Simulation Secure Functional Encryption Even
with Random Oracles

Shashank Agrawal* Venkata Koppulal Brent Waters!

Abstract

In this work we study the feasibility of achieving simulation security in functional encryption
(FE) in the random oracle model. Our main result is negative in that we give a functionality for
which it is impossible to achieve simulation security even with the aid of random oracles.

We begin by giving a formal definition of simulation security that explicitly incorporates
the random oracles. Next, we show a particular functionality for which it is impossible to achieve
simulation security. Here messages are interpreted as seeds to a (weak) pseudorandom function
family F' and private keys are ascribed to points in the domain of the function. On a message
s and private key = one can learn F(s,xz). We show that there exists an attacker that makes a
polynomial number of private key queries followed by a single ciphertext query for which there
exists no simulator.

Our functionality and attacker access pattern closely matches the standard model impossi-
bility result of Agrawal, Gorbunov, Vaikuntanathan and Wee (CRYPTO 2013). The crux of their
argument is that no simulator can succinctly program in the outputs of an unbounded number of
evaluations of a pseudorandom function family into a fixed size ciphertext. However, their argu-
ment does not apply in the random oracle setting since the oracle acts as an additional conduit of
information which the simulator can program. We overcome this barrier by proposing an attacker
who decrypts the challenge ciphertext with the secret keys issued earlier without using the random
oracle, even though the decryption algorithm may require it. This involves collecting most of the
useful random oracle queries in advance, without giving the simulator too many opportunities to
program.

On the flip side, we demonstrate the utility of the random oracle in simulation security.
Given only public key encryption and low-depth PRGs we show how to build an FE system
that is simulation secure for any poly-time attacker that makes an unbounded number of message
queries, but an a-priori bounded number of key queries. This bests what is possible in the standard
model where it is only feasible to achieve security for an attacker that is bounded both in the
number of key and message queries it makes. We achieve this by creating a system that leverages
the random oracle to get one-key security and then adapt previously known techniques to boost
the system to resist up to ¢ queries.

Finally, we ask whether it is possible to achieve simulation security for an unbounded number
of messages and keys, but where all key queries are made after the message queries. We show
this too is impossible to achieve using a different twist on our first impossibility result.

*Visa Research. Email: shashank.agraval@gmail.com.

TUniversity of Texas at Austin. Email: k.venkata.vk@gmail.com. Supported by NSF CNS-1228599 and CNS-
1414082, and DARPA SafeWare.

fUniversity of Texas at Austin. Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1228599 and CNS-1414082,
DARPA SafeWare, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.



1 Introduction

The traditional notion of public key encryption systems provide “all or nothing” semantics regarding
encrypted data. In such a system a message m is encrypted under a public key, pk, to produce
a ciphertext ct. A user that holds the corresponding secret key can decrypt ct and learn the entire
message m, while any other user will not learn anything about the contents of the message. The work of
Sahai and Waters [SW05] conceived cryptosystems that moved beyond these limited semantics to ones
where a private key would give a select view of encrypted data. These efforts [SW05, BW07, KSWO0§]
cumulated in the concept of functional encryption. In a functional encryption system an authority
will generate a pair of a public key and master key pair (pk, msk). Any user can encrypt a ciphertext
ct using the public key, while the authority can use the master secret key msk to generate a secret
key sk that is tied to the functionality f. A holder of sk; can use it to decrypt a ciphertext ct, but
instead of learning the message m, the decryptor’s decryption will instead output f(m).

One challenge in defining and designing functional encryption (FE) systems is in finding a defi-
nition to capture security. The earliest formal definitions of functional encryption [BW07, [KSWOS]
(back when the terminology of “predicate encryption” was used) defined security in terms of an in-
distinguishability game. Briefly, a system is indistinguishability secure if no poly-time attacker that
receives secret keys for functions fi,..., fo can distinguish between encryptions of mg, m; so long as
fi(mo) = f,(ml) for i = 1, .. .,Q.

Subsequent works [BSW111[0’N10a,[BO13| [AGVW13] aimed to capture various notions of simulation-
based security. To achieve simulation one must be able to show that for each attacker there exists
a poly-time simulator & that can produce a transcript that emulates the attacker’s real world view,
but when only given access to what the evaluation of the secret key functions f(-) were on the at-
tacker’s messages. (We will return to describing simulation-based security in more detail shortly.)
While these simulation definitions had the appeal of perhaps capturing a stronger notion of security
than the indistinguishability-based ones, they were limited in that multiple works [BSWI1I [O’NT10al
BO13| [AGVW13| [HW15] showed that this notion is impossible to achieve in the standard model for
even very basic functionalities such as identity-based encryption [Sha84, [BF(01]. The only exception
being in the restricted case where the attacker is only allowed to access an a-priori bounded number
of secret keys [GVW12].

While these results essentially put a hard stop on realizing (collusion-resistant) simulation security
in the standard model, the door to leveraging the random oracle model [BR93] still remained wide
open. Notably, Boneh, Sahai and Waters [BSW11] building on techniques from non-committing
encryption [Nie(2] showed that the random oracle could be leveraged to turn any indistinguishability
secure public index FE scheme into one that was simulation secure. Recall that a public index
scheme is one where an encrypted message is split into a hidden payload and a non-hidden index
and the secret key operates only on the index. The set of such schemes includes identity-based
encryption [Sha84l BF01] and attribute-based encryption [SWO05]. Thus, they showed that introducing
a random oracle was enough to circumvent their own standard model IBE result. In this work we wish
to understand what are the possibilities and limitations (if any) for using random oracles to achieve
simulation security in FE systems. Our work begins with the question:

Is it possible to achieve simulation secure functional encryption
for any functionality in the random oracle model?

Our main result is to show that there exist functionalities for which there cannot exist a simulation
secure functional encryption system even in the random oracle model.

On the flip side, we demonstrate the utility of the random oracle in simulation security. Given only
public key encryption and low-depth PRGs we show how to build an FE system that is simulation
secure for any poly-time attacker that makes an unbounded number of message queries, but an a-priori
bounded number of key queries. This beats what is possible in the standard model where it is only
feasible to achieve security for an attacker that is bounded both in the number of key and message
queries it makes. We achieve this by creating a system that leverages the random oracle to get one-key
security and then adapt previously known techniques to boost the system to resist up to ¢ queries.



Finally, we ask whether it is possible to achieve simulation security for an unbounded number of
messages and keys, but where all key queries are made after the message queries. We show this too
is impossible to achieve by repurposing our main impossibility result to the new setting.

1.1 Owur Main Impossibility Result

We show the impossibility result for the case where messages are interpreted as keys or seeds to a
(weak) Pseudo Random Function (PRF) [GGMS84] family and secret keys are points in the domain of
the PRF. Agrawal, Gorbunov, Vaikuntanathan and Wee [AGVW13] showed that such a functionality
could not be simulation secure in the standard model. Here we show that this limitation holds even
with the introduction of random oracles.

We begin our exposition by describing the definition of simulation security in a little more depth
and briefly overviewing the AGVW impossibility analysis.

Simulation security. Simulation security for FE is defined by means of real and ideal experiments.
In the real experiment, an adversary A gets secret keys for functions f and ciphertexts for challenge
messages m of its choice. The secret key queries can either be sent before the challenge messages
(also referred to as pre-challenge queries) or after the challenge messages (post challenge queries). In
the ideal world, on the other hand, a simulator S needs to generate challenge ciphertexts and keys
given only the minimal information. In particular, when A requests that a challenge message m be
encrypted, S only gets f(m) on all the pre-challenge functions f queried by A (instead of m itself),
and must generate a ciphertext that A cannot distinguish from the one in the real world. Similarly,
when A makes a post-challenge key query for f/, & must generate a secret key given just f/, f'(m)
for all challenge messages m.

An FE scheme i8 (gpre; Gchal, gpost)-simulation secure if it can withstand adversaries that make at
most gpre pre-challenge key queries, gehai challenge encryption requests, and gpost post-challenge key
queries. Ideally, one would like to capture all polynomial-time adversaries, who can make any number
of queries they want. However, even simple functionalities like identity-based encryption do not have
a scheme secure against an arbitrary number of encryption requests followed by one key query, i.e.,
IBE does not have a (0, poly, 1)-simulation secure scheme [BSW11l[BO13]| in the standard model. Here
poly denotes that any number of encryption requests can be made, as long as there is a polynomial
bound on them.

AGVW impossibility. A different kind of impossibility was shown by Agrawal et al. [AGVWT13].
They interpret messages as seeds to a weak pseudorandom family WPRFE| and secret keys as points in
the domain of the family. When a ciphertext for s is decrypted with a secret key for z, the output is
wPRF(s,2). They show that there does not exist a simulation-secure FE scheme for this family that
can tolerate adversaries which can make an arbitrary number of pre-challenge key queries and then
request for the encryption of just one message (i.e., (poly, 1,0)-simulation security). Intuitively, when
the adversary outputs a message s in the ideal world, the simulator gets wPRF(s, x1), ..., wPRF(s, z,)
(if ¢ is the number of post-challenge key queries), which is computationally indistinguishable from ¢
uniformly random strings. The simulator must output a ciphertext ct now that decrypts correctly
with all the keys issued before. Note that when the keys were issued, simulator had no information
about s, so it must somehow compress ¢ random strings into ct. However, as Agrawal et al. show,
the output of a pseudo-random function family is incompressible. Thus, by choosing a large enough
q, they arrive at the impossibility result.

Random oracle model. In the random oracle model though, Agrawal et al.’s impossibility argu-
ment breaks down. Informally speaking, the random oracle acts as an additional conduit of informa-
tion which the simulator can program even after ct appears. For instance, if the decryption algorithm
makes RO queries, then the simulator could program such queries when adversary tries to decrypt ct

1A weak pseudorandom function family provides security only against attackers that do not get to choose the points
at the which the PRF is evaluated. These points are chosen randomly by the challenger.



with the secret keys issued earlier. Indeed, Boneh et al. show that their (0, poly, 1) impossibility for
IBE can be circumvented by employing RO in the encryption and decryption algorithms.

Thus we need a very different approach. We would like to build an adversary A* that “cuts off”
RO in the decryption process, and is able to work without it. This involves a delicate balancing act
between cutting off too early and too late. In one extreme case, if A* does not invoke RO at all and
makes up its own responses, then these would not match with the actual RO responses in encryption
and key generation. Thus decryption would always fail in both the real and ideal worlds, and there will
be no distinction between them. On the other extreme, if A* just used the RO all the way through, it
would provide the simulator enough opportunity to program in the desired information. (As a result,
we will not be able to use the incompressibility of wPRF.)

At a high level, our approach is similar to the Impagliazzo-Rudich “heavy-query” algorithm [IR89].
First, there is an initial learning phase where A* will build a list of “high frequency” random oracle
queries and responses associated with each secret key and the challenge ciphertext. Later the attacker
will be able to use this list to replace the use of the actual random oracle during decryption. If some
query is not found in the list, then A* will choose a random value for it on its own. Informally, we
get the following result:

Theorem 1.1 (Main Theorem, informal) There does not exist a (poly, 1,0)-simulation secure FE
scheme for the class of (weak) pseudo-random functions in the random oracle model.

Related work. This bears a resemblance to the work of Canetti, Kalai and Paneth [CKP15] who
show impossibility of VBB obfuscation even with ROs. In their case they show that any obfuscated
program that uses the RO can be translated into one that does not need it. They do this by collecting
the frequently used RO queries and bundling this with the core obfuscated code. On one hand, these
queries do not give any information about the program, but on the other, result in an obfuscation
that is only approximately correct. Such imperfect correctness, however, is enough to invoke the
impossibility of Bitansky and Paneth [BP13].

One might ask if we can show whether RO can be dispensed with in any simulation secure FE in
a similar way. If we could establish this, then prior impossibility results [BSW11l BO13, [AGVW13]
would imply RO impossibility as well. The answer to this is negative as we recall that Boneh, Sahai
and Waters [BSWTI] showed specific functionalities that were impossible to simulate in the standard
model, but possible to be simulation secure using random oracle. Therefore we cannot always remove
the random oracle and must develop a more nuanced approach: we need to build a specific adversary
for which simulation does not work.

In a recent work [MMNT16], Mahmoody et al. show that there is no fully black-box construction
of indistinguishability obfuscation (iO) from any primitive implied by a random oracle in a black-box
way. In light of recent FE to iO transformations [AJI5, [BVT5], one might wonder if this rules out FE
schemes in the RO model. However, these transformations are non-black box.

1.1.1 High level description of impossibility

Recall that we want to design an adversary A* that will build a list of “high frequency” random oracle
queries and responses associated with each secret key and the challenge ciphertext. It will use this
list later in the decryption phase to “cut-off” the random oracle at an appropriate time.

A* starts off by querying the key-generation oracle at random points 1, ..., %4 in the domain of
wPRF, and gets sk, ...,skq in return. The RO queries made by the key-generation oracle are hidden
from the adversary, so A* tries to find them by encrypting several randomly chosen seeds using the
master public key, and then decrypting them with sky,... ,squ| The RO queries made during the
decryption process are recorded in a list I'. The hope is that I" will capture the RO queries that were
made in generating a key sk;.

Note that one cannot hope to capture all RO queries required for decryption: Suppose a polynomial
number Y of high frequency queries associated with sk; is collected, but there is an RO call that is

2Tt is important that this is done before the challenge message is put out, otherwise simulator will get an opportunity
to program in additional information through the random oracle.



made during key-generation which is used during 1/2Y fraction of the decryptions. Then it will be
the case that with some non-negligible probability, I" will fail to aid in the decryption of the challenge
ciphertext with sk;. Instead of trying to solve this issue, we make our analysis work with a decryption
that might fail some of the time. For this purpose, we extend the incompressibility argument of
Agrawal et al. to work even for approzrimate compression.

We are not quite done yet. Even though we have captured most of the hidden RO queries involved
in key-generation that are also needed for decryption, we still need to capture those that are involved
in the encryption of the challenge message, as they are also hidden and may be required during
decryptionﬂ Suppose A* outputs a randomly chosen seed s* as the challenge message, and gets ct*
in return. In order to find out RO queries associated with ct*, A* cannot generate secret keys on its
own (like in the pre-challenge phase when it generated ciphertexts); it must make-do with the secret
keys sky, ..., sky that were issued earlier. Thus, the idea is to decrypt ct* with some fraction ¢ of the
keys using RO, recording the queries in the list I'. It then cuts off the random oracle, and decrypts
ct* with the remaining keys using the list I'. If a query is not found in I', then a random value is
used for it (as well as recorded in I' for consistent responses in future). The adversary outputs 1 if
a large fraction of these decryptions are correct; that is, if the decryption of ct* using sk; outputs
wPRF(s*, x;).

In the real world, as we will see, the adversary outputs 1 with noticeable probability. On the other
hand, we show that in the ideal world, the adversary outputs 1 only with negligible probability. For
the adversary to output 1 in the ideal world, the simulator needs to somehow program the ciphertext
and the post-challenge random oracle queries so that a large number of decryptions succeed. The only
opportunity a simulator has of programming post-challenge RO responses is when ¢ fraction of the
keys are used for decrypting ct*. By choosing d appropriately, we can ensure that the simulator is not
able to program the RO queries to the extent that most of the remaining decryptions succeed.

Looking back. A simulator’s success in the RO model depends on when it comes to know what to
program and how much can it program. When dealing with the attacker A* described above, it gets
a large amount of information, wPRF(s*,z1),...,wPRF(s*, z,), only in the challenge phase. Since all
the key queries come before that, programming the secret keys is ruled out. If there was no random
oracle, then the only possible avenue to program is the challenge ciphertext, but AGVW shows that
it is not possible to compress so much information into a small ciphertext. Now with the random
oracle, it might have been possible to program this information if there were many RO queries after
the challenge phase. However, our adversary makes only a bounded number of post-challenge RO
queries, and as a result, it is not possible to program all of {wPRF(s*,z;)} in these RO responses.

1.1.2 An alternative approach to proving impossibility

Concurrent to our work, Bitansky, Lin and Paneth [BLP17] showed an alternate approach for removing
random oracles. Unlike our current impossibility, their approach requires multiple ciphertexts. We
sketch the main ideas here.

This approach uses a notion of obfuscation called ‘exponentially-efficient obfuscation’, introduced
by Lin et al. [LPST16]. An exponentially-efficient obfuscator is allowed to run in subexponential time,
and the obfuscated program is also allowed to be subexponential in the input length. For security,
Lin et al. considered the {0 equivalent, where the obfuscation of two functionally identical programs
should be computationally indistinguishable. However, one can even consider simulation based notions
where the output of the obfuscator can be simulated by a simulator having only black box access to
the program.

In a recent work, Bitansky et al. [BNPW16] showed that IND-secure functional encryption can
be used to construct exponentially-efficient indistinguishability obfuscation [LPST16] in a black-box
manner. While there exist other transformations from FE to obfuscation [AJI5, BV15], the BNPW
transformation is the only known black-box transformation, and this is important when studying FE
or obfuscation in the random oracle model. Using the BNPW transformation, one can argue that

3The RO queries made while setting up the FE system are also hidden from the adversary, but we ignore them here
for simplicity.



simulation secure FE in the random oracle model implies simulation-secure exponentially-efficient
obfuscation in the random oracle model. Therefore, to rule out FE in the random oracle model, it
suffices to show that there exist certain functionalities for which we cannot obtain simulation-secure
exponentially-efficient obfuscation in the random oracle model.

This can be achieved using the techniques of Canetti et al. [CKP15], who showed an impossibility
result for VBB obfuscation in the random oracle model. Canetti et al. showed that if there exists a
VBB obfuscator in the random oracle model, then there exists an ‘approximate’ VBB obfuscator in
the standard model. A similar argument can be used to show that if there exists simulation-secure
exponentially efficient obfuscation in the random oracle model, then there exists approximately correct
simulation-secure exponentially-efficient obfuscator in the standard model.

Finally, one needs to show that it is impossible to construct approximately correct simulation-
secure exponentially-efficient obfuscators for certain function classes. This argument is similar to
the incompressibility argument that we use. Let C' be a circuit that performs PRF evaluation, and
consider the obfuscation of C. A simulator must output an obfuscation given only black box access
to the PRF function, which in turn is indistinguishable from a truly random function. Therefore,
the simulator must output a subexponential sized string that approximately explains a truly random
function, which is impossible.

1.2 A New Possibility Result in the Random Oracle Model

Now that we know that simulation security is impossible for unbounded queries even in the random
oracle model, we turn to asking whether this model can be leveraged to support simulation security in
any situations where it is impossible in the standard model. We already have one such example from
the work of Boneh et al. [BSWT1] which gives both a standard model impossibility and a random
oracle feasibility result for public index schemes. Thus, we are interested in new examples that go
beyond the public index class. In this paper, we show the following possibility result:

Theorem 1.2 (Possibility, informal) There exists a simulation secure FE scheme for the class of
all polynomial-depth circuits in the random oracle model secure against any poly-time attacker who
makes an unbounded number of messages queries, but an a-priori bounded number of key queries, based
on semantically-secure public-key encryption and pseudo-random generators computable by low-depth
circusts.

Recall that such a security notion cannot be achieved even for the simple functionality of IBE in the
standard model [BSWTI].

One-bounded FE. Our starting point is a one-bounded simulation-secure FE scheme for all circuits,
i.e., a scheme where the attacker can only make one key query, based just on the semantic security of
public-key encryption. Our scheme is a variant of the Sahai-Seyalioglu [SS10]. Let C be a family of
circuits wherein each circuit can be represented using ¢ bits. Suppose U, is a universal circuit that takes
a C € C as input, and outputs C(z). The set-up algorithm of our FE scheme generates 2t key pairs of
a semantically-secure public-key encryption scheme. The 2t public keys (pk; g, pky 1), -, (Pks 5 Pks 1)
form the master public key, and the 2t private keys (skq,0,5k1,1) ..., (skeo,5ks1) are kept secret. In
order to encrypt a message x, a garbled circuit for U, is generated. Suppose w; for ¢ =1,...,¢ and
b = 0,1 are the wire-labels of U, for its t input bits. Then the (i,b)"* component of the ciphertext
consists of two parts: an encryption of a random value r;; under pk;,, and w;; blinded with the
hash of r;,. The key for a circuit C represented using bits f1,...,3; is simply the private keys
corresponding to those bits, i.e., skg,,...,skg,.

It is easy to see that the one-bounded FE scheme is correct. Specifically, the secret key for C' will
allow one to recover r; g, for ¢ = 1,...,¢. Then by running the hash function on these values, the w; g,
can be unblinded and used to evaluate the garbled circuit.

Let us now see how a simulator S can generate ciphertexts and a key from the right distribution
in the ideal world. If the only allowed key query is made before the challenge phase for a circuit C,
then S just runs the normal key generation algorithm, and later when adversary outputs a challenge



message x*, it can generate a garbled circuit using just C(m*)ﬂ When the adversary’s key query
is after the challenge message, however, S does not get any information in the challenge phase. In
particular, it does not know which universal circuit to garble. Here the random oracle allows the
simulator to defer making a decision until after the key query is made. It can set the second part
of the (4, b)th ciphertext component to be a random number z;;, because, intuitively, adversary does
not know r;; (it is encrypted) so a hash of it is completely random. When adversary queries with a
circuit C' afterwards, simulator can program the random oracle’s response on r; ; to be z;, ® w;p, S0
that decryption works out properly.

Bounded collusion FE. Using the one-bounded scheme in a black-box way, we can design an
FE scheme secure against any a-priori bounded collusions for the class NC1, using Gorbunov et
al’s |[GVWI12| transformation. While their transformation was proved secure for only one challenge
message, we show that the same ideas also work for unbounded number of challenge messages. If the
underlying one-bounded scheme is secure against any number of challenge messages, then so is the
scheme obtained after applying their transformation.

Related work. Sahai and Seyalioglu [SS10] were the first to use randomized encodings to design an
FE system. Their scheme can issue one key non-adaptively for any function. Our one-bounded scheme
can be seen as an extension of theirs to additionally support post-challenge key query. The random
oracle allows a simulator to not commit to any value in the ciphertext until the function evaluation is
made available.

Goldwasser et al. [GKPT13] also designed an FE system that can issue one pre-challenge key. Their
scheme has succinct ciphertexts (independent of circuit size) but security is proved under stronger
assumptions.

Tovino and Zebroski [IZ15] present two results on simulation-secure FE in the public-key setting.
First, they have a construction for a bounded number of challenge ciphertexts and pre-challenge key
queries (and unbounded post-challenge queries), where key size grows with number of challenge ci-
phertexts but the ciphertext size is constant. The encryption/decryption time grows with the number
of pre-challenge key queries. The second construction is for bounded key queries and challenge cipher-
texts, but with constant size keys and ciphertexts. Here the encryption/decryption times depend on
the bound on number of key queries and challenge ciphertexts. Both these results use extractability
obfuscation. Our positive result presents a construction where the number of challenge ciphertexts
is unbounded, but key queries are bounded. Therefore, our positive result and the results of Iovino
and Zebroski are incomparable. Moreover, our construction only requires PKE and low-depth PRGs,
whereas their constructions require stronger assumptions.

1.3 Another Impossibility Result

A natural question to ask is whether we can construct a simulation secure FE scheme in the random
oracle model that can handle unbounded ciphertext queries, followed by an unbounded number of
post-challenge key queries. We show that this is also impossible, assuming the existence of weak
pseudorandom functions.

Theorem 1.3 There does not exist a (0, poly, poly)-simulation secure FE scheme for the class of
(weak) pseudo-random functions in the random oracle model.

Once again we interpret messages as seeds to a weak PRF family wPRF and secret keys as points
in the domain of the PRF. A very different way to attack an FE scheme is needed though because no
key query can be made before the challenge phase.

The new attacker A* starts off by outputting randomly chosen seeds si,...,s; for wPRF, and
gets ciphertexts cty,...,cty in return. The RO queries made in the encryption process are hidden
from A*, and it might need some of them later during decryption. So, it requests secret keys for
randomly chosen points x4, ..., 24, and gets sky, ..., sk, in return. Then it decrypts every ct; with sk;

4In fact, if we just want pre-challenge key query security, then there is no need for random oracle.



and records the RO queries made in a list I". An important point to note here is that the simulator
gets some information about the seeds chosen earlier when key-queries are made. Specifically, it gets
wPRF(s1,2;),...,wPRF(sk, z;) when z; is the query.

A* now picks a random point x* and requests a secret key for it. The goal is to use the key obtained,
say sk*, to decrypt the challenge ciphertexts cty,...,cty later. But, in order to do so, A* also needs
to find out the RO queries made during key-generation that may also be required for decryption. To
solve this problem, we use the same idea as in the previous impossibility result: encrypt some random
seeds on your own and decrypt them with sk*, while adding the RO queries made to T'.

Finally, A* decrypts cty,...,cty with sk® without invoking the random oracle, using the list T’
instead. In the real world, at least a constant fraction of the decryptions succeed. The analysis is
similar to that of the previous impossibility result, but with the role of ciphertext and key reversed.
The ideal world analysis, on the other hand, need more care because of two reasons. First, as pointed
out earlier, some information about the seeds si,...,s; is leaked when post-challenge key queries
are made. Second, the simulator needs to compress the evaluation of wPRF on seeds sq,...,s; and
a common point z*, instead of one seed and multiple points as in the (poly,1,0) impossibility. At
the same time, however, the only opportunity a simulator has of programming RO responses after
learning wPRF(s1,z*),...,wPRF(sg,z*) is when ciphertexts for random seeds are decrypted with sk*
with the help of RO. So, it is conceivable that one can exploit the security of wPRF to argue that it
is impossible to compress wPRF(s1,z*), ..., wPRF(sg, z*) into a small key and a small number of RO
responses. We show that this is indeed the case in Section [8

1.4 Relation to De Caro et al. and Functional Encryption for Circuits with
Random Oracle Gates

At the time of the initial posting of our work, De Caro et al. |[CJO™"13a] stated (Theorem 3) that
indistinguishability security for FE schemes in the random oracle model implied simulation security,
resulting in an apparent discrepancy with our results. After our work was posted we contacted the
authors to point out this dissonance. The authors informed us that they had earlier become aware
of an issue with the theorem statement, but had not yet prepared an update to their posting. They
stated that they intended to update it to a statement that indistinguishability-based definition of
“functional encryption for circuits with random oracle gates” implied simulation security.

At the time, the notion of functional encryption for circuits with random oracle gates had not
previously appeared in the literature and we were unable to deduce the intended definition from the
phrase. Subsequently, the authors provided a revision which defined the concept and provided a
transformation in the random oracle model which showed this new notion implies (regular) simulation
security [CJO™13b|. However, since our work shows such a notion is impossible to achieve, this must
imply that this indistinguishability notion of “functional encryption for circuits with random oracle
gates” was impossible to realize to begin with.

Despite sharing the term random oracle the new concept proposed in their revision is quite different
than how the random oracle model was proposed [BR93]. Recall, that a cryptographic system built
in the random oracle model will have the same algorithms and definitions as the standard model
counterpart with the exception that each algorithm is allowed oracle access to a random function.
We emphasize that the random oracle model in of itself is not impossible, it is just simply a different
modelﬂ Prior works would typically first establish provable security in the random oracle model and
then apply the heuristic of replacing the random oracle calls with those to a hash function. It is
this last step where security can actually be lost; in some cases no matter what the hash function
is [CGHO4]. The concept of IND-FE in the random oracle model is not impossible to achieve (as far as
we know), but we show that it is still insufficient to get simulation security. This impossibility holds
for the random oracle model itself and is completely independent of the hash function replacement
heuristic.

5 We note that in practice one could actually instantiate this model with a trusted third party that dynamically
builds a random table. However, this is not done since presumably one does not want to require online communication
and introduce such a trusted third party.



In the concept of functional encryption with random oracle gates as defined in the revision of
|CJO™13b| the random oracle is not just used as a tool to help augment functional encryption, but
actually incorporated into a definition of functional encryption as the descriptions of a functionality
f will depend on the random oracle. (Due to space limitations we refer the reader to [CJO™13b]| for a
detailed description of the new definition.) As a simple argument will show, this new indistinguisha-
bility notion, unlike standard FE in the random oracle model, is impossible to begin with. So the
addition of random oracle gates to FE circuits moves one to a primitive that is unachievable.

The combination of our simulation impossibility results with the implications from |[CJOT13b]
imply this new notion of indistinguishability FE with random oracle gates is impossible to achieve.
However, there is a much simpler and direct argument, which we describe below.

A Direct and Simple Unachievability Argument for Functional Encryption for Circuits
with Random Oracle Gates Model The crux of the argument is that each ciphertext and private
key can implicitly store the result of a polynomial number of queries to the random oracle. Beyond
that, however, the system is reliant on the decryption algorithm to communicate queries from the
random oracle for any values outside of those hardwired. Of course, this decryption algorithm can be
run by an attacker that can undetectably lie about the answers to such queries and leverage this to
break the system. We sketch such an argument below.

We will show that the indistinguishability definition is impossible to achieve (using ROs) even
if the attacker is given access to only one challenge message and one private key. We first give an
overview of the definition and then show and analyze an attacker. Let C be a class of circuits with
random oracle gates. The indistinguishability-based security game in the random oracle works as
follows: Adversary first receives a master public key. It is then allowed to query for circuits in C,
and receive corresponding keys. Next, it sends challenge messages mg, m1 and receives an encryption
of my. Finally, after polynomially many post-challenge queries, the adversary must output its guess.
The adversary’s queried circuits CRO € C must satisfy the restriction that CRO(mg) = CRO(m;) and
the sequence of random oracle queries made by CRO(mg) and CRO(m;) must be the same.

We will now informally argue that it is impossible to achieve this indistinguishability based notion
ﬂ Let FE be any functional encryption scheme for circuits with random oracle gates. Our adversary
sends two challenge messages, followed by one random oracle query, one key query and breaks the
indistinguishability-based security of FE. Let y be a randomly chosen n bit string. The adversary
first sets mg = (y,0), m1 = (y,1) and sends mg, my to the challenger. It receives the challenge
ciphertext ct*. Next, it chooses a random string ¢ and queries the random oracle RO on (y,t). It
receives w = RO(y,t). Finally, the adversary defines a circuit C' that takes n + 1 bit inputs, has ¢,
w hardwired and works as follows. On input (s,b) where s is an n bit string and b is a bit, C first
checks if w = RO(s,t). If so, it outputs 0, else it outputs b. The adversary sends this circuit C, and
receives a secret key sko. At the end, it decrypts ct* using sko. This decryption will make a random
oracle call on input (y, ), but instead of sending w, the adversary sends some random string w’. The
adversary can then guess the challenge bit b based on the decryption’s output.

First, note that the circuit C is an admissible circuit query; that is, CRO(mg) = CRO(my). Next,
note that the decryption procedure must query the random oracle on input (y, ) with all but negligible
probability, since RO(y,t) could not have been hardwired in the secret key or the ciphertext. This
allows the adversary to run the circuit on an incorrect random oracle output, which in turn allows
the adversary to distinguish between encryption of (y,0) and (y, 1).

Intuitively, the issue here is that the circuit has no way to know whether it is interacting with a
legitimate random oracle or a fake one. We would like to stress that this is not an “uninstantiability
of random oracle” result [CGHO4]. This impossiblity result holds even in the random oracle model.

Analogous to FE for circuits with random oracle gates, one could also consider indistinguishability
obfuscation for circuits with RO gates. This problem was studied by Goldwasser and Rothblum
[GROT], who showed an impossibility result for a similar reason.

60ur main result combined with the transformation of De Caro et al. gives a formal result.



1.5 Interpreting our Impossibility Results

Impossibility results for simulation secure functional encryption in the standard model were already
known before our work. If we take any FE system secure in the Random Oracle Model and then take
the heuristic of replacing the oracle calls with some hash function family, then we have a standard
model FE scheme. We know this new system to be impossible to be simulation secure from prior
work. So a natural question to ask is what new interpretations does our result provide. We believe
there are two main points here.

First, an interpretation of our result is understanding FE in idealized models. While the random
oracle model is closely associated with the random oracle heuristic (i.e. replacing oracle calls with hash
functions), there are different possible ways to try to “instantiate” a cryptosystem described in the
random oracle model. One possibility is to replace calls to the random oracle with secure hardware
tokens. Another could be a use of a blockchain.

In addition, in the interest of getting a better and deeper scientific understanding it is useful to
map out cryptography in both the standard and random oracle models. There has been precedent
for this in our community. For example, the Boneh et al. [BSW11] paper which gave some examples
of schemes (simulation secure FE schemes where the adversary sends unbounded challenge messages,
followed by one key query) that were possible in the random oracle model, but impossible otherwise.
Going further out, to best understand non-committing encryption it is useful to know both that it is
impossible in the standard model and that it is possible in the RO model.

Secondly, we also posit that there may be some forms of security that lie in between simulation
security and indistinguishability security, but that are hard for us to understand or formally define.
Suppose there did exist an FE scheme that was simulation secure in the RO model, and one did apply
the random oracle heuristic to it. It is possible that even if this new scheme is not simulation secure,
the transformation could result in some gain of security. Perhaps this gain in security might even
be what is right or needed for a particular application. One example is that while the Fiat-Shamir
heuristic applied to zero knowledge protocol does not give a simulation secure NIZK, but might give
the right form of security needed for a particular application (e.g. its use in some cryptocurrency).

2 Preliminaries

We use A to denote the security parameter. Let [n] denote the set {1,2,...,n}. If A is an algorithm,
then a < A(-) or A(-) = a denote that a is the output of running A on the specified inputs. If D is
a distribution, then s < D denotes that s is a sample drawn according to it. Also, z <&~ X denotes
drawing a value z uniformly at random from the set X.

For two distribution ensembles & = {Xy},oy and YV = {IWr}, oy, we use X ~ Y to denote
that X is computationally indistinguishable from Y. Lastly, for two vectors v = (uq,...,u,) and
v = (v1,...,0,), their Hamming distance HD(u, v) is defined to be the number of points where they
don’t match, i.e., the size of set {i € [n]|u; # v;}.

2.1 Weak Pseudo-random Functions

Our impossibility results rely on the existence of circuit families whose output cannot be compressed
by a significant amount. In Section [d] we will show that a specific circuit family built from pseudo-
random functions (PRFS) is not compressible. In fact, like Gorbunov et al. [GVW12], a weaker type
of PRF where adversary only gets evaluation at random points suffices for our purpose.

Definition 2.1 (Weak PRFs) Let n,m,p be polynomials in A\. Let wPRF = {wPRF)} en be a
family of efficiently computable functions such that wPRFy : {0,1}"M x {0, 1} — {0, 13PN | where
the first input is called the seed. Pick a seed s <~ {0,1}"N) and £4-1 points x1,. .., x¢, z* & {0,1}m™),
Let Dy be the £-tuple of values (x1, wPRFy(s,x1)),..., (xe, WPRF)(s,2¢)). Then the wPRF family is a
weak pseudo-random function family if for every £ polynomial in A,

{D[,x*,WPRFA(S,Z‘*)})\eN é {vax*aT}/\ENa



where r is a random string of length p(\).

Below we present two alternate definitions of security for a weak pseudorandom family. The first
one is a standard definition for PRFs/weak PRFs, while the second one is introduced for our final
impossibility result. They both follow from Definition 2.1 above through simple hybrid arguments.

Definition 2.2 (Weak PRFs, many points) Let wPRF = {wPRF,},\cn be a family as in Defini-
tion . Pick s & {0,1}*N ) zy, .. xp & {0,137V and ... rp & {0,1*N). Then the wPRF
family is a weak PRF family for many points if for every £ polynomial in X,

{(z1,WPRF(s,71)),..., (ze,WPRFA(s,z)) aen =~ {(@1,71),- .., (Te,7¢) ren-

Definition 2.3 (Weak PRFs, many seeds with aux) Let wPRF = {wPRF,},\en be a family as
in Definition . Pick k seeds s1,. .., s, < {0,1}"N) and £+1 points x1, ..., xe, z* <& {0,1}"N ., Let
Dy, ¢ be the k-C-tuple of values (x1, WPRFx(s1,21)), ..., (x¢, WPRFx(s1,2¢)), - . ., (1, WPRF (s, 21)), - - -
(z¢, WPRF (s, x¢)). Then the wPRF family is a weak PRF family for many seeds with auziliary in-
formation if for every k, £ polynomial in A,

{Dg.e,2*,WPRF(s1,2%), ... ,wPRF (55, 2*)}rxen  ~  {Die, @, 71, ., Tk rens

where r1,...,r are random strings of length p(X).

2.2 Randomized Encodings

We use decomposable randomized encodings [GVW12] to simplify the description of our FE schemes.
They are known to exist for all circuits due to the works of [Yao86), [ATK06].

Definition 2.4 (Randomized Encodings) LetC = {Cy}, be a family of circuits, where each circuit
C € Cy, takes ann(X) bit input and produces an m(\) bit output. A decomposable randomized encoding
RE of C consists of two PPT algorithms:

e RE.Encode(1*,C) : It takes a circuit C € Cx as input, and outputs a randomized encoding
((w1,0,w1,1)5 -+ 5 (Wi (r),00 Wn(A),1))-

e RE.Decode(1?, (10, .. ., Wy(n))) : It takes an encoding (W1, . .., Wn(x)) and outputsy € {0, 1}y

{L}.

Correctness Let C € Cy be any circuit, and let ((w1,0,w1,1),-- -, (Wn,0,wn 1)) < RE.Encode(1*, C).
For any input x € {0,1}™*) | RE.Decode(1*, (Wiays s W) anny) = C2).
Security To define the security of such a scheme, consider the following two distributions:

e Real¥t(\). Run A(1Y) to get a C € Cy and an x € {0,1}"). Then run RE.Encode on input C
to get an encoding ((w1,0,w1,1),---, (wn(/\)ﬁ,wn()\)’l)). Output {wi,zi}ie[n(/\)]-

e Ideal¥F(\). Run A(1*) to get a C € Cy and an z € {0,1}"V). Output S(1*, C, C(x)).

A randomized encoding scheme RE is secure if for every PPT adversary A, there exists a PPT simulator
S such that
RealRE(\) ~ IdealE(N).

3 Functional Encryption in the Random Oracle Model
A functional encryption scheme for a function space F = {F)} en and a message space X = {X) }ren

in the random oracle model consists of four PPT algorithms that have access to a random oracle
0O :{0,1}*™ — {0,1}™™) where ¢ and m are polynomials. The algorithms are described as follows:

10



° Setupo(l’\) : It takes the security parameter (in unary representation) as input and outputs a
public key pk and a master secret key msk.

. KeyGenO(msk7 f) : Tt takes the master secret key msk and a circuit f € F as inputs, and outputs
a secret key sky for the circuit.

. Encrypto(pk,x) : It takes the public key pk and a value x € X, as inputs, and outputs a
ciphertext ct,.

. Decrypto(pk, sk, ct) : It takes the public key pk, a secret key sk, and a ciphertext ct as inputs,
and outputs a value y or L.

Correctness. The four algorithms defined above must satisfy the following correctness property.
For all values of the security parameter A, for every f € Fy and x € X, all random oracles O, and all
(pk, msk) output by Setupo(l’\),

Decrypt® (pk, KeyGen® (msk, f), Encrypt® (pk, z)) = f(z).

Without loss of generality, we can assume Decrypt to be deterministic.
One could consider weaker notions of correctness where a negligible probability of error is allowed.

Statistical Correctness. For all values of the security parameter A, for every f € Fy and x € X},
all random oracles O,

(pk, msk) < Setup®(1*)
Pr | Decrypt® (pk,sk,ct) = f(z) : sk < KeyGen® (msk, f) | >1— negl()\)
ct + Encrypt? (pk, x)

3.1 Simulation-based Security

Definition 3.1 (Experiments) Let FE = (Setup, KeyGen, Encrypt, Decrypt) be a functional encryp-
tion scheme. For any PPT algorithms A = (A1, As) and S = (81,82, 83,84), Figure |l defines two
experiments ReaIZE(A) and Idealffs()\). In the figure, q. denotes the length of challenge message vector
x output by Ay and q1 denotes the number of key generation queries made before that.

Definition 3.2 (Admissibility) An adversary A = (A1, A2) is (gore(A), genal(A), Gpost (A))-admissible
if in any run of the experiments Real (1)) and Ideal 4 s(1*), Ay and Ay make at most gpe(N) and
Qpost(\) key generation queries, respectively, and Ay outputs at most gehal(A) challenge messages.

An adversary A is (poly, qehal()), dpost (A))-admissible if in any run of the experiments Real 4(17)
and ldeal 4 s(1%), A; is allowed to make an unbounded (but polynomial) number of pre-challenge key
queries, Ay makes at most gpost(A) key generation queries, and Ay outputs at most genal(A) challenge
messages. We can similarly define admissible adversaries where the number of challenge messages/post
challenge key queries are unbounded.

On the other hand, a simulator S = (81,82, S83,84) is admissible if whenever Ay makes a key
query f, S4 queries Keyldeal on f only.

Definition 3.3 (Simulation security) A functional encryption scheme FE = (Setup, KeyGen, Encrypt, Decrypt)
15 (gpre(A), Gehal (X)), @post (A))-Sim-secure for some polynomials gpre, qehal, and Gpost, if there exists an ad-

missible PPT simulator S = (S1, Sa, S3,S4) such that for all (qore(A), gehal(N), Gpost (X)) -admissible PPT
adversaries A = (A1, As),

{Real’f (M) }ren ~ {Ideal’y s(A) Fren.

We also consider adversaries that make an unbounded (but polynomial) number of pre-challenge
key queries/challenge messages/post-challenge key queries.

11



Experiment Real’f()\): Experiment IdeaIEES()\):

1. (pk, msk) « Setup®(1*) 1. (pk,sty) « Si(1%)
2. (x,5ta) = ALFETROE () 2. (x,st4) 4= ALICNROIE ) (ol
3. ct; + Encrypt® (mpk, z;) for i € [q.] 3. ({ctitissts) <« Ss(sta, {fj(zi)}i;) wherg
4. o+ AgeyGen_RoZ(mSk"")({cti}ie[qc], sta) fi,-.., fq are key queries made by A;
5. Output « 4. o+ AgeyGen_Ro?(St3"")({cti}ie[qc],stA)
5. Output «

In the Real-world experiment, the setup algorithm, using the random oracle O, outputs
public key pk and master secret key msk. The adversary A; gets pk and has oracle access to
KeyGen-RO;. This oracle responds to random oracle queries and key generation queries. It
has msk hardwired and takes two inputs inp; and inp,, where inp; specifies whether the query
is a key generation query or a random oracle query. In the former case, KeyGen-RO; outputs
KeyGenO(msk,ian), while in the latter case, it outputs O(inpy). After polynomially many
oracle queries to KeyGen-RO1, A; outputs a vector x of ciphertext queries and a state st4. The
adversary A, gets encryptions of all elements in x (note that x; denotes the i** entry in x) and
the state st4. It also has oracle access to KeyGen-ROs, which is identical to KeyGen-RO;. After
making polynomially many oracle queries, A outputs a.

In the Ideal-world experiment, the simulator Sy first computes the public key pk, and simulator
state st;. The adversary A; gets pk and oracle access to KeyGen-ROq, which is simulator Sy in
the ideal-world. The simulator S, is stateful. It maintains an internal state sty, gets Sp’s state
st; and takes tuple inputs (inpy,inpsy), which indicate whether it is a key generation query or a
random oracle query. After polynomially many queries, adversary A; outputs x and state st_4.
The simulator S3 must give out encryptions of x, using Sys final state sty and {f;(2:) }ic[q.].i€[a1]-
The simulator outputs the ciphertexts as well as state st3. Adversary Ay gets these ciphertexts,
state st4 and oracle access to KeyGen-RO,. In the ideal world, this oracle is S:feyldeal(')(st37 o).
Here, Keyldeal takes as input a function f and outputs (f(z1),..., f(z.)). Also, simulator Sy is
stateful and has an internal state st4. Finally, after polynomially many queries, A outputs a.

Figure 1: Real and ideal experiments.

12



Definition 3.4 (Simulation security, unbounded queries) A functional encryption scheme FE =
(Setup, KeyGen, Encrypt, Decrypt) is (poly, qchal(A), dpost (A))-Sim-secure for some polynomials genal, and

Qpost, if there exists an admissible PPT simulator S = (S1,S2, S, S4) such that for all (poly, dehat(A), dpost (X)) -
admissible PPT adversaries A = (A1, As),

{Real’f (M) }ren ~ {Ideal’y s(A) Fren.
We can similarly define simulation security when gehal and gpost are unbounded.

Note that in the real world an adversary has explicit access to the random oracle. In the ideal
world, both the key generation and random oracles are simulated by S throughout the experiment.

Discussion on previous definitions of Sim-secure FE There are a number of definitions of
simulation secure functional encryption [BSW11) [O’N10bl, BO13, [AGVW13]. While these definitions
are similar in spirit, there are minor differences. For instance, in the security game of [BSWII]
AGVW13|, the adversary makes pre-challenge key queries, followed by a challenge phase (where it
queries for ciphertexts), followed by a post-challenge key query phase. The definition of [BO13] is
more general as it allows arbitrary interleaving of encryption and key-generation queries. We use the
AGVW definition [AGVW13] in this work, although we believe our impossibility result can also be
extended to work for the definitions in [BO13].

4 Hardness of Approximate Compression

In this section, we will first define the notion of approximate compression, and then show that there
are certain circuit families which are hard to approximately compress. This section closely follows
the work of Agrawal et al. [AGVWT3|, who defined the notion of (exact) compressibility of circuit
evaluations, and showed that there exist certain circuit families that are (exact) incompressible.

Definition 4.1 Let ¢, t be polynomials and € a non-negligible function. A class of circuits C = {Cx}
with domain D = {Dx}x and range R = {Rx}x is said to be ({,t,€)-approximately compressible if
there exists a family of compression circuits Cmp = {Cmp,}x, a family of decompression circuits
DeCmp = {DeCmp,}a, a polynomial poly, and a non-negligible function n, such that for all large
enough A the following properties hold:

e The circuits Cmp, and DeCmp, have size bounded by poly(\).

e (compression) For all input s € Dy and circuits C1,Cs, ..., Cyn) € Cx,
[cmpy ({C3 Cils)hiepony )| < HOV-

e (approzimate decompression) If s is chosen at random from Dy, C1,Ca,...,Cy) are chosen
uniformly and independently from Cy, then

Pr {HD (DeCmp)\ <{Ci}ie[£(>\)] ,Cmp, ({Ci, Ci(s)}ie[e(A)])) (Ci(s),..., Cg(A)(S)))
< et = )

We will now show that weak PRFs can be used to construct a class of circuits that are not
approximate compressible. We will then use the more general notion of approximate incompressibility,
rather than the specific case of weak PRFs, in proving our impossibility results. For simplicity of
presentation, in the lemma statement below, we use specific constants which will be sufficient for our
main result. However, the lemma can be easily extended to work for general ¢, t and . We assume
that the weak PRF outputs a single bit.

13



Lemma 4.1 Let wPRF = {wPRF,}, be a family of weak pseudorandom functions (for many points),
where wPRFy : {0, 13" x {0,1}™N) — {0,1}. Consider the family of circuits C = {Cx}x, where
Cx = {WPRFA (-, 2)} e (o,1ymn - Let t = t(A) be any polynomial such that t(A) = A for all A € N. Then
C is not (16t,t,1/8) approzimate compressible.

Proof: Suppose, on the contrary, that the circuit family C is (16t,¢,1/8) approximate compressible.
We will use the compression circuits {Cmp, }» and decompression circuits {DeCmp,}, to break the
weak PRF security of wPRF. Fix any large enough security parameter A. For simplicity of presentation,
we will drop the dependence on A when it is clear from the context.

Suppose we are given 16t tuples {z;, yi}ie[lﬁt] that are either generated through wPRF or chosen
uniformly at random. Define 16¢ circuits C1,...,Cig, where C;(-) = wPRF(:,z;). Compute the

compressed string u = Cmp ({Chyi}ie[wt}) and z = DeCmp ({Oi}ie[wt] ,u). IfHD (2, (y1 .- y16t)) <

1/8 (16t), output ‘pseudorandom’, else output ‘truly random’.

Below we show that if the y; values are generated through wPRF, i.e., when they are pseudorandom,
then ‘pseudorandom’ is output with a non-negligible probability (Claim . However, if the y; values
are truly random, then the same output is produced with negligible probability (Claim . Thus we
are able to break the security of wPRF, leading to a contradiction.

Claim 1 Pr[Output is ‘pseudorandom’ | {y;} are pseudorandom] > n for some non-negligible func-
tion .

Proof: For a randomly chosen seed s <— {0,1}", suppose y; = wPRF (s, z;) = C;(s) for all i € [16¢].
Due to the approximate decompression property, there exists a non-negligible function 7 such that

Pr [HD (Decmp ({ci}iglﬁt _Cmp ({Ci, ci(s)}ie[mt])) (Ci(s), ..., C’mt(s))) <1/8 (16t)] >

where the probability is over the choice of s and x1, ..., ;. Thus ‘pseudorandom’ is output with at
least n probability. [ |

Claim 2 Pr[Output is ‘pseudorandom’| {y;} are truly random] < negl.
Proof: Fix any z1,x2,...,x16, which also fixes the circuits C1, Cs, ..., Cig:. Now,

Pr[Output is ‘pseudorandom’| {y;} are truly random]
<Pr[3 z s.t. HD (DeCmp ({Ci}, 2), (y1,---,Y16t)) < 1/8(16t)]

< Z Pr[HD (DeCmp ({Ci}, 2), (y1,-- - y1et)) < 1/8(16¢)]

z€{0,1}¢
2t
16t 16 - e
< Lo—ldt o—14t —2t _ -t
< E <2t> 2 < E <2> 2 < § 2 2
z€{0,1}* z€{0,1}t z€{0,1}¢

Here, the second inequality is a simple union bound. The third inequality follows from the fact
that the y; values are chosen independent of the C;s and the string z. [ |

5 Impossibility of Simulation Secure FE

In this section we show that there does not exist a functional encryption scheme for the family of all
polynomial-sized circuits that is (poly, 1,0)-Sim secure in the random oracle model. Specifically, we
show that a simulation secure FE scheme cannot be constructed for any family of circuits that is not
approximately compressible (Definition . We exhibit an adversary A = (A, .As) such that for any
efficient simulator S, the output of the real experiment, ReaIZE(l)‘), is distinguishable from the output
of the ideal experiment, IdeaI;E’S(l’\) (Definition .

14



High level description of adversary. Let C be an approximate incompressible circuit family. The
adversary A; first asks for secret keys for a large number of randomly chosen circuits from C, and
receives {ski,...,sky} in return. Next, it generates encryptions of many random messages. It then
decrypts each of these ciphertexts using the g secret keys. The purpose of these encryptions followed
by the decryptions is to capture the random oracle queries that would have occurred while computing
the ¢ secret keys, which may also be required when these keys are used again for decryption later.
Let Skeys denote the set of random oracle queries that occur during these decryptions.

A; chooses a random message x*, and outputs it as the challenge (along with a state that consists
of its view so far). A, then receives a ciphertext ct*. It decrypts ct* using sk, ..., sk, for some small
t. Let S+ denote the set of random oracle queries during these ¢ decryptions. The purpose of these ¢
decryptions is to capture the random oracle queries that would have occurred during the encryption
of z*, which may also be required when ct* is decrypted again in the next step.

Finally, Ay decrypts ct* using the remaining g — t secret keys. An important thing to note here
is that Ay turns off the random oracle, and instead uses the queries that it has already recorded.
If a new random oracle query is required, then it uses a randomly chosen string. It compares the
decrypted values to the correct function evaluations, and outputs 1 if most decryptions are correct.

First, we show that in the real world, Ay outputs 1 with probability at least 3/4. Let us focus on
one of the ¢ — ¢ decryptions, using a secret key sk;. At a high level, this decryption can go wrong if
a random oracle query is made on z, and z ¢ Skeys U Sce+, but z was used during the computation of
either sk; or ct*. We show that this event happens with low probability.

To complete the argument, we show that in the ideal world, A outputs 1 with probability around
1/2. In this world, the simulator receives ¢ circuit evaluations on z*, and must compress most of this
information in the short challenge ciphertext and the random oracle queries made during the ¢ post-
challenge decryption operations. By choosing parameters carefully and appealing to the (approximate)
incompressibility of the circuit family, we show that this is not possible.

5.1 Formal Description of Adversary

Let C = {C»}, be a family of circuits such that each circuit in Cy takes an n(\)-bit input and is
not (16¢,t,1/8) approximately compressible for all polynomials ¢ such that ¢(A) > A. Let FE be a
functional encryption scheme for this family in the random oracle model. We now formally define the

adversary A = (A1, As).

Adversary A;. Let nkey and nenc be polynomials in A whose values will be fixed later. Let I' be a
list of (query, response) pairs that is empty at the beginning. A; has four phases: setup, key query,
random oracle query collection, and an output phase.

1. Setup. A; receives the public key pk.

2. Key query. For i € [nyey], it picks a circuit C; at random from Cy, requests a secret key for C;,
and obtains sk; in return.

3. RO query collection 1. A; picks nenc inputs x1,x2,..., Ty, £ {0,1}"N . For j € [nend], it
runs Encrypto(pk,xj) to obtain a ciphertext ct;. The RO queries made during the encryption
process are forwarded to the random oracle.

Now each of the ciphertexts cty,...,cty, are decrypted with key sk; for every i € [ney]. If an
oracle query (3 is made by the Decrypt algorithm, .4; queries the random oracle with the same.
The response, say 7, is given to the algorithm, and (8,7) is added to I' (if it is not already
present).

4. Output. A; picks an input z* & {0,1}*M). Tt sets the state st to consist of pk, Cy, ..., Cripeys
ski,...,SKn,,, %, and I'. Then it outputs (z*,st).

15



Adversary Aj. Let neval and ngest be polynomials in A s.t. Neval(A) + Ngest(A) = niey(A) for all
A. (Their values will be fixed later.) A, gets ct* and st as input, and parses the latter to get pk,
C1,...,Cny,, ski,...,sky,,, %, and T'. A has three phases: random oracle query collection, test,
and an output phase.

1. RO query collection 2. For every i € [neval], ct* is decrypted with sk;. If an RO query f is
made by the Decrypt algorithm, A5 queries the random oracle with the same. The response, say
7, is given to the algorithm, and (8,~) is added to T" (if it is not already present).

2. Test. In this phase, ct* is decrypted with rest of the keys but without invoking the random
oracle. In order to do so, a new list A is initialized first, then the following steps are executed
for every neval + 1 < 7 < Neyal + Ntest- The decryption algorithm is run with inputs pk, sk;, and
ct*. When it makes an RO query 3, Ay checks whether there is an entry of the form (8,7) in T
or A (in that order) or not. If yes, then ~ is given to Decrypt and it continues to run. Otherwise,
a random bit-string +" of length m(A) (the output length of the random oracle) is generated,
(8,7') is added to A, and + is given to Decrypt. This process of providing responses to the
RO queries of Decrypt continues till it terminates. Let out; denote the output of Decrypt, which
could be L.

3. Output. For every neval + 1 < @ < neyal + Niest, check if out; is equal to C;(z*) (where 2* and
C; are part of the state transferred to As3). Let num be the number of keys for which this check
succeeds. Output 1 if num/nes > 7/8, else output 0.

To complete the description of A, we need to define the polynomials nenc, Teval and nNiesy (recall
that 7key = Teval + Ttest)- L€t GSetups GEncs GKeyGen and gpec be upper-bounds on the number of RO
queries made by Setup, Encrypt, KeyGen and Decrypt, respectively, as a function of A. Also, let ¢ be
an upper-bound on the length of ciphertexts generated by Encrypt. Then set

® Nenc = 4N\ - Tkey * GKeyGen)
® Neval = 32\ (QSetup + qEnc)7

® Nitest = 16(th + Neval dDec * m)

5.2 Real World Analysis

First, we will show that the adversary A = (A;,.A3) described above outputs 1 with probability at
least 3/4 in the real world experiment, as long as the scheme FE is correct. To begin with, we classify
the random oracle queries made during a run of A into different sets as follows:

e S-RO¢; for i € [nyey]: random oracle queries made by KeyGen while generating secret key for C;.
® S5-ROyeys = Uie[nkey] S-ROg;: all random oracle queries during the key query phase of A;.

e S5-RO,«: random oracle queries made while encrypting x* using pk.

e S-ROpgc.; for i € [nyest]: random oracle queries made during the decryption of ct* using sk, +-

e S-ROr: random oracle queries recorded during ‘RO Collection Phase b for b € {1,2}. Let
S-ROr = S-ROr.; | S-ROr...

® 5-ROsetyp: random oracle queries made during setup phase.

Lemma 5.1 For any functional encryption scheme FE for the circuit family C = {C\},, the adversary
A = (A1, Az) described in Section outputs 1 in Real (1)) with probability at least 3/4 — negl(\).

16



Proof: We will use the correctness property of FE to prove this claim. We assume statistical
correctness, i.e., for all random oracles O : {0, 1}**) — {0,1}"™) z € {0,1}"N), C € Cy

(pk, msk) < Setup®(1*)
Pr | Decrypt® (pk,sk,ct) = C(x) : sk < KeyGen® (msk,C) | >1 — negl()\)
ct + Encrypt? (pk, x)

In particular, we do not assume the decryption to be deterministic.

Let Bad denote the event that the adversary outputs 0 at the end of the real world experiment.
This event happens if at least 1/8th fraction of the nest decryptions fail in the test phase. If I-Dec;
is an indicator variable that takes the value 1 in case the ith decryption fails, then Bad happens iff
Zie[ntest] I-Dec; > 1/8 - nyest. To analyze the probability of this event, we need to consider the random
oracle queries required for decryption in the test phase. In this phase, Ay does not query the random
oracle, but instead uses the list I". If some query S is not present in I', then A5 tries to find it in A.
If 5 is not found in A either, then a random value is chosen and recorded in A against (.

Now there are two ways in which the i* decryption can fail. The first is if there is some entry (3,)
in A such that (8 is also among the RO queries hidden from the adversary (and its response is not
v), i.e., the queries made during the setup phase, key query phase or challenge ciphertext generation.
The second case is when the RO query responses are consistent, but the decryption is incorrect due to
‘bad’ decryption coins. The second failure happens with negligible probability (due to correctness of
the FE scheme). In other words, the ith decryption succeeds with overwhelming probability if all the
needed hidden RO responses are captured in either of the two RO collection phases. This is formalized
in the following observation.

Observation 5.1 Let Bad-Dec be the following event:

di € [ntest] s.t.
(S-ROpec-i () (S-ROsetup [JS-ROkeys |J S-RO4+) € S-ROr)
A

4s decryption of ct* using sky,,+i does not output Cp,,,+i(z*)

There exists a negligible function negl(-) s.t. Pr[Bad-Dec|] < negl(\) where the probability is over
the random coins used by setup, key generation, encryption, decryption and the adversary’s choice of
mputs.

Proof: This observation follows from the statistical correctness of the scheme. Fix any index
i € [Neval]. Since (S-ROpec-i [ (S-ROsetup [JS-ROkeys |JS-RO,+) € S-ROr), the oracle queries are
consistent. Hence, we can use the correctness guarantee of the scheme to bound the probability of
Bad-Dec. |

Let I-Dec-1; and |-Dec-2; be indicator variables that are 1 iff S-ROpec.i (] (S-ROgz+ JS-ROsetup) <
S-ROr and S-ROpec-i (] S-ROkeys € S-ROr, respectively. Then, I-Dec; = 1 iff either |I-Dec-1; = 1 or
[-Dec-2; = 1 (or both). Let Bad-1 and Bad-2 be events that happen iff Eie[ntest] [-Dec-1; > 1/16 - nyest
and Zie[ntest] [-Dec-2; > 1/16 - nyest, respectively. It is easy to see that

Pr [Bad] < Pr [Bad-1] + Pr [Bad-2] + Pr [Bad-Dec]

Below we show that Pr[Bad-1] < negl(\) and Pr[Bad-2] < 1/4. Thus the lemma follows. [ |

Claim 3 Pr[Bad-1] < negl()).

Proof: Fix any random oracle O, the randomness used in Setupo(l)‘), challenge message x*, and
the randomness used in Encrypto(pk,x*). This also fixes the sets S-ROsetyp and S-RO,«. Suppose a
circuit C is picked at random from Cy, and a key, sk, is generated for it by running KeyGen® (msk, C).
For z € S-ROsetup U S-RO,-, let p, be the probability that z is an RO query in the decryption of ct*
(the challenge ciphertext) with sk, where the probability is over the choice of C, the randomness used
in KeyGen and the random coins used in decryption.

17



Let X; . be an indicator variable that is 1 if an RO query on z is made during the ith decryption
in post-challenge phase (either in the RO collection 2 or test phase). Note that the keys sk, ..., skp,,
are generated independently by choosing circuits C1, ..., Cp,,, uniformly at random, and the random
coins used in each key generation and decryption are independently chosen. Thus for any z, the
variables X ,,..., Xnkey,z are independent of each other, and Pr[X; , = 1] = p, for every .

We are interested in the probability that Zie[ntest] [-Dec-1; > niest/16, i.e., in at least 1/16th
fraction of the decryptions in the test phase, an RO query ¢ is made s.t. ¢ was also an RO query in
either set-up or encryption of z*, but it was not captured in either of the collection phases. Thus,
there must exist a z s.t. z ¢ S-ROr (in particular, z ¢ S-ROr.3) but an RO query on z is made in
at least niest/16|Q)| of the decryptions, where @ = S-ROsetyp U S-RO,+. (If Q@ = ¢ then Bad-1 cannot
happen, and we are done.) Therefore,

Pr| Y FDecl; > %t < Y Prl:¢SROr: A Y. Xi.> 17g|65\

i€ [ntest] 2€Q i€ [Tltest]

Based on the value of p,, we can divide the rest of the analysis into two parts. Intuitively, if p, is
large, then the probability that z is not captured during RO collection phase is negligible. And when it
is small, the probability that z causes too many decryptions to fail in the test phase is negligible. Since
@ is polynomial in the security parameter, this will prove that the probability of Bad-1 is negligible
as well. So now,

o If p. > 1/32(Q] then
Pr(z ¢ S-ROr.p] =Pr[X;. =0A... A Xy, = 0]
= [] PriXi.=0]

i€ [neval]

— (1 _ pz)’ﬂeva\ < 677@@/32\@\7

where the second equality follows from the independence of X; .. Recall that we set neya to be
32X (gsetup + GEnc), Where gsetyp and genc are upper-bounds on the number of RO queries made
during Setup and Encrypt, respectively. Thus, e~ "=/32I@Ql is at most e~ *.

o If p. < 1/32|Q| then expected value of Zie[ntm] X . is at most niest/32|Q]. Using Chernoff
bounds we can argue that,

_ 1, mtest | _
We know that ngest > Neval. Thus, e~ 373211 is at most e~ * as well.

H
Claim 4 Pr[Bad-2] < 1/4.
Proof: Fix any random oracle O, the randomness used in Setupo(1>‘)7 the circuits C1,...,Ch,,
chosen in the key query phase, and the randomness used in KeyGenO(msk, C;) for i € [nyey]. This, in
particular, fixes secret keys ski,...,skp,, and the set S-ROycys. Consider the following experiment:

z & {0,110 et Encrypto(pk,x), and decrypt ct using sk; for i € [Neval + 1, nkey]. Let p. be the
probability that at least niest/ 16|Q| of the decryptions make an RO query on z, where Q = 5-ROxeys.

Let Yj . be an indicator variable that is 1 iff an RO query on z is made in at least ntest/ 16\Q| of
the decryptions of ct; with keys sky,,+1,---,Sky,, in the first phase of RO query collection. Note
that the ciphertexts cty, ..., ct,,, are generated independently by choosing z1, ..., zy,, uniformly at
random, and the decryption coins are also chosen independently for each decryption. Thus for any

18



z, the variables Y7 .,..., Y, . are independent of each other, and Pr [YJZ =1] = p, for every j. In
a similar way, we can also define a random variable Y* that indicates whether an RO query on z is
made in at least Tiest/ 16|Q| of the decryptions of ct* with keys sk +1,---,5Kn,, in the test phase.
Y is independent of Y1 ,,..., Y, . and Pr[Y =1] = p,.

In a manner similar to the previous claim, we can argue that

Thkey

Tltest *

Pr | > I-Dec-2; > T < Z Prlz ¢ S-ROr.; AY) = 1]
'Le[ntest] ZGQ

If z ¢ S-ROr_1, then none of the decryptions in the first phase of RO collection make a query on z.

In particular, the variables Y7 .,...,Y,, . are all zero in such a case. Therefore,

Priz¢ S-ROr1 AY) =1 <Pr(V1,=0A...AY,  .=0AY; =1]

—prlyr =1 - [ Priv;. =0
JE[Nenc)

= pu(1= P

Once again we have two cases. If p, < 1/4|Q|, then p.(1 — p.)" is at most 1/4|Q| as well.
Otherwise, (1 — p,)"e < e enc/4Ql < e hecause, recall that, nenc is set to be 4\ - Tkey * QKeyGen)
where gkeyGen is an upper-bound on the number of RO queries made during KeyGen. As a result,
Do P=(1— pz)e is at most 1/4. [ |

5.3 Ideal world analysis

Next, we will show that any for PPT simulator, our adversary A = (A;,.A3) outputs 1 in the ideal
world with negligible probability. Let ¢ be a polynomial in A such that ¢ = let + Teval * gDec - M (SO
that niest = 16t) where, recall that, £ is the maximum length of any ciphertext generated by Encrypt.
Note that gpec - m is the maximum number of bits obtained through the random oracle during any
decryption, neval - ¢pec - M is the maximum number of bits sent to the adversary during the second RO
query collection phase, and ¢t + Teval - gDec - M is the total number of bits the adversary receives after
sending the challenge message.

Lemma 5.2 IfC = {Cy}, is an (16t,t,1/8) approzimately incompressible circuit family, then for any
PPT simulator S, the adversary A = (A1, As) outputs 1 with probability at most negl(X).

Proof: Suppose there exists a simulator S such that our adversary A outputs 1 with a non-negligible
probability n. We will use S to show that C is (16t,¢,1/8) approximately compressible. In particular,
we will use § and A = (A1, A2) to construct Cmp and DeCmp circuits satisfying the three properties
of an approximately compressible circuit family.

Note that Ay picks Cp,+1,- - -5 Cneatneee a0d «* uniformly at random and independent of its
other choices. Let rs and 74 denote the randomness used by the simulator S and adversary A (in
choosing circuits C1,...,Cp,,,, and in RO query collection 1 and test phases), respectively. The
compression circuit takes as input (Cy, ..., Cigt, Y1, -- ., Y16t), has a randomly chosen string for rs
and r 4 hardwired, and works as follows:

e Use S to generate a public key pk. Give pk to Aj;.
Cl, ceey 016t7 where Ci, ceey C!

Teval

e Use S to generate secrets keys ski, ..., sky,, for C, ..., C] |
are sampled using r 4. Give the secret keys to Aj;.

e Run the first phase of RO query collection. When A; makes an RO query in this phase, forward
it to S. Give S’s response back to Aj.

e Provide y1,...,y16¢t to S. It generates a ciphertext ct*.

19



e Run the second phase of RO query collection. Respond to As’s RO queries in the same way as

before. Let z1,...,2, be the responses in order, where z; € {0,1}™.
e Output ct® and zq,..., z,.
The decompression circuit takes Cq, ..., Cig and the compressed string str-cmp as inputs, which

can be parsed as str-cmp = (ct*,{z;}). It also has the random value chosen before for rs and 74
hardwired, and works as follows:

e Use S to generate pk and secret keys sky, ..., sky,,, as before. Give both to A;.

e Run the first phase of RO query collection. Respond to A;’s RO queries in the same way as
before. Let T" be the list of RO queries and responses recorded in this phase.

e Run the second phase of RO query collection, where sk, ..., sk, are used to decrypt ct*. The
RO responses required in this step are available as part of the input (z1,...,2,). They are also
added to I

e Run the test phase with the help of I". Let y} denote the outcome of decrypting ct* with sk, +i
for i € [Nest]-

e Output ¢,...,Yle-

First, note that the size of both compression and decompression circuit is bounded by a polynomial
in A. Next, the output length of the compression circuit is at most ¢ + v - m, but v is no more than
Neval * Dec- LThus the output length is bounded by ¢.

Finally, we need to show that the decompression property works with probability 1. When
Cq,...,C16: are chosen uniformly at random and y1,...,y16: iSs the evaluation of these circuits on
a randomly chosen point, then it is easy to see that the decompression circuit emulates the ideal
world experiment perfectly. We know that Ay outputs 1 if and only if for at least 7/8th of the
decryptions, y, = y;. Hence, if 1 is output with probability n, then the hamming distance of
DeCmp({C;},Cmp({C;},{y:})) and {y;} is at most 1/8 with probability at least 7. [ |

6 Simulation Secure FE for Bounded Collusions

In this section, we will show an FE scheme that is (g1, poly, q2) simulation secure in the random oracle
model, where ¢, g2 are a-priori fixed polynomials. Since both the pre-challenge and post-challenge
queries are bounded, we will simply refer to the total number of key queries. An FE scheme is ¢g-key
poly-ciphertext secure if it is (g1, poly,qz) simulation secure as in Definition for all non-negative
integers ¢1,q2 s.t. q1 + g2 = q. We first show a scheme that can handle 1 key query in Section
Then, in Section we show how to transform a 1-key poly-ciphertext scheme to one that is
g-key poly-ciphertext simulation secure for an a-priori fixed ¢, by first building a scheme for log-depth
circuits and then for all poly-size circuits. This transformation is very similar to the one showed by
Gorbunov et al. [GVWI3], except that they dealt with only one ciphertext.

6.1 Simulation Secure FE for One Key Query

We will now describe our 1-key poly-ciphertext scheme. Recall that in the standard model, it is impos-
sible to have simulation security even for IBE if the adversary is allowed to query for an unbounded
number of ciphertexts, followed by one adaptive key query [BSW1I, [BO13]. Here, we show how the
random oracle can be used to bypass this impossibility result. At a high-level, the construction is
similar to the Sahai-Seyalioglu [SS10] construction of single-key secure FE from PKE.

Let C = {Cx}, be a class of circuits, where each circuit C' € Cy takes an n(\) bit input and produces

an m(\) bit output, and can be represented using ¢(\) bits. For x € {0,1}"M let U be a universal
circuit that takes any C' € Cy as input and outputs C(x). Let U = {Ux}, be a circuit family such that

Uy = {Ué)‘) |z € {0,1}*™M}. Our one-bounded FE scheme One-FE = (Setup, Encrypt, KeyGen, Decrypt)

20



uses a decomposable randomized encoding scheme (RE.Encode, RE.Decode) for & and a public key
encryption scheme PKE = (Setuppig, Encpkr, Decpkr) that can operate on messages of length A. For
simplicity of presentation, we will skip the dependence on A.

e Setup(1*) — (mpk,msk): The setup algorithm chooses 2t PKE public key/secret key pairs

(Pk; 4, Skip) < Setuppp(1*) for i € [t],b € {0,1}. It sets mpk = {pkivb}ie[t],be{o,l} and msk =

{skib}ieqpe(0.1}-

e Enc(mpk,z) — ct: The encryption algorithm first chooses 2¢ random strings r;, «+ {0,1}*
for all 4 € [t], b € {0,1}. Next, it computes a randomized encoding for the universal circuit
U, ie., {wivb}z‘e[t},be{O,l} <+ RE.Encode(1*,U,). Now, let ct;; = Encpke(pk; 4, 7ip) and ctip =

wip B O(ryp) for all i € [t], b € {0,1}. The algorithm outputs ct = {Ctivb’&ivb}ie[t] be(0,1}"

e KeyGen(msk,C') — sk¢ : Let (81,...,0t) be the bit representation of circuit C. The key

generation algorithm outputs {Skiwgi}ie[t] as the secret key for C.

e Dec(mpk,skc,ct): Let sk = {Skiaﬁi}ie[t] and ct = {Cti’b’&i’b}ie[t],be{o,l}'
algorithm first decrypts the relevant randomized encoding components, i.e., for each i € [t],
it computes r; 5, = Decpir(skig,,ctip,) and w; g, = ctig, ® O(r;p). Finally, it outputs
RE.Decode({wig, };cpy)-

The decryption

The correctness of our scheme follows directly from the correctness of the randomized encoding
scheme and the public key encryption scheme.

6.1.1 Simulator

Suppose an adversary outputs M messages in the challenge phase. A simulator S for our scheme can
be defined as follows.

e Setup. S runs Setup(1*) honestly to obtain mpk = {sz‘,b} and msk = {Skixb}ie[t]

i€t],be{0,1} ,0€{0,1}°
It initializes an empty list I' that will be used to record random oracle queries and responses.
For each k € [M], it also picks 2¢ random strings {ris},cy S then sends mpk to the

t],b€{0,1}"
adversary.
e Challenge phase. There are two cases:

— No key query made before. S computes cty;p EncPKE(pki’b,rk,i’b) and chooses ran-
dom strings cty;p, for each k € [M], i € [t], b € {0,1}. The kth ciphertext ctj, is
{Ctkv“”Ctkvivb}ie[t],be{o,l} for k € [M]

— A key query was made before. Suppose C' = (f1,...,0;) was the key query. S receives
evaluations yi,...,yp of C at all challenge messages. Let RE.Sim be the simulator for
the randomized encoding scheme. S computes, for each k € [M], (wg1,...,Wk)
RE.Sim(1*,C,yx). It also computes cty;p < Encpkr(pk; 4, Tk,i,p) and chooses random
strings c~tk,i75, foreach k € [M], i € [t], b € {0,1}. The kth ciphertext cty is {ctk7i7b, c~tk7¢7b}
for k € [M]. Further, S adds (rx.i s,, Ctr.ip, ® wi,;) to I for k € [M], i € [t].

i€[t],be{0,1}

e Random oracle queries. At any time before making the only allowed key query, if the
adversary makes an RO query ¢ that lies in the set {rk»ivb}ke[M],ie[t],be{o,l}’ the simulator outputs
1 and aborts. Otherwise, it checks if ¢ is present in the list I" or not. If it is, then the associated
response is returned to the adversary. Else, a random bit-string ~ of length r is chosen, r is
given to the adversary, and (g,7) is added to I

e Key query. Let C = (B1,..., ;) be the key query. There are two cases:

21



— Adaptive query. In this case, the simulator receives the circuit C' as well as evaluations
(y1,--.,ym) at all challenge messages. S computes, for each k € [M], (Wi 1,...,Wk,t)
RE.Sim(1*,C,yx). It adds (74, Ctr,is, ® wk,) to T for all k € [M],i € [t], and sends
ske = {ski@}ie[t] to the adversary.

— Non-adaptive query. In this case, the simulator only receives the circuit C. It runs the
honest key generation procedure, i.e., it outputs {Ski’ﬁi}ie[t] as the secret key for C.

e Random oracle queries. After making the key query and getting a secret key back, if the
adversary makes an RO query ¢ that lies in the set {7413, }, cIMicl)’ the simulator outputs
1 and aborts. Otherwise, it behaves in the same way as before.

We prove security of One-FE with the help of S in Appendix

6.2 Simulation Secure FE with Bounded Key Queries for NC1

In this section, we will show how to transform a scheme that handles one key query to one that handles
a bounded number of key queries for the class of log-depth circuits. This transformation is identical to
the one in [GVW13]. However, the proof is slightly different because we handle unbounded challenge
ciphertext queries.

Formal Description Let C = {C»}, be a class of circuits, where each circuit C' € Cy takes n(\)
bit inputs, outputs a single bit and can be represented using an n(\) variate polynomial of degree
D()) over a (large enough) field F. Let ¢ denote a bound on the number of secret key queries. Our
FE scheme FE = (Setup, Enc, KeyGen, Dec) uses a 1-key poly-ciphertext simulation secure FE scheme
(Setup,,e, Encrypt,,., KeyGen,, ., Decrypt,,.) as a building block. Our scheme is parameterized by
four polynomials: N, S, v and ¢, whose values depend on D and ¢. Asin GVW, we set t(\) = ©(¢?)\),
N(A) = ©(N2¢%*t) and v(\) = O()) and S(A\) = O(vg?). We will skip the dependence on X when it is
clear from the context.

For any circuit C € Cy and set A C [S], we define a circuit G¢ A which takes n+ S bit inputs and
works as follows:

GC,A(xla"'7xn7y13"'7y5) = C(xla'“;xn)"’_ th
heA

Let O = Oy x ...Op be a hash function, where each O; : {0,1}* — {0,1}™. Each of these hash
functions O; will be modeled as a random oracle in our security proof.

e Setu pO(l’\) — (MPK, MSK): The setup algorithm runs the one-key FE scheme’s setup N times.
Let (mpk;, msk;) < SetupSi (1*). The master public key MPK is set to be {mpk;};cn;, and the
master secret key MSK is {msk; };cn1-

e Enc®(MPK,z) — ct: Let MPK = {mpk;};cin and @ = (21,...,2,). The encryption algorithm
works as follows:

— It chooses n uniformly random polynomials p1, ..., u, of degree t over field F subject to
the constraint that the constant term of p; is ;.

— It chooses S uniformly random polynomials (1, . . ., (s of degree Dt over field F and constant
term 0.

— It computes N ciphertexts using the Encrypt, . algorithm. For ¢ € [N], it computes ct; «
Encryptone(mpki7 (:ul(z)’ s ,ILL"(Z), G (Z)a RS CS(Z)))

The encryption algorithm outputs (cty, ..., cty) as the final ciphertext.

e KeyGen?(MSK, C): Let MSK = {mski};c(n)- The key generation algorithm works as follows:

22



— It chooses a uniformly random set I' C [N] of size Dt + 1.
— It chooses a uniformly random set A C [S] of size v.

— It uses the KeyGen,,, algorithm to generate Dt + 1 secret keys for the function G a. For
O;

i €T, it computes sk; < KeyGeng i, (msk;, Gc.a).

one

The key generation algorithm outputs (I', A, {sk;};.-) as the secret key for C.

o Dec?(sk,ct): Let sk = (T, A, {sk;}
as follows:

;er) and ct = (cty, ..., cty). The decryption algorithm works

— For cach i € T, let o = Decrypt®: (ski, ct;).

one

— It computes a polynomial 7 of degree Dt over field F such that for all i € T', n(i) = «.

The decryption algorithm outputs 7(0"+) as the final decryption.

Correctness The correctness proof is identical to the one in [GVW13]. Let u1, ..., fin, C1, - - ., s be
the polynomials chosen during encryption, and let I'; A be the sets chosen during key generation. From
the correctness of the one-key FE scheme, it follows that the decryption algorithm computes «; =
C(pa (i), pun(@))+2 2 e ¢ (@) for all i € I'. Now, since the polynomial n = C(p1,. .-, ftn) + 3 er G
has degree Dt and |I'| = Dt + 1, the decryption algorithm can compute the polynomial 7 using the
set {a;};cn- Finally, note that n(0"+5) = C(11(0), . .., 1, (0)) + 22 G0)=C(a1,...,25).

6.2.1 Simulation Security

We will first describe our simulator Sim. Let Simg,e be the simulator for the one-key FE scheme.
Our simulator will perform IV parallel executions of Simgpe. Let {Siménc}i €N denote the N parallel
executions. Let ¢; denote the number of pre-challenge secret key queries, g the number of post-
challenge secret key queries (¢ = g1 + ¢2) and M the number of challenge messages. In the remaining
section, the variable k € [M] will be used for indexing the ciphertexts, j € [¢] will be used to index the

secret key query, and 7 € [N] will be used to index the components of public key/secret key /ciphertext.

e Setup

— The simulator first chooses, for each j < ¢, uniformly random sets I'; C [N] of size Dt + 1
and A; C [S] of size v. Let Z = J,;, (I'; N Tj).

— For each i € Z, the simulator honestly chooses the master public key/secret key. For each
i € T, it chooses (mpk;, msk;) < Setup,,.(1*).
For all i ¢ Z, the simulator runs Sim’ _ to generate the i*" public key. Let mpk, «
Sim’ .(1*) for i € [N]\ Z. The simulator sets MPK = {mpk;};c;ny and sends MPK to the

one
adversary.

e Pre-Challenge Key Generation Queries Let ¢; denote the number of pre-challenge key
queries. For the j" key query Cj, the simulator does the following:

— For each ¢ € I';(\Z, the simulator generates the secret keys honestly. It sets sk;; <
KeyGenOi (msk;, Gc; A, )-

one

— For each i € T'; \ Z, the simulator computes sk; ; < Sim/, (Geya,)-

one

The simulator sends (I'j, Aj, {sk;;} as the j'" secret key and sends it to the adversary.

e Challenge Ciphertexts The adversary queries for M ciphertexts. Let 2, ...,z denote the
M messages queried by the adversary. For each j € [¢1], k € [M], the simulator receives C;(z).
It must output M ciphertexts ct!,... ct™, and each of these ciphertexts ct® consists of N
components ct’f, R ct’f\,.

23



— Cliphertext components honestly generated: For each k € [M], i € Z, the simulator chooses

uniformly random z§ ., ..., 2% .. 2k ... 2% and computes honest encryptions. It sets ct¥
k k 1k 1k
< Encrypt, . (mpk;, (zl’i, Y RTI ( TRE zSZ))

— Ciphertext components generated by pre-challenge query simulators: Next, the simulator
simulates the ciphertext components for each k € [M],i € (Uje[ql} I‘j) \ Z. In order to
do so, the simulator uses the relevant Simy. execution that have been used for generating
secret keys in the pre-challenge phase. For each j < ¢,

* It chooses uniformly random polynomials v 1, ..., %; » of degree Dt subject to the re-
strictions that v x(0"*5) = C;(z*) and for all i € T; I, ¢ k(i) = Cj(2f,,..., 2k )+
k
ZheAj Z;”
* For all i € T;, it computes (ct}, ..., ctM) « Simfme({wj,k(i)}k).

— Cliphertext components generated by remaining (post-challenge query) simulators: Finally,
the simulator simulates ciphertext components for each k € [M], i ¢ (U;¢(,, Iy UZ). For

each i ¢ (Uje[ql] Fj) UZ, it computes (ct,...,ctM) « Sim’ ().

The simulator sends (ct' = (ct,...,cty),...,ct™ = (ct}’, ... ctdl)) to the adversary.

e Post Challenge Key Generation Queries Let go denote the number of post challenge key
queries. For the j'" query Cj, the simulator also receives circuit evaluations {C;(z*)} ke At

all inputs queried during the challenge ciphertext phase.

It chooses uniformly random polynomials 9, 1, ...,%; s of degree Dt subject to the restrictions
that ¥; x(0"+9) = C;(2*) and for all i € T'; N Z, ¥ 1 (i) = C; (¥, ..., 2F) + ZhEAj Zk.

— For each ¢ € T';(\Z, the simulator generates the secret keys honestly. It sets sk;; <
KeyGen?: (msk;, Goy,a,)-

one

— For each i € T'; \ Z, the simulator uses Simf) It computes the secret key component

ki Simbne (G, a, {5a(), - 0500, ]
The secret key sk; = (I‘j, A, {Skjvi}ierj) is sent to the adversary.

e Random Oracle Queries For each random oracle query r, the simulator forwards it to each
one-query simulator Sim! ., and receives responses yi,...,yn. It forwards these responses to
the adversary.

We prove security of our scheme for NC1 in Appendix [A22]

7 Bootstrapping from NC1 to Poly

In this section, we show how to use the FE scheme FEnc; we constructed earlier for NC1 circuits to
build an FE scheme that can issue keys for any polynomial-depth circuit. We use the same high-level
idea as that of GVW12: in order to generate a secret key for a circuit C', use the FEyc; scheme to get
a key for a constant-depth randomized encoding of C' that derives fresh randomness from a subset of
random values encrypted with the input. _

Let C = {Cx} be a family of polynomial size circuits. If C represents a randomized encoding of a
circuit C' € C,, then define a circuit G a such that

Goala;r,...,rs) = Cla; Bieari), (1)

"For these indices i, the simulator has been queried for a pre-challenge secret key, and it receives the function
evaluations in the ciphertext generation phase.

8For these indices i, the simulator has not yet received a secret key query. As a result, it does not receive any
additional input for generating the ciphertext.

9The simulator receives both the circuit ch’ A; as well as M evaluations.

24



i.e., a subset of values r1,...,7s based on A is used to compute the randomness for evaluating the
encoding C. From the work of Applebaum, Ishai and Kushilevitz [AIK06], we know that any uniform
family of polynomial-size circuits admits a constant-degree (perfectly-correct) randomized encoding,
assuming the existence of a minimal PRG, one that stretches its seed by just one bit, in uniform
@L/poly (a subclass of NC1). Thus G¢, a is computable by a constant-degree polynomial, and we can
use our FEnci FE scheme to generate a secret key for it.

Our FE scheme FE,, is parameterized by positive integers v and s, just like GVW12. Let FEnc;
be a (q1, poly, q2) simulation-secure FE scheme for NC1. The four algorithms for FE,qy are as follows:

. Setupo(lA) — (MPK,MSK): Set MPK and MSK to be the master public and private key,
respectively, obtained from FENCl.SetupO(l/\).

° EncryptO(MPK7 x) — ct,: Pick random numbers 1,79, ...,75 and output
FENCl.Encrypto(l\/IPK7 (2,711,729, ...,Ts))
as the ciphertext.
e KeyGen®(MSK, C') — ske: Pick a v-sized subset A of [s] uniformly at random. Output
FEnci-KeyGen® (MSK, G a)
as the key, where G¢ a is defined in .

° DecryptO(MPK,skc,ctw): First run FENCl.DecryptO(MPK,skc,ctw) to get 5(:5, @ieari). Then
run the decoder of randomized encoding to get C(x).

The (perfect) correctness of FEpq, follows from the (perfect) correctness of FEnci and that of ran-
domized encoding.
In the rest of the section, we prove the following theorem:

Theorem 7.1 (FE for P/poly) If FEnci is a (q1, poly,qz)-simulation secure FE scheme for NC1,
then FEpqly is a (q1, poly, q2)-simulation secure FE scheme for P /poly assuming the existence of pseudo-
random generators in GL/poly.

7.1 Simulator

Suppose Simpcs is a simulator for the FEyc; scheme. For any adversary A who makes at most ¢ key
queries overall, we can construct a simulator S that exploits Simyc; as follows. (We will suppress A
below to make the presentation simpler.)

e Setup. Run Simyc; to get FEnci.MPK and FEnci.MSK. Pick v-sized subsets Aq,..., A, of [s]
uniformly at random such that for all j € [¢], A; has a unique number a; that is not present in
any other subset. Give FEnci.MPK to A.

e Pre-challenge key queries. When S receives the jth key query for a circuit Cj, it generates
a key skg; by running Simnci(Go; a,) (using A picked earlier as the random subset). Let ¢
be the total number of queries made in this phase.

e Challenge ciphertexts. Suppose A outputs x1, ..., 2y as the challenge messages. Then S gets
Cj(xy) for all j € [¢1] and k € [M]. It invokes Simncy on inputs {RE.Sim(C}(zx))} to
get cty,...,ctyr, which is passed onto A.

j€la1]ke[M]
e Post-challenge key queries. When A makes a query C;, S gets C; along with C;(zy) for
k € [M]. It invokes Simycy on inputs G, A, and {RE.Sim(Cj(gck))}ke[M] to get a key skg;,

which is passed onto A.

7.2 Sequence of Hybrids
In order to prove Theorem [7.1} we move from the real to ideal world through the following two hybrids.

25



Hybrid 1. We switch from the real experiment to using the simulator of FEyci, but at the same
time, unlike the ideal world experiment, challenge messages are directly used. Formally,

e Setup. Same as the set-up phase of S.

e Pre-challenge key queries. Same as the corresponding phase of S.

e Challenge ciphertexts. Suppose A outputs x1,...,x)s as the challenge messages. Then pick
Tki,Tk2,---,Tks at random for every k € [M] and invoke Simyc; on inputs {ch,AJ. (Th; TEs - - - ,Tk,s)}
to get cty,...,ctys.

e Post-challenge key queries. When A makes a query Cj, invoke Simyc; on inputs G¢; A, and
{ch’A] (kTR 1, - ’Tk’s)}ke[M] to get a key skg;.

Hybrid 2. Hyb, is exactly the same as Hyb; except that in order to compute G¢; A, on an input
for any j, k, a uniformly chosen value 7;  is used instead of ®;ca ;7% (In other words, a randomized
encoding of C; on xy is computed using fresh randomness 7y ;.)

7.3 Analysis

Claim 5 If Simnci is an admissible simulator for (g1, poly,qz2) simulation security of FEnci, then
RealZE'”'y is computationally indistinguishable from Hyb; .

Proof: This claim can be easily verified by observing that Hyb, is identical to the ideal world for
FEnc- |

Claim 6 The output of Hyb, is statistically close to that of Hyb,.

Proof: This follows from the cover-freeness of the sets Aq,...,A,. With high probability over the
choice of these sets, A; \Uie[q] ij Qi is not empty for any j. Thus for every k € [M], ®ica, ks - - -
Diea, Tk, are uniformly distributed. [ |

poly

Claim 7 Hyb, is computationally indistinguishable from IdealiE,S due to the security of randomized
encodings.

Proof: The only difference between Hyb, and the ideal world is that 5j (@k;7r58) is replaced
by RE.Sim(C;(zx)) for every j,k. However, since r; is a uniformly random value, the output of
randomized encoding can be simulated by RE.Sim given just the function evaluation. [ |

8 Another Impossibility for Simulation Secure FE

In this section we show that there does not exist a (0, poly, poly)-Sim secure FE scheme for all
polynomial-sized circuits in the random oracle model. Thus we get a complete picture of what can
and cannot be achieved in the random oracle mode. Once again we rely on circuit families that cannot
be approximately compressed for proving the impossibility result. See Section for an overview of
the result.

Let C = {C\}, be a family of circuits such that each circuit in Cy takes an n(\)-bit input. Let FE
be a functional encryption scheme for this family in the random oracle model. We formally define an

adversary A = (A, As).

Adversary A;. Let ncha be a polynomial in A whose value will be fixed later. A; has just two
phases, setup and output.

1. Setup. A; receives the public key pk.

2. Output. It picks an z} uniformly at random from {0, 1}"™), for i € [nepa]. It sets the state st

*

to comsist of x7,...,x},, , and pk. Then it outputs ((z7,..., ), ),st).

26

je[Q1]7ke[M]



Adversary As. Let ney and nenc be polynomials in A whose values will be fixed later. Let I' be a
list of (query, response) pairs that is empty at the beginning. As gets (ctj, ..., cty ) and st as input,

and parses the latter to get z3,...,z and pk. A, has seven phases: key query (1 and 2), random

7 Nchal ?

oracle query collection (1 and 2), encryption, test, and an output phase.

1. Key query 1. For i € [nkey], Az picks a circuit C; at random from C, requests a secret key for
C;, and obtains sk; in return.

2. RO query collection 1. Each of the ciphertexts ctj,...,ct; = are decrypted with key sk; for
every i € [nyey|. If an oracle query /8 is made by the Decrypt algorithm, A; queries the random
oracle with the same. The response, say -, is given to the algorithm, and (8,~) is added to T’

(if it is not already present).

3. Encryption. Aj picks x1, 2, ..., 2,,, independently and uniformly at random from {0, 1}V,
For j € [nenc], it runs Encrypto(pk, x;j) to obtain a ciphertext ct;. The RO queries made during
the encryption process are forwarded to the random oracle.

4. Key query 2. A requests a secret key for a circuit C,, 41, picked at random from Cy, and
obtains Sknkey+1 in return.

5. RO query collection 2. In this phase, sk, +1 is used to decrypt cty,...,cty,,. If an oracle
query 3 is made in the process, then A5 queries the random oracle with the same. The response,
say 7, is given to the algorithm, and (8, ) is added to T" (if it is not already present).

6. Test. In this phase, ctj,...,ct;,  is decrypted with sk, 1 but without invoking the random
oracle. In order to do so, a new list A is initialized first, then the following steps are executed
for every i € [nchal]. The decryption algorithm is run with inputs pk, sky,, +1, and ct}. When it
makes an RO query 3, Az checks whether there is an entry of the form (5,~) in I or A (in that
order) or not. If yes, then v is given to Decrypt and it continues to run. Otherwise, a random
bit-string 4’ of length m(\) (the output length of the random oracle) is generated, (53,7') is
added to A, and +/ is given to Decrypt. This process of providing responses to the RO queries

of Decrypt continues till it terminates. Let out; denote the output of Decrypt, which could be L.

7. Output. For every i € [nchal], check if out; is equal to Cp,,, 11 () (where z7 is part of the state
transferred to Az). Let num be the number of keys for which this check succeeds. Output 1 if
num/nwest > 7/8, else output 0.

To complete the description of .4, we need to define the polynomials nchal, Tikey and Nenc. Let gsetup,
gEnc and gkeyGen be upper-bounds on the number of RO queries made by Setup, Encrypt and KeyGen,
respectively, as a function of A. Also let {ke, be the maximum length of any key generated by KeyGen.
Then set

® Tchal = 16(£Key ~+ Nenc * GDec m)
® Tlkey = 4\ - Nehal * GEnc,
® Tlenc = 32)\(QSetup + QKeyGen)-

The real and ideal world analysis are in Appendix [B]

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In CRYPTO, 2013.

[ATKO06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private random-
izing polynomials and their applications. Computational Complezity, 15(2):115-162, 2006.

27



[AJ15]

[BFO1]

[BLP17]

[BNPW16]

[BO13]

[BP13]

[BRO3]

[BSW11]

[BV15]

[BWO7]

[CGHO4]

[CJO*13a]

[CJO+13b]

[CKP15]

[GGMS84]

[GKP*13]

[GROT]

Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, 2015.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing.
In CRYPTO, 2001.

Nir Bitansky, Huijia Lin, and Omer Paneth. On removing graded encodings from func-
tional encryption. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, pages 3—29, 2017.

Nir Bitansky, Ryo Nishimaki, Alain Passelegue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II, pages 391-418, 2016.

Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. In CANS, 2013.

Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In STOC, 2013.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM Conference on Computer and Communications Security,
pages 62-73, 1993.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and chal-
lenges. In TCC; 2011.

Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In FOCS, 2015.

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data.
In TCC, 2007.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
J. of the ACM, 51(4):557-594, 2004.

Angelo De Caro, Vincenzo lovino Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional en-
cryption. In CRYPTO, 2013.

Angelo De Caro, Vincenzo Iovino Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional en-
cryption. Cryptology ePrint Archive, Report 2013/364, 2013.

Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random oracles.
In TCC, 2015.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464-479, 1984.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Succinct functional encryption and applications: Reusable garbled circuits
and beyond. In STOC, 2013.

Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Theory of Cryp-
tography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether-
lands, February 21-24, 2007, Proceedings, pages 194-213, 2007.

28



[GVW12]

[GVW13]

[HW15]

[IR89)

1Z15]

[KSWO8S]

[LPST16]

[MMN+16]

[Nie02]

[O’'N10a]

[O’N10b]

[Shad4]
[SS10]

[SW05]

[Yao86]

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, 2012.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In STOC, 2013.

Pavel Hubéacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages
163-172, 2015.

Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44-61, 1989.

Vincenzo lovino and Karol Zebroski. Simulation-based secure functional encryption in
the random oracle model. In LATINCRYPT, 2015.

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In EUROCRYPT, 2008.

Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
with non-trivial efficiency. In Public-Key Cryptography - PKC 2016 - 19th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan,
March 6-9, 2016, Proceedings, Part II, pages 447-462, 2016.

Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and Abhi
Shelat. Lower bounds on assumptions behind indistinguishability obfuscation. In TCC,
2016.

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO, 2002.

Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, 1984.

Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, 2010.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457-473, 2005.

Andrew Yao. How to generate and exchange secrets. In FOCS, pages 162-167, 1986.

29



A Simulation Security Proofs

A.1 Simulation Security of One Query FE scheme

For simplicity, we will only prove the adaptive key query case. The non-adaptive key query proof is
easier to handle.
First we write down the real experiment in detail for our One-FE scheme.

e Setup. Setup(1*) is run to obtain mpk = {pk;,} and msk = {sk; s}

1€[t],b€{0,1} 1€[t],b€{0,1}"

Adversary is given mpk.

e Challenge phase. Let M denote the number of challenge message queries. For each k € [M],
choose 2t random strings {rhtb}ie[t].be{o 1 and compute cty ;p < Encpir(pk; ;, Tkip). Also,
compute {wk1ivb}ie[t] befo1} < RE.Encode(1?, Uy, )- The kth ciphertext cty, is {ctx i p, Wi © O(ctr i)}

for k € [M].

1€[t],be{0,1}

e Key query. When the adversary makes a key query C = (B1,...,0:), respond with skg =
{Ski,ﬁq‘,}ie[t]'

e Random oracle queries. All the random oracle queries (including the ones required during
encryption) are forwarded to O.

To prove security of our one-bounded scheme, we define two intermediate hybrids, Hyb; and
Hyb,. Without loss of generality, assume that any adversary outputs a single bit only. In Hyb,, the
interaction with an adversary is as follows:

e Setup. Setup(1*) is run to obtain mpk = {pkiab}ie[tLbe{O,l} and msk = {Skivb}ie[t],be{o,l}'
Initialize an empty list I' that will be used to record random oracle queries and responses. For

each k € [M], pick 2t random strings {rk’i’b}ie[t] be{o1y- Finally, send mpk to the adversary.

e Challenge phase. Compute cty;p EncPKE(pki’b,rk,iyb) and choose random strings &k,i,ba
for each k € [M], i € [t], b € {0,1}. The kth ciphertext cty, is set to be {Ctk’“”&k’i’b}ie[t],be{o,l}
for k € [M]. Also, compute {wk»ivb}ie[t} bef0,1} RE.Encode(1*,U,,, ) for every k, which will be
used later.

e Key query. When the adversary makes a key query C = (f1,...,0:), respond with skg =
{Skiﬁi}ie[ty

¢ Random oracle queries. If the adversary makes an RO query on ry ; ; for some k € [M],i €
[t],b € {0,1} before the challenge phase, output 0 and abort. If such a query is made after
the challenge phase, then return (&k‘,z‘,b ® wg,ip). For any other query (at any point in the
experiment), return a random value. (The list T is used to ensure that the responses are
consistent.)

It is easy to see that the Real and Hyb, are statistically indistinguishable. In particular, the probability
that Hyb, aborts is negligible because no information about {ry s} is available before the challenge
phase.

Hyb, is exactly the same as Hyb; except the manner in which it responds to RO queries:

e Random oracle queries. If the adversary makes an RO query on ry ; ; for some k, 4, b before
the key phase, or on ry; 1_g, for some k,i afterwards, then output 0 and abort. If a query is
made on 7; g, after the key phase, return c~tk)i”3i ® wy i p,- For any other query (at any point
in the experiment), return a random value.

Fix any adversary A. In Hyb,, let p; be the probability that A queries for 7 ;, (for some k,,b)
after the challenge phase but before the key phase or for ry;1_p, (for some k,7) after the key phase.
If we show that p; is negligible, then it is easy to see that Hyb; and Hyb, are indistinguishable.

Consider a new hybrid Hyb, ; that differs from Hyb, as follows:

30



e Pick k* & [M], i* & [t], b* & {0,1}, and <& {0,1}* at the beginning.

e If the adversary makes an RO query on r before the challenge phase, output 0 and abort. If
such a query is made after the challenge phase, then return (Cty« ;» p @ W= i p+ ).

e If A makes a key query C' = (f1,...,Bt) such that §;+ = b*, then output 0 and abort.

Note that RO queries for ry« ;«;« and r are treated identically. Hyb, ; outputs 1 if and only if A
queries for 74 ;« p« after the challenge phase. One can see that 1 is output with probability at least
p1/2Mt — negl.

Define yet another hybrid, Hyb, ,, which is exactly the same as Hyb, ; except that it outputs 1 if
and only if A queries for 7 after the challenge phase. It is clear that Hyb, , outputs 1 with negligible
probability.

We show that Hyb, ; and Hyb, , are computationally indistinguishable, which implies that p; is
also negligible. We build an adversary B for the IND-CPA game of PKE by using the adversary A as

R

follows. B picks 2t random strings {Tkvi’b}ie[t] pefo,1) for each k € [M] as well as k* & [M], i* & [t],

b* € {0,1}, and r & {0,1}* (just like in Hyb; ; and Hyb, ,). It gets a public key pk from the IND-CPA
challenger, generates (pk; ;,sk; ;) pairs for all (i,b) # (i*,b%), sets pk. ;. = pk, and gives {pk;,} to
A. B initializes an empty list I" to record RO queries and responses.

If A makes an RO query on {ry;,} or r before submitting its challenge messages z1,...,%um,
then output 0 and abort. Otherwise, B sends (7g+ ;= 4+, ) to the IND-CPA challenger, and get ct* in
return. It encrypts z1,..., 2y as in Hyb; ; or Hyb, 5, except that it sets ctg« i« p= = ct™. In response
to an RO query on 75, (c~tk,i7b ® w4 p) is returned. Further, if r is queried, then the response is
(Ctis i b @ Wy i+ p+ ). If A makes a key query C' = (Bi,...,3;) such that B~ = b*, then output 0 and
abort. Else generate a key for C' using {sk;;} for (i,b) # (i*,b*). Finally, output 1 if A queries for
TR+ i+ p+ after the challenge phase.

One can see that if IND-CPA challenger encrypts 74+ ;= 3=, then B’s output is identically distributed
to Hyb, ;, otherwise it is identically distributed to Hyb, 5. Thus, due to the security of PKE, Hyb, ;
is Computatlonally indistinguishable from Hyb, 5, and p; is negligible.

Finally, the only difference between Hyb, and simulator S is that in the former, a randomized
encoding {wy ; 4} is computed for z, in the challenge phase itself, while S computes it through RE.Sim
in the key phase when C'(zy) is made available. But, by the security of randomized encoding, no PPT
adversary can distinguish between the two cases.

A.2 Simulation Security of FE Scheme for NC1
A.2.1 Sequence of Hybrids

In order to prove security, we will first define a sequence of hybrid experiments Hy, ..., H4 such that
Hy corresponds to the Real experiment and Hj corresponds to the Ideal World experiment. Let ¢
denote the number of pre-challenge key queries, M the number of challange ciphertexts and g2 the
number of post-challenge key queries. Let ¢ = g1 + g2 denote the total number of key queries made
by the adversary.

Hybrid Hy This corresponds to the real experiment.
e Setup Phase

1. Choose (mpk;, msk;) + Setup,,.(1*) for i € [N].

2. For each j € [g], choose uniformly random sets I'; C [N] of size Dt+1 and A; C [S] of size
v. Let 7= Uj;éj’ (F] ﬂI‘J/)

Send {mpk;} () to the adversary.

¢ Pre-Challenge Key Query Phase For each key query C;

31



1. For each i € T';, let sk;; < KeyGen,,.(msk;, Go; A )-
Send sk; = (1"]—, A, {Skj»i}ierj) to the adversary.

e Challenge Phase Let z!,..., 2™ denote the challenge messages, where each message z* has

bit representation (x%,...zF).

k

1. For each k € [M], n], choose random polynomials py, , of degree t s.t. p 5, (0) = z}.

[M], h e
2. For each k € [M], h € [S], choose random polynomials (y j, of degree Dt s.t. x.5(0) = 0.

3. For each k € [M], i € [N], compute the ciphertext component ct¥ < Encrypt,,.(mpk;, (1x.1 (), - - -, ptk .0 (), (1 (3

Send {ct’C = (ct’f, e 7ctﬂ“\,) }ke[M] to the adversary.
e Pre-Challenge Key Query Phase For each key query C;

1. For each i € 'y, let sk;; <— KeyGen,,.(msk;, Gc; a;).

Send sk; = (Fj, Ay, {Skjvi}ierj) to the adversary.

¢ Random Oracle Queries Maintain a table 7 containing random oracle queries and their

responses. For each new query z, choose uniformly random strings «; for ¢ € [N] and send
(K1,...,K&N) to the adversary. Add (z,(k1,...,kn)) to T.

Hybrid H; This experiment is identical to the previous one, except that the challenger aborts if
the sets I'; have too many indices in common, or if the sets A; are not cover-free. More formally, the
setup phase is modified as follows.

Setup Phase

1. Choose (mpk;, msk;) < Setup,.(1*) for i € [N].

2. For each j € [q], choose uniformly random sets I'; C [N] of size Dt + 1 and A; C [S] of size v.
Let T =U,; (I';NT;).

3. The adversary wins if either |Z| > ¢ or the sets {A;}, ., are not cover-free.

If {4} e
present in (J; ,; Ay

] is cover-free, for each j € [g], let rep(j) denote the first index in A; that is not

Send {mpk;} |y to the adversary.

Hybrid H,; In this experiment, the challenger modifies its response to the challenge messages. In-
stead of choosing random polynomials fi, 5, it first chooses random field elements z,’fl foralli € Z, and

chooses pig, 5, subject to the restriction that py p(i) = z’,;i for all 4 € Z. Similarly, it chooses random

field elements Z;Lkz and chooses (i j, subject to the restriction that (g (7)) = z;fz

Challenge Phase Let 2!, ..., 2 denote the challenge messages, where each message ¥ has bit
representation (z¥, ... xF).

1. For each k € [M], h € [n], b € [S], i € Z, choose random field elements zf ; - F and 2} ; + F.

2. For each k € [M], h € [n], choose polynomials pj, of degree t s.t. pgn(0) = zf and for all
1 €T, /Lk,h(’i) = Z/]?’

3. For each k € [M], h € [S], choose random polynomials (y j, of degree Dt s.t. (k. 5(0) = 0 and for
alli € Z, Cpp(i) = z;lkz

4. For each k € [M], i € [N], compute the ciphertext component ct¥ < Encrypt,,.(mpk;, (1x.1(3), . . .

Send {ctk = (cth, ... cth to the adversary.

)}ke[M]

32

vﬂk,n(i),é-kyl(ll), e



Hybrid H3 In this experiment, the challenger further modifies the challenge ciphertexts. The mod-
ifications in this step are done to ensure that the some of the ciphertext components can be simulated
using the one-key simulators.

Challenge Phase Let 2!, ..., 2™ denote the challenge messages, where each message z* has bit
representation (z%,...2F).

1. For each k € [M], h € [n], W € [S], i € Z, choose random field elements z ; - F and 2} ; + F.

2. For each j € [q1], k € [M], choose random polynomials 1; ;, of degree Dt subject to the restric-
tions that v, (0) = C;(z*) and for each i € Z, ¢ (i) = Cj(2f ..., 28 ;) + > ohea, 4;‘”1

3. For each k € [M], h € [n], choose polynomials p, of degree t s.t. pxn(0) = xF and for all
i €T, pn(i) = 2 ;.

4. For each k € [M], h € [S]\ {rep(1),...,rep(q1)}, choose random polynomials (j j, of degree Dt
s.t. Ck,n(0) =0 and for all i € Z, (o pn(i) = Z;L’“Z

5. For each k € [M], j € [q1], set Crep() = Vjik — Cj(lk,1s- -+ s Hben) — ZheA]\{,ep(j)} Ck,h-

6. For each k € [M], i € [N], compute the ciphertext component ct¥ < Encrypt,,.(mpk;, (1x,1(i), . . .

Send {ctk = (cth,... cth to the adversary.

)}kG[M]

Hybrid Hs j- ;- for j* € [¢1], i* € T'j« \ZT Next, we define a sequence of hybrids where the pre-
challenge key queries (and the corresponding public keys and ciphertext components) are simulated
by the one-key simulators.

e Setup Phase

1. For each j € [g], choose uniformly random sets I'; C [N] of size Dt+1 and A; C [S] of size
v. Let T = Uj;éj’ (FJ ﬂ].“j/).

2. The adversary wins if either |Z] > ¢ or the sets {A;},_ are not cover-free.
{4} e
present in (J;,; Ajr.

is cover-free, for each j € [g], let rep(j) denote the first index in A; that is not

3. For each j < j*, i € T; \ Z, choose mpk; ¢+ Sim!_.().

one
%

For each i € T'j+ \ Z, ¢ <i*, choose mpk; < Sim{ ().

4. Choose (mpk;, msk;) < Setup,,.(1*) for the remaining indices.

Send {mpk;} () to the adversary.
o Pre-Challenge Key Query Phase For each key query C;
1. For each i € Z, set sk; ; < KeyGen, . (msk;, Go; A, )-
2. If j < j* and i € T; \ Z, let sk;; < Sim},.(Gc; a,)-
Ifj=yj"and i e I';» \Z, i <i* let skj,; < Siméne(chAj). For ¢ > " | let sk;; «
KeyGen,,,.(msk;, Gc; A, ).
If j > j* and i € T';, let sk;; < KeyGen msk;, Gc; A, )-

one (

Send sk; = (Fj, Ay, {sk; i} ) to the adversary.

el
e Challenge Phase Let 2!, ..., 2 denote the challenge messages, where each message x* has
bit representation (z¥,...zF).

33

7,uk,n(7;),<.k71(7;), el



. For each i € |,

. Foreach k € [M], h € [n], b € [S], i € Z, choose random field elements zﬁz + Fand Z;L’? 4

IF and compute the ciphertext component ct? < Encrypt, . (mpk;, (zl ireeey 2E i zi’“l, . z?l))

. For each j € [q1], k € [M], choose random polynomials 1;; of degree Dt subject to

the restrictions that ¢;,(0) = C;(«*) and for each i € T, ;x(i) = Cj(zF;, ..., 25 ,) +
ZheAj Z;LIfz

i T\ T set (ctf, ..o ct}) Sim? o (V.1 (7)).

For each i € Tj- \ Z, i <4*, set (ct},...,ctM) < Sim! (1 x(i)).

For each k € [M], h € [n], choose polynomials i 5, of degree t s.t. 5 (0) = 2% and for all
{ EIa ,U/k,h( ) = Zili

. For each k € [M], h € [S]\ {rep(1),...,rep(q1)}, choose random polynomials ¢ 5 of degree

Dt s.t. Cxn(0) =0 and for all i € Z, G (i) = 2.

6. For each k € [M]v j € [ql}a set Ck,rep(]) 1/13 k= (/Lk 1y:-- 7Nk,n) - ZheAJ\{rep(j)} Ck,h-
7. The remaining ciphertext components are generated honestly.

For the remaining indices k, i, compute the ciphertext component ct¥ < Encrypt,,.(mpk;, (1x.1(7), - . .

Send {ctF = (ctf,... ’Ct?\’)}ke[M] to the adversary.

e Post-Challenge Key Query Phase and Random Oracle Queries Same as in previous
game.

Hybrids Hs ;- ;» for j € {1 +1,...,¢2},i € I'j» Next, we define a sequence of hybrids where the
post challenge queries are handled by the simulator.

e Setup Phase

1.

For each j € [q], choose uniformly random sets I'; C [N] of size Dt +1 and A; C [S] of size
V. Let I = Uj;éj/ (F] ﬂI‘jz).

- The adversary wins if either [Z| >t or the sets {A;}, are not cover-free.

If {A; }]G[q
present in (J;/; Ajr.

is cover-free, for each j € [q], let rep(j) denote the first index in A; that is not

. For each j < j*, i € I'; \ Z, choose mpk; < Sim’ ().

For each i € T« \ Z, i < i*, choose mpk; < Sim’__ ().

For the remaining indices, choose the public/secret keys honestly. Choose (mpk;, msk;) <
Setup,,.(1*) for the remaining i.

Send {mpk;},c(y; to the adversary.

e Pre-Challenge Key Query Phase Same as in previous game.

e Challenge Phase Let z',..., 2 denote the challenge messages, where each message = has
bit representation (z%,...zF).

1. Foreach k € [M], h € [n], b € [S], i € Z, choose random field elements zJ! ; < F and z}}; ; <
F and compute the ciphertext component cti»c + Encrypt,,.(mpk;, (Z1 P szﬂ-, zi’fi, .. zé“z))

2. For each j € [gq1], k € [M], choose random polynomials t;; of degree Dt subject to
the restrictions that ;;(0) = C;(z¥) and for each i € Z, ;x(i) = Cj(zf ..., 28 ;) +
ZheAj Z;Lkz

3. For each i € J;,, T\ Z, set (ct},...,ctM) < Sim{, (1;4(i)).

4. For each i € |J T\ Z, set (ct},...,ctM) « Sim! ().

Q<j<gr I AT EEE ATttt
For each i € T'j- \ Z, i <i*, set (ct},..., tM) « Sim?_.0).

s Hen (1), Cr



5. For each k € [M], h € [n], choose polynomials juy, ;, of degree t s.t. iy 5(0) = z¥ and for all

(XS I7 ,U/k:,h( ) Z]l'f

6. For each k € [M], h € [S]\ {rep(1),...,rep(g1)}, choose random polynomials (x5 of degree
Dt s.t. (n(0) =0 and for all i € Z, ( 0(2) = zhkz

7. For each k € [M]v .] € [QI]v set Ck,rep(] '(/J], (/”'k 1s--- 7Mk,n) - EhEAJ\{rep(j)} Ck,h-

8. The remaining ciphertext components are generated honestly.

For the remaining indices k, i, compute the ciphertext component ct¥ < Encrypt,,..(mpk;, (1.1(7), . . .

Send {cth = (ctf, ..., cth }ke to the adversary.

e Post-Challenge Key Query Phase For each key query C}
1. For each i € Z, set sk ; < KeyGen,.(msk;, Go; A )-
2. If (p < j<jtandi € Ty\Z)or (j = 5% and i € I'j« \Z, i < i¥), let sk;; <
Simine(Geya, {GQ,A (1 (i ) ----- s e, (2); G2 (2), - -+, G5 (i ))} -

For all remaining indices, let sk;; < KeyGen,,.(msk;, Gc; a;).

Send sk; = (Fj, Aj, {Skjﬂ'}ier]-) to the adversary.

Hybrid Hs In this hybrid, the public key and ciphertext components for i ¢ Z are also simulated.
This includes indices corresponding to which no secret key components are given.

e Setup Phase

1. For each j € [g], choose uniformly random sets I'; C [N] of size Dt+1 and A; C [S] of size
v. Let T=J;; (L; L)

2. The adversary wins if either |Z] > ¢ or the sets {A;},
It {A;}; clq) 18 cover-free, for each j € [q], let rep(j) denote the first index in A that is not
present in (J;; Ajr.

are not cover-free.

3. For each i ¢ Z, choose mpk; < Sim’__().
4. For each i € Z, let (mpk;, msk;) < Setup,,,.(1%).

Send {mpk;},c ) to the adversary.
e Pre-Challenge Key Query Phase Same as in previous hybrid.

e Challenge Phase Let 2!, ..., 2 denote the challenge messages, where each message x* has

bit representation (z%,...zF).

1. Foreach k € [M], h € [n], k' € [S], ¢ € Z, choose random field elements z,lj ;  Fand z”? 4
one(mpk (Zl z""’z'rlimzikw" ZAIS{CZ))
2. For each j € [gq1], k € [M], choose random polynomials t;; of degree Dt subject to

the restrictions that ;;(0) = C;(z¥) and for each i € Z, ;x(i) = Cj(zf ..., 28 ;) +
ZheAj Z;Lkz
3. Foreach i € J,., I'; \ Z, set (ctl, ... ctM) < Sim! (1 x(7)).

4. For the remaining indices i, set (ct}, ..., ctM) < Sim! ().

F and compute the ciphertext component cti-C < Encrypt

5. For each k € [M], h € [n], choose polynomlals pr.n of degree t s.t. pug 5 (0) = 2 and for all
1€7, Mk,h(i) = Zili,i'

6. For each k € [M], h € [S]\ {rep(1),...,rep(q1)}, choose random polynomials (i 5, of degree
Dt s.t. (;n(0) =0 and for all i € Z, (i () = z;LkZ

7. For each k € [M], j € [q1], set Crrep() = ik — Cj(kh,1s -5 Bkin) = Dopea,\frep(j)} Shih-
Send {ctk (cth,... ’CtIfV)}ke[M] to the adversary.

e Pre-Challenge Key Query Phase Same as in previous hybrid.

35

) Uk,n(i)a Ck



Hybrid Hs In the previous hybrid, note that the polynomials . 5 and (5 are not required during
the encryption phase. In fact, even during the post-challenge key generation phase, the one-key
simulator only requires oy, ;; = Cj(pr1 (%), - -, tin (i) + ZheAJ Ck,» (7). This value can be simulated
using C;;(z*) (that is, aj ;i can be simulated without knowing z*).

e Setup Phase Same as in previous hybrid.

e Pre-Challenge Key Query Phase Same as in previous hybrid.

e Challenge Phase Same as in previous hybrid, except that the challenger does not choose the
polynomials p. 5 and (g p.

e Post-Challenge Key Query Phase For the j** query C}, the simulator also receives circuit
evaluations {Cj (xk)} ke[M] at all inputs queried during the challenge ciphertext phase.

Choose uniformly random polynomials v;1,...,%;m of degree Dt subject to the restrictions
. +S\ kY . L, - / S\ k k k

that 1, ;(0""7) = C;(z*) and for all i € T'; (N Z, v x(i) = Cj(27,...,25) + ZheA, 277,
— For each i € T'; (N Z, compute sk; ; + KeyGenS (msk;, Ge,.n,;)-

— For each i € T'; \ Z, compute sk;; < Sim_,(Ge,a,, {105.1(1), - .. ¥ (8)}).

The secret key sk; = (I‘j, Aj, {Skjvi}ief") is sent to the adversary.
J

A.2.2 Analysis

We will now show that any PPT adversary’s advantage in each of the above hybrids is negligible. For
any adversary A, let Adv;4 denote the advantage of A in hybrid H,.

Claim 8 For any adversary A, Advi' = Advg' — negl()).

Proof:  This follows from our choice of parameters N, t,S,v. As discussed in [GVW13] (Section
5.2), setting t = O(¢?)\), N = O(D?¢*t) ensures that |U, TN L] < t. For cover-freeness, we set
v=0(\) and S = O(vg?). |

Claim 9 For any adversary A, Advi' = Advs'.

Proof: The adversary’s view in hybrids H; and Hj is identical. In Hs, each polynomial py p is
uniformly random, subject to one constraint : jy 5 (0) = z¥. In Ha, the challenger chooses ¢ random

points z’f’i, ce z’,jl and then chooses py ;, subject to the restrictions that pg (7)) = z}’jl Since fu,n
has degree ¢, these two views are identical. Similarly, we have the choice of (j . This shows that the
views in the two experiments are identical. [ |

Claim 10 For any adversary A, Advé4 = Adv?,

Proof:  The proof of this claim relies on the cover-free property of the sets {Aq,...,Ag,}. Since
these sets are cover-free, we can choose a representative rep(j) € I'; \Uj,# I+ for each j < g. Notice
the only difference in the two hybrids is the choice of (y ep(;) for each j € [g1]. In Ha, (i rep(s) is
uniformly random polynomial subject to restrictions at ¢+ 1 points {0} (JZ. In H3, Cy rep(x) is defined
as 9 — P, where P is some fixed polynomial H Here 1; is a uniformly random polynomial of
degree Dt subject to restrictions at {0} [JZ. Moreover, in both hybrids, (j rep(;) takes the same value
at all points in {0} |JZ. This shows that the two distributions are identical. [ |

Claim 11 Assuming FEqpne is one-key many-ciphertext simulation secure, for any j* € [¢1], i* € T';»,
PPT adversary A, |Adv§fj*7i* . Advﬁj*yi*ﬂ\ < negl(A).

WP =Cj(uras s ki) + nea,\{rep(s)} Skih

36



Proof: The proof of this claim follows directly from the one-key many-ciphertext simulation security
of FEone- |

Claim 12 Assuming FEqye is one-key many-ciphertext simulation secure, for any j* € {q;1 +1,..., 4},
i € T'j«, PPT adversary A, \Adv{ij*,i* - Advéj*7i*+1| < negl(A).

Proof: The proof of this claim follows directly from the one-key many-ciphertext simulation security
of FEone. [ ]

Claim 13 Let i* be the last index in I'y,. Assuming FEone is zero-key many-ciphertext secure, for
any PPT adversary A, |Adv§q7i* — Advy'| < negl()).

Proof: The proof of this claim follows directly from the zero-key many-ciphertext simulation security

of FEgpe. [ |

Claim 14 For any adversary A, Advf = Adv?.

Proof: This proof is identical to the proof of Claim [ |

B Real And Ideal Analysis of Second Impossibility

For simplicity, here we will consider FE schemes with perfect correctness. In a manner similar to the
first impossibility, we can extend the following analysis to also work for imperfect correctness.

B.1 Real World Analysis

First, we will show that the adversary A = (Aj, . As) described above outputs 1 with probability at
least 3/4 in the real world experiment. We will refer to the special key sk, 1 as sk below. To begin
with, we classify the random oracle queries made during a run of A into different sets as follows:

® S5-ROsetyp: random oracle queries made during setup phase.
® S-RO,: for i € [ncha]: random oracle queries made while encrypting x} using pk.

e S-ROuw = U

] S-RO,:: all random oracle queries made during the encryption of z7, ..., z},

1€ [Nchal P ehal”

S-ROq-key: Tandom oracle queries made by KeyGen while generating secret key for C, 11 in the
second key query phase.

® S-ROpec; for i € [niest]: random oracle queries made during the decryption of ct} using sk*.

S-ROr.: random oracle queries recorded during ‘RO Collection Phase b for b € {1,2}. Let
S-ROr =S-ROr.; |J S-ROr.s.

Lemma B.1 For any functional encryption scheme FE for the circuit family C = {Cx},, the adversary
A= (A, As) described in Section outputs 1 in Real’ (1)) with probability at least 3/4 — negl()\).

Proof: Let Bad denote the event that the adversary outputs 0 at the end of the real world experiment.
This event happens if at least 1/8th fraction of the nch decryptions fail in the test phase. If |-Dec;
is an indicator variable that takes the value 1 in case the ith decryption fails, then Bad happens iff
Zz‘e[nchad I-Dec; > 1/8 - nest- Adapting Observation to the present situation, we have

Observation B.1 For every i € [nchal, if the decryption of ct} using sk does not give C;(x*), i.e.
[-Dec; =1, then S-ROpeci [\ (S-ROsetup |J S-ROs-key LU S-ROchat) € S-ROr.

37



Let I-Dec-1; and |-Dec-2; be indicator variables that are 1 if and only if S-ROpec.; () (S-ROs-key U S-ROsetup) €
S-ROr and S-ROpec; [ S-ROchal € S-ROr, respectively. Then, |-Dec; = 1 iff either I-Dec-1; = 1 or
I-Dec-2; = 1 (or both). Let Bad-1 and Bad-2 be events that happen iff 3, (, . 1-Dec-1; > 1/16 - nichai
and >, -Dec-2; > 1/16 - nchal, respectively. Below we show that Pr[Bad-1] < negl()) and
Pr[Bad-2] < 1/4. Since Pr[Bad| < Pr[Bad-1] + Pr [Bad-2], the lemma follows. [ |

Claim 15 Pr[Bad-1] < negl()).

Proof: Fix any random oracle @, the randomness used in Setup®(1%), the circuit Chye+1, and the
randomness used in KeyGeno(msk, sk™). This also fixes the sets S-ROsetyp and S-ROg_key. Suppose an
x is picked at random {0, 1}"(A)7 and a ciphertext, ct, is generated for it by running Encrypto (pk, ).
For z € S-ROsetup U S-ROs key, let p. be the probability that z is an RO query in the decryption of ct
with sk*, where the probability is over the choice of z and the randomness used in Encrypt.

Let X; . and X[, be indicator variables that are 1 if an RO query on z is made during the jth
decryption in RO query collection 2 and ith decryption in test phase, respectively, for j € [nenc],
i € [nchal]- Note that the ciphertexts cty,...,ct and ctj,...,ct;  are generated independently

Techal

by choosing x1,...,%p,, and z7,...,z; = uniformly at random. Thus for any z, the variables
Xizyeooy Xnge,z and X7 .., X7 are independent of each other, and the probability of any of
them being 1 is p,.

We are interested in the probability that Zie[nchal] I-Dec-1; > nchal/16, ie., in at least 1/16th
fraction of the decryptions in the test phase, an RO query ¢ is made s.t. ¢ was also queried during
set-up or key generation for Cy,, 11, but it was not captured in either of the collection phases. Thus,
there must exist a z s.t. z ¢ S-ROr (in particular, z ¢ S-ROr_3) but an RO query on z is made in at
least nchai/16]Q)| of the decryptions, where @ = S-ROsetup U S-ROgokey. (If @ = ¢ then Bad-1 cannot

happen, and we are done.). Therefore,

Menc

Pri > '-Dec-li>n1°h63' < Y Pr|:¢SROr> A Y X;Z>1’”gc|g'|

’iE[’rLch3|] 2€Q ie[nchal]
Based on the value of p,, we can divide rest of the analysis into two parts:
o If p, > 1/32|Q| then

Priz ¢ S-ROro] =Pr[X1,=0A... AN Xy, . =0
= J[ PriXi.=0]

i€ [nenc]

— (1 _ pz)nenc S e_nenc/32|Q|7

where the second equality follows from the independence of X; .. Recall that we set nenc to be
at least 32A(gsetup + GKeyGen); Where gserup and geyGen are upper-bounds on the number of RO
queries made during Setup and KeyGen, respectively. Thus, e~ "e/32IQl is at most e~*.

o If p. < 1/32|Q| then expected value of >, X7 is at most ncna/32|Q|. Using Chernoff
bounds we can argue that,

Pr Z X;jz>1%°|"5‘ < e F A

1€ [Nchal]

" chal

1. Mchal
We know that nchal > Menc. Thus, e 3 32/l ig at most e~ as well.

Since @ is polynomial in the security parameter, this proves that the probability of Bad-1 is negligible
as well. [ |

38



Claim 16 Pr[Bad-2] < 1/4.
Proof: Fix any random oracle O, the randomness used in Setupo(lA), challenge messages z7, ...,z ,
and the randomness used in Encrypt® (pk,z*) for i € [neha]. This, in particular, fixes ciphertexts

ct},...,ct’ and the set S-ROcha. Consider the following experiment: C &y, sk« KeyGenO(msk, ),

7 T Mchal

and decrypt ct},...,ct} using sk. Let p, be the probability that at least ncha|/16|Q| of the decryp-

Tuchal
tions make an RO query on z, where Q = S-ROcha.

Let Y; . be an indicator variable that is 1 iff an RO query on z is made in at least ncha|/16|Q| of
the decryptions of ctj, ... ct;  with sk; in the first phase of RO query collection. Note that the keys
ski,...,Skp,, are generated independently by choosing Ci, ..., Cy,,, uniformly at random. Thus for
any z, the variables Y7 .,...,Y,,, . are independent of each other, and Pr[Y;. = 1] = p. for every j.
In a similar way, we can also define a random variable Y* that indicates whether an RO query on z
is made in at least ncha|/16|Q| of the decryptions of ctj,...,ct; = with sk® in the test phase. Y is
independent of Y7 ,..., Yy, . and Pr[Y =1] = p..

In a manner similar to the previous claim, we can argue that

Tchal x

Pri > IDec-2; > o < Z Pr[z ¢ S-ROp.; A Y = 1]
1€ [Nchal] z€Q

If z ¢ S-ROr._1, then none of the decryptions in the first phase of RO collection make a query on z.

In particular, the variables Y1 .,..., Yy, . are all zero in such a case. Therefore,

Priz¢ S-ROr i AY, =1]<Pr[Yi.=0A...AY,, .=0AY=1]
=pPrlys=1 - [ Priv;.=0]
je[”key]

= ﬁZ(l - ﬁZ)nkey

Once again we have two cases. If p. < 1/4|Q|, then p.(1 — p,)™ is at most 1/4|Q| as well.

Otherwise, (1—p,)™e < e~ Mker/41Q < e~ because, recall that, Nikey 1S at least 4\ nchal - GEnc, Where ggnc
is an upper-bound on the number of RO queries made during Encrypt. As aresult, ) . o Dz (1— ) ther

is at most 1/4. [ |

B.2 Ideal world analysis

We now show that for any PPT simulator, our adversary A = (A;, . A2) outputs 1 in the ideal world
with negligible probability. Let ¢ be a polynomial in A such that ¢ = fkey + Nenc * gDec - M (SO that
Nehal = 16t) where, recall that, ¢ is the maximum length of any key generated by KeyGen.

Approximate compressibility is defined w.r.t. the experiment where several circuits are chosen
at random and then evaluated at a random point (Definition . We need a slightly different
notion of compressibility here, with d as an additional parameter. Suppose circuits Ci,...,Cgt1
are chosen at random from C, and points si,...,sy are chosen at random from Dy. When Cmp is
given ({Ci}iciaty 7{Ci(xj)}ie[d+1],je[e])’ it must produce an output z such that when DeCmp is given
(2, {Ci}icat - {Ci(xj)}ie[d],je[é])’ the hamming distance of its output from (Cy11(81), ..., Car1(se))
is at most € -t with probability at least . One can show that weak pseudo-random functions for
many seeds with auxiliary information (Definition can give a (d, 16t,t,1/8) approximately in-
compressible family for any polynomials d and ¢ as long as t is at least A. Below d is set to be
Niey -

Lemma B.2 IfC = {C\}, is an (d,16t,t,1/8) approzimately incompressible circuit family, then for
any PPT simulator S, the adversary A = (A1, As) outputs 1 with probability at most negl(\).

Proof: Suppose there exists a simulator S such that our adversary A outputs 1 with a non-
negligible probability n. Like in the proof of Lemma we will use S to show that C is (16t,¢,1/8)

39



approximately compressible. Note that A; picks z7,...,z;,  and Cy, 41 uniformly at random and
independent of its other choices. Let rs and r4 denote the randomness used by the simulator S
and adversary A (in key query 1, RO collection 2, and test phases), respectively. The compression
circuit takes as input {Ci};c(y41) and {Ci(z;)} has a randomly chosen string for rs and

r 4 hardwired, and works as follows:

i€[d+1],5€[4]’

1. Use S to generate a public key pk and ciphertexts ctj,...,ct; . Give both to A;.

2. Provide {Ci};c(y and {Ci(x;)}

) to S. It generates secret keys sky,...,sky, which are
given to As.

i€[d],jel

3. Run the first phase of RO query collection. When 45 makes an RO query in this phase, forward
it to S. Give S8’s response back to As.

4. Run the encryption phase to get ciphertexts cty,...,ct,,.. (A2’s RO queries are handled in the
same way as before.)

5. Provide Cyyq and {Caq1(xj)} to S. It generates a secret key skqy1, which is given to As.

JEle]

6. Run the second phase of RO query collection. Here cty,...,ct,, . is decrypted with skgyii. Let
21, -..,2y be the responses to RO queries in this phase, where z; € {0, 1}™.

7. Output skgq1 and 21, ..., 2.

The decompression circuit takes {Ci};¢(441) and {Ci(z;)} together with the compressed

i€ld],jell]
string str-cmp as inputs, which can be parsed as str-cmp = (skg41, {z:}). It also has the random value

chosen before for rs and r4 hardwired, and works as follows:

1. The first four steps are same as that in the compression circuit. Let I" be the list of RO queries
and responses recorded in the third step.

2. Run the second phase of RO query collection. The RO responses required in this step are
available as part of the input (z1,...,2,). They are also added to T".

3. Run the test phase with the help of I'. Let y; denote the outcome of decrypting ct} with skgyq
for i € [nehal-

4. Output ¥, ..., Ve

We need to show that the decompression property works with probability n. When C4,...,Cg41,
T1,...,T16: are chosen uniformly at random, then it is easy to see that the decompression circuit
emulates the ideal world experiment perfectly. We know that A, outputs 1 if and only if for at least
7/8th of the decryptions, y; = y;. Hence, if 1 is output with probability n, then the hamming distance
is at most 1/8 with probability at least 7. [ |

40



	Introduction
	Our Main Impossibility Result
	High level description of impossibility
	An alternative approach to proving impossibility

	A New Possibility Result in the Random Oracle Model
	Another Impossibility Result
	Relation to De Caro et al. and Functional Encryption for Circuits with Random Oracle Gates
	Interpreting our Impossibility Results

	Preliminaries
	Weak Pseudo-random Functions
	Randomized Encodings

	Functional Encryption in the Random Oracle Model
	Simulation-based Security

	Hardness of Approximate Compression
	Impossibility of Simulation Secure FE
	Formal Description of Adversary
	Real World Analysis
	Ideal world analysis

	Simulation Secure FE for Bounded Collusions
	Simulation Secure FE for One Key Query
	Simulator

	Simulation Secure FE with Bounded Key Queries for NC1
	Simulation Security


	Bootstrapping from NC1 to Poly
	Simulator
	Sequence of Hybrids
	Analysis

	Another Impossibility for Simulation Secure FE
	Simulation Security Proofs
	Simulation Security of One Query FE scheme
	Simulation Security of FE Scheme for NC1
	Sequence of Hybrids
	Analysis


	Real And Ideal Analysis of Second Impossibility
	Real World Analysis
	Ideal world analysis


