
1

A Differential Fault Attack on Plantlet
Subhamoy Maitra, Akhilesh Siddhanti

Abstract—Lightweight stream ciphers have received serious
attention in the last few years. The present design paradigm
considers very small state (less than twice the key size) and use
of the secret key bits during pseudo-random stream generation.
One such effort, Sprout, had been proposed two years back and
it was broken almost immediately. After carefully studying these
attacks, a modified version named Plantlet has been designed
very recently. While the designers of Plantlet do not provide any
analysis on fault attack, we note that Plantlet is even weaker
than Sprout in terms of Differential Fault Attack (DFA). Our
investigation, following the similar ideas as in the analysis against
Sprout, shows that we require only around 4 faults to break
Plantlet by DFA in a few hours time. While fault attack is
indeed difficult to implement and our result does not provide
any weakness of the cipher in normal mode, we believe that
these initial results will be useful for further understanding of
Plantlet.

Index Terms—Cryptanalysis, Fault Attack, Plantlet, Stream
Cipher.

I. INTRODUCTION

A new light-weight stream cipher has been introduced by
Mikhalev, Armknecht and Müller [22], which claims to be
built upon by taking care of various cryptographic weaknesses
of Sprout [4]. Called Plantlet, it involves the secret key bits
both in key-scheduling phase and in the pseudo-random bit
generation phase. This unique feature has been carried over
from Sprout, and sets it apart from most of the common stream
ciphers. The designers of such proposals claim that this feature
allows lower state sizes against Time-Memory-Data Trade-Off
(TMDTO) attack and hence saves resources.

Sprout, the predecessor of Plantlet, was heavily attacked
in many papers and serious concerns were voiced regard-
ing its design. A key-recovery based on divide-and-conquer
technique [14] and a TMDTO attack [13] are two important
cryptanalytic results on the cipher. Additionally, one may refer
to [15], [2], [8], [27] for further cryptanalytic results. Although
Sprout was attacked immediately, it was an initial attempt in
realization of lightweight stream ciphers with the secret key
stored in non-volatile memory. Plantlet uses an 80-bit key, a
90-bit initialization vector, two shift registers, namely LFSR
and NFSR, a counter and a Boolean function. Like other
stream ciphers, Plantlet has an initial Key Loading Algorithm,
followed by a Key Scheduling Algorithm (involving the secret
key bits) and then finally the Pseudo-Random Generation
Algorithm (again involving secret key bits) for providing the
key stream.

S. Maitra is with Indian Statistical Institute, 203 B T Road, Kolkata 700
108, India. E-mail: subho@isical.ac.in

A. Siddhanti is with BITS Pilani KK Birla Goa Campus, Zuarinagar
403726, Goa, India. E-mail: akhileshsiddhanti@gmail.com

The designers of Sprout [4] claimed the security of the
cipher against fault attacks, though it was disproved immedi-
ately [2]. However, for Plantlet [22] no specific comment has
been made in terms of fault attack. In this paper, we present
a Differential Fault Attack (DFA) against Plantlet in the same
line as against Sprout in [2]. The attack succeeds with only
4 random faults in contrast with around 120 faults in random
locations (20 faults, if the locations are known) for Sprout [2].
For Plantlet we first obtain the fault locations from respective
signatures. Then we exploit the differential key streams using
a SAT solver to obtain the entire states of LFSR and NFSR.
Then one can immediately discover the secret key.

Before proceeding any further, let us describe Plantlet in
detail.

A. Description of Plantlet

Plantlet is an improvisation over Sprout, which adapts
from the Grain family of stream ciphers, more specifically
Grain128a [1]. Table 1 compares the various stream ciphers.

Cipher Key size IV size State size Initialization rounds
Plantlet 80 90 101 (61 LFSR + 40 NFSR) 320
Sprout 80 70 80 (40 LFSR + 40 NFSR) 320

Grain 128a 128 96 256 (128 LFSR + 128 NFSR) 256
Grain v1 80 64 160 (80 LFSR + 80 NFSR) 160

TABLE I
COMPARISON OF PLANTLET WITH ITS PREDECESSORS IN TERMS OF LFSR

AND NFSR SIZES.

Like the members of the Grain family [1], [3], [16], [17]
and Sprout [4], Plantlet has two registers – one LFSR and
one NFSR, which we denote by Lt and Nt respectively (for
some round t) with LFSR being 61 bits long and NFSR being
40 bits in length. For a given round t, we denote LFSR bits
as lt, lt+1, . . . , lt+60 and NFSR bits as nt, nt+1, . . . , nt+39

respectively. We also denote the secret key by k and its
corresponding bits by k0, k1, . . . , k79.

Plantlet incorporates the secret key in the KSA and PRGA
by XORing a specially selected key bit, k̃, with the last bit
of NFSR, nt+39. The selection happens through a Round-Key
function, which is cyclically selected from the secret key:

k̃ = k(t mod 80) ∀ t ≥ 0 (1)

This cipher uses a 9-bit counter divided in two halves. The
lower 7 bits are used for a modulo 80 counter, denoted by
(c6t , c

5
t , c

4
t , c

3
t , c

2
t , c

1
t , c

0
t) for a given round t. The last two bits,

namely c7t , c
8
t constitute a modulo 4 counter incremented once

after completion of one round of the modulo 80 counter. This
is merely to keep track of the completion of 320 rounds of
KSA, post which the counter resets to zero. However, only the
5th LSB (c4t) of this counter is actually used in the evolution
of the states. Hence, it might not be necessary to include the
higher counter bits in the implementation.

2

As discussed before, the clocking of the cipher can be
divided into three routines: KLA (Key Loading Algorithm),
KSA (Key Scheduling Algorithm) and PRGA (Pseudo Ran-
dom Generating Algorithm).

1) The KLA Routine: The NFSR is initialized with the first
40 bits of IV. The rest 50 bits of the IV are used to initialize
the first 50 bits of LFSR. The remaining 11 bits of LFSR are
initialized with a specific padding in the particular sequence:
(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) from l50 to l60.

2) The KSA Routine: The NFSR and LFSR registers are
clocked 320 times, with one bit shifted in every clock pulse.
The highest bit of NFSR is updated as

nt+39 = zt ⊕ g(Nt)⊕ k̃t ⊕ lt ⊕ c4t ,

where g(Nt) is a polynomial in GF(2):

g(Nt) = nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39 ⊕ nt+2nt+25

⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21 ⊕ nt+16nt+18

⊕ nt+22nt+24 ⊕ nt+26nt+32 ⊕ nt+33nt+36nt+37nt+38

⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31 (2)

and zt is the key stream bit computed as:

zt = h(x) + lt+30 +
∑
j∈B

nt+j . (3)

Here h(x) is a non-linear function:

h(x) = nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+17lt+32

⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38 (4)

and B = {1, 6, 15, 17, 23, 28, 34}.
We would also like to present a clarification regarding the

feedback of output z to NFSR during KSA. The specification
of Plantlet [22, Section 4.3] mentions it while the equations do
not agree with the same. However, here we consider the more
complex version – where the output is fed back to both LFSR
and NFSR during KSA. Note that faults are injected during
the rounds of PRGA only. Hence it makes no difference in
implementation of our fault attack.

The highest bit of LFSR, lt+60 is always initialized to 1
during KSA. The second-highest bit lt+59 is updated as:

lt+59 = lt+54 ⊕ lt+43 ⊕ lt+34 ⊕ lt+20 ⊕ lt+14 ⊕ lt ⊕ zt (5)

Note that in any clock cycle, the output is generated first
and only then the registers are updated. It is XORed to lt+59

and nt+39 (used as feedback) instead of producing any output
during KSA.

3) The PRGA Routine: The update function for PRGA
remains the same for NFSR except that the output is no longer
XORed with the key stream bit: nt+39 = g(Nt)⊕ k̃t⊕ lt0⊕c4t .
Further, the slightly modified update function for LFSR during
PRGA phase is:

lt+60 = lt+54 ⊕ lt+43 ⊕ lt+34 ⊕ lt+20 ⊕ lt+14 ⊕ lt (6)

The key stream bit zt is produced using the output function
in (3).

B. Description of Differential Fault Attack

Fault attacks were first introduced in the works of [9],
[11], and since then such techniques have gained attention in
cryptanalytic literature. In the domain of stream ciphers, one
of the first fault attacks was introduced by Hoch and Shamir
in [18]. Generally, faults are injected into the state of a cipher
to introduce a “change” in the key stream bits, which can
help deduce information about the internal state. The method
of injecting faults can be laser shots, clock glitches, ionizing
radiation, unsupported voltage, etc. Faults can be both transient
or permanent. Though the approach of the attack seems quite
complicated to be implemented in practical scenario, many
implementations of well known ciphers like RSA, AES, DES
etc. have been cryptanaylsed by this technique. In fact, all
the ciphers in eStream [12] hardware portfolio, namely Grain
v1, Mickey 2.0 and Trivium, have been cryptanalyzed against
DFA [5], [6], [7], [19], [20], [21], [23]. As mentioned before,
even Sprout has been cryptanalyzed [2]. In all these cases, it
was enough to recover the cipher state by DFA as the KSA
and PRGA of such ciphers are reversible, providing the secret
key once the state is known. The same is true for Plantlet.

Let us now briefly explain the connection between Differ-
ential Cryptanalysis and Differential Fault Attacks (DFA). In
differential attack, we generally put a “difference” in IV while
KLA. Thus, if one goes for a sufficient number of rounds
during KSA (namely 320 for Plantlet), the difference might
not be exploited during the PRGA. In DFA, the adversary is
allowed to inject faults during the rounds of PRGA as well.
Here the difference is reflected immediately in the key stream
and thus, the cipher becomes much weaker in this model.
Thus, here we show that Plantlet is even weaker than Sprout
in this very specific line of attack.

One difference between the ciphers from the eStream port-
folio (Grain v1, Mickey 2.0 and Trivium) is that the secret
key bits are not only involved in the KSA but also during
PRGA (similar to Sprout). However, that does not resist DFA
kind of cryptanalysis. We exploit the probability of matching
between each corresponding pair of fault-free and faulty key-
stream bits to compute the signatures. Further we consider
correlations between the differential stream and the signatures
to obtain the good matches and thereby identifying the fault
location (Section II). After finding the location of the faults,
we can use corresponding differential key streams to obtain a
system of nonlinear equations and those can be solved using
an efficient SAT Solver tool (Section III). Once all the state
variables are known for some round t, we can immediately
deduce the secret key.

As with every fault attack, we need to lay down the assump-
tions while mounting the DFA. Naturally, this is important
as too many assumptions can make the attack impractical.
Also, the number of faults injected should be low, as there
is a chance of damaging the device. We consider the follow-
ing assumptions which are generally accepted throughout in
cryptanalytic literature on fault attacks. The adversary

1) can restart the cipher and re-key it with the original
Key/IV multiple times,

3

2) can inject the fault at the exact timings during the
execution,

3) has the equipment/required technology for implementing
the fault,

4) does not need to know the exact location during fault
injection.

The paper is organized as follows. In Section II, we discuss
how to obtain the fault signatures. Then, in Section III, we
discuss the recovery of the entire state of LFSR, NFSR and
consequently the recovery of the secret key bits by solving
nonlinear equations. Section IV concludes the paper.

II. FAULT SIGNATURES, AND HOW TO IDENTIFY THE
FAULT LOCATIONS

Suppose we introduce a “change” in the key stream bits by
injecting a fault at some random location f . From now on,
by injecting a fault at location f , we mean (for 0 ≤ f ≤ 60)
injecting a fault at LFSR bit lf , and by injecting a fault at any
location f , for (61 ≤ f ≤ 100) we mean injecting a fault in
NFSR bit n(f−61).

We obtain the respective fault-free key stream zi and faulty
key stream z

(f)
i for λ key stream bits. To form a unique pattern

of the key stream sequence, we compute a signature vector
Q(f) which we define as:

Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) (7)

where

q
(f)
i =

1

2
− Pr(zi 6= z

(f)
i),∀ i ∈ [0, λ− 1]. (8)

We obtain this probability by sufficient number of experiments
beforehand. The sharpness of a signature is defined as follows:

σ(Q(f)) =
1

λ

λ−1∑
i=0

|q(f)i |. (9)

Fig. 1. Plot of Q(f) for all f in [0, 100] with λ = 64.

As we can see in Figure 1, qfi are close to zero for i > 32,
hence λ = 32 could have been sufficient. However, we choose
λ = 64 instead as evaluation of correlations and ranks (which
we will discuss soon) becomes more accurate with higher
number of key stream bits. Now, we can use the sharpness of
a location (we just defined) to compare the faults at different
locations. For example, one may note the cases for f = 30

and f = 31 in Figure 2. It is very clear that identifying the
location if the fault is indeed injected at 30 (blue) has much
better chance than that of 31 (red). With λ = 64, we execute

Fig. 2. Plot of Q(30) (blue) and Q(31) (red). This is a snapshot of Figure 1
for f = 30, 31.

215 runs with random key-IV pairs to prepare the signatures
Q(0), Q(1), . . . , Q(100). As mentioned earlier, we pre-compute
the signatures during the offline phase of the attack, and store
it for comparisons with differential key stream.

Suppose we inject a fault in a random unknown location g
(0 ≤ g ≤ 100) and obtain the fault-free and faulty key streams
zi and z(g)i respectively. Then we define the following:

ν
(g)
i =

1

2
− η(g)i (10)

where η
(g)
i = zi ⊕ z

(g)
i . Let us now continue with a few

definitions and notations.
Definition 1: The vector

Γ(g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1)

is called trail of the fault at the unknown location g.
Note that there is no probability term in this scenario, since
we are actually injecting a fault and checking against our
signatures. We compare Γ(g) for each of the Q(f)’s, for
f = 0, . . . , 100 to identify the exact fault location.

Definition 2: We call a relation between the signa-
ture Q(f) = (q

(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) and a trail Γ(g) =

(ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) a mismatch, if there exists at least one

i, (0 ≤ i ≤ λ − 1) such that (q
(f)
i = 1

2 , ν(g)i = − 1
2) or

(q
(f)
i = − 1

2 , ν(g)i = 1
2) hold true.

However, it is quite natural that this may not always happen,
and thus we need to extend this definition. For this purpose,
we incorporate the correlation coefficient between two sets of
data.

Definition 3: We use correlation coefficient µ(Q(f),Γ(g))

between the signature Q(f) = (q
(f)
0 , q

(f)
1 , . . . , q

(f)
λ−1) and

a trail Γ(g) = (ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1) for checking a match.

Naturally, −1 ≤ µ(Q(f),Γ(g)) ≤ 1. In case of a mismatch,
(as per the Definition 2), then µ(Q(f),Γ(g)) = −1.

Then we experiment how one can locate the faults. For each
known fault g, we calculate the trail Γ(g) = (ν

(g)
0 , ν

(g)
1 , . . . ,

ν
(g)
λ−1). and hence the corresponding µ(Q(f),Γ(g)) for each of

the faults f, (0 ≤ f < 100). We note:
1) max100

f=0 µ(Q(f),Γ(g)),
2) µ(Q(g),Γ(g)), and

4

3) α(Q(g)) = n(µ(Q(f),Γ(g)) > µ(Q(g), Γ(g))).

As we can see in Figure 3, when µ(Q(g),Γ(g)) (drawn
in blue) is close to max100

f=0 µ(Q(f),Γ(g)) (drawn in red),
α(Q(g)) is small, it is easier to locate these faults. However,
if µ(Q(g),Γ(g)) is much smaller than max100

f=0 µ(Q(f),Γ(g))

(red), i.e., α(Q(g)) is large, that means it is harder to locate
the fault.

Fig. 3. Plot of max100
f=0 µ(Q(f),Γ(g)) (red) and µ(Q(g),Γ(g)) (blue).

Given α(Q(g)), for each g, we can estimate how many
attempts we should require to obtain the actual fault location.
Our experimental results show that obtaining random fault
locations is easier in Plantlet as compared to Sprout. Further,
the fault requirement is much lower here, making a practical
fault attack significantly easier.

As we will describe in Section III, obtaining the exact state
is always possible (during the experiments) from the differ-
ential key stream corresponding to 4 correct fault locations
(details are in Table II). Hence, we need to locate 4 correct
fault locations from a large number of random faults. In fact,
we also provide examples for the complete attack with only 4
faults. However, we sometimes fail to get LSB of NFSR n0
in some cases during the experiments.

The exact algorithm for mounting a fault is as follows.
Consider that every fault is injected at the same round t of
PRGA routine:
• Inject a fault at some random fault location.
• Obtain the differential trail (for some unknown g) Γ(g) =

(ν
(g)
0 , ν

(g)
1 , . . . , ν

(g)
λ−1).

• For each f in [0, 100], calculate µ(Q(f),Γ(g)).
• For the fault, prepare a ranked table Tg arranging the

possible fault locations f with more priority according to
µ(Q(f),Γ(g)).

• After creating tables Tg for the required faults (say 4),
compute using SAT solvers as mentioned in Section III
for each of the combinations.

When the correct fault set will be selected in the above
algorithm, we will be able to obtain the correct state, which
will in turn provide the secret key bits. Then we can check
and match with the existing fault free and faulty key streams
at hand. To obtain the streams, we need to re-key the cipher a
few times and inject those many faults (4 is enough as per our
experiments). Naturally, the DFA will be more efficient when
the faults are in the locations where it is easier to identify
them. That is a location g such that α(Q(g)) is small will
provide better result. To clarify, lower the α(Q(g)), lesser is
the number of possible combinations of faults, and lesser the

number of times we have to run the SAT solver. However, for
Plantlet, we note that the signature of the faults are quite sharp
and thus we need not try for specific fault locations during the
attack.

Now let us consider the set W such that it contains the
4 faults with maximum possible α(Q(g)) values from the
experiments (average over 215 runs. Then we calculate that∏
g∈W (1+α(Q(g))) ≈ 211.16 combinations (for 4 faults). This

is the worst case. That is, after injecting random faults, if these
faults appear, then we may need to run the SAT solver these
many times. However, the average case scenario is much better
than this. For example, we may consider the set of four fault
locations S = {5, 26, 2, 12}. As we have mentioned earlier,
the values less than 61 belong to LFSR, and the other values
belong to NFSR. The expected number of combinations to
check in this case is

∏
g∈S(1 + α(Q(g))) ≈ 25.02.

III. OBTAINING THE STATE FROM THE DIFFERENTIAL
KEY-STREAMS

Let us assume that a fault is injected in the LFSR location
φ at PRGA round t. The same method will work if the fault
is injected in the NFSR. Since we re-key the cipher with the
same (key, IV) pair before injecting a fault, after fault injection
we get the state lt, lt+1, . . . , lt+φ−1, 1⊕ lt+φ, lt+φ+1 . . . , lt+60

and nt, nt+1, . . . , nt+39 at the t-th round of PRGA. Then
corresponding to each faulty key-stream bit zφt , we introduce
two new variables L(φ)

t ,N (φ)
t and obtain three more equations

(LFSR, NFSR and output function). Thus we have additional
2` variables and 3` equations for each faulty key-streams,
when we involve ` many bits of key stream. Here we have
considered ` = 60 for solving such equations. Naturally, this
implies that we will not involve all the secret key bits (as we
need at least 80 key stream bits for involvement of each of the
secret key bits). However, at this stage we are not looking for
solving the secret key bits. Instead we only try to obtain the
LFSR and NFSR states. By trial and error we found ` = 60
to be sufficient for that. Once we know the state (Nt, Lt) for
some round t, then we may use SAT solver to obtain the secret
key bits as explained in [22, Table 4]. In fact, knowledge of
95 (out of 101) state bits are enough to get the state bits very
quickly.

Experimental Results: We solve the equations using a SAT
solver, Cryptominisat-2.9.6, under SAGE 7.5.rc2 [26] on a
laptop running with Ubuntu-16.10. The hardware configuration
is based on Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz
and 8 GB RAM. For each guessed set of faults, a system of
equations are formulated, and the equations are then fed into
the SAT solver.

These experiments are made for 5 runs (for each row)
considering that the correct faults have been identified. Thus
the time given in the table should be multiplied by

∏
g∈S(1 +

α(Q(g))) while estimating the effort for the complete fault
attack. Note that we have experimented with more number of
faults too. The results show that having more faults does not
mean that the equations can be solved in less time. This is
the reason, we get faster processing time in case of 9 faults
than 10 faults (see Table II). However, as we continue towards

5

Faults Solution time (seconds)
Maximum Minimum Average

4 20914.7 1879.04 7871.17
5 6568.77 1278.76 3306.89
6 4902.52 1392.12 3210.38
9 5209.26 748.72 2178.49

10 2981.80 1708.66 3231.10
12 2266.23 656.93 1261.23

TABLE II
RESULTS OBSERVED WHILE OBTAINING STATE FROM FAULT ATTACK.

very few faults (such as 4 to 6), the processing time generally
increases with lesser number of faults. The following are two
examples with 4 faults each.

Example 1: Consider that we inject 4 faults at random and
the the locations turn out to be S = {17, 19, 60, 42}. In this
case, the expected number of combinations so that we arrive
at the right set of fault locations is 23.12. We have to check for
every such combination in SAT solver. For the correct fault
locations, the SAT solver takes 5841.80 seconds to compute
the entire states of LFSR and NFSR.

Example 2: Here is another example with 4 random faults.
Consider the set of locations S = {13, 36, 28, 45}. Here, the
expected number of possible combinations to check for is
24.08. Note that in this case, the SAT solver is unable to
compute the NFSR bit n0. However, this should not be a
problem to solve the complete system and the key finally.
For the correct fault locations, the SAT solver takes 2215.01
seconds to compute the states of LFSR and NFSR (without
n0).

IV. CONCLUSION

In this paper, we have applied Differential Fault Attack
(DFA) on Plantlet. Plantlet has evolved from Sprout after
discovery of many of its cryptographic weaknesses. It is thus
believed that Plantlet will be cryptographically stronger than
Sprout. However, we note that this is not true in terms of
DFA. By using as little as 4 faults, we show that the LFSR
and NFSR states can be obtained in reasonable time and this in
turn provides the secret key immediately. Our technique first
finds the locations of the random faults using fault signatures
and then it formulates equations to be fed into a SAT solver.
Experiments for the same have been performed on a software
implementation of the cipher and the exact algorithm was
described. It might happen that the larger state size and simple
involvement of the secret key bits during the PRGA phase for
Plantlet compared to Sprout make the DFA more efficient on
Plantlet than its previous instantiation. This indeed requires
further attention. While fault attacks can be implemented in
very restricted scenarios, we believe our observations can help
in understanding Plantlet better.

Acknowledgments: The authors like to thank Dr. Santanu
Sarkar of IIT Madras for detailed technical discussion and
implementation issues in SAGE.

REFERENCES

[1] M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain-
128 with Authentication. Symmetric Key Encryption Workshop 2011,
DTU, Denmark.

[2] S. Maitra and S. Sarkar and A. Baksi and P. Dey. Key Recovery from State
Information of Sprout: Application to Cryptanalysis and Fault Attack.
http://eprint.iacr.org/2015/236

[3] M. Ågren, M. Hell, T. Johansson and W. Meier. Grain-128a: a new version
of Grain-128 with optional authentication. IJWMC, 5(1): 48–59, 2011.
This is the journal version of [1].

[4] F. Armknecht and V. Mikhalev. On Lightweight Stream Ciphers with
Shorter Internal States. FSE 2015. http://eprint.iacr.org/2015/131

[5] S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the
Grain Family of Stream Ciphers. In CHES 2012, LNCS, Vol. 7428, pp.
122–139.

[6] S. Banik and S. Maitra. A Differential Fault Attack on MICKEY 2.0.
CHES 2013, LNCS, Vol. 8086, pp. 215–232, 2013.

[7] S. Banik, S. Maitra and S. Sarkar. Improved differential fault attack on
MICKEY 2.0. Journal of Cryptographic Engineering, 5(1):13–29, 2015.
http://link.springer.com/article/10.1007\%2Fs13389-014-0083-9, 2014

[8] S. Banik. Some results on Sprout. INDOCRYPT 2015, LNCS, Vol. 9462,
pp. 124–139, 2015. http://eprint.iacr.org/2015/327

[9] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In CRYPTO 1997, LNCS, Vol. 1294, pp. 513–525.

[10] E. Biham and O. Dunkelman. Differential Cryptanalysis in Stream
Ciphers. Cryptology ePrint Archive, Report 2007/218, https://eprint.iacr.
org/2007/218

[11] D. Boneh, R. A. DeMillo and R. J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In EUROCRYPT 1997,
LNCS, Vol. 1233, pp. 37–51.

[12] The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream
Ciphers. SAC 2015, Canada. http://www.ecrypt.eu.org/stream/

[13] M. F. Esgin and O. Kara. Practical Cryptanalysis of Full Sprout with
TMD Tradeoff Attacks. http://eprint.iacr.org/2015/289

[14] V. Lallemand and M. Naya-Plasencia. Cryptanalysis of Full Sprout. In
Crypto 2015, LNCS. In CRYPTO 2015, LNCS, Vol. 9215, pp. 663–682.
http://eprint.iacr.org/2015/232

[15] Y. Hao. A Related-Key Chosen-IV Distinguishing Attack on Full Sprout
Stream Cipher. http://eprint.iacr.org/2015/231

[16] M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Con-
strained Environments. ECRYPT Stream Cipher Project Report 2005/001,
2005. Available at http://www.ecrypt.eu.org/stream.

[17] M. Hell, T. Johansson, A.Maximov and W. Meier. A Stream Cipher
Proposal: Grain-128. In IEEE International Symposium on Information
Theory (ISIT 2006).

[18] J. J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In CHES
2004, LNCS, Vol. 3156, pp. 1–20.

[19] M. Hojsı́k and B. Rudolf. Differential Fault Analysis of Trivium. In FSE
2008, LNCS, Vol. 5086, pp. 158–172.

[20] M. Hojsı́k and B. Rudolf. Floating Fault Analysis of Trivium. In
INDOCRYPT 2008, LNCS, Vol. 5365, pp. 239–250.

[21] Y. Hu, J. Gao, Q. Liu and Y. Zhang. Fault analysis of Trivium. Designs,
Codes and Cryptography, 62(3): 289–311, 2012.

[22] V. Mikhalev, F. Armknecht and C. Müller. On ciphers that continuously
access the non-volatile key. FSE 2017. TOSC, Volume 2016, Issue 2, pp.
52–79, 2016. http://tosc.iacr.org/index.php/ToSC/article/view/565/507

[23] S. Sarkar, S. Banik and S. Maitra. Differential Fault Attack against Grain
family with very few faults and minimal assumptions. IEEE Transactions
on Computers, 64(6):1647–1657, 2015.

[24] S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks.
In CHES 2002, LNCS, Vol. 2523, pp. 2–12.

[25] S. P. Skorobogatov. Optically Enhanced Position-Locked Power Analy-
sis. In CHES 2006, LNCS, Vol. 4249, pp. 61–75.

[26] W. Stein. Sage Mathematics Software. Free Software Foundation, Inc.,
2009. Available at http://www.sagemath.org. (Open source project initi-
ated by W. Stein and contributed by many).

[27] B. Zhang and X. Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers. In Asiacrypt 2015, LNCS, Vol. 9453, pp. 561–585.

