
Clustering Related-Tweak Characteristics:
Application to MANTIS-6

Maria Eichlseder and Daniel Kales

Graz University of Technology, Austria
maria.eichlseder@iaik.tugraz.at
daniel.kales@student.tugraz.at

Abstract. The TWEAKEY/STK construction is an increasingly popular approach
for designing tweakable block ciphers that notably uses a linear tweakey schedule.
Several recent attacks have analyzed the implications of this approach for differential
cryptanalysis and other attacks that can take advantage of related tweakeys. We
generalize the clustering approach of a recent differential attack on the tweakable block
cipher MANTIS5 and describe a tool for efficiently finding and evaluating such clusters.
More specifically, we consider the set of all differential characteristics compatible with
a given truncated characteristic, tweak difference, and optional constraints for the
differential. We refer to this set as a semi-truncated characteristic and estimate its
probability by analyzing the distribution of compatible differences at each step.
We apply this approach to find a semi-truncated differential characteristic for
MANTIS6 with probability about 2−67.73 and derive a key-recovery attack with
a complexity of about 255.09 chosen-plaintext queries and 255.52 computations. The
data-time product is 2110.61 ≪ 2126.
Keywords: (Truncated) Differential Cryptanalysis · TWEAKEY · MANTIS

1 Introduction
Tweakable block ciphers generalize the concept of block ciphers by adding an additional
public input, the tweak. This tweak plays a role similar to the nonces or initialization
values of higher-level modes of operation, and provides additional variation of the instances
of the cipher family. The concept was formally introduced by Liskov et al. [LRW02],
who defined it as a family Ẽ of permutations Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.
Ẽ maps a k-bit key K, t-bit tweak T and n-bit plaintext M to an n-bit ciphertext C,
such that Ẽ(K, T, ·) is a permutation. The recent popularity of tweakable block ciphers,
for instance in the CAESAR competition, shows that tweakable block ciphers may be
more naturally suited as building blocks for higher-level modes of operation than block
ciphers. A particularly relevant application area for tweakable block ciphers is memory
and disk encryption, where the address of each data item defines the tweak. However,
generic constructions to turn block ciphers E(K, M) into secure tweakable block ciphers
Ẽ(K, T, M) are often not well-suited for such applications, since they incur a significant
latency overhead compared to a plain block cipher call.

Compared to generic constructions that use some block cipher as a black box, dedicated
constructions try to provide more efficient designs with full security by integrating the tweak
in the core primitive design. With the TWEAKEY framework, Jean et al. [JNP14] propose
to treat the tweak in almost the same way as the key in a key-alternating construction.
This approach, and in particular the special case STK with its linear tweak schedule, has
been adopted in several CAESAR candidates (Deoxys, Joltik, KIASU), as well as standalone
tweakable block cipher designs like SKINNY and MANTIS [BJK+16] or QARMA [Ava17].

mailto:maria.eichlseder@iaik.tugraz.at
mailto:daniel.kales@student.tugraz.at

2 Clustering Related-Tweak Characteristics: Application to MANTIS-6

Regarding the cryptanalytic implications of this approach, one central aspect is the
possibility of related-tweak attacks. The tweak is usually assumed to be under the attacker’s
control, although in practice, the definition of the mode of operation that uses the cipher
may impose some constraints. In particular, this means that the attacker can introduce
differences via the key schedule, similar to related-key attacks on classical block ciphers.
This increases the number of rounds necessary for security against differential cryptanalysis,
as well as certain other attacks [DEM16], such as integral distinguishers or Meet-in-the-
Middle attacks. For designers, this means that they must analyze bounds for the differential
probability in the related-key model. Standard search approaches for finding or lower-
bounding the best characteristics, such as mixed-integer linear programming (MILP),
satisfiability (SAT) or constraint programming (CP) solvers, can usually be adapted to
the related-tweak case.

The output of such a search is either an optimal differential characteristic or, more often,
a truncated differential characteristic with the minimum number of active S-boxes, referred
to as “minimal characteristic” in the following. For standard strongly aligned block ciphers
in the fixed-key model, the bounds derived from such a minimal characteristic are usually
both reasonably tight and reasonably reliable to estimate the security margin. However,
several recent papers have discussed issues which indicate that the bounds obtained from
minimal characteristics of STK-based tweakable block ciphers can be less useful. The main
reason for this is the deterministic behaviour of the linear tweak schedule with respect to
the input tweak difference. Cid et al. [CHP+17] showed that if this is not considered in
the search, the resulting minimal characteristics are often invalid, and that tighter bounds
can be obtained by adapting the search model accordingly. Dobraunig et al. [DEKM16],
on the other hand, take advantage of the predictable tweakey schedule to cluster several
differential characteristics with nearly optimal probability for an attack on MANTIS5.

Our contributions

We generalize the clustering approach from the attack on MANTIS5 [DEKM16] and describe
a tool (https://github.com/dkales/clusterfk) for efficiently finding and evaluating
such clusters. Whereas the cluster for MANTIS5 was found by hand and was simple enough
for its probability to be evaluated on a cell-by-cell basis, we argue that such probability
estimates are not sufficiently accurate in general. Instead of starting with a differential
characteristic and trying to find similar characteristics that can be clustered, we start from
a truncated differential characteristic (plus, optionally, a fixed, compatible differential)
and consider all compatible differential characteristics for a fixed tweak difference.

To represent the resulting family of individual characteristics in a compact way, like
[DEKM16], we describe the set of permissible differences for each intermediate state on
a cell-by-cell basis. We refer to the resulting structured cluster of characteristics as a
semi-truncated characteristic. We then want to efficiently estimate the probability of the
semi-truncated characteristic without enumerating all individual characteristics or round
differentials, since some steps contain many active S-boxes. [DEKM16] proposed a simple
estimate similar to the probability of a truncated characteristic, but for more complex
characteristics, this is not sufficiently accurate. Due to the influence of the tweak difference,
we need to estimate the expected distribution of differences within the specified set at each
step and analyze the resulting transition probabilities of each operation.

Our approach combines advantages of classical and truncated characteristics: On the
one hand, by clustering many characteristics, we improve the overall probability and
generate pairs more efficiently compared to the single best differential characteristic. On
the other hand, a straightforward truncated approach cannot take advantage of the high-
probability transitions in the S-box, and incurs significant costs from the linear constraints
in the tweak schedule. We discuss how such semi-truncated characteristics can be applied
to obtain efficient key-recovery attacks, and analyze the complexity and possible tradeoffs.

https://github.com/dkales/clusterfk

Maria Eichlseder and Daniel Kales 3

We apply this approach to find a semi-truncated differential characteristic for MANTIS6
with probability about 2−67.73 and derive a key-recovery attack with a complexity of
about 255.09 chosen-plaintext queries and 255.52 computations. The data-time product of
2110.61 is below the designers’ bound of 2126 claimed for MANTIS5 and MANTIS7 (with
additional data limits for MANTIS5). The designers’ bound for the probability of the best
characteristic is ≤ 2−88. Note that MANTIS6 has a block size of 64 bits, so the probability
of our semi-truncated characteristic is worse than the generic probability of any fixed
differential, and much worse than the generic probability of its semi-truncated differential.

Outline

In Section 2, we provide a brief description of the TWEAKEY construction and the
tweakable block cipher MANTIS, as well as some of its cryptographic properties. In
Section 3, we introduce our approach for finding semi-truncated characteristics, estimating
their probability, and deriving key-recovery attacks. In Section 4, we apply the approach to
find a semi-truncated characteristic for MANTIS6 and develop a corresponding key-recovery
attack. In Section 5, we perform experiments to verify our theoretical results and discuss
the results of the experiments and their impact on the key-recovery attack.

2 Background on MANTIS
2.1 The Tweakable Block Cipher MANTIS
MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [BJK+16].
The designers propose several variants MANTISr that differ only in the number of rounds.
All variants operate on a 64-bit message block M = M0∥M1∥ · · · ∥M15 and work with a
64-bit tweak T = T0∥T1∥ · · · ∥T15 and (64 + 64)-bit key K = (k0, k1). All 64-bit values are
mapped to 4× 4 states S of 4-bit cells Sj , where S0, . . . , S3 is the first row, etc.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r backward
rounds R2r+1−i = R−1

i , separated by an involutive, unkeyed middle layer S ◦ M ◦ S
(Figure 1a). The 64-bit subkey k1 is used as round key for the outer forward and backward
rounds, while the other 64-bit subkey k0 and the derived k′

0 = (k0 ≫ 1) + (k0 ≫ 63) serve
as whitening keys. The tweak T is added together with k1 in every round according to the
TWEAKEY construction, with a simple cell permutation h as a tweak schedule.

M

T

C

k1

k1+α

k0

k′
0

R1

R−1
1

h

R2

R−1
2

h

Rr

R−1
r

h

S

M

S

· · ·

· · ·

· · ·

(a) PRINCE-like α-reflective cipher structure

Ri = S P M
Ci + hi(T) + k1

R−1
i

= M P−1 S

Ci + hi(T) + k1 + α

(b) Midori-like round function

Figure 1: Design of the tweakable block cipher MANTISr.

The round function Ri is very closely related to that of Midori [BBI+15]. It updates
the 4× 4 state of 4-bit cells by means of the sequences of transformations Ri and R−1

i ,
as illustrated in Figure 1b. Its S-box layer (SubCells) and linear layer (PermuteCells,
MixColumns) are directly inherited from Midori [BBI+15]. In the following, we briefly
describe the individual operations. For a more detailed description of the MANTIS family,
we refer to the design paper [BJK+16].

4 Clustering Related-Tweak Characteristics: Application to MANTIS-6

S S()

S 0 1 2 3 4 5 6 7 8 9 a b c d e f
c a d 3 e b f 7 8 9 1 5 0 2 4 6

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f prob.
1
2−1

2−2

2−3

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

(a) S-box S and tables DDT[a, b] = Px[Sa(x) = b], DIT[a, τ] = Px[Sa(x) = Sa(x+τ)].

0 61 52 143 15
4 05 16 27 3
8 79 1210 1311 4
12 813 914 1015 11

h

(b) Tweak update function h.

0 01 112 63 13
4 105 16 127 7
8 59 1410 311 8
12 1513 414 915 2

P

(c) State permutation P.

M

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

·

(d) Column mixing M.

Figure 2: Nonlinear and linear transformations of the MANTIS round function Ri.

• SubCells (S) applies the involutive 4-bit S-box S given in Figure 2a to each state cell.
For our attack, we are primarily interested in the differential behaviour of S. The
differential distribution table (DDT) in Figure 2a shows that S has 24 differential
transitions with a probability of 2−2; for two of the input differences, 2 and a, each of
the four possible output differences is observed with probability 2−2. This is due to
the algebraic properties of S: only 12 of the 15 component functions have algebraic
degree 3. In addition to the first derivative Sa(x) := S(x) + S(x+a) of the S-box, as
tabulated in the DDT, we will also refer to some properties of the second derivative
Sa,τ (x) := Sa(x) + Sa(x+τ), in particular the case Sa,τ = 0 as tabulated in the
differential invariance table (DIT) in Figure 2a.

• AddTweakeyi (A) and AddConstanti (C) add the round constant Ci, the subkey k1
(for Ri) or k1 + α (for R−1

i), and the round tweakey hi(T) to the state. The tweakey
update function h simply permutes the order of cells as specified in Figure 2b.

• PermuteCells (P) permutes the state cells as specified in Figure 2c.

• MixColumns (M) multiplies columns with involutive near-MDS matrix M in Figure 2d.

2.2 Previous Cryptanalysis Results
Security claims for MANTIS are given with respect to the data-time product limit of
D · T < 2126 due to generic attacks on its FX construction [KR96], similar to the claims
for PRINCE [BCG+12]. With a MILP model of the cipher’s differential behaviour in a
related-tweak model, the designers are able to prove lower bounds of at least 34, 44, 50
active S-boxes with MDP 2−2 for 5, 6, 7 rounds (corresponding to 12, 14, 16 S-box layers)
[BJK+16]. Explicit security claims are given for MANTIS5 for an attacker constrained to
D ≤ 230 chosen plaintexts or D ≤ 240 known plaintexts, and for MANTIS7 without further
constraints besides the data-time product D · T < 2126.

Dobraunig et al. [DEKM16] refuted the claim for MANTIS5 with a differential attack
using 230 chosen plaintexts and a practical runtime of about 1 hour, or about 238 cipher
calls. This attack exploits the minimalistic security margin and a strong clustering
effect of differential characteristics. Dobraunig et al. start from a truncated differential
characteristic and show how to find a consistent near-optimal differential characteristic.
Finally, they collect many more closely related near-optimal characteristics to obtain a
cluster with higher probability, estimated as 2−40.51, and with multiple starting differences,
thus reducing the data complexity with suitable initial structures.

Maria Eichlseder and Daniel Kales 5

3 Semi-Truncated Families of Differential Characteristics
In this section, we consider families of differential characteristics for tweakable block ciphers
designed according to the TWEAKEY/STK approach. Considering several characteristics
instead of a single one offers two primary advantages: First, by allowing several different
input differences, candidate plaintext pairs can often be generated more efficiently. This is
particularly useful when the data complexity is a limiting factor for the attack complexity,
as in FX designs. Second, by allowing several differences in the middle of the characteristic,
the overall probability that a pair follows any of those characteristics is increased.

The classical approach to take advantage of both effects is to consider truncated
differential characteristics [Knu94]. All published STK designs are strongly aligned, AES-
like ciphers, so we focus on such designs. When applied to AES-like designs, the collective
probability of (cell-wise) truncated differential characteristics is usually evaluated by
considering the approximate probability of all MixColumns transitions, which depends
primarily on the number of inactive output cells. For related-tweak truncated characteristics,
cancellations of tweak differences need to be taken into account in a similar manner. A
more fine-grained approach is to consider several individual differential characteristics, as
in multiple differential cryptanalysis [BG11], and base the analysis on the knowledge of
each individual characteristic’s probability.

When we try to apply the classical estimates for the probability of (aligned) truncated
characteristics in the context of tweakable block ciphers with a linear tweak schedule, we
notice that the estimates become very unreliable. Consider a related-tweak scenario. Once
the input tweak difference for a pair is fixed, the deterministic differential tweak schedule
imposes many constraints on the differences of the intermediate values in all rounds. Often,
these constraints will be contradictory; in some of the remaining cases, the probability that
the pair follows the truncated characteristic will be much higher than estimated. In their
analysis of Deoxys and Joltik, Cid et al. [CHP+17] observed that indeed many truncated
characteristics turn out to be impossible for all input tweak differences, and proposed
additional criteria to identify and eliminate such cases. Since truncated characteristics
are also used as an intermediate step to find or derive bounds on standard differential
characteristics, eliminating such impossible truncated characteristics is important for faster
search results and tighter bounds.

What remains unclear is if and how truncation can be used to improve actual differential
attacks on tweakable designs, and how the probability of such constrained truncated char-
acteristics should be estimated. In the attack on MANTIS5, Dobraunig et al. [DEKM16]
cluster several individual differential characteristics that follow the same truncated charac-
teristic for a fixed tweak difference. They start from one solution and manually add other,
similar characteristics, which deviate in a few S-box transitions. To describe the resulting
family of characteristics, they specify a small set of possible differences in each cell of the
characteristic. The probability is estimated on a cell-by-cell basis as follows. For each S-box
in SubCells, they compute the average transition probability for (uniformly distributed)
input differences in the input set, summed over the output differences in the output set.
For MixColumns, they only consider specific transitions that can be described by equality
constraints for the input differences drawn (uniformly randomly) from the identical input
sets in one column, similar to truncated characteristics. A practical verification confirmed
that the estimates are sufficiently accurate to practically perform the attack with the given
characteristic, although the authors observed small deviations in some steps.

However, when we try to extend the MANTIS5 approach to more rounds of MANTIS
or to other STK designs, we face several issues. First, finding clusters manually is tedious
and error-prone work, in particular if many truncated starting points are contradictory.
Second, the cell-wise probability estimate only works well for MANTIS5 due to the special
structure of the characteristic, where almost all S-box transitions have either only one
input difference or only one output difference with equiprobable transitions for all input

6 Clustering Related-Tweak Characteristics: Application to MANTIS-6

differences. Third, the “optimality” of the cluster (with respect to the truncated starting
point) is unclear, it might be possible to add further characteristics. In this section, we
address these issues with a more generally applicable, partially automated approach.

3.1 Finding Semi-Truncated Characteristics
Like [DEKM16], we want to cluster several characteristics that follow the same truncated
characteristic, and want to describe them in terms of cell-wise sets. More specifically, we
want to compactly characterize the set of all differential characteristics compatible with
several constraints configured by the cryptanalyst:

• Truncated constraints: A truncated characteristic serves as a starting point. We
chose candidates with a close-to-minimal number of active S-boxes obtained from a
MILP (or SAT) solver, i.e., optimized for differential probability; For target designs
with stronger S-boxes and lower diffusion, it may be more efficient to start from
truncated characteristics optimized for truncated probability instead.

• Fixed tweak difference: We consider only characteristics with one fixed tweak
difference, for several reasons. The value of the tweak difference can completely
change both the structure of the set of compatible characteristics and its probability,
so for an attack, it usually only makes sense to consider the “best” difference. For
many attacks, like boomerangs [CHP+17], only a fixed tweak difference is useful.
If the number of active tweak cells in the truncated characteristics is low, or if many
combinations can be excluded due to linear constraints, all possible tweak differences
can be evaluated based on the quality of the resulting semi-truncated characteristic.

• Input/output constraints: If the attack setup requires, the differential can be
additionally constrained. Adding constraints to a finished characteristic may also be
useful for tradeoffs between different attack phases, as discussed in the next sections.

We want to describe a superset of the set of consistent differential characteristics compatible
with these constraints that we can specify by listing possible cell differences for each state
cell, and considering the direct product of all these sets. Without the second and third
constraint, this superset would just be the truncated characteristic itself, where each cell
permits either only the zero difference or any difference (except maybe for the first/last
round); but with the constraints of a linear tweak schedule and a fixed tweak difference, this
superset is significantly reduced (as estimated by the “degrees of freedom” in [CHP+17]),
and we refer to it as a semi-truncated characteristic. We refer to all individual characteristics
in this superset as “compatible”, and use “consistent” or “possible” to mean characteristics
with non-zero probability.

To find this semi-truncated characteristic, we start with a model of the cipher based
on the initial constraints given by the truncated characteristic, tweak difference, and
optionally input/output differences as discussed above. For each operation of the cipher,
we define necessary conditions (constraints) for consistent input and output difference sets
imposed by the differential behaviour of the operation. We then look at each target state
between two operations in the cipher and apply an iterative constraint propagation to the
two neighbouring states. The constraint propagation for each operation is described in
the following and potentially reduces the input and output difference sets if they contain
unreachable differences. Afterwards, the target state is marked as “reduced”, whereas the
two neighbouring states are marked “not reduced” if they were changed by the update.
This is repeated until no more changes are observed during a round of propagation and all
states are “reduced”, resulting in the reduced semi-truncated characteristic.

Consider the state geometry and operations of MANTIS as an example. For each
intermediate state S = (S0, . . . , S15), let χ = (χ0, . . . , χ15) with χi ⊆ X = {0, . . . , f}
denote the set of differences specified by the semi-truncated characteristic. We now

Maria Eichlseder and Daniel Kales 7

consider an operation f ∈ {S, A, P, M} in some round of the cipher. Let S be the input
state and Sf = f(S) the output state of this operation. We iteratively update the sets
with propagated information for each operation:

SubCells (S): The DDT of the S-box defines the relation between consistent input and
output differences. We define the corresponding set transition function σ : 2X → 2X ,
which maps a set of input differences X ⊆ X to the set of reachable output differences:

σ(X) := { y ∈ X | ∃x ∈ X : DDT(x, y) > 0 }.

Since the MANTIS S-box is involutive, we can eliminate unreachable differences by

χS
i ← χS

i ∩ σ(χi) , i = 0, . . . , 15 ,

χi ← χi ∩ σ(χS
i) , i = 0, . . . , 15 .

PermuteCells (P): Let [P(χ)]i denote cell i of the permuted input characteristic χ. The
output set must equal the permuted input set, so we update

χP
i ← χP

i ∩ [P(χ)]i , i = 0, . . . , 15 ,

χi ← χi ∩ [P−1(χP)]i , i = 0, . . . , 15 .

AddTweakey (A): If τ denotes the tweak difference and S ⊕ τi := {s⊕ τi | s ∈ S}, update

χA
i ← χA

i ∩ (χi ⊕ τi) , i = 0, . . . , 15 ,

χi ← χi ∩ (χA
i ⊕ τi) , i = 0, . . . , 15 .

MixColumns (M): The possible transitions are analyzed column by column. Consider the
column with cell indices I = (I0, I1, I2, I3) ∈ I = {(0, 4, 8, 12), . . . , (3, 7, 11, 15)} and
the corresponding column characteristic χI = χI0 × . . .× χI3 . Since M is linear and
involutive, we update

χM
Ij
← χM

Ij
∩ {[M · δ]j | δ ∈ χI , M · δ ∈ χM

I } , I ∈ I, j = 0, . . . , 3 ,

χIj ← χIj ∩ {[M · δ]j | δ ∈ χM
I , M · δ ∈ χI} , I ∈ I, j = 0, . . . , 3 ,

where [M · δ]j denotes the value of cell j ∈ {0, . . . , 3} after applying the MixColumns
matrix to the column difference δ ∈ χI (or χM

I).
For the specific case of transitions that match the branch number bound for the
MANTIS matrix, these update conditions can be simplified [DEKM16]: All valid
transitions must have the same difference in all 4 active input/output cells, so all
active sets must be equal. Let χ∗

I = ([χ∗
I]0, . . . , [χ∗

I]3) refer to the 4 active cells out
of the 8 input/output column cells χI∥χM

I for column I, then we only update

[χ∗
I]0, [χ∗

I]1, [χ∗
I]2, [χ∗

I]3 ← [χ∗
I]0 ∩ [χ∗

I]1 ∩ [χ∗
I]2 ∩ [χ∗

I]3 , I ∈ I .

The updates are iterated until the semi-truncated characteristic converges to a fixed-point
where none of the update steps causes any more changes. The resulting reduced semi-
truncated characteristic still describes a superset of all consistent differential characteristics
that follow the initial constraints. In the following, “semi-truncated characteristic” always
refers to a reduced characteristic. Next, we want to estimate the probability of such a
reduced semi-truncated characteristic, and see how further constraints impact the resulting
attacks.

8 Clustering Related-Tweak Characteristics: Application to MANTIS-6

Comparison with [DEKM16]. The attack on MANTIS5 describes a cluster of differential
characteristics which are all compatible with a fixed truncated characteristic and tweak
difference, and can be described with a set of differences per cell. We target the same
type of clusters. However, that cluster was found by hand by starting from a single
characteristic and gradually adding other differences in individual cells that produce
similar characteristics with the same probability. As a result, the cluster in [DEKM16,
Figure 5] is neither reduced (in Round 10) nor fully expanded to include all characteristics
compatible with the constraints identified above (in Rounds 1 and 2, mentioned as an
observation in the practical verification). We describe and implement a general approach
for finding good clusters of this type.

3.2 Probability of Semi-Truncated Characteristics
The probability of a semi-truncated characteristic is defined as the sum of probabilities
of all compatible differential characteristics for a fixed input difference, averaged over all
compatible input differences. Similarly, the probability of a semi-truncated differential is
defined as the probability that any compatible output difference is observed for a fixed
input difference, averaged over all compatible input differences. As usual, we will assume
that the probability of an individual differential characteristic (for the fixed target key)
can be estimated based on the average probability (across all long-keys), which is in turn
computed by multiplying the differential probabilities of each round for a Markov cipher.

A straightforward approach for estimating the probability of a semi-truncated character-
istic is to apply the definition to each round operation, and multiply all the obtained round
probabilities. This approach was applied in the attack on MANTIS5 [DEKM16] (except
for the first round). The relevant round operations for evaluating the semi-truncated
probability are SubCells (as for individual characteristics) and MixColumns (as for truncated
characteristics); the other operations are trivial if the semi-truncated characteristic is re-
duced. In this straightforward computation we however make two Markovian assumptions:

(a) Uniformity of values: For each individual characteristic, we make the usual
Markov assumption that the input values to SubCells are uniformly distributed; and

(b) Uniformity of differences: By using the definition of the probability of a semi-
truncated differential and averaging over all input differences, we make a similar
uniformity and independence assumption regarding the distribution of the differences
in each round among the compatible characteristics.

In the case of MANTIS, the first assumption seems reasonable except in the inner part,
which features two successive SubCells layers without a key addition in between. For the
specific semi-truncated characteristic used for MANTIS5, the second assumption is also
well-justified in most rounds, for example due to the uniform distribution of the message
input or the most frequent transitions with 4 equiprobable differentials. However, in
general – and in Round 2 in particular – this assumption does not apply.

To obtain a more accurate estimate in general, it is necessary to consider not only the set
of differences at each step, but their expected distribution among all compatible, consistent
differential characteristics that contribute to the probability. Consider an intermediate
state S with semi-truncated characteristic χ. The difference in this state for a random
compatible plaintext pair is a random variable ∆ = (∆0, . . . , ∆15). We write ∆ ∈ χ for the
event ∆i ∈ χi for all i, and ∆ ∈ χ to state that all intermediate differences in the steps
up to and including S follow the semi-truncated characteristic for a particular input pair.
We are interested in the distribution of ∆ in case ∆ ∈ χ, and specifically, in the cell-wise
conditional distribution defined by the probability mass function φi:

φi : X → [0, 1], δ 7→ P
[
∆i = δ | ∆ ∈ χ

]
.

Maria Eichlseder and Daniel Kales 9

Now consider an operation f ∈ {S, A, P, M} that is applied to the input state S to produce
the output state Sf := f(S). We want to derive the conditional distribution φf

i of ∆f and
estimate the probability pf of the semi-truncated characteristic up to this state:

pf = P
[
∆f ∈ χf | ∆ ∈ χ

]
, pf = P

[
∆f ∈ χf

]
= pf · P

[
∆ ∈ χ

]
.

As an intermediate step, we consider the distribution of ∆f without the constraints χf ,
i.e., φ̃f

i under the condition ∆ ∈ χ instead of φf
i under ∆f ∈ χf (so φf

i (δ) = 0 for δ /∈ χf
i):

φ̃f
i : X → [0, 1], δ 7→ P

[
∆f

i = δ | ∆ ∈ χ
]
.

For AddTweakey and PermuteCells, we trivially get pf = 1, and φ̃f
i = φf

i is a permuted φi.
For SubCells, let P[α S→ δ] denote the differential probability of (α, δ) obtained from the
DDT of S-box S. Furthermore, let 1χi

denote the indicator function of χi: If δ ∈ χi then
1χi(δ) = 1, else 1χi(δ) = 0. If we assume that the distributions φi are independent, then

φ̃S
i (δ) =

∑
α∈χi

φi(α) · P
[
α

S→ δ
]

, pS
i =

∑
δ∈χS

i

φ̃S
i (δ) ,

φS
i (δ) = 1χS

i
(δ) · φ̃S

i (δ)
pS

i

, pS =
∏

i

pS
i .

For MixColumns, the distribution needs to be evaluated column by column for each I ∈ I.
Then, assuming the input distributions φi are independent, we get the following distribution
φM

I of column differences ∆I = (∆I0 , . . . , ∆I3) and (dependent) cell distributions φM
Ij

:

φ̃M
I (δI) = φI(M−1 · δI) =

∏
j

φIj ([M−1 · δI]j) , pM
I =

∑
δI ∈χM

I

φ̃M
I (δI) ,

φM
I (δI) = 1χM

I
(δI) · φ̃M

I (δI)
pM

I

⇒ φM
Ij

(δ) =
∑

[δI]j=δ

φM
I (δI) , pM =

∏
I

pM
I .

For the special case of meeting the branch number bound with a ∈ {1, 2, 3} active input
cells and 4− a active output cells, all active cells share the same set χ∗. Then, all active
output cells will also share an identical (dependent) distribution φM

∗ . For example, in the
simplest case that the input cells are also identically (independently) distributed by some
φ∗, any bias in this φ∗ will be “amplified” if a > 1:

pM
I =

∑
δ∈χ∗

(φ∗(δ))a , φM
∗ (δ) = 1χ∗(δ) · (φ∗(δ))a

pM
I

.

The independence assumptions we made at each step will usually not be satisfied. A
solution would be to keep track of and sum over the full-state distribution φ for each state
(within the constraints of χ), but this is not practicable for steps with too many active cells.
As a practical compromise, we consider the dependencies φM

I introduced by MixColumns in
the next SubCells, but assume that the following PermuteCells “clears” the dependencies
by reducing column-wise distributions to their cell-wise marginal distributions:

φ̃S
I(δI) =

∑
αI ∈χI

φI(αI) ·
∏

j

P
[
[αI]j

S→ [δI]j
]

, pS
I =

∑
δI ∈χS

I

φ̃S
I(δI) .

Comparison with related work. In contrast to the set-based approach in [DEKM16],
which is mostly useful in case of equiprobable characteristics and simple MixColumns
transitions, we consider the distribution of differences within a set and within a column.

10 Clustering Related-Tweak Characteristics: Application to MANTIS-6

This allows a broader application to general characteristics and MixColumns matrices. We
will later also use it in backwards direction starting from the ciphertext for key recovery.

Related approaches have also been applied to evaluate clusters of differential char-
acteristics in attacks on classical block ciphers without enumerating all characteristics.
Canteaut et al. [CFG+14] identify clusters of characteristics following structured “activity
patterns” in PRINCE that can be evaluated with a multiple differential attack. For
the specific iterative differential structure in PRINCE, they are able to derive a closed
representation of the probability from a description of the differential behaviour using
transition matrices, more specifically, a Kronecker product of the matrices describing the
S-box and the linear layer. The result is a quadratic submatrix of the full differential
propagation matrix, where the latter describes the transition probability of any full-state
input difference to any output difference, whereas the submatrix covers only the differences
included in the cluster. The product of these submatrices then describes the transition
probabilities contributed by all characteristics whose intermediate differences follow the
cluster. A similar approach using sparse matrix multiplication is described in more general
terms by Leurent [Leu15] and Biryukov et al. [BDP15] in the analysis of the closely related
ciphers LBlock-s and TWINE. This could also be applied for our characteristics as long as
the number of differences per state is sufficiently low; in particular, for MANTIS6, it is not
feasible to apply it to the unreduced truncated characteristic, but may be feasible for the
reduced semi-truncated characteristic with a careful implementation. However, to avoid
storing (and summing) the exact distribution of full-state differences as an intermediate
result after every operation, we choose to implement the approximation described in this
section: to compress the distribution to column level (with SubCells ◦MixColumns) and
then to cell level (with PermuteCells) by taking the marginal distributions instead of the
full joint distribution of the cell differences. Another, more superficial difference is that
we separate the success probability pf of and pf up to operation f from the resulting
distribution φf , whereas [Leu15, CFG+14] consider the combined transition probabilities
pf · φf from some starting difference.

3.3 Exploiting Semi-Truncated Characteristics
Data collection

Once we have fixed a semi-truncated characteristic and determined an estimate for its
probability, we need to consider how to efficiently generate message pairs with a com-
patible input difference, and how to evaluate the resulting output differences. All these
considerations depend on the size of the semi-truncated difference set relative to the total
number of possible differences. For this purpose, we identify the semi-truncated difference
χ = (χ0, . . . , χ15) with the corresponding expanded set of differences χ0× · · · ×χ15 ⊆ X 16.
We then denote the number |χ| of differences compatible with the semi-truncated difference
χ, and their ratio (or filter) ρ(χ) among all differences, by

|χ| := |χ0 × · · · × χ15| =
∏

i

|χi| ∈
[
1, |X | 16]

ρ(χ) := |χ|
|X 16|

=
∏

i

ρ(χi) ∈
[
2−16|X |, 1

]
.

We consider a semi-truncated characteristic with probability p and denote its plaintext-
ciphertext differential and tweak difference by (χM , χC) and χT , respectively. Note that
the tweak difference is fixed, so |χT | = |{δT }| = 1, whereas |χM |, |χC | ≥ 1.

Plaintext pairs can be generated efficiently with initial structures similar to the case of
multiple and truncated differentials [BG11]: We fix a base plaintext M and base tweak T .
Then, we query the ciphertexts for the set M×T of plaintext-tweak combinations, where

Maria Eichlseder and Daniel Kales 11

the message set M and tweak set T are defined as follows:

T = T ⊕
〈
χT

〉
= {T, T ⊕ δT }, M = M ⊕

〈
χM

〉
,

where ⟨S⟩ denotes the linear span generated by a set S, i.e., the set of all linear combinations
of elements in S. For each queried message in the first half T ⊕M of this set, there is
a corresponding queried message in the second half (T ⊕ δT) ⊕M for any compatible
difference δM ∈ χM . Thus, with 2·|⟨χM ⟩| chosen-plaintext queries, we obtained |⟨χM ⟩|·|χM |
compatible plaintext pairs. Among this set of compatible pairs, all message differences
compatible with χM (and each χM

i) appear equally often, consistent with the uniform
starting distribution we assumed in Subsection 3.2. We can repeat this procedure several
more times with different base inputs M and T to generate pairs at a constant rate of
|χM |/2 pairs per query. This is independent of the structure of the sets χM

i and the
resulting size of ⟨χM

i ⟩, except for the obtained granularity of the number of pairs.
If we want to generate enough pairs to expect R valid pairs compatible with the full

semi-truncated characteristic, the necessary number of queries NQ is

NQ = R · 2
|χM | · p

in case p−1 is an integer multiple of |⟨χM ⟩| · |χM |, or slightly more otherwise. The resulting
NP = R/p ciphertext pairs can be filtered down to a much smaller number of candidates
that still contains about R valid pairs based on the ciphertext difference, which must be
in χC , resulting in a number of filtered ciphertext pairs NF of

NF = R · ρ(χC)
p

.

This filtering can usually be done efficiently without the need to enumerate all R/p
ciphertext pairs. For example, we can select the cell positions Si with the smallest sets χC

i ,
and repeat the following for each base input (T, M): Store the first half of the ciphertexts
with tweak T in a hash table indexed by the values of the ciphertext cells Ci. Then, for
each ciphertext in the second half with tweak T ⊕ δT , only check the relevant hash table
entries according to χC

i for matches on the full output difference χC . Ideally, if there
are sufficiently many cells with |χC

i | = 1 (depending on the size |χM |), then each filtered
ciphertext pair can be identified with minimal amortized cost. In this ideal case, the total
complexity is dominated either by the number of queries NQ or the number of filtered
ciphertext pairs NF, both of which can be significantly smaller than NP = R/p.

Key recovery

Different approaches to key recovery are possible depending on the properties of the
semi-truncated characteristic, such as |χM |, |χC |, p, and the cardinalities in the initial
and final intermediate rounds. The details also depend heavily on the target cipher, in
particular its key schedule. In the remainder of the paper, we focus on an approach
that combines elements of classical 0-round and 1+-round key recovery using standard
differential characteristics or differentials. Below, we summarize the basic approach and
possible tradeoffs, but refer to Subsection 4.3 for a detailed practical application.

We recover the full key in three phases, where the first phase usually dominates the
attack complexity. Note that in this paper, we target a cipher with key size twice as large
as the block size, and also essentially more than twice as large as the key size that the
attacker can brute-force, so it is not sufficient to just recover a few key bits and brute-force
the rest. We assume we have generated a set of NF filtered ciphertext pairs that contains
at least one valid pair compatible with the semi-truncated characteristic, as described
above.

12 Clustering Related-Tweak Characteristics: Application to MANTIS-6

In the first phase, we will try to identify this valid pair and recover parts of the initial
and final round keys in the process. To this end, we guess parts of the initial and final round
key and test for each filtered pair if the resulting intermediate values are compatible with the
characteristic. We only keep round key candidates that produce valid intermediate values
for at least one pair. To estimate how many partial key guesses produce valid intermediate
values for a fixed pair, we will assume that the filtered differentials are distributed uniformly
among (χM , χC). Then, we use the same methods as in Subsection 3.2 for estimating
probabilities: for the initial rounds, we reuse the probability estimates for the relevant
parts of the characteristics; for the final rounds, we compute estimates in essentially the
same way, but based on the inverse round function. This phase reduces the space of key
candidates for each cell or column, and can be repeated to determine the relevant round
key values, as well as identify the valid pair.

In the second phase, we repeat a similar approach to test more conditions of the
characteristic and recover more key material. Since we only need to test for one or a few
valid pairs instead of all NF filtered pairs, we can simultaneously guess larger parts of the
key and thus cover more initial and final rounds. Finally, in the third phase, we brute-force
the remaining key space.

As a tradeoff to balance the complexities arising from NQ and NF, we can consider
minor adjustments of the semi-truncated characteristic. If NF dominates the complexity,
we can restrict χM in order to exclude the lowest-probability characteristics in the set
and thus increase p. As an effect, the product |χM | · p will slightly decrease (since we
excluded several previously valid pairs), leading to a slight increase in the data complexity
NQ. Another negative effect is that the first rounds of the cipher will provide a slightly
less effective filter for key recovery. On the other hand, NF and the resulting complexity
costs for key recovery will be significantly decreased.

Comparison with related work. Compared to standard key recovery based on counting
and ranking [BS90, Sel08], we interleave the key recovery more closely with the character-
istic. The result in our case is that we can recover the key with much less memory, but we
need to re-use the probability computations to obtain useful estimates. [DEKM16] used a
similar approach, but with a less accurate computation based on truncated estimates and
a less efficient filter. We also provide a more general description of the initial structure.

4 Application to MANTIS6

4.1 Finding a Semi-Truncated Characteristic for MANTIS6

We can now apply this approach to find a semi-truncated characteristic for MANTIS6.
First, we need a truncated characteristic as a starting point. A MILP model similar to
the designers’ [BJK+16] yields characteristics with 44 active S-boxes. However, when
evaluating these minimal truncated characteristics, all results show some undesirable
properties that negatively influence the final probability, such as MixColumns transitions
with branch number > 4 and tweak differences with more than 2 active cells. If we add
extra constraints to the MILP model to forbid such properties, the minimum number of
active S-boxes grows to 48. Most of the resulting solutions display the same inner structure
as the existing 5-round characteristic. We use one of these for the following attack.

To develop the truncated characteristic into a useable semi-truncated characteristic,
we need to fix the two active cells of the tweak difference. We can easily enumerate
all 225 possible values. The most promising choice is (a, a), the same as for MANTIS5.
Additionally, we can optionally add constraints on the input difference (to optimize the
initial structures and average probability) and the output difference (if the intended
distinguisher profits from it). For the output, we have no explicit constraints, but we

Maria Eichlseder and Daniel Kales 13

can consider some modifications of the basic truncated characteristic in the last rounds
to improve the attack, as discussed below. For the input, the unconstrained version for
the input already provides a good tradeoff between the data complexity and key recovery
complexity, so we do not add any constraints for the present attack.

Using the methods introduced in the previous section, the truncated characteristic is
developed into the semi-truncated characteristic illustrated in Figure 3b. Note that the
resulting characteristic has more active S-Boxes in Round 12 than the truncated version.
This was done to improve the overall probability by allowing all possible S-Box transitions
from Round 11 onward for some cells, resulting in more possible differences in the Round
12. We want to strike a balance between a good probability by allowing more S-Box
transitions in the later rounds, a good filtering option by keeping more cells inactive in the
ciphertext, and a good key-recovery process by having more active cells in Rounds 11 and
12. We obtained the best results by having exactly half of the cells in the ciphertext active.

Figure 3b only indicates the sets χf
i and the transition probability estimates pf at each

relevant step f , not the underlying distribution φf
i . As an example, consider the SubCells

step of round 2. After the preceding MixColumns, cells S6, S10, S14 (1) have the same
difference uniformly distributed in χi = {a, f, d, 5}. To analyze the transition probability of
these three cells, consider each of the four possible differences in turn. Difference a will be
mapped by SubCells to compatible differences in χS

6,10,14 with probability pS
6,10,14 = 1 · 1 · 1

4 ,
and the differences in SS

6 , SS
10 will be uniformly distributed (25 % each for a, f, d, 5).

Difference f has pS
6,10,14 = 1

2 ·
1
2 ·

1
4 , and a biased output distribution (50 % a, 50 % f).

Differences d and 5 each have pS
6,10,14 = 1

4 ·
1
4 ·

1
4 , and produce 100 % a. On average, the

success probability is 1
4 ·

11
32 ≈ 2−3.54, and the resulting distribution for i ∈ {6, 10} is

φS
i (a) = 4

8 , φS
i (f) = 2

8 , φS
i (d) = φS

i (5) = 1
8 . The remaining cells contribute pS

7,8 = 2−4. If
we follow the distribution of cell SS

10 (3) through MixColumns (note that the other two
cells marked 3 are uniformly distributed), we arrive at the same distribution in S12 at
the input of SubCells in Round 3. There, it contributes pS

12 = 11
16 ≈ 2−0.54 and produces

φS
12(a) = 4

11 , φS
12(f) = 3

11 , φS
12(d) = φS

12(5) = 2
11 .

All estimated transition probabilities of the semi-truncated characteristic are indicated
in Figure 3b, and the overall end-to-end probability is 2−67.73. If we compare this to the
best compatible single characteristic, we get a probability of 2−84 (assuming 1-round key
recovery, excluding the final S) or 2−68 (assuming 2-round key recovery, excluding final S, S).
On the other hand, if we naively evaluate the probability of the truncated characteristic
by counting the necessary cancellations, we get the much smaller probability of 2−100

(generously excluding initial A and final M, A, M, A, A). Of course, neither this truncated
characteristic nor the best single characteristic are necessarily optimal for MANTIS6.

4.2 Data Collection Phase
We need to generate about 267.73 message pairs to have an expected number of 1 pair
following the semi-truncated characteristic of Figure 3b. Based on a practical evaluation of
the success probability in Subsection 5.2, we want an expected number of 3 pairs following
the semi-truncated characteristic, and therefore need to generate 3 · 267.73 pairs. While
the trivial approach with 2 · 3 · 267.73 encryption queries would not exhaust the codebook
for this 64-bit tweakable block cipher, the resulting data-time product would exceed the
attacker’s complexity bounds. Instead, we take advantage of multiple input differences.

The semi-truncated input difference covers |χM | = 42 · 134 ≈ 218.80 differences and has
a span of |⟨χM ⟩| = 82 · 164 = 222. Using an initial structure as described in Subsection 3.3
(which coincides with the structure in [DEKM16] in two cells), we can generate |⟨χM ⟩| ·
|χM | ≈ 240.80 pairs from 2 · |⟨χM ⟩| ≈ 223 queries, giving a rate of 217.80 pairs per query
(Figure 3a). After repeating this for about 3 ·267.73/240.80 = 228.51 different base plaintexts,
we expect 3 valid pairs.

14 Clustering Related-Tweak Characteristics: Application to MANTIS-6

Mi = Mi ⊕
{
{

Mi = Mi ⊕
{
{

},

},

0

0

5

5

a

a

f

f

d

d

8

8

7

7

2

2

Ti = Ti ⊕ {

Ti = Ti ⊕ {

} ,

} ,

0

a

{

{

}
}

}
}

χM
4,11 = σ({a}) χM

2,6,8,13 = σ(σ({a}))

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

a

a

b

b

c

c

d

d

e

e

f

f

(a) Initial structure to get |⟨χM ⟩| · |χM | pairs from 2 · |⟨χM ⟩| queries

M

C

T

a

k0

k′
0

a

a
a

k1

k1+α

1

12

·2−10.80

·1

a
a

1
2

2
2

10

11

12

12

12

13

13

13

S

S

a
a

h ◦ C

a
a a
a

1
2

2
2

10

11

12

12

12

13

13

13

k1

k1+α

a
a

a
a

1 2

2
2

10

11 12

12

12

13

13

13

P

P

M

M

·2−4.00

·2−7.52

a

a
a

a 1
1
1

2

10

10

10

11

11

11

1213

·2−7.54

·2−2.33

a

a
a

a

a
a

4

4

3
3

3

8

8

9
9

9

S

S

a

a
h ◦ C

a
a

a

a
a

a

4

4

3
3

3

8

8

9
9

9

k1

k1+α

a
a
a

a
a
a

4
4

3
3
3

8
8

9
9
9

P

P

2

11

. . .

. . .

. . .

. . .

. . .

. . .

a
a
a

a
a
a

4
4

3
3
3

8
8

9
9
9

M

M

·2−6

·2−2

3

10

a

a

4
4

3

8
8

9

·2−4.54

·2−3

a
a

a
a

5

5

7

7

S

S

a
a

h ◦ C

5

5

7

7

k1

k1+α

5
5

7
7

P

P

M

M

·2−2

·2−2

4

9

5
5

7
7

·2−4

·1

a
a

a
a

S

S

a
a

h ◦ C

a

a

a

a

k1

k1+α

a
a

a
a

P

P

M

M

·1

·1

a
a

a
a

. . .

. . .

. . .h ◦ C

. . .

. . .

. . .

5

8

a
a

a
a

·2−4

·2−4

a
a

a
a

S

S

a
a

k1

k1+α

P

P

M

M

·1

·1

·1

·1

6

7

S

S

a
ah ◦ C

a
a

a
a

k1

k1+α

a

a

a

a

·1

·1

P

P

M

M

*

*

a

a

a

a

6

6

6

6

S

S

M·2−4

a ∆ = a
1 . . . 12 ∆ ∈ σ({a}) = {a, f, d, 5}

13 ∆ ∈ σ({a, f, d, 5})
∆ ∈ σ(σ({a, f, d, 5}) + a)

∆ ↔ ∆ + a
i ∆ identical

∆ ∈ σ({a, f, d, 5} + a)
∆ ∈ σ(σ({a, f, d, 5}))

(b) Semi-truncated differential characteristic and probability

Figure 3: Attack on MANTIS6

Maria Eichlseder and Daniel Kales 15

The family of characteristics given in Figure 3b has a number of conditions for valid
ciphertext pairs we can use to filter generated pairs before the key guessing phase:

(F1) Cells S0, S1, S3, S5, S7, S9, S12, S15 have ∆ = 0 (ρ(χC
0,1,3,5,7,9,12,15) = 2−4×8 = 2−32)

(F2) Cells S2, S6, S8, S13 have ∆ ∈ σ({5, a, d, f})[+a] (ρ(χC
2,6,8,13) = 2−0.299×4 = 2−1.196)

(F3) Cell S10 has ∆ ∈ σ({5, a, d, f}+ a) + a (ρ(χC
10) = 2−0.193)

(F4) Cells S4, S11 have ∆ ∈ σ(σ({5, a, d, f})) (ρ(χC
4,11) = 2−0.093×2 = 2−0.186)

Combining the filtering conditions (F1), (F2), (F3), and (F4), we have a filter with
probability ρ(χC) = 2−33.58 to narrow down the number of relevant pairs from NP = 3·267.73

to NF = 235.73. This step can be implemented efficiently by grouping the ciphertexts
into partitions based on the values of the relevant ciphertext cells and only combining
pairs in each partition. The expected number of valid pairs per base plaintext is ≪ 1, so
the overhead of generating and filtering pairs can be considered negligible. The resulting
complexity is NQ = 251.51 chosen ciphertext queries and accesses to a small data structure
for finding a set of NF = 235.73 pairs containing about 3 valid pairs.

As mentioned in Subsection 3.3, we could strike a different tradeoff between NQ and
NF by slightly modifying the input difference. One alternative possibility would be to
exclude input differences with low probability and reduce the span per base plaintext
accordingly, for example to the same set as χM

4,11 = σ({a}) as in MANTIS5 [DEKM16] with
4 differences per active cell in χM . The resulting probability p would increase by a factor
of 23 and decrease NF accordingly, but the overall attack complexity also increases. If we
only need very few base plaintexts, this change would also improve the query granularity
and possibly the variance in the number of solutions per repetition, but we already have a
very large number of base plaintexts in this attack anyway. Thus, we keep the original
characteristic of Figure 3b. An additional effect of this choice of larger sets is that the
attack is more robust to differential invariance effects as observed for MANTIS5 [DEKM16],
since not all transitions are invariant with Sa,τ = 0 under a fixed τ (see Figure 2a).

4.3 Key Recovery Phase
We can now use the filtered pairs to narrow down the keyspace (Subsection 3.3). The
end-to-end probability of 2−67.73 is smaller than the generic probability 2−64 of any fixed
output difference, and much smaller than the generic probability of the semi-truncated
difference at any step in the last rounds. Additionally, the 128-bit key is twice as large as
the block size. This makes the key recovery approach somewhat more challenging.

Phase 1: Recovering 61 bits of key material from filtered pairs

The first step is the recovery of 61 total bits of key information. We check our key guesses
against several constraints in the semi-truncated characteristic of Figure 3b (Table 1).

• Round 1. Guessing 24 bits of the subkey k0 + k1 allows us to compute forward until
after the SubCells step in round 1, where we can check the conditions (C1), (C2),
(C3) listed in Table 1. The probabilities of these conditions to hold for a filtered
output pair can be evaluated with the approach of Subsection 3.2 as 2−14.80.

• Round 12. We can additionally guess 32 bits of the subkey k′
0 + k1 and compute

back before the last SubCells step in round 12, where we can check the conditions
(C4), (C5), (C6), (C7) of Table 1. The total probability is 2−20.71.

• Rounds 2 and 11. Guessing keys for further rounds is more computationally
expensive, since keyguesses depend on both keyguesses for previous rounds, as well

16 Clustering Related-Tweak Characteristics: Application to MANTIS-6

as inactive cells in the plaintext/ciphertext, for which the key also would have to be
guessed. However, due to the linear nature of the MixColumns step, we can target
some cells after the SubCells step in rounds 2 and 11 with conditions (C8), (C9).

(C8) depends on the keyguesses made for (C2) and (C4), plus 4 bits S2 ⊕ S8 ⊕ S13 of
k1. Of these 4 bits, 3 have already been determined, so we guess only 1 bit.

(C9) depends on the keyguesses for (C5), plus 4 new bits S4 ⊕ S11 ⊕ S14 of k1.

The probability that a pre-filtered ciphertext pair follows the conditions (C1) to (C9) is
estimated using the methods of Subsection 3.2, resulting in a total probability of 2−41.21.
Thus, we expect that for a single ciphertext pair, out of the 261 possible sub-key candidates,
only 261−41.21 = 219.79 should satisfy all conditions (C1) to (C9). Repeating this process
for all 235.73 pairs results in a total of roughly 219.79+35.73 = 255.52 valid subkeys, reducing
the key space by a factor of 25.48. We need to repeat this process a total of 12 times to
filter out the correct 61-bit subkey. These 12 repetitions increase the overall time and data
complexity by a factor of 23.58.

To evaluate the complexity of this approach, we extend the bundle approach of
[DEKM16]. For each of the conditions (C1) to (C7), we can perform independent key
guesses, and the resulting list of 220.49 key candidates for the 56-bit subkey will be
structured accordingly as a direct product of sublists of 8-bit, 12-bit, . . . , 4-bit subkeys
based on (C1), (C2), . . . , (C7). The maximum sublist size is about 24 from (C1). Then,
for each pair, we can evaluate conditions (C8) and (C9), which have dependencies. By
combining the sublists for (C2)+(C4) (for (C8)) and (C5) (for (C9)) and guessing the few
additional bits, we have about ≈ 28 candidates to test per pair. The result is another
sublist to be combined with the existing lists. The total time to generate these lists is less
than 252, based on the total number of pairs, repetitions, and maximum subkey size.

Per repetition r ∈ 1, 2, . . . , 12, we now have a set with one bundle of sublists per pair,
and need to compute the intersections. The straightforward approach is to now expand
each bundle to get a full set of 255.52 valid sub-keys for each repetition, and finally perform
a set intersection of all 12 sets to calculate the correct 61-bit subkey. (One could also
consider an advanced approach where only the lists of valid subkeys per pair are stored,
and then only combined when intersecting different iterations. This approach can lower the
memory requirements for some parts of this phase.) Using a hash-set as a data structure
this can be done with a computational complexity of 255.52 (only the first intersection is
this expensive, as the set of valid keys shrinks with each intersection performed).

Table 1: Conditions used for key recovery and their probabilities (for a pre-filtered pair).
Round Cond. Cells Difference ∆ Prob. Key bits

1
(C1) S4, S11 a {a} 2−4 8
(C2) S2, S8, S13 2 {5, a, d, f}, equal 2−9.10 12
(C3) S6 1 {a, f} 2−1.70 4

12

(C4) S2, S8, S13 12 {5, a, d, f}, equal 2−9.1 12
(C5) S4, S11, S14 13 σ({5, a, d, f}), equal [+a] 2−8.11 12
(C6) S6 11 {5, a, d, f} 2−1.7 4
(C7) S10 10 {5, a, d, f}+ a 2−1.8 4

2 and 11 (C8) S7 and S7 a {a} 2−4 (C2)+(C4)+1
11 (C9) S5 9 {5, a, d, f} 2−1.7 (C5)+4

Maria Eichlseder and Daniel Kales 17

Phase 2: Recovering 43 bits of key material from valid pairs

Using the recovered 61 bits of information about the secret key, we can further filter the
12× 235.73 plaintext pairs i ∈ Ir. Since the correct key misidentifies a pair as false positive
with a probability of about 2−41.21, we expect that only the ≥ 12 valid pairs remain. We
can now use those 12 valid pairs to recover another 43 bits of key information in two steps.

• Round 2. We can recover 29 bits of key material by targeting cells S0, S5, S10 of
the S-Box output in Round 2, where we can verify condition (V1) listed in Table 2.
These cells already depend on many key bits, as illustrated in Figure 4. Taking into
account the previously recovered 61 bits, we need to guess another 29 bits of key
information. Condition (V1) holds with a probability of ≈ 2−4.25, or ≈ 2−51 for all
12 remaining pairs, so we expect that only the correct 29-bit subkey remains.

• Round 11. In a similar fashion, we can recover 14 more bits by targeting cells
S6, S12 of the S-Box input in Round 11 and verifying condition (V2). Taking into
account the previously recovered 61 + 29 key bits, we need to guess another 14 bits.
Condition (V2) holds with a probability of ≈ 2−2.54, or ≈ 2−30.48 for all 12 remaining
pairs, and should uniquely determine the correct 14-bit subkey.

Table 2: Conditions used for key recovery and their probabilities (for all 12 valid pairs).
Round Cond. Cells Difference ∆ Prob. Key bits
2 (V1) S0, S5, S10 3 {5, a, d, f}, equal 2−4.25×12 +29
11 (V2) S6, S12 8 {5, a, d, f}, equal 2−2.54×12 +14

k0

a
a

k1

1
S

a
a

k1

I

I

I

II

II

II

III

III

III

h ◦ C

P M 3
3

3
S

2

k′
0

a
a

k1

12

S

a
a

k1

IV

IV

IV

V

V

V

h ◦ C

P M 8

8

S

11

aa ∆ = a
3 , 8 ∆ ∈ σ({a}) = {a, f, d, 5}

Cells relevant to the result
Key cells relevant to the result

i ∆ identical I , II , III, IV, V only XOR of cells relevant

Figure 4: Cells influencing the 29-bit (top) and 14-bit (bottom) key-recovery process.

Phase 3: Recovery of k0 and k1, and summary of complexities

So far, we have recovered 61 + 29 + 14 bits of information about the key material. This
results in 104 linearly independent linear equations for k0 and k1. To recover the full key,
we have to guess the 24 remaining bits, resulting in a complexity of 224 trial encryptions.

In summary, the complexity of this attack is dominated by the first key recovery step,
where we store and intersect sets of 255.52 key candidates.

18 Clustering Related-Tweak Characteristics: Application to MANTIS-6

5 Experimental Verification
5.1 Experiments on the Probability of the MANTIS6 Characteristic
We verified the probabilities of the semi-truncated characteristic in Figure 3b using trial
encryptions with random base plaintext and tweak pairs (matching the difference in the
semi-truncated characteristic). Due to the nature of the involved probabilities, we could
not verify the full semi-truncated characteristic. For a single fixed key, we verified the
round-reduced semi-truncated characteristic for ≈ 218.5 base plaintexts, corresponding to
≈ 259.3 pairs. Additionally, we observed the behaviour for ≈ 216.6 random keys, with one
base plaintext per key, corresponding to ≈ 257.4 pairs.

Speeding up the first round. We can use an observation to speed up the experimental
verification, allowing us to skip the computations up until and including the first S-Box
step. For a single base plaintext we can observe the following: A uniform distribution of
the base plaintext values will result in predictable distributions of the following cells after
the constraints of the first S-Box step:

• Cells S0, S1, S3, S5, S7, S9, S10, S12, S14, S15 (→). Since these cells are not active
it is straightforward to see that a uniform distribution of the values of these cells in
the input and tweak will lead to a uniform distribution after the first S-Box layer.

• Cells S2, S6, S8, S13 (→). Considering the allowed differences in the input set
(), querying the span of these differences and combining all valid differences also
results in a uniform distribution of all allowed value pairs in the output cells.

• Cells S4, S11 (→ a). Due to the nature of the initial structure for these cells (see
Figure 3a), the resulting distribution of the cells S4, S11 after the S-Box layer is not
uniform over all possible values. In fact, when enumerating all possible values for these
cells, we discover that there are two distinct distributions possible. Depending on the
base plaintext chosen, valid pairs are either in the set {(1, 11), (2, 8), (6, 12), (7, 13)}
or {(0, 10), (3, 9), (4, 14), (5, 15)}, with uniformly distributed values inside these sets.

This allows us to skip the first round in the experimental verification. Instead of sampling
the base plaintext and tweak at random, we only sample the tweak and state after the
first S-Box layer. We pick one of the two distributions for cells S4, S11 each, and sample
the rest of the cells from a uniform distribution of all possible values. Then all possible
differences are added to this state, resulting in 230 pairs per base plaintext. We verified
that these pairs are indeed equal to the pairs leftover after the first S-Box round when
starting with an equivalent base plaintext. This process allows us to save a factor of 210.8

computations when verifying the characteristic.
As we can see in Table 3, the experimental results align closely with the theoretical

estimates. Figure 5 shows both the observed total probability pf up to a given operation
f as well as the deviation of the observed individual transition probability pf from the
estimate in Figure 3b. The biggest deviation from the expected probability is in the S-Box
layer of round 3, with a factor of 20.26 (20.18) for a single (random) key(s). The large
deviation at the later steps (Rounds 10+) is explained due to the small number of valid
pairs that reached this step in our experiments.

5.2 Experiments on the Success Probability
The key-recovery attack in Section 4 depends on the fact that for a given set of 267.73

plaintext-tweak pairs we expect at least one pair to follow the semi-truncated differential
characteristic in Figure 3b. Again, due to the large number of computations involved,

Maria Eichlseder and Daniel Kales 19

P S M S M S M S M S M S M ∗ M S M S M S M S M S M S C

2−60

2−40

2−20

20

Round 1 2 3 4 5 6 7 8 9 10 11 12

Pr
ob

ab
ili

ty
p

f
Theoretical estimate Random keys Fixed key

(a) Probability pf of a pair following the semi-truncated characteristic.

P S M S M S M S M S M S M ∗ M S M S M S M S M S M S C

2−1

20

21

Round 1 2 3 4 5 6 7 8 9 10 11 12

D
ev

ia
tio

n
p

f
/p

f es
t

Theoretical estimate Random keys Fixed key

(b) Deviation of observed transition probability pf from estimate pf
est.

Figure 5: Experimental verification of estimated probability for a single fixed key and
random keys . Empty marks , indicate a low sample size (< 10).

0.5 0.75 1 1.5 2
0 %

20 %

40 %

60 %

80 %

100 %

Expected number of valid pairs x = E[X]

Su
cc

es
s

pr
ob

ab
ili

ty
P[

X
≥

1] X ∼ B(N, p)
p→ 0, N = x · p−1

Round 9 (M) (26 samples)
p = 2−52.88, N = x · 252.88

Round 8 (S) (28 samples)
p = 2−50.88, N = x · 250.88

Inner Round (212 samples)
p = 2−46.88, N = x · 246.88

Round 5 (S) (216 samples)
p = 2−42.88, N = x · 242.88

Figure 6: Experimentally observed success probability P[X ≥ 1] of at least one valid pair
within a run of N pairs, where X is the number of valid pairs up to some round in a run.
The number of pairs N ≈ x · p−1 is chosen such that x = E[X] ∈ {0.5, 0.75, 1, 1.5, 2}, based
on an estimated probability p of a pair to be valid.

20 Clustering Related-Tweak Characteristics: Application to MANTIS-6

Table 3: Experimental verification of estimated probabilities pf . Marks ‘◦’ indicate a low
sample size (< 10). Empty values ‘—’ indicate that no valid pairs were found for this step.

Round Step Theoretical Fixed key Random keys

1 S −10.80 −10.80 −10.80
M −4.00 −4.00 −4.00

2 S −7.54 −7.54 −7.56
M −6.00 −6.02 −5.99

3 S −4.54 −4.80 −4.72
M −2.00 −2.00 −2.00

4 S −4.00 −3.97 −3.93
5 S −4.00 −4.01 −4.00
* S ◦M ◦ S −4.00 −4.02 −3.96
8 S −4.00 −4.13 −4.06

10 M −2.00 −2.08 −2.43 ◦

S −3.00 −2.83 ◦ −1.86 ◦

11 M −2.00 −2.17 ◦ −0.32 ◦

S −2.33 −1.00 ◦ −1.00 ◦

12 M −7.52 — —

we cannot verify the success probability of the full attack. Instead we look at several
round-reduced versions of the semi-truncated characteristic, removing rounds from the
end. In our experiments, we choose a number of base-plaintexts that lead to an expected
value of {0.5, 0.75, 1, 1.5, 2} valid pairs per run. In Figure 6 we can observe the probability
of at least one pair following the semi-truncated characteristic up until the given round.
The probability that at least one valid pair is contained in a run increases when we are
closer to the full semi-truncated characteristic. This is a result of the larger number of
base-plaintexts needed to reach an expected value of one surviving pair, reducing the
overall variance of the results (in earlier rounds the average number of valid pairs is as
expected, however the valid pairs form clusters, leading to many runs without valid pairs).

As can be seen in Figure 6, the probability of a pair being valid is approaching the
expected probability of a binomial distribution and is almost identical for the later rounds.
Therefore we estimate the overall success probability for one repetition based on a theoretical
binomial distribution. Using a number of pairs N that results in x = E[X] = 1 expected
pairs would give a success probability of P ≈ 0.63 per repetition, and an overall success
probability of only Pattack ≈ 0.016 after 9 repetitions, which is not practical. Therefore we
choose to increase the number of starting pairs so that a number of x = E[X] = 3 pairs is
expected per repetition. This results in a probability of P ≈ 0.95 per repetition, and an
overall success probability of Pattack ≈ 0.54 after 12 repetitions. The increased number of
base plaintexts increases the overall data complexity and in turn also the computational
complexity of the attack by a factor of 3 when compared to the approach with one expected
valid pair. The attack complexities throughout this paper already include this factor.

Acknowledgements. The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme (grant agreement
644052 HECTOR).

Maria Eichlseder and Daniel Kales 21

References
[Ava17] Roberto Avanzi. The QARMA block cipher family – Almost MDS matrices over

rings with zero divisors, nearly symmetric Even-Mansour constructions with
non-involutory central rounds, and search heuristics for low-latency S-boxes.
IACR Transactions on Symmetric Cryptology, 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, volume 9453 of LNCS, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
PRINCE – A low-latency block cipher for pervasive computing applications.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 208–225. Springer, 2012.

[BDP15] Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential analysis and
meet-in-the-middle attack against round-reduced TWINE. In Gregor Leander,
editor, FSE 2015, volume 9054 of LNCS, pages 3–27. Springer, 2015.

[BG11] Céline Blondeau and Benoît Gérard. Multiple differential cryptanalysis: Theory
and practice. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages
35–54. Springer, 2011.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume 9815 of LNCS,
pages 123–153. Springer, 2016.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO 1990, volume
537 of LNCS, pages 2–21. Springer, 1990.

[CFG+14] Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and Jean-
René Reinhard. Multiple differential cryptanalysis of round-reduced PRINCE.
In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of
LNCS, pages 591–610. Springer, 2014.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Transactions
on Symmetric Cryptology, 2017(3):73–107, 2017.

[DEKM16] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel.
Practical key-recovery attack on MANTIS5. IACR Transactions on Symmetric
Cryptology, 2016(2):248–260, 2016.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square attack
on 7-round Kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve
Schneider, editors, ACNS 2016, volume 9696 of LNCS, pages 500–517. Springer,
2016.

22 Clustering Related-Tweak Characteristics: Application to MANTIS-6

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, volume 8874 of LNCS, pages 274–288. Springer,
2014.

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE 1994, volume 1008 of LNCS, pages 196–211. Springer, 1994.

[KR96] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key
search. In Neal Koblitz, editor, CRYPTO 1996, volume 1109 of LNCS, pages
252–267. Springer, 1996.

[Leu15] Gaëtan Leurent. Differential forgery attack against LAC. In Orr Dunkelman
and Liam Keliher, editors, SAC 2015, volume 9566 of LNCS, pages 217–224.
Springer, 2015.

[LRW02] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages
31–46. Springer, 2002.

[Sel08] Ali Aydın Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, 2008.

	Introduction
	Background on MANTIS
	The Tweakable Block Cipher MANTIS
	Previous Cryptanalysis Results

	Semi-Truncated Families of Differential Characteristics
	Finding Semi-Truncated Characteristics
	Probability of Semi-Truncated Characteristics
	Exploiting Semi-Truncated Characteristics

	Application to MANTIS-6
	Finding a Semi-Truncated Characteristic for MANTIS-6
	Data Collection Phase
	Key Recovery Phase

	Experimental Verification
	Experiments on the Probability of the MANTIS-6 Characteristic
	Experiments on the Success Probability

