
Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware

Iddo Bentov
Cornell University

Yan Ji
Cornell University

Fan Zhang
Cornell University

Yunqi Li
SJTU

Xueyuan Zhao
SJTU

Lorenz Breidenbach
ETH Zürich and Cornell Tech

Philip Daian
Cornell Tech

Ari Juels
Cornell Tech

Abstract

We propose Tesseract, a secure real-time cryptocurrency
exchange service. Existing centralized exchange
designs are vulnerable to theft of funds, while
decentralized exchanges cannot offer real-time cross-
chain trades. All currently deployed exchanges are
also vulnerable to frontrunning attacks. Tesseract
overcomes these flaws and achieves a best-of-both-
worlds design by using Intel SGX as a trusted
execution environment. Furthermore, by running
a consensus protocol among SGX-enabled servers,
Tesseract mitigates denial-of-service attacks. Tesseract
supports not only real-time cross-chain cryptocurrency
trades, but also secure tokenization of assets pegged
to cryptocurrencies. For instance, Tesseract-tokenized
bitcoins can circulate on the Ethereum blockchain
for use in smart contracts. We provide a reference
implementation of Tesseract that supports Bitcoin,
Ethereum, and similar cryptocurrencies.

1 Introduction

The rise of Bitcoin [54] has spawned many hundreds
of other cryptocurrencies as well as application-specific
units of value known as crypto “tokens.” This diverse
ecosystem of assets has in turn led to a large and dynamic
array of cryptocurrency exchanges, platforms that allow
users to trade different cryptocurrencies against one
another and/or for fiat currencies. At the time of writing,
the aggregate daily trading volume of cryptocurrency
exchanges exceeds $25 billion.

Unfortunately, cryptocurrency exchanges suffer from
a variety of security problems. Currently, the
most popular exchanges are centralized, meaning that
they hold traders’ assets while trades are executed.
Such exchanges support real-time trading and often
automatically match buy and sell orders. They are
vulnerable, however, to theft of traders’ funds (cf.

Section 3.1). In a number of high-profile incidents, funds
have been stolen when exchanges were breached or other
forms of malfeasance took place, e.g., [25, 6, 38, 52].

Permissionless blockchains, however, are designed
specifically to eliminate trust assumptions between
transacting parties by avoiding centralization. A
trust-free cryptocurrency exchange can be realized for
transactions across such blockchains in the form of
atomic intra-chain or cross-chain swaps (ACCSs) [16],
transactions that exchange cryptocurrencies between
pairs (or among sets) of users in a fair, all-or-nothing
manner. ACCSs, though, require users to wait many
minutes (in fact, often hours) for a trade to execute.
Additionally, atomic swaps in general aren’t sufficient
to realize an exchange: A mechanism for matching
orders or otherwise performing price discovery is also
necessary. (Since ACCSs serve as a useful reference
point, we elaborate on the concept and its limitations in
Section 2.)

The systemic risk of theft in centralized exchanges has
led to the rising popularity of decentralized exchanges
such as EtherDelta [64] and the soon-to-be-implemented
0x [81], AirSwap [57], and Kyber Network [46].
These systems hold traders’ funds and settle transactions
in smart contracts, eliminating the risk of theft in
centralized exchanges. Unfortunately, they have other
drawbacks. Their on-chain settlement means that they
cannot support real-time trading. Additionally, while
their use of smart contracts conveys an appearance
of trustworthiness, they are vulnerable to various
frontrunning attacks by exchanges and other users.

Achieving the best of both worlds has been a standing
challenge, but a seemingly elusive one. An ideal
cryptocurrency exchange would be real-time like a
centralized exchange, meaning that participants can
respond to price fluctuations and alter their positions with
low latency. It would support even traders that choose to
utilize automated programs for high frequency trading
and arbitrage (cf. [7]), who may wish to modify their

1

positions in milliseconds. At the same time, such an
exchange would be trust-free, protecting against theft
in the way that decentralized exchanges do, but also
eliminating frontrunning attacks that exploit blockchain
latencies.

In this work, we present Tesseract, a cryptocurrency
exchange that achieves this ideal set of properties.
Tesseract is real time. Traders can rapidly observe the
alterations in the buy (a.k.a. “bid”) and sell (a.k.a.
“ask”) orders on the exchange, as well as external
events (e.g., [85]), then modify their trading positions
in milliseconds. By performing fast price discovery,
they can drive price convergence so that the gap (a.k.a.
“spread”) between the bids and asks is small, leading to
efficient markets like those in major financial systems.
Tesseract also prevents theft of users’ funds by exchange
operators and hackers as well as a variety of frontrunning
attacks present in existing cryptocurrency exchanges.

Tesseract relies on SGX, a trusted execution
environment supported by an instruction-set architecture
extension in recent-model Intel CPUs [1, 34, 51].
SGX allows applications to execute within a
protected environment called an enclave that ensures
confidentiality and software integrity. It enables
Tesseract to behave like a trusted third party, controlling
funds without exposing them to theft while preventing
frontrunning by the exchange operator. Additionally,
Tesseract provides mitigation against denial-of-service
(DoS) attacks via a consensus protocol among SGX-
enabled nodes.

Tesseract supports cross-chain trading in which assets
are exchanged across distinct blockchains. Trades within
a single blockchain, e.g., exchange of tokens and Ether
within Ethereum, can also be important (cf. [67, 18, 60,
19, 15]). While this use case can be achieved at least
in part using smart contracts, a significantly simplified
variant of Tesseract can offer the added benefit of real-
time trading, which smart contracts cannot support.
Tesseract also supports a tokenization scheme that allows
pegged tokens to ciculate across blockchains, without
relying on a human element for security (see Section 7).

The main challenge in the design of Tesseract is
dealing with powerful network adversaries. Such
adversaries can perform an eclipse attack in which an
exchange is presented with fake blockchain data. We
show how to address this problem by checkpointing
trustworthy blocks within the Tesseract application and
having it monitor the cumulative difficulty of newly
furnished blocks. A network adversary can also suppress
messages / transactions issued by the exchange in an
attempt to interfere in on-chain settlement of trades, e.g.,
permitting partial settlement in which cryptocurrency
flows to the adversary from a counterparty but not
from the adversary, resulting in the adversary stealing

funds. We express a theoretical solution to these
network attacks in terms of an ideal functionality
called a refundable multi-input transaction (RMIT).
RMIT provides a conceptual springboard for securely
architecting a secure cross-chain exchange. We present
a highly efficient realization of RMIT in Tesseract, in a
protocol involving a network of multiple SGX-backed
nodes running Paxos. While only one node handles
assets directly, others can execute or cancel transactions
should the main node fail. This protocol enforces a
key fairness property we define called all-or-nothing
settlement.

Our security assumptions around Tesseract are quite
conservative. We assume that an adversary (potentially
the exchange operator) can gain complete physical
access to the host in which the funds are stored and
complete control of its network connections. We do
assume that the code that we run inside the SGX enclave
is secure against side-channel attacks [84], but this code
is constant-time and constant-memory. In a sense, the
Tesseract exchange still relies on a trusted party in the
form of the hardware manufacturer, because the private
key that resides inside CPU (and generates signatures for
remote attestation) is provisioned by the manufacturer. It
can be argued that a weaker yet similar form of trust is
required in a practical instantiation of any cryptographic
protocol, since the manufacturer may be able to attack
the protocol by embedding malicious logic into the
hardware. We also, however, incorporate a scheme of
double attestation (Section 4.3) that provides an extra
layer of defense against a corrupt manufacturer. Thus,
Tesseract still requires trust, but to a significantly lesser
degree than centralized exchanges and other possible
real-time exchange schemes (cf. Section 3).

In summary, our contributions in this paper are as
follows:

• We introduce Tesseract, an SGX-backed
cryptocurrency exchange that can support a
wide variety of transaction types, with cross-chain
trading as its primary application.

• We consider attacks by powerful network
adversaries that may seek to mount eclipse
attacks or suppress transactions to achieve unfair
settlement and thus theft of funds. We define a key
fairness property called all-or-nothing settlement
and show how to realize an exchange that achieves
this property using as a conceptual building block
an ideal functionality called RMIT.

• We present practical techniques to achieve all-or-
nothing settlement in Tesseract. These techniques
include within-enclave blockchain monitoring to
prevent eclipse attacks and use of a consensus

2

group of SGX-backed nodes that can enforce and/or
cancel transactions in the case that the main (asset-
holding) exchange node becomes unavailable.

• We implement proof-of-concept of Tesseract,
describing our parameter and design choices.

2 Atomic cross-chain swaps

A secure protocol for ACCSs was given in [16].
We specify an intuitive description of the protocol
in Figure 1, demonstrating a swap of bitcoins for
litecoins as an example. The main thrust of the protocol
Πaccs is that Alice can redeem Bob’s coins only by
publicly revealing her decommitment x on a blockchain,
thereby allowing Bob to use x to redeem Alice’s coins on
the other blockchain. To avoid a race condition, Alice’s
coins remain locked for s0 more time than Bob’s coins,
which should give Bob enough time to learn x and claim
Alice’s coins. The reason behind the time limits is that
an honest party should be able to gain back possession
of her money in the case that the other party aborted. We
provide a proof of security for Πaccs in Appendix A.

The first two steps of Πaccs terminate after c0 and f (c0)
confirmations on the Bitcoin and Litecoin blockchains,
so that the transactions will become irreversible with a
high enough probability. The function f (·) estimates a
level of confidence for TXB’s irreversibility that is on
par with that of TXA. Per Section 3.1, a reasonable
choice for f (·) can be, e.g., f (n) = 3n. Combined
with a sensible choice for the parameters t0,s0 (see
Appendix A), Alice and Bob will need to wait for hours
(or perhaps minutes with faster cryptocurrency systems)
until the Πaccs protocol completes.

In the accompanying illustration (Figure 2), Alice
trades n1 = 2 BTC for Bob’s n2 = 600 LTC. The last
block of the Bitcoin blockchain is T1, and the last block
of the Litecoin blockchain is T2. The time limit t0 is
set to about two weeks into the future (i.e., 2000 more
blocks in Bitcoin, and 8000 more blocks in Litecoin, as
the block creation rate is 4 times faster in Litecoin than
in Bitcoin). The extra safety time s0 is set to 100 Bitcoin
blocks, which is ≈ 16 hours on average. Note that both
Bitcoin and Litecoin allow specification of the time limit
in seconds rather than blocks (since valid blocks need
to specify a timestamp that is within certain leniency
bounds), which adds convenience but not security.

Since the long confirmation time in decentralized
networks makes Πaccs slow, it is likely that the agreed
upon price (in the example, n2/n1 = 300 LTC per
BTC) was decided by observing the prices in real-time
exchanges. This implies that the parties cannot respond
to price fluctuations in a fair manner: if Bob is rational
then he may cancel the trade after the first step (if the

Protocol Πaccs

1. Alice samples a random x ∈ {0,1}λ , computes a
hash commitment Y = hash(x), and broadcasts
a transaction TXA that spends n1 BTC into an
output script that dictates:

• Alice can gain back possession of her n1 BTC
after c0 + t0 + s0 blocks.

• Bob can redeem the n1 BTC by supplying a
preimage of Y and signing with his secret key.

2. After TXA is buried under c0 extra blocks
and therefore becomes irreversible w.h.p., Bob
broadcasts a transaction TXB that spends his n2
LTC into an output script that dictates:

• Bob can gain back possession of his n2 LTC
after 4t0 blocks.

• Alice can redeem the n2 LTC by supplying a
preimage of Y and signing with her secret key.

3. After TXB is buried under f (c0) extra blocks
and therefore becomes irreversible w.h.p., Alice
redeems the n2 LTC of Bob by revealing x.

4. Bob redeems the n1 BTC of Alice by supplying x.

Figure 1: Protocol for an atomic cross-chain swap.

Alice:

 if block# > T1+2100
 sigverify PKA
 else
 (sigverify PKB) AND (x: hash(x)=Y)

 amount: 2

 sigverify PKA

 amount: 2

TXA

Bitcoin:
T1Genesis

Litecoin:
T2Genesis

 Bob:

 if block# > T2+8000
 sigverify PKB
 else
 (sigverify PKA) AND (x: hash(x)=Y)

 amount: 600

 sigverify PKB

 amount: 600

TXB

Figure 2: Illustration of an atomic cross-chain swap.

market price of LTC went up), and if Alice is rational
then she may cancel the trade after the second step (if
the market price of BTC went up). Another implication
is that Πaccs by itself is not a complete trading solution,
because real-time exchanges are still needed for price
discovery.

A matching service for ACCSs was established in
2015, though it became defunct due to lack of usage [47].

3

3 Cryptocurrency Exchanges

We describe several alternative designs for a real-time
cryptocurrency exchange, and also survey non-real-time
designs. See Table 1 for a summary comparison between
Tesseract and the alternatives.

3.1 Centralized Exchange
In a centralized cryptocurrency exchange, users transfer
ownership of their funds to the sole control of the
exchange administrator. This transfer of ownership
(a.k.a. deposit) is done via an on-chain transaction that
may take a long time to be confirmed, according to
a confidence parameter that the exchange administrator
set. Most exchanges accept a Bitcoin transfer by waiting
1 hour on average (6 PoW confirmations).

The business model of a centralized exchange can be
described as a “goose that lays golden eggs”. That is to
say, the exchange administrator may run away with all
the funds that the users deposited (usually by claiming
“I was hacked”), and the disincentive to doing so is that
the exchange collects a fee from each trade between the
users. Most exchanges also charge a withdrawal fee, and
some exchanges collect fees even when the users place
bid and ask orders.

Still, there have been many thefts of funds from
centralized exchanges (cf. [25]). About 650,000 bitcoins
were lost when the MtGox exchange shut down in
February 2014 [38], and the users of the Bitfinex
exchange lost 120,000 bitcoins in August 2016 [6].

3.2 Exchange with Off-chain Channels and
TTP

In this design, each user establishes off-chain bi-
directional payment channels [61, 22, 50] with a semi-
TTP server S, one channel for each cryptocurrency that
the user wishes to trade in. This produces a hub and
spoke network structure, see Figure 3 for an illustration
of trading among the Bitcoin, Ethereum, and Litecoin
cryptocurrencies.

The traders will then communicate their bid and ask
orders to S. Whenever the orders of two traders match,
they will send an instant off-chain payment to S, and S
will route the funds of one trader to the other.

It is better for each individual to trade in small
amounts, because the TTP can always steal the most
recent amount that was funneled through S. However,
this recommendation is in conflict with the common
behavior of large traders, who frequently create big
bid/ask “walls”.

In any case, even if the amount in each trade is small,
the risk of theft by a corrupt TTP remains high. This

Bob
ETH

Bob
BTC

Carol
BTC LTC

Carol

Alice
ETH

Alice
LTC

Alice
BTC

S

Figure 3: Exchange via off-chain channels.

is because the aggregate amount that all the traders
funnel through S at a particular point in time can be
substantial. As an example that does not involve an
exchange but demonstrates this point, the online wallet
service Inputs.io made it attractive for users to deposit
small amounts, and then ran away with more than 4000
bitcoins [52].

Another major drawback of this approach is that the
TTP has to lock matching collateral for each off-chain
payment channel of each trader, due to nature of off-
chain bi-directional channels. It is therefore likely that
the exchange service would need to impose high fees on
its users.

3.3 Non-real-time Exchanges
There are many non-real-time exchanges. We mention a
few to illustrate important points in the design space.

ShapeShift [72] is a centralized matching service
that mitigates the risks associated with a full-fledged
exchange by necessitating that each trader will deposit
only a small amount of cryptocurrency for a short period
of time. If a quick match is available then ShapeShift will
execute the trade, otherwise it will immediately refund
the cryptocurrency to the trader (i.e., via a transaction on
the blockchain). ShapeShift does not support real-time
trades and price discovery. It fetches the current prices
from centralized exchanges.

Since ShapeShift is rather popular, the aggregated
amount of funds that can be stolen is likely to be
substantial. In this sense, ShapeShift does not solve the
systemic risk that centralized exchanges entail.

EtherDelta [64] is a non-real-time non-cross-chain
decentralized exchange that has been operational
since July 2016, with quite a significant amount of
popularity—particularly for the first listings of Initial
Coin Offerings (ICO). However, EtherDelta is vulnerable
to frontrunning attacks, see [12].

BitShares [70] offers a cryptocurrency exchange that
does not rely on trusted parties. It is not real-time,

4

Table 1: Comparison of Cryptocurrency Exchanges

Trust DoS Collateral
Front-

running
Price

Discovery

Centralized yes minor no yes yes

TTP/channels
(Section 3.2)

semi minor from TTP yes yes

ShapeShift semi minor no yes no
Tesseract SGX minor no no yes

but relatively fast due to a delegated proof-of-stake
consensus protocol in which blocks are created every
few seconds by central committee members (who may
engage in frontrunning attacks, see Section 4.2).

Traders first convert their cryptocurrency to IOUs in
the BitShares system, and later convert these IOUs to
the native BitShares cryptocurrency (BTS) according
to an up-to-date exchange rate that is set by elected
representatives that the BitShares stakeholders voted for.
See [70, Section 2] and [76] regarding the risk of market
manipulation with this approach.

The BTS cryptocurrency that traders ultimately obtain
can be exchanged for other cryptocurrencies by means
that are again external to the BitShares system —
centralized exchanges (a.k.a. gateways) are commonly
used for this task.

Exchange Based on Mutual Distrust: Instead of
relying on trusted hardware, it would be possible in
principle to operate an exchange service (similar to
Tesseract) as a logical server that is implemented via
multiple physical servers that are distrustful of each
other.

Traders will need to send their bid/ask requests using
threshold encryption [23] in order to avoid frontrunning
attacks (see Section 4.2), and the physical servers
will run a Byzantine consensus protocol and sign the
settlement transactions (cf. Section 4) with a threshold
signature scheme [30]. An honest majority among the
physical servers can guarantee protection from theft.

Since the physical servers would need to reside in
different geographical locations to provide meaningful
security, and since Byzantine agreement with threshold
decryption has to be performed for each of the users’
orders, the latency of a mutual distrust based exchange
would probably be measured in seconds (depending
on the number of physical servers). By contrast,
the responsiveness of Tesseract can be measured in
milliseconds.

4 The Tesseract Design

The Tesseract exchange achieves its security and
performance goals by relying on a trusted execution
environment, specifically SGX. Intel Software Guard
Extensions (SGX) is a hardware architecture that enables
code execution in an isolated, tamper-free environment.
Intel SGX can also attest that an output represents
the result of such an execution, and allows remote
users to make sure that the attestation is correct. The
remote attestation feature is essential for Tesseract, for
reasons that will soon become clear (cf. Section 4.3 for
further discussion). For more information on the SGX
architecture, see [1, 35, 34, 51].

The operation of Tesseract is illustrated in Figure 4.
The enclave code is hardcoded with the hash of the
Bitcoin genesis block, or a more recent “checkpoint”
block of the Bitcoin blockchain. When the execution
starts, the enclave receives the latest block headers from
an untrusted Bitcoin client that runs on the same server
machine. Each header has its PoW validated against the
difficulty rule of the Bitcoin protocol, and is then added
to a FIFO queue that is stored inside the enclave. The
size of the queue is set according to a parameter that
specifies the maximum time window that the enclave
maintains. For instance, 8064 Bitcoin block headers
would correspond to a 2-month window (when header
8065 is added the first header will be removed, and so
on). The enclave will also maintain the same kind of
queue for every other cryptocurrency that is supported
by the Tesseract exchange service. We note that Bitcoin
and Litecoin block headers are 80 bytes each, and an
Ethereum block header is ≈ 512 bytes.

After initialization, the enclave invokes a key
generation procedure to create a keypair (sk, pk) for each
supported cryptocurrency. The randomness that we feed
to the key generator is obtained by concatenating several
sources: the RDRAND instruction that sgx read rand()

uses for hardware-based randomness, the hashes of the
latest blockchain blocks, OS provided randomness via
/dev/random, and the SGX trusted clock. Each of these
sources increases the entropy of the random data, and
therefore reduces the likelihood that an adversary will
have knowledge of the secret key sk.

The enclave will then attest [35] that a public key
pk is its deposit address, for each cryptocurrency. The
attestation to these public keys should be published
through multiple services (such as websites, IPFS [11],
and even Bitcoin and other blockchains). As an
example, Figure 4 shows two such deposit addresses
PKSGXBTC,PKSGXLTC, for Bitcoin and Litecoin. The
anti-DoS component that we describe in Section 6 is also
useful for making sure that the attested deposit addresses
will be publicly known.

5

Alice

 if block# > T0+2000
 sigverify PKA
 else
 sigverify PKSGXBTC

 amount: 5

 sigverify PKA

 amount: 5

TXA

 if block# > T1+8000
 sigverify PKB
 else
 sigverify PKSGXLTC

 amount: 600

 sigverify PKB

 amount: 600

TXB

Bitcoin:
T0

Litecoin:

Bob

SGX real-time exchange

Deposit(TXA)

Bid(3 BTC, price=310:1)

Bid(1 BTC, price=305:1)

Deposit(TXB)

Ask(500 LTC, price=299:1)

Genesis T1Genesis

1 12 3 2

Figure 4: Illustration of deposits followed by bids/asks.

In fact, it is better if the deposit address is a hash of
the public key, as this increases security and reduces
the size of unspent outputs on the public ledger. For
example, a 257-bit compressed ECDSA public key gives
128 bits of security at most, while 160-bit hash digest of
the 257-bit public key will give 160 bits of security (if
the hash function is preimage-resistant). This is done in
our implementation via P2SH [2] (P2WPK/P2WSH [42]
can be used post-SegWit). Note that there is no point in
mounting a collision attack on a scriptless address [5].
The settlement transaction (see next) will expose the
public key, but potential attacks would then have a short
timeframe until the transaction becomes irreversible.
Hence, for maximal security the enclave will generate
and attest to a fresh deposit address after each settlement.

When a new user wishes to open a Tesseract account,
she first needs to deposit a significant enough amount
into a deposit address of the exchange. After the
deposit transaction is confirmed on the blockchain, the
(GUI client of the) user will transform the confirmed
deposit into evidence that will be sent to the enclave.
This evidence consists of the transaction that spends
the coins into a deposit address of Tesseract, as well
as an authentication path that consists of the sibling
nodes in the Merkle tree whose root is stored in a
block header, and the index of that block. Tesseract
will credit the user’s account (in the enclave) after
verifying that the deposit transaction is valid, that the
block B that contains the deposit belongs to the enclave’s
headers queue, and that B is buried under enough
additional confirmations (see Section 4.1 for security
analysis). Tesseract also protects against replay attacks,
by requiring strictly increasing block indices for the
user’s deposits. In Figure 4, the evidence that Alice
provides is Deposit(TXA).

As shown in Figure 4, the output of a valid deposit
transaction needs to specify a time limit (e.g., two
weeks). Before the limit is reached, only the enclave
can spend the deposit amount (for a Bitcoin deposit,

this public key PKSGXBTC is hardcoded in the output
and the spending is done by creating a signature with
the corresponding secret key SKSGXBTC). After the
time limit, the user can gain back control of her money
by signing with a secret key that only she knows. In
cryptocurrencies such as Bitcoin and Litecoin, the time
limit can be expressed in the output script via the
CHECKLOCKTIMEVERIFY instruction [77]. Technically,
SKSGXBTC can still spend the output after the time limit
(since Bitcoin transactions should be reorg safe [55, 77]),
but this is not guaranteed because the user may also
spend the output then. This deposit format ensures
that the funds will safely be restored to the user if the
Tesseract server becomes unavailable.

We note that the enclave is hardcoded with the current
difficulty parameter of each PoW-based blockchain. At
the beginning of the execution, the enclave will fetch
blocks from genesis (or the more recent checkpoint), and
verify that the chain reaches a block of the hardcoded
difficulty level. This prevents an adversary (who has
physical control of the Tesseract server) from feeding
a low-difficulty fake chain to the enclave. The enclave
updates the PoW difficulty level by inspecting the
timestamps of block headers in the FIFO queue and
applying the consensus rules of the cryptocurrency
system (the queue size must be at least as the adjustment
interval, which is 2016 for Bitcoin). This implies that
an adversary cannot feed low-difficulty blocks to the
enclave at a later time. The users of the Tesseract
exchange can gain extra security by inspecting the latest
block of each traded cryptocurrency and verifying (via
remote attestation) that the enclave has the latest blocks,
see Section 4.1 for details.

Malicious users may try to carry out a DoS attack
on the Tesseract server by attempting to open many
new accounts while providing fake deposits as evidence.
Currently, Bitcoin blocks contain less than 4000
transactions, which implies that the authentication path
requires 12 or fewer sibling nodes of the Merkle tree,
and hence 12 invocations of a hash function. Thus, the
time complexity of verifying the validity of a deposit is
quite low. To further mitigate the prospects of a DoS
attack, the enclave may require a moderate PoW done on
the entire evidence data of the deposit (that the user will
compute on her own), or simply limit the number of new
account requests per timeframe.

One reason that the enclave maintains a queue of
headers and fetches the additional block confirmations
from the queue — as opposed to asking the user
to concatenate the extra confirmations as part of the
evidence of the deposit — is that the queue provides an
undisputed point of reference in the form of the genesis
(or checkpoint) block. That is to say, if there are two
blockchains that use the same hash function for PoW and

6

have a similar difficulty level, then a malicious user could
deceive the enclave into accepting a deposit transaction
that was confirmed on an incorrect blockchain. This
approach also reduces the communication complexity
between the Tesseract server and remote users.

After the user registers with Tesseract, her deposited
amount is credited into her account entry in the array of
users that is stored inside the enclave. Next, the user will
be able to trade in real-time with other users who opened
a Tesseract account, by sending bid/ask orders to the
Tesseract server via a secure channel (see Section 4.2).
If the user wishes to deposit other currencies into her
account, she can then send similar authentication paths
as evidence.

In Figure 4, Bob opens an account with
Deposit(TXB), and then asks to sell 500 LTC for
the price of 299 LTC per BTC. Since Alice’s bids are
with a price of 305 LTC per BTC and higher, there is
no match yet, and the requests of Alice and Bob are
recorded in the order book kept inside the enclave. Each
user can request her recent trading history via the secure
channel, and cancel her pending orders. The Tesseract
server publishes an anonymized version of the order
book (i.e., price and volume of each order, without
usernames) with remote attestation; hence anyone can
observe the price spread of the exchange. Since order
book updates can occur at a very rapid rate, we reduce
the amount of SGX attestations via delayed randomized
checkpoints: the enclave always outputs the anonymized
order book without a signature, and outputs a delayed
attestation (that include an incremental counter) only
for randomly selected data points. The administrator
of the Tesseract server provides her part of the double
attestation for all the data points (using HTTPS, see
Section 4.3). Thus, an administrator that publishes fake
order book data repeatedly will be detected w.h.p.

Real-time trading among the users will cause frequent
updates to the balances of their accounts inside the
enclave, but these updates are not reflected on the actual
cryptocurrency systems yet. If nothing else were to
happen, the entire process would just be a sandbox
or playground, as the users will simply claim their
original money after the time limit of their deposits
is reached. Therefore, from time to time (e.g., once
a day) Tesseract will broadcast to the cryptocurrency
networks “settlement” transactions that commit the
current account balances of the users. See Figure 6 for an
illustration, and Section 5 regarding a secure settlement
protocol.

The enclave extends the time limit of each user’s
output in the settlement transactions that it constructs
(e.g., if the user could control the output in 5 days before
the settlement, then she could control the output in 19
days after the settlement). This allows uninterrupted

trading by active traders. To minimize the size of the
settlement transactions, users who did not trade are not
included in the inputs and outputs. When some of a
user’s funds are in an output whose time limit is about
to expire, the user will be prohibited from trading. The
user is permitted to send a renewal request before the
expiration, in case she was unlucky and none of her
trade orders were matched (renewal after the expiration
can be exploited by malicious users who would create
conflicting transactions near the time limit). The user can
also request an early withdrawal of some of her funds.
This is done by directing the enclave to prepare an output
that is controlled only by the user, in the next settlement.

In our design, the Tesseract exchange collects a
proportional fee for each successful trade (e.g., 0.1%
from both ends of a trade), and a flat fee for early
withdrawal and renewal requests. The exchange limits
the total number of pending orders that a user may have
in the order book, and users who flood the exchange
with an excessive number of orders may be penalized
(by confiscating some of their funds) or blacklisted for
a period of time. The fees that Tesseract collects are
needed in order to pay miner fees for the settlement
transactions.

Forthcoming Bitcoin support for aggregated Schnorr
signatures [82] will enable Tesseract to attach a single
signature to the settlement transaction, instead of one
signature for every input. This implies that the settlement
transaction size can be halved, which is significant for
large transactions (e.g., with 1000 traders the transaction
size will 64 kilobytes smaller). It is also likely that
miners will impose a considerably lower fee for a large
settlement transaction with a single aggregated signature.
Let us note that signature aggregation is required in
principle if the enclave refreshes its deposit address after
each settlement, since the aggregated signature will need
to be verified against different public keys.

In case of a forthcoming hard fork of the kind
that created Ethereum Classic or Bitcoin Cash, users
should secure themselves against replay attacks (cf.
[49, Section 2.4]) by withdrawing their coins from the
Tesseract exchange. The users may switch to a new
version of Tesseract with updated code that supports
the hard fork (or completely new cryptocurrencies),
and which can be deployed at a later time. Our
implementation has dynamic support for ERC20 tokens,
hence no switch is needed when new ERC20 tokens are
introduced (a user can create new order book pairs, for a
fee).

In Appendix B we provide excerpts of our reference
code that corresponds to the above description.

7

4.1 Eclipse Attacks

Let us assume an adversary A that controls some p < 1
2

fraction of the computational power of some blockchain
the enclave interacts with, and also has physical access to
the Tesseract server. Thus,A can cut the communication
between the enclave and any blockchain network, and
feed the enclave with fake blocks.

Assuming a naive enclave implementation, A can
mount an Eclipse attack [33] as the following example
illustrates: A cuts the enclave off from the Bitcoin
network and presents it with a fake blockchain
containing a deposit transaction TXfake. As a result, the
enclave credits A with a higher Bitcoin balance, which
A trades for Litecoin inside the enclave. When the
enclave publishes the next settlement transactions on the
two blockchains, A will have traded her fake Bitcoin
for real Litecoin: The Bitcoin settlement transaction will
not be valid because it spends an output from TXfake

which was never included in the real Bitcoin blockchain.
However, the Litecoin settlement transaction will be
valid, resulting in A profiting.

To defend against this attack, we rely on the fact that
the rate at which A can feed fake blocks to the enclave
is at least twice slower than in the absence of an attack.
(Since p < 1

2 .) Assuming that SGX has a trusted clock,
the enclave can impose a rule that requires waiting for
additional confirmations if the blocks arrive too slowly.
We note that the Tesseract enclave is assumed to be
running without interruptions, since our enclave code
disallows rollbacks [75, 48] by design (cf. Section 6
regarding our approach to resiliency).

The time between every two consecutive Bitcoin
blocks is an exponentially distributed random variable.
Hence, for a rule that dictates whether blocks arrive
too slowly we should consider the sum of exponential
random variables, known as the Erlang distribution. Let
n be the number of blocks that a deposit needs to be
buried under before it is credited by the enclave. Let
δ be the multiplicative slowness factor by which blocks
are allowed to arrive. E.g., δ = 3 means that blocks that
arrive 3 times slower than the expected time (or more
slowly than that) will trigger the enclave to wait for n
extra block confirmations before accepting any deposits.

Setting δ to a high value reduces the probability of a
false positive (i.e., a rejected deposit when no attack is
taking place and the honest chain growth was unluckily
slow during some timeframe). However, a high δ also
increases the prospects of an attack. For any δ > 1, it
is possible to set a large enough n so that the probability
of a successful attack becomes negligible. However, a
large n implies that honest users need to wait for a long
time before their deposit is confirmed, which makes the
Tesseract exchange service unattractive.

Table 2: Deposit confidence vs false positives

p δ n Pr[Erlang(n, p)≤ δn] Pr[Erlang(n,1)> δn]
1

10 2 60 2−75 2−31

1
10 2 120 2−145 2−58

1
5 1.5 120 2−92 2−21

1
4 1.3 120 2−82 2−10

In Table 2 we provide exemplary concrete parameters
for n and δ . E.g., the third row of Table 2 shows that with
n = 120 (20 hours on average in Bitcoin) and δ = 1.5:

• An adversary with computational power p ≤ 1
5 can

mount a successful eclipse attack on the enclave
with probability 2−92 or smaller.

• On expectation, an honest user will need to wait
for extra confirmations once in every ≈ 2 million
deposits that she makes.

While the concrete parameters that can be obtained
are already quite reasonable, let us stress that prudent
users of the Tesseract exchange will not be exposed to
eclipse attacks at all. Any user can simply compare
the latest blocks in the actual cryptocurrency networks
with the latest blocks that Tesseract enclave publishes
(with remote attestation), and cancel her bids/asks in case
of a discrepancy. In the example above, the honest Pj
will avoid Pi’s attack by observing that the latest Bitcoin
blocks that Tesseract published are inconsistent with the
real Bitcoin network, and refuse to trade her LTC for
BTC. Our practical instantiation of Tesseract has another
layer of security that further protects (incautious) users
from eclipse attacks, see Section 5.3.

4.2 Secure Communication
For each user who has already opened an account with
Tesseract, we establish a secure channel (TLS) when
the user wishes to communicate with the enclave. The
reasons for a channel with authenticated encryption are
the following:

• Fast identification: The authenticated messages
in the TLS Record Protocol are computed via
symmetric-key operations, after the initial key
exchange (done via public-key operations in the
Handshake Protocol) to establish the channel.
Since symmetric-key operations are an order of
magnitude faster than public-key operations, a
persistent TLS connection delivers performance
suitable for real-time trades.

8

• Frontrunning prevention: An adversary can try to
inspect the entire communication flow that arrives
at the Tesseract server, learn information regarding
real-time actions of other users, and exploit
this information to perform trades. Encrypted
communication avoids such attacks.

An example of a frontrunning attack is shown
in Figure 5. There, Alice believes that the BTC price
is going to rise. Therefore, she places an order to buy 10
BTC at $870 each, so that any of the current sellers will
match her order first. On the other hand, Bob believes
that the price of BTC is going to drop, and he therefore
places an order to sell his 10 BTC for a price that is as low
as $820. Given the public order book, Bob’s intention is
thus to sell 2 BTC for $850, 5 BTC for $840, and 3 BTC
for $820. If the trades are executed in this order, it will
be to the benefit of Bob, because he will actually sell 10
BTC to Alice for $870 each. However, an adversary with
this knowledge can permute the orders and insert her own
new orders. In this scenario, the adversary would be
guaranteed to gain $10 · (870− 851) = $190, by buying
Bob’s 10 BTC cheaply and then selling it to Alice.

Since all users send encrypted messages through their
secure channels, an adversary with a physical control
of the Tesseract server cannot frontrun other users. To
the best of our knowledge, all the other designs of
cryptocurrency exchanges are exposed to these kinds of
frontrunning attacks.

We note that an adversary may still observe patterns
of communication at the IP-level and try to learn
information about the traders. An IP-level anonymizer
(e.g., Tor [24]) is inapplicable as a mitigation technique
against such adversaries, since users wish to perform
real-time trades. However, the user’s client can randomly
inject dummy data into the TLS channel (which would
be ignored on arrival), thereby making it more difficult
to track communication patterns. Furthermore, in future
versions of Tesseract we plan to allow users to upload
an algorithmic trading program to their enclave account
(for a fee), that will enable them to issue multiple trading
orders without communication with the server. The
use of automated trading programs is quite popular in
centralized exchanges (cf. [7]), although these automated
traders do communicate each of their orders to the server.

4.3 Double Attestation
Several reputable providers may wish to offer different
variants of the Tesseract service (perhaps with their
own tokenized coins and fiat assets, see Sections 7
and 8). This raises the following question: does a single
entity (i.e., the hardware manufacturer) have the power
to compromise the security of all the Tesseract-based
platforms, simultaneously?

Price Volume
 $850 2
 $840 5
 $820 5

Buying
 Order Book (BTC/USD)

Arrival of new orders:
1. Alice: buy($870, 10)
2. Bob: sell($820, 10)

Frontrunning:
1. Adversary: buy($851, 10)
2. Bob: sell($820, 10)
3. Alice: buy($870, 10)
4. Adversary: sell($870, 10)

Selling
Price Volume
 $890 3
 $906 5
 $945 4

Figure 5: Example of frontrunning.

No such single entity exists with regard to centralized
exchanges (cf. Section 3.1), because these exchanges are
independent of one another. That is to say, a security
breach of one centralized exchange will not have a direct
impact on the users of the other centralized exchanges.

For trusted hardware with remote attestation support,
the plain way that the manufacturer can break security
is by attesting to fraudulent data. In our context,
suppose for example that there are two Tesseract-
based exchanges X1,X2 that invite users to deposit
their funds to PKSGXBTC1 and PKSGXBTC2, respectively.
If Intel has knowledge of the secret signing keys
sk1,sk2 that are embedded into the CPUs of X1 and
X2, then it can forge signatures that attest to fresh
ephemeral public keys PK′SGXBTC1,PK′SGXBTC2 that
Intel would generate together with the corresponding
secret keys SK′SGXBTC1,SK′SGXBTC2. Thus, Intel will
be able deceive users into sending their deposits to
PK′SGXBTC1,PK′SGXBTC2, and then steal funds that users
wished to deposit to X1,X2.

The manufacturer may also break security by
embedding malicious logic into the hardware. For
instance, whenever an application executes code that
generates a (supposedly) random secret key, the key will
actually be generated in a way that can be predicted
by the manufacturer. While this attack would be
easy enough if there were one assembly opcode that
generates a random key (the malicious opcode can
use a randomness source with low entropy), it is far
more difficult to achieve predictable behavior for any
application-level code that is executed by a general-
purpose CPU.

Another attack vector that the hardware manufacturer
may attempt is simply to send the data that a CPU
generates over the network (to the manufacturer’s
address), without consent or knowledge of the
administrator of the server computer. This is indeed a
concern with Intel’s Management Engine (see [63]), but
it is not an inherent defect of the trusted hardware model
(and hopefully the Management Engine will soon have

9

Bob
300000 LTC

Bob
1000 BTC

Carol
2 BTC

Dave
1 BTC

Dave
300 LTC

Alice
300000 LTC

Carol
300 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

Carol
3 BTC

Figure 6: The cross-chain settlement problem.

an opt-out option).
Similarly to [71], the Tesseract platform protects

against false remote attestation by attaching a secondary
signature – created by the administrator of the platform
– to the attested data. Following the above example,
the users of X1 (resp. X2) will take into consideration
the reputation of the administrator of X1 (resp. X2),
and reject the attested data unless it was signed both
by the SGX CPU and by the reputable administrator.
This means that the hardware manufacturer alone
cannot attack all Tesseract-based exchanges, since the
manufacturer has to collude with the administrator of
an exchange in order to create a fraudulent attestation.
This implies that Tesseract is strictly more secure than
centralized exchanges.

The double attestation mechanism is also efficient,
since the secondary signature is rarely needed.
Specifically, the secondary signature is required only
once for the identity public key of the enclave (which is
the hardware-associated public key of Section 6.1), and
this identity can then establish the TLS channel with
each user. All further communication in a TLS channel
(e.g., bid/ask orders) is done without attestation. For
non-user-specific data such as real-time updates to the
public order book, the secondary signature is already
implicit if HTTPS is used to view this data.

5 Atomic Cross-Chain Settlements

Assume first that Tesseract only supports the trading
of digital assets (cf. Section 8) that circulate within a
single cryptocurrency. In this case, the publication of
each settlement transaction — that reflects the account
balances of the users after trading in a time period —
does not entail the risk of an adversary stealing funds
from honest users. The reason is that an invalid deposit
(see Section 4.1) or blockage of the settlement will
amount just to a DoS attack, since all the users will
claim their prior funds after the time limit in the output of

their original deposit (or the last settlement transaction)
expires.

On the other hand, trading among multiple
cryptocurrency systems (that are independent of
one another) may allow an adversary to steal funds from
honest users. We provide an illustration of the risk in
Figure 6. Suppose for instance that 1 BTC is worth
$2000, and also that the market price of 1 BTC is 300
LTC. In the illustration, Alice and Bob traded 1000 BTC
(i.e., $2 million worth of BTC) for 300000 LTC (i.e., $2
million worth of LTC), while Carol and Dave traded 1
BTC for 300 LTC. Thus, the enclave will construct and
sign the Bitcoin and Litecoin settlement transactions,
and attempt to broadcast the settlements to the Bitcoin
and Litecoin networks. An adversary with physical
access to the Tesseract server can collude with Alice
and intercept the Bitcoin settlement transaction when it
leaves the CPU but before it is broadcast to the Bitcoin
network, and let the Litecoin settlement transaction go
through and reach the Litecoin network. The result
is that the transfer of ownership of $2 million worth
of LTC from Bob to Alice will be committed on the
Litecoin system, while the transfer of ownership of $2
million worth of BTC will never occur. In effect, Bob
lost $2 million worth of funds to Alice.

Let us provide security definitions that capture the
above fairness problem.

Definition 1 (All-or-nothing settlement). Given the
transaction tx1 for system CA and the transaction tx2 for
system CB, an all-or-nothing cross-chain settlement is a
protocol that guarantees that

1. Both tx1 will become confirmed on system CA and
tx2 will become confirmed on system CB, or

2. Neither tx1 will become confirmed on system CA nor
will tx2 become confirmed on system CB.

In our context, CA and CB are cryptocurrencies. We
stress that parties that execute the consensus protocol for
CA may be unaware of the existence of CB, and vice versa.

Notice that Definition 1 does not imply that
honest users are fully protected against financial loss.
Specifically, an adversary A that prevents both tx1 and
tx2 from being confirmed may benefit at the expense
of honest users: A may wish to renege on a trade after
observing some external events and/or price fluctuations
that worked to her disadvantage. Still, Definition 1
implies better security than that of the commonplace
centralized exchanges (cf. Section 3.1), because the
users of such centralized exchanges run not only the risk
that their trades will be reversed but also the risk that
their initial funds will be stolen.

10

Definition 2 (Unprivileged settlement). Let U in
1 ,U in

2
denote the sets of users in the inputs of the transactions
tx1, tx2, and let Uout

1 ,Uout
2 denote the sets of users in

the outputs of tx1, tx2. Let U = U in
1 ∪U in

2 ∪Uout
1 ∪Uout

2 .
An unprivileged cross-chain settlement is a protocol that
satisfies Definition 1 in the presence of an adversary
A who can obtain any information that every user P ∈
U accesses, at the moment that the information was
accessed.

In essence, Definition 2 implies that honest traders
cannot utilize secret data during the settlement protocol
(such as picking a secret x ∈ {0,1}λ in the first step
of the ACCS protocol in Section 2), because A could
break the security by gaining access to any sensitive data
that honest traders attempt to use. Thus, Definition 2
captures a rushing adversary who has physical control
over the SGX server and can intercept all the data that
leaves the CPU, before honest users have an opportunity
to make use of this data in a secure fashion. Note that
Definition 2 does not permitA to observe the secret keys
that enable honest users to spend their funds, as long as
honest users do not access their secret keys during the
settlement protocol.

In fact, Definition 2 gives A more power than a real-
world adversary with physical control over the SGX
server. Consider for instance a protocol where in the
first step the enclave encrypts data using Carol’s public
key, and attempts to send the encrypted data to Carol
over the network. In that case, A will not be able
to obtain the data that Carol accesses; the only action
available to A is to mount a DoS attack and not let
the protocol make progress. The motivation for the
more conservative definition is that we wish to support
settlement transactions among a large number of users
(e.g., thousands) and multiple cryptocurrency systems,
where the users can be anonymous and can create Sybil
accounts. In this setting, it is difficult to design a secure
protocol that sends sensitive data to rational users (with
the expectation that they will act in their own self-
interest), due to the possibility of malicious coalitions
with Sybils who would be willing to sacrifice some
of their funds. For this reason, Definition 2 denies
the enclave the power to communicate privately with
individual users.

Thus, intricate solutions to the all-or-nothing
settlement problem are needed mainly because our goal
is to support many anonymous traders. Let us in fact
demonstrate that with a few users, the all-or-nothing
settlement problem can become easy. In Figure 7, Alice
and Bob again wish to trade $2 million worth of BTC
for LTC, but they are the only users of the Tesseract
exchange. Here, the enclave prepares the settlement
transactions TX1,TX2 that keep the enclave in control
in the next two weeks (2000 blocks where T1 is the head

Bob
300000 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

 if block# > T1 + 2000 + 200
 sigverify PKA
 else if block# > T1 + 2000
 (sigverify PKB) AND (x: hash(x)=Y)
 else
 sigverify PKSGXBTC

 amount: 1000 BTC

 if block# > T2 + 4·(2000 + 100)
 sigverify PKB
 else if block# > T2 + 4·2000
 (sigverify PKA) AND (x: hash(x)=Y)
 else
 sigverify PKSGXLTC

 amount: 300000 LTC

Figure 7: Settlement with two parties.

of the Bitcoin blockchain, and 8000 blocks where T2 is
the head of the Litecoin blockchain). This enables Alice
and Bob to continue to trade, if they wish to. The secret
data x ∈ {0,1}λ is generated inside the enclave. After
the enclave receives evidence that TX1 and TX2 are both
confirmed, it sends x in encrypted form only to Alice,
over a secure channel. After the two weeks, the outputs
can be redeemed using x, otherwise the timeouts allow
the funds to be returned to each user. As with the ACCS
protocol (cf. Section 2), the timeout in TX1 is longer,
so Bob will have enough time to redeem the 1000 BTC
after Alice reveals x, spending 300000 LTC.

Let us note that Definition 2 does not give A the
power to observe secret information inside the enclave.
In the Tesseract implementation, this is justified because
we use a constant-time constant-memory library for
cryptographic operations [83], reducing the potential for
side-channels greatly.

We now present solutions to the all-or-nothing
settlement problem, in a setting that involves many
anonymous traders.

5.1 Naive Protocols

To clarify why an intricate protocol is needed, we first
describe a simple protocol Πsimp that relies on N extra
servers S1,S2, . . . ,SN that are supposedly reputable. See
Figure 8.

The cryptocurrency systems C1 and C2 can be for
example Bitcoin and Litecoin as in Figure 6. The
embedding of K into TX1 and TX2 can be done with the
OP RETURN script instruction [8], which allows storing
arbitrary data on the blockchain as an unspendable output
(for a small fee). It is not possible to mount a malleability
attack that removes K from TX1 or TX2, because
the signatures for TX1 and TX2 are over the entire
transaction data (i.e., data that includes the OP RETURN

output).
Since information that is published on a blockchain

11

Protocol Πsimp

1. The enclave picks a symmetric key K ∈ {0,1}λ .

2. The enclave embeds K into TX1,TX2.

3. The enclave sends ct = encryptK(TX1,TX2) to
S1,S2, . . . ,SN .

4. The enclave waits for acknowledgements from
S1,S2, . . . ,SN .

5. The enclave broadcasts TX1 to C1 and TX2 to C2.

6. Each S j that sees TXi but not TX3−i will fetch K
from TXi, decrypt ct, and broadcast TX3−i to C3−i.

Figure 8: Naive protocol for fair settlement.

becomes publicly available, the idea behind Πsimp is that
any non-corrupt server Si will be able to impose fairness
by fetching K from a public blockchain and decrypting
the ciphertext ct, because ct is already in Si’s possession.

Unfortunately, Πsimp is insecure, due to a race
condition. The adversary A can intercept both TX1 and
TX2, but broadcast neither of them initially. Since the
users’ outputs must have a time limit (see Section 4),
A will wait until an input (that belongs to a corrupt
user Pj) in TXi is about to expire, and then broadcast
TX3−i. Then, A will instruct Pj to spend that input,
thereby invalidating TXi. Hence, even if all of the servers
S1,S2, . . . ,SN are honest, they may not have enough time
to fetch K from TX3−i and broadcast the decrypted TXi.

If the cryptocurrency systems C1,C2 allowed
transactions to embed large arbitrary data, then it
would have also been possible to eliminate the reliance
on S1,S2, . . . ,SN . Briefly, each TXi will embed the
TX3−i data in a designated output, the enclave will
broadcast both TX1 and TX2, and any user would then
have the opportunity to enforce fairness. This would
bloat Ci with the entire TX3−i data, which is undesirable
— there are risks associated with a popular decentralized
cryptocurrency that allows embedding of large data (e.g.,
illegal content). In any event, this approach is insecure
due to the same race condition that Πsimp exhibits.

In the following section, we give a theoretical protocol
Πtheo that avoids the race condition, using scripts with
PoW-based logic that ensures the occurrence of certain
conditions on another blockchain.

5.2 Theoretical Protocol

Let us present a theoretical protocol for the all-or-nothing
settlement problem, which solves the race condition
that Section 5.1 elaborates upon. Following Section 5
and Figure 6, we condition the second settlement

Functionality RMIT (refundable multi-input transaction)

Notation: let C be a cryptocurrency system.

Upon receiving tx =
({in1, . . . , ink},{out1, . . . ,outn},φ1,φ2)

1. Verify ∀ j ∈ [k] : in j is unspent in C.

• If the verification failed then abort.

2. Verify ∑
k
j=1 amount(in j)≥ ∑

n
j=1 amount(out j).

• If the verification failed then abort.

3. Make {in1, . . . , ink} unspendable in C.

4. Wait to receive a witness w

(a) If φ1(w) = 1 then commit {out1, . . . ,outn} to
C, and terminate.

(b) If φ2(w) = 1 then make {in1, . . . , ink}
spendable in C, and terminate.

(c) Otherwise, return to Step 4.

Figure 9: The ideal functionality RMIT.

transaction TX2 on the result of the first settlement
transaction TX1, by constraining TX2 with PoW-based
predicates that verify certain events’ occurences on
another blockchain.

As we will see, this approach is problematic with
the current Bitcoin protocol. Thus, we first describe
the settlement protocol in an hybrid world that has
an ideal “refundable multi-input transaction” (RMIT)
functionality, defined in Figure 9.

The description of TX1,TX2 is outlined in Figure 10.
We use the notation TXi, j to denote that TXi was
updated by supplying w that satisfied φ j. The secrets
x1 ∈ {0,1}λ ,x2 ∈ {0,1}λ are generated inside the
enclave. The predicates φ ′1,φ

′
2 are specified in Figure 11.

To elaborate, the hardcoded parameter D0 specifies a
difficulty level for PoW mining, `1 is an upper bound
on the length of an authentication path of a Merkle tree,
and `2 is a PoW confidence parameter. The input witness
w for φ ′1 consists of up to `1 sibling hash values v j in the
authentication path (with direction d j ∈ {’L’,’R’}) for the
leaf transaction y, together with exactly `2 block headers
H1,H2, . . . ,H`2 . The predicate φ ′1 will verify that TX1,1
is in a leaf that reaches some root value r, and that r
is extended by valid proofs of work H1,H2, . . . ,H`2 that
meet the difficulty level D0. The input witness w for φ ′2
does the same, but also verifies that there is a valid PoW
chain of at least `3 blocks between the hardcoded b1 and
TX1,2.

We describe the theoretical protocol Πtheo for all-or-
nothing settlement in Figure 12. Note that the enclave

12

Bob
300000 LTC

Bob
1000 BTC

Carol
2 BTC

Dave
1 BTC

Dave
300 LTC

Alice
300000 LTC

Carol
300 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

Carol
3 BTC

φ1 ={x1: hash(x1)=Y1}

φ2 ={block# > T0}

φ'1={TX1,1 is confirmed}
 OR
 {x2: hash(x2)=Y2}

φ'2={TX1,2 is confirmed}

RMIT: RMIT:

Figure 10: Theoretical fair settlement transactions.

constructs TX2 only after it receives the evidence that
TX1 was confirmed in the end of Step 1, by hardcoding
b1 as the hash of the block in which TX1 resides.

Essentially, Πtheo avoids the race condition by
first making sure that TX1 was resolved on the
cryptocurrency system C1 either by committing the
output or by committing the inputs, and then allowing
TX2 to commit accordingly in the cryptocurrency system
C2. If A carries out a DoS attack before x1 is released in
Step 3, then the users will gain possession of their inputs
in the C1 after block T0 is reached (see Figure 10), which
would be followed by the miners of C1 starting to create
a witness w that satisfies φ ′2(w) = 1 and thus allowing
the users to gain possession of their inputs in C2. If the
enclave exposes x1 in Step 3, then it is still the case that
the miners of C1 will be harnessed to resolve TX1 in one
of the two possible ways.

In the case that no attack is taking place, the enclave
will release x2 in Step 4, thereby allowing the settlement
to complete quickly and without asking the miners of C2
to evaluate a complex condition that relates to another
blockchain.

However, the assumption regarding the computational
power of A has to be slightly less conservative in
comparison to the power that is needed to mount a
classical double-spending attack [68], because Πtheo
enables A to gain a minor head start that depends on the
parameter T0. Specifically, A can intercept x1 in Step 3
and use her own computational power (and x1) to create a
hidden chain w1 that spends TX1 into TX1,1. The miners
of C1 will create the witness w2 in which TX1 is spent
into TX1,2, but they will only begin to work on w2 after
block T0 is reached.

The success probability of an attack with a duration of
T1 blocks for the head start is

∞

∑
k=0

(
Pr[NegBin(T1, p) = k]·Pr[NegBin(`2, p)≥ `2− k]

)
.

The first negative binomial variable counts the number

Predicate φ ′1

Hardcoded parameters: TX1,D0, `1, `2
Input: w=((v1,d1),(v2,d2), . . . ,(vk,dk),y,H1,H2, . . . ,H`2)

1. Embed hash(TX1,1) into y

2. For j = 1 to min(k, `1)

• If d j = ’L’ then y := hash(y,v j) else y :=
hash(v j,y)

3. For j = 1 to `2

• Embed y into H j and compute y := hash(H j)

• If y > D0 then return false

4. return true

Predicate φ ′2

Hardcoded parameters: TX1,D0, `1, `2, `3,b1
Input: w=(G1, . . . ,Gn,(v1,d1), . . . ,(vk,dk),y,H1, . . . ,H`2)

1. z := b1

2. For j = 1 to max(n, `3)

• Embed z into G j and compute z := hash(G j)

• If z > D0 then return false

3. Embed hash(TX1,2) into y

4. For j = 1 to min(k, `1)

• If d j = ’L’ then y := hash(y,v j) else y :=
hash(v j,y)

5. Embed y into H1 and compute y := hash(H1)

6. If y 6= z then return false

7. For j = 2 to `2

• Embed y into H j and compute y := hash(H j)

• If y > D0 then return false

8. return true

Figure 11: The cryptocurrency scripts φ ′1,φ
′
2.

of blocks that A creates during the time that the honest
miners are creating T1 blocks. This corresponds to the
head start, because these T1 blocks will not contribute to
the witness that the predicate φ ′2 requires. The second
negative binomial variable counts the number of blocks
that A creates while the honest miners are creating `2
blocks. If A can extend her head start to reach `2 or
more blocks before the honest miners, then the attack
succeeds.

In Table 3, we give exemplary figures for the attack on
Πtheo. For easy comparison, we also include the success
probability without a head start (i.e., T1 = 0), which is

13

Protocol Πtheo

1. The enclave releases TX1 and waits for evidence
that it was confirmed on the system C1.

2. The enclave releases TX2 and waits for evidence
that it was confirmed on the system C2.

3. The enclave releases x1 and waits for evidence that
TX1,1 was confirmed on the system C1.

4. The enclave releases x2.

Figure 12: Theoretical protocol for fair settlement.

Table 3: Breaking the security of Πtheo

p T1 `2 with head start with T1 = 0
1
3 6 50 0.0016 0.0003
1
5 10 50 2−30 2−37

1
5 6 50 2−33 2−37

1
5 6 100 2−65 2−69

1
10 20 50 2−64 2−79

1
10 10 50 2−71 2−79

1
10 10 100 2−145 2−153

simply the probability Pr[NegBin(`2, p)≥ `2].
For the opposite attack, A may intercept x1 in Step

3 and then create a hidden chain w2 that excludes x1.
With this attack strategy, A will broadcast x1 to C1 right
before the timeout T0 is reached, in hope that her hidden
chain w2 will outcompete the chain that the miners of
C1 begin to create. This attack vector is mitigated by
disallowing a precomputation of w2. Specifically, the
enclave hardcodes b1 into TX2, and the predicate φ ′2
verifies that b1 is buried under at least `3 PoW blocks.

The parameter `3 should be set to 2`2 + T1. This
gives a time span of T1 blocks to update TX1 into TX1,1,
after the enclave received the evidence that TX1,TX2
were confirmed and thus revealed x1. The parameter T1
should not be too low, to avoid the cancellation of the
settlements in case of a short network outage or a slow
chain growth in C2 relative to C1.

In the current Bitcoin network, `1 = 12 suffices,
hence the predicates φ ′1,φ

′
2 require ≤ 12+ `2 + `3 hash

invocations for confidence level `2. Given that the
complexity of ECDSA signature verification is an order
of magnitude higher than that of invoking a hash
function, moderate values such as `2 = 50, T1 = 10, `3 =
2`2 + T1 = 110 imply that Bitcoin miners can validate
the scripts φ ′1,φ

′
2 for a mild fee. These parameters

for PoW-based SPV proofs can be even better if the

cryptocurrency system supports NIPoPoW [36].
It is unlikely that Πtheo will be vulnerable to an attack

that embeds a transaction that spends TX1 into TX1,1
or TX1,2 in another cryptocurrency system C3, where C3
has the same PoW hash function and the same difficulty
level. The reason is that the txid hash of TX1 in the leaf
of the Merkle tree is determined according to the prior
history that goes back to the genesis block of C1. Unless
C3 allows the input of a transaction to consist of arbitrary
data,A will need to mount a preimage attack that creates
valid transaction in C3 with a particular value (i.e., the
txid of TX1) as its hash.

The main obstacle to an implementation of Πtheo in
Bitcoin is the RMIT functionality. It is possible to
implement the specific RMIT that Πtheo requires by
creating a transaction txinit that spends the inputs into
a single output that is controlled by the secret signing
key of Tesseract, and creating a refund transaction
txrefund that has locktime [80] of T0 and spends the
output of txinit back into the inputs. After the enclave
receives evidence that txrefund is publicly available, it
will broadcast txinit to the Bitcoin network. When the
execution of Πtheo reaches Step 3 and the enclave needs
to release x1, it will broadcast a transaction txcommit
that spends the output of txinit into the desired outputs.
The only problem with this procedure is that there is
no good way to make txrefund publicly available while
relying on the security of Bitcoin alone. In a purely
theoretical sense, it is possible to make txrefund available
by storing it as arbitrary data on the Bitcoin blockchain
using OP RETURN, but this will be very costly because
the size of txrefund can be dozens of kilobytes and the
capacity of an OP RETURN output is only 80 bytes. An
efficient version of RMIT can be done via a Bitcoin
protocol fork: an initial transaction will mark both the
inputs and the new outputs as unspendable in the UTXO
set, and a subsequent transaction will supply a witness to
φ1 or φ2 and thereby ask the miners to make either the
inputs or the outputs spendable (for a fee). An Ethereum
implementation of a RMIT contract is possible, but
it should be noted that Πtheo (and its generalization
to more than two systems) requires RMIT support by
all the cryptocurrency systems that are involved in the
settlement.

Our analysis of Πtheo gives the essential security
arguments for a protocol that enables an all-or-nothing
settlement. A formal security proof of Πtheo (as well as
Πprac of Section 5.3 and ΠRTExch of Section 6) requires
a rigorous model for the cryptocurrency consensus
system — such as GKL [29] or PSS [58] — together
with a rigorous model that is rich enough to express
the scripting language that controls the users’ coins
(see, e.g., [53]). In Appendix A we provide a
formal security proof (under certain assumptions) for the

14

SGX real-time exchange

S1
SGX

S2
SGX

S3
SGX

SN
SGX

Figure 13: Practical fair settlement.

ACCSs protocol of Section 2, that also serves to show
several of the ingredients that a proof for Πtheo needs to
incorporate.

5.3 Practical Protocol

The theoretical protocol Πtheo of Section 5.2 is resilient
against an adversary who has total access to the server
machine, except for the data that is inside the SGX CPU.
Here, we present a practical protocol Πprac for the all-
or-nothing settlement problem that relaxes this resiliency
aspect, but in fact offers better security in other respects.

Our strategy is to distribute the trust among N
additional servers that are all running SGX enclaves (see
Figure 13), and ensure that Πprac satisfies Definition 2 if
there exists at least one server S j ∈{S1,S2, . . . ,SN} that is
beyond the reach of the adversary A. That is to say, we
assume that S j can communicate with cryptocurrencies
C1,C2 without interference.

The main idea of Πprac is to emulate the essential
characteristic of the theoretical protocol Πtheo, which is
to wait for a proof that the settlement transaction TX1
was either committed to C1 or cancelled, and then do the
same for the settlement transaction TX2.

The settlement protocol Πprac that Tesseract and the
servers S1,S2, . . . ,SN execute is specified in Figure 14.
As a prerequisite, the Tesseract server and S1,S2, . . . ,SN
need to share a symmetric secret key K that is known
only to their enclaves. The transactions TXc

1,TX
c
2 are

“cancellation” transactions that invalidate the settlement
transactions TX1,TX2, respectively. In Bitcoin, TXc

i can
be implemented simply by spending one of the inputs of
TXi into a new output that is identical to that input (this
will cause TXi,TX

c
i to conflict with each other).

Thus, the protocol Πprac seeks to preserve the property
that TX2 remains confidential inside the enclaves for as
long as TX1 is not yet confirmed. This property avoids
the risk that TXi,TX

c
3−i will compete for confirmations

at the same time, as that can easily violate the all-or-
nothing requirement.

In the case that at least one server Si is not under
physical attack, we have that either TX1 or TXc

1 will
be broadcast to C1 within T1 blocks. As a consequence,
either TX1 or TXc

1 will be confirmed after T1+`2 blocks.

Protocol Πprac

1. Tesseract sends ct =
encryptK(TX1,TX2,TX

c
1,TX

c
2) to S1,S2, . . . ,SN .

2. For every i ∈ [N], Tesseract waits for
acknowledgement from Si that it received ct.

3. Tesseract broadcasts TX1 to C1.

4. Starting from the time at which it received ct in Step
1, each server Si ∈ {S1,S2, . . . ,SN} inspects the next
blocks of C1

• If Si does not see TX1 on C1 within T1 blocks,
then it broadcasts TXc

1 to C1.

• If Si sees that TX1 has `2 extra confirmations
on C1, then it broadcasts TX2 to C2.

• If Si sees that TXc
1 has `2 extra confirmations

on C1, then it broadcasts TXc
2 to C2.

Figure 14: Practical protocol for fair settlement.

This allows Si or one of the other non-adversarial servers
to broadcast the appropriate transaction (i.e., TX2 or
TXc

2) to the cryptocurrency system C2, causing it to be
confirmed too.

The adversary A may attempt to mount a race attack
with a head start of T1 blocks, by eclipsing one of the
servers S j. The attack can proceed as follows:

1. A intercepts the data TX1 that Tesseract reveals in Step 3
of Πprac, and deactivates the Tesseract server.

2. A eclipses the server S j, and feeds it with a fake
blockchain (generated by A herself) that contains TX1.

3. When the enclave of S j becomes convinced that TX1 was
confirmed, it releases TX2.

4. Awaits until TXc
1 is confirmed on C1, and then broadcasts

TX2 to C2.

As with Πtheo, the reason that A obtains a head start
is that the honest participants wait for a duration of T1
blocks before they attempt to invalidate TX1, whereas
A begins to create her fake chain immediately — see
Section 5.2 and Table 3 for analysis. Note that the
purpose of the cancellation transaction TXc

2 is to defeat
this race attack, in the case that A fails to generate `2
blocks while the honest network generates T1+`2 blocks.

In fact, it is more difficult for A to exploit the head
start and attack Πprac, than it is to attack Πtheo. This is
because Πprac can specify the precise duration T1, and
Πtheo has to estimate T1 by setting T0 in the predicate
φ2. This estimation should use a lenient bound (that
will likely give A a larger head start), as otherwise the
variance of the block generation process can cause φ2 to
be triggered and thus abort the settlement.

15

Notice that A cannot mount an eclipse attack before
Step 3 of Πprac is reached. Only the Tesseract enclave
can produce the data TX1, and it will do so only after
receiving all the acknowledgements from S1,S2, . . . ,SN
in Step 2. Therefore, an eclipse attack will be
thwarted if at least one non-adversarial server Si ∈
{S1,S2, . . . ,SN} is present, because Si will broadcast the
invalidation transactions TXc

1,TX
c
2 to ensure the all-or-

nothing guarantee of Definition 1.
In practice, it is preferable that the Tesseract enclave

will wait for acknowledgements from only a constant
fraction of the servers Si ∈ {S1,S2, . . . ,SN}, so that A
will not be able to deny service by preventing a single
acknowledgement from reaching Tesseract in Step 2 of
the settlement procedure. Our practical approach can in
fact make Tesseract resistant to DoS attacks in a broader
sense, see Section 6.

Another advantage of Πprac is that it can support other
cryptocurrency systems besides a PoW blockchain. This
is because the servers S1,S2, . . . ,SN can run a full node
inside their enclave, whereas the predicates φ ′1,φ

′
2 lack

the power to express the irreversibility condition of a
more complex cryptocurrency system.

Irrespective of the settlement procedure, the Tesseract
exchange server can fetch from S1,S2, . . . ,SN the heights
of their longest chains (e.g., once every 30 minutes), and
refuse to confirm users’ deposits if less than N/2 of the
servers respond. This would avert fake deposits from
being confirmed due to an eclipse attack, without relying
on the prudence of the users.

5.4 Settlement with One Secure Processor

Is it possible to devise a workable protocol for all-or-
nothing settlement that utilizes servers S1,S2, . . . ,SN that
do not have SGX processors, such that the protocol is
secure if at least one of the servers is isolated from the
adversary? If the round complexity can depend on a
security parameter, then protocols that accomplish this
task are indeed possible.

The basic idea is to rely on the gradual release
technique [9, 31] to reveal TX1,TX2 simultaneously.
The Tesseract enclave can generate a fresh
symmetric key K ∈ {0,1}λ , send the ciphertext
ct = encryptK(TX1,TX2) to S1,S2, . . . ,SN , and wait for
acknowledgements from S1,S2, . . . ,SN that they received
ct. Then, Tesseract can send each of the λ bits of K,
and wait for acknowledgements from S1,S2, . . . ,SN after
each bit is received.

We can improve upon the basic idea by letting the
SGX enclave assume the role of a trusted dealer, and
combine a fair secret sharing protocol with the gradual
release technique. To this end, we employ the fair
secret reconstruction protocol of Lin and Harn [43]. The

Protocol Πgrad

1. The enclave picks a random symmetric key K ∈ {0,1}λ

such that K = (w1,w2, . . . ,wq),wi ∈ {0,1}m,λ = q ·m.

2. The enclave creates ct = encryptK(TX1,TX2).

3. For wi ∈ {w1,w2, . . . ,wq}, the enclave creates N-out-
of-N additive secret shares of wi, including dummy
secrets:

• The enclave picks a random α ∈ [s−1].

• For ` ∈ [d]\{α,α+1}
– For each j ∈ [N], the enclave picks random

shares x`, ji ∈ GF(2λ) conditioned upon

∑
N
j=1 x`, ji 6= 0.

• For `= α +1

– For each j ∈ [N], the enclave picks random
shares x`, ji ∈ GF(2λ) conditioned upon

∑
N
j=1 x`, ji = 0.

• For `= α

– For each j ∈ [N], the enclave picks random
shares x`, ji ∈GF(2λ) conditioned upon the m
least significant bits of ∑

N
j=1 x`, ji being equal

to wi and ∑
N
j=1 x`, ji 6= 0.

4. For every i ∈ [q], ` ∈ [d], j ∈ [N]

• The enclave creates a signature σ
`, j
i for the share

x`, ji .

5. For each j ∈ [N]

• The enclave sends (ct,{x`, ji ,σ
`, j
i }i∈[q],`∈[d]) to S j

via a secure channel.

6. For each i ∈ [q]

• The servers S1,S2, . . . ,SN reconstruct wi by
sending their signed shares in the sequential order
(x1,1

i ,σ1,1
i), . . . ,(x1,N

i ,σ1,N
i),(x2,1

i ,σ2,1
i), . . . ,

until the indicator ∑
N
j=1 xα+1, j

i = 0 is found.

• If some corrupt server S j does not send (x`, ji ,σ
`, j
i)

within τ time, then the honest servers begin an
exhaustive search for the key K.

7. Any server that decrypts ct will broadcast TX1 to C1
and TX2 to C2.

Figure 15: Gradual protocol for fair settlement.

combined protocol Πgrad is parameterized according to
a decoys amount d ≥ 2, batching value m ≥ 1, and a
timeout τ (for example τ = 10 minutes). See Figure 15
for the description of Πgrad.

It is inherently the case that the adversary A can

16

Alice Bob Carol Dave Zack

SN
SGX

S4
SGX

S3
SGX

S2
SGX

Leader: S1
SGX

Figure 16: Fairness with anti-DoS protection.

recognize whether a potential secret key K′ is equal to
K, by attempting to decrypt the structured ciphertext ct.
Thus, if A can brute-force the unrevealed bits of K, she
does not need to let Step 6 of Πgrad progress until an
indicator value ∑

N
j=1 xα+1, j

i = 0 becomes known. The
adversary A may try to guess α and learn an m-bit value
of ∑

N
j=1 xα, j

i 6= 0 that the honest servers do not know, but
the success probability of guessing α correctly is 1

d−1 .
Furthermore, under the assumption that A cannot breaks
K within τ time in order to verify whether her guess was
correct, she must execute Step 6 honestly if she wishes
that the other servers will help to reveal the next bits of
K. Note that this is the case even if A corrupts N−1 of
the servers.

Therefore, Πgrad is more secure when the timeout
parameter τ is smaller, when the amount of dummy
secrets d is larger, and when the batching size m is
smaller. In particular, if m = λ then Πgrad is completely
insecure: A will be able to corrupt the last server SN

and verify for each ` whether ∑
N
j=1 x`, j1 = K, without

revealing x`,N1 to the other servers.
If m = 1 and d > 2 then Πgrad is strictly more

secure than the basic gradual release protocol. Another
advantage over the basic protocol is that Πgrad requires
only one round of communication between Tesseract
and the servers S1,S2, . . . ,SN . However, the number
of rounds of communication among S1,S2, . . . ,SN
themselves is Ω(λ

m ·d), hence larger d or smaller m make
Πgrad less efficient.

The major disadvantage of Πgrad is that the
computational power of A must not be significantly
greater than that of the honest servers. By contrast, Πprac
does not require such an assumption.

6 Full Protocol

The Tesseract exchange can be initialized with the SGX
server S1 as its current leader, and execute the Paxos [40]
consensus protocol together with the other SGX servers
S2,S3, . . . ,SN . See Figure 16 for an illustration.

The requirements of the Paxos Synod protocol are
satisfied in our setting, due to the following reasons:

1. Authenticated channels exist, as the messages that
each SGX server sends are signed using keys bound
to its Tesseract instance via remote attestation.

2. Byzantine faults may not occur (unless the SGX
signing key is compromised), since the servers are
running correct code.

The complete Tesseract protocol ΠRTExch is outlined
in Figure 17. To accomplish all-or-nothing settlements,
ΠRTExch uses Πprac as a subroutine. As with Πprac, the
SGX servers S1,S2, . . . ,SN need to share a symmetric
secret key sk that is known only to their enclaves. The
exemplary parameters d0 = 5,n0 = 288 mean that the
all-or-nothing settlements are done once every 24 hours
(288 ·5 minutes). In the case of a DoS attack on ΠRTExch,
d0 = 5 implies that trades in the last 5 minutes (or less)
will be lost when the newly elected leader resumes the
trading service for the users.

ΠRTExch can be regarded as a sequential composition
of two components. One is Paxos, which guarantees
consistency among the servers, and the other is the all-
or-nothing protocol that interacts with cryptocurrencies.

All-or-nothing fairness holds if more than 1
H of the

servers are not under adversarial control, even if the
network is asynchronous. For example, parameterizing
ΠRTExch according to H = 4 would imply that the
adversary A must corrupt more than 75% of the servers
to violate all-or-nothing fairness (by corrupting > 25% of
the servers A can mount a DoS attack). This is because
ΠRTExch ensures that there will never be two servers
that act as leaders of the same epoch: a majority is
required to elect a new leader (via the Synod algorithm)
in any non-settlement epoch, and the leader SL needs
acknowledgements from dn(1− 1

H)e > n
2 servers before

proceeding to Step 3 of Πprac. However, if A controls
the communication traffic of dn(1− 1

H)e servers, then
A can let SL receive dn(1− 1

H)e acknowledgments and
release TX1 to C1, without ever releasing TX2 to C2
(Πprac can be attacked in this way only if all servers are
under adversarial control).

In non-settlement epochs, the first component of
ΠRTExch ensures liveness if the network is synchronous
and there is a majority of non-faulty servers — just
because Paxos guarantees liveness when synchrony
holds.

It is also critical to protect against DoS during the
all-or-nothing settlement procedure, since the “nothing”
outcome implies that Tesseract has to shut down and
start afresh. To minimize the shutdown probability,
ΠRTExch attempts to restart an all-or-nothing epoch with
a new leader, immediately after the last all-or-nothing

17

Protocol ΠRTExch

Let S1,S2, . . . ,SN be SGX-enabled servers, and let H > 2.
Exemplary parameters: d0 = 5,n0 = 288.

• For every i ∈ [N]:

– The server Si initializes Li := 1 as the leader index
and Ji := 0 as the first epoch.

• Let L denote the index of the server with Li = i.

• Communication with traders.

– The server SL accepts trade requests from new and
existing users, and updates their account balances in
the data structures that are inside its SGX enclave.

• Synchronization with the other servers: JL mod n0 6= 0.

– After each epoch of d0 minutes:

∗ SL sets JL := JL +1.
∗ SL creates m = (JL,encryptsk(dat)), where dat is

its entire enclave data.
∗ SL sends m to the servers {Si}i6=L.
∗ Any server Si that received m will set Ji := JL.
∗ Servers that did not receive m will invoke the

Synod algorithm to update L to a new leader.
– If a new leader was elected, aware servers

will inform the users by publishing the index
of the new leader (with remote attestation).

• All-or-nothing settlement: JL mod n0 = 0.

– SL invokes Πprac with the following modifications:

∗ In Step 1 of Πprac, SL sends m = (JL,ct), where
ct = encryptsk(dat,TX1,TX2).

∗ In Step 2 of Πprac, SL waits for acknowledgements
from dn(1− 1

H)e or more servers.

– For every i ∈ [N]:

∗ Si starts the timer T1 at the beginning of the epoch
JL, and constructs TXc

1,TX
c
2 on its own.

∗ If Si sees that TX1 was confirmed on C1 and TX2
was confirmed on C2, it updates Ji := JL + 1 and
proceeds to the next epoch.

∗ If Si sees that TXc
1 was confirmed on C1 and TXc

2
was confirmed on C2, it invokes Synod to elect
a new leader, and then updates Ji := JL + n0 to
attempt another all-or-nothing settlement.

Figure 17: Outline of the Tesseract protocol.

settlement epoch failed. The enclave of each Si will
use a random perturbation before proposing itself as the
leader, to make it difficult for an adversary to mount DoS
attacks on consecutive leaders. Each enclave should also
copy dat from servers that already received the latest

trade data that the last leader sent. Thus, ΠRTExch has
to ensure that a failed all-or-nothing epoch terminates
as quickly as possible, so that the following epoch will
have enough time to succeed before the expiration of the
timeouts that allow users to claim their refunds. This
is done by letting each Si construct and broadcast the
cancellation transactions TXc

1,TX
c
2 on its own — for

example by spending the reserve output (cf. Section 7)
into a new output with the same amount (cancellation
of an Ethereum settlement transaction is accomplished
even more easily by using the current nonce with a
noop transaction). This way, each Si can start its T1
timer at the beginning of the epoch, and therefore the
adversary cannot target the first server that receives ct by
intercepting TXc

1 and releasing it after an arbitrarily long
delay.

Let us note that if the leader or any other server Si
crashes and does not recover quickly enough, another
server S j will be the leader in the case that Si comes
back online later (without any saved data except for
the hardware keys that the other servers expect, cf.
Section 6.1). Then, Si will synchronize with the enclave
data m and the clock of the current leader S j, and will
be able to continue its participation in the execution of
ΠRTExch.

The setup procedure for S1,S2, . . . ,SN also involves
certain security concerns, see Section 6.1.

6.1 Setup of the Servers

To achieve maximum security, we design the
initialization procedure for ΠRTExch as follows. Our
enclave program code PRTExch contains a hardcoded list
of N endorsement public keys RPK1,RPK2, . . . ,RPKN,
corresponding to the reputable owners of the N servers
(e.g., S1 is located at Bank A, S2 is located at University
B, and so on). When the enclave of Si is loaded with
PRTExch, the code first acquires entropy (cf. Section 4)
and generates a fresh keypair (t pki, tski), and then
output t pki together with an encryption encrypt(tski)
that is created using the symmetric hardware key of
the SGX CPU of Si. The owner keeps a backup of
encrypt(tski), sends t pki to {S j} j 6=i, waits to receive
{t pk j} j 6=i, signs m = (t pk1, t pk2, . . . , t pkN) with RSKi,
and sends the signature esi to {S j} j 6=i. The enclave
of Si waits to receive the endorsed list of fresh keys
(m,es1,es2, . . . ,esN), and stores this list as immutable
data. Following that, the enclave of Si establishes
secure channels (TLS) with each other server S j via the
identities t pki and t pk j.

If the enclave of Si is re-initialized to create a different
identity t pk′i, it will not be able to communicate with the
enclaves of {S j} j 6=i that are still running. However, Si
can recover from a crash failure by restarting the enclave

18

Alice
 25 BTC

Carol
1 BTC

SGX
14 BTC

TX1

Bitcoin transaction

Alice
 30 BTC

 Bob
50 BTC

 Bob
40 BTC

Carol
700 LTC

Dave
5 LTC

TX2

Litecoin transaction

Bob
 400 LTC

Carol
100 LTC

SGX
205 LTC

Ethereum transaction

TX3

Alice: +5 tBTC
 Bob: +8 tBTC, +200 tLTC
Carol: +1 tBTC
 Dave: +5 tLTC

Figure 18: Atomic issuance of tokenized coins.

program PRTExch with m,encrypt(tski) and otherwise a
blank slate, then re-establish the TLS channels {S j} j 6=i
and wait to receive the latest data (including the trusted
clock offset since the start of the round) from the current
leader.

This way, when the Tesseract platform is launched,
the sensitive reputation key RSKi is used only once to
endorse the physical machine that hosts the ith enclave
in order to avoid man-in-the-middle attacks, and Si can
continue to be part of the platform as long as its SGX
CPU is undamaged.

7 Fungible Tokenized Coins

The Tesseract platform also allows its users to withdraw
and circulate tokenized coins that are pegged to some
specific cryptocurrency, with no need to trust a human
element and no exposure to markets fluctuations.
Essentially, this is done by maintaining a reserve of
the pegged cryptocurrency within the SGX enclave,
and employing the all-or-nothing fairness protocol (cf.
Sections 5 and 6) to ensure that the enclave remains
solvent.

Thus, for example, Carol can deposit 600 LTC to the
Tesseract exchange, trade the 600 LTC for 2 BTC, and
withdraw 2 tokenized BTC (tBTC) into the Ethereum
blockchain. Then, Carol could deposit her 2 tBTC to any
smart contract that recognizes the assets that Tesseract
issues. For instance, Carol may wish to play a trust-free
poker game in which the pot is denominated in tBTC
instead of ETH (it is impractical to play poker directly on
the Bitcoin blockchain and instead Ethereum’s stateful
contracts need to utilized, see [14]). Another example is
a crowdfunding contract that raises money denominated
in both tBTC and ETH, but returns all the funds to the
investors if the target amount was not reached before a
deadline.

The issuance of tokenized coins is illustrated in
Figure 18. When a user requests to withdraw tokenized
coins, the enclave will move the coins to a reserve
address, and mint the same amount of new tokens (using
ERC20 contract, see next). In the illustration:

• Alice withdraws 5 tBTC out of her 30 BTC,

• Bob trades 2 BTC in exchange for Carol’s 600 LTC,

• Bob withdraws 8 tBTC and 200 tLTC,

• Carol keeps 1 BTC and withdraws 1 tBTC,

• Dave uses all of his 5 LTC to withdraw 5 tLTC.

The enclave updates its reserve outputs (14 BTC and
205 LTC in the illustration) by adding coin amounts
that match the amounts of tokenized coins that the users
withdrew.

Unlike the native coin deposits, reserve outputs and
the tokenized coins are not constrained by a timeout, and
therefore the tokenized coins are fungible. Any holder
of tokenized coins (e.g., tBTC) can later deposit her
tokens into the enclave (she can create an account on
the Tesseract exchange if she does not have one yet),
and receive native coins (e.g., BTC) upon doing so.
The enclave will simply discard the tokenized coins that
were deposited. Hence, the tokenized coins can circulate
freely on the blockchain in which they are issued (the
Ethereum blockchain in our implementation), without
the involvement of the Tesseract exchange.

For the exchange to remain solvent, we must guarantee
all-or-nothing fairness with respect to Definition 1 for the
transaction that moves native coins (from the users to the
reserve output) and the transaction that mints tokenized
coins. In Figure 18 for example, if TX1 is not committed
to the Bitcoin blockchain but TX3 is committed to the
Ethereum blockchain, then the eventual holders of the
14 tBTC will not be able to deposit their tokens in
order to convert them to native BTC, because the reserve
output (of 14 BTC) does not exist. Likewise, if TX3 is
not committed to the Ethereum blockchain but TX1 is
committed to the Bitcoin blockchain, then the Bitcoin
holders will be damaged (e.g., Alice will lose 5 BTC).

As described in Sections 4 and 5, the all-or-nothing
settlement should occur after an interval that is longer
than the time that it takes for the all-or-nothing protocol
execution to complete (e.g., an interval of 24 hours can
be sensible). This means that when a user requests
to withdraw tokenized coins, there will be a waiting
period (say, somewhere between 1 hour and 25 hours)
before she receives the tokens. This also implies good
scalability, since all the native coins (that are kept in
reserve) are accumulated into a single output that is
updated on-chain only after a lengthy time interval.

In our implementation, the tokenized coins are issued
on the Ethereum blockchain in the form of an ERC20
contract [74]. It is also possible to mint the tokenized
coins as colored coins [67] on the Bitcoin blockchain,
though that is problematic for two reasons. First,
tagging-based colored coins have not been implemented

19

yet in cryptocurrencies such as Bitcoin and Litecoin (cf.
Section 8). More importantly, the principal reason for
having tokenized coins is to use them in smart contracts,
and Ethereum is better suited for this purpose.

Since the tokenized coins are issued by the Tesseract
exchange and are fungible, the holders of these tokens
will be unable to convert them to native coins in the case
that the Tesseract platform is destroyed. In Section 6 we
give the full version of Tesseract, which is distributed
and hence highly unlikely to fail. It is also possible to
incorporate a timeout to the reserve outputs that specifies
that the coins will be controlled by (say) a multisig of
several reputable parties if Tesseract stops updating the
reserve outputs and thus the time expiration is reached.
However, this gives an incentive to these several parties
to destroy the Tesseract platform and collect the reserve
coins.

8 Fiat Currencies

For fiat currency transactions that are done via the
traditional banking system, it is problematic to offer
integration with a protocol that is based on cryptographic
assumptions. One reason for this is that fiat transactions
can be reversed as a result of human intervention (e.g., in
the course of investigating a complaint by a customer of
a bank).

The problem can be outsourced by relying on a
counterparty that provides recognizable tokens that
can be transferred via the underlying cryptocurrency
system, and are supposed to represent an equivalent
amount of fiat currency. This approach enables fiat
currency transfers that become irreversible just like the
cryptocurrency payments, and depends on the reputation
of the counterparty to redeem the token for the actual fiat
currency. See for example [19, Section 5.2] and [67] in
this regard. One instantiation of this idea that enjoys a
relatively high degree of popularity is Tether [21, 18],
which circulates tokens that are pegged to the U.S. dollar
(involving proof-of-reserve) using the Omni layer [56]
on top of Bitcoin. The Tesseract service provider may
even issue its own fiat tokens (by accepting traditional
wire transfers of fiat currency), and other platforms and
users may assign value to the tokens if they consider this
Tesseract service provider to be trustworthy.

The SGX enclave of Tesseract can thus support
assets that are redeemable for fiat currencies, by
recognizing certain predefined types of tokens in the
deposit transactions. In the case that the cryptocurrency
(in which such an asset circulates) supports tagging-
based colored coins [67, 41], the validation predicate for
the deposit is easy to implement. This is because the
predicate would inspect only current deposit transaction,

rather than also inspecting prior transfers of ownership
that ended up as this deposit. For non-tagging-based
colored coin, Tesseract would need to run a full node
inside an SGX enclave, which is far more demanding
than running an SPV [54] client (the Tesseract enclave
operation that we specify in Section 4 is essentially
an SPV client). Tagging-based colored coins require
miners and full nodes to perform a moderate amount
of extra work (only for colored transactions), which is
not supported on cryptocurrencies such as Bitcoin and
Litecoin yet (see [41] for a proposed implementation and
[60] regarding future ideas). However, Ethereum already
supports the equivalent of tagging-based colored coins,
in the form of an ERC20 smart contract (cf. [74]). Our
reference implementation of Tesseract already supports
ERC20 assets as well, see Appendix B.

Hence, other than just allowing cryptocurrencies to be
traded for one another, Tesseract can also let the users
trade cryptocurrencies for traditional assets that have
a digital representation (in particular fiat currencies),
though this capability involves trust in the reputation of
the issuers of the assets.

9 Related Work

Trusted hardware has been proposed as an effective tool
for different kinds of cryptocurrency use-cases, such
as off-chain payment channels [45, 44], reputable data
feed services [86], and a mixing service [79]. These
schemes offer better efficiency and features by placing
more trust in the hardware manufacturer: in particular,
off-chain channels and mixers can also be accomplished
without secure processors (see, e.g., [50, 14, 69, 32]).
By contrast, Tesseract reduces the amount of trust that
needs to be placed in the exchange service relative to
all other real-time exchange schemes (to the best of our
knowledge). In Section 3 we provide a comparison
between Tesseract and various other cryptocurrency
exchange schemes.

Trusted hardware can also be used to achieve
significant efficiency gains for well-known
cryptographic primitives such as functional
encryption [28], secure MPC [62], and NIZK in
the presence of side-channels [78]. Pass, Shi, and
Tramèr give a formal model of trusted hardware and
remote attestation [59].

Several works achieve fair exchange and secure cash
distribution via interaction with a cryptocurrency system,
cf. [4, 3, 13, 14, 37, 39]. However, these works
enable fair exchange (with penalties) by using a single
cryptocurrency system, while Tesseract has to provide
all-or-nothing fairness among multiple cryptocurrency
systems.

Outside of academic work, a wide range of industry

20

and community efforts have attempted to realize various
aspects of cross-chain distributed exchange. One
strategy is the use of payment channels to achieve a
hub-and-spoke exchange, work which we examine in
Section 3. These efforts are primarily based on the work
in [61], which introduces HTLCs (hashed timelocked
contracts) for payment channels in cryptocurrencies.
A practical example of such applications is available
at [65].

Several exchanges aim at using raw atomic swaps,
as in Figures 1 and 2. Unfortunately as discussed in
Section 2, due to their need for on-chain mediation, there
is no known solution for extending these efforts to real-
time trades. Also, requiring the user to sign HTLC
transactions presents a DoS vector whereby a user can
choose to abort post-matching. A further comparison
of such swap-based exchanges to the channel-based
Lightning network approach is available in [73].

Further alternatives to an atomic swap model for
decentralized, non-custodial exchanges are also explored
in Section 3, with notable early efforts making use of
both reputation [27] and IOUs [70] to achieve economic
security for their trades. Notably, these exchanges still
require on-chain per-trade mediation, and cannot be
real-time. Nonetheless, a wide range of efforts have
focused on developing these swaps, the building blocks
of a potential exchange. Such primitive swaps from,
for example, Bitcoin to ZCash have been demonstrated
in [66].

Lastly, a wide range of decentralized exchanges run
inside a single blockchain and allow users to exchange
assets on that chain, as mentioned in Section 1. Some
of these exchanges use custody in smart contracts to
trustlessly hold user assets (including EtherDelta [64]),
whereas others rely on atomic swaps to exchange assets
that never leave user custody (including AirSwap [57]).
Because of their on-chain settlement, these exchanges
are not real time, and suffer from a number of
manipulation vectors across a design space explored
in [12]. Also, they do not support cross chain exchange.

Acknowledgements

We thank Fred Schneider, Elaine Shi, Ittay Eyal, and
Aniket Kate for useful discussion.

This work is funded in part by NSF grants CNS-
1330599, CNS-1514163, CNS-1564102, and CNS-
1704615, as well as ARO grant W911NF-16-1-0145.

References
[1] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.

Innovative Technology for CPU Based Attestation and Sealing.
In HASP’13 (2013), pp. 1–7.

[2] ANDRESEN, G. P2SH. https://github.com/bitcoin/
bips/blob/master/bip-0016.mediawiki.

[3] ANDRYCHOWICZ, M., DZIEMBOWSKI, S., MALINOWSKI, D.,
AND MAZUREK, L. Fair two-party computations via Bitcoin
deposits. In First Bitcoin Workshop, FC (2014).

[4] ANDRYCHOWICZ, M., DZIEMBOWSKI, S., MALINOWSKI, D.,
AND MAZUREK, L. Secure multiparty computations on Bitcoin.
In IEEE S&P (2014).

[5] BACK, A. O(280) theoretical attack on p2sh. https://

bitcointalk.org/index.php?topic=323443.0, 2013.

[6] BALDWIN, C. http://www.reuters.com/article/us-
bitfinex-hacked-hongkong-idUSKCN10E0KP.

[7] BARISSER, A. High frequency trading on the Coinbase
exchange, 2015. https://medium.com/on-banking/
high-frequency-trading-on-the-coinbase-exchange-

f804c80f507b.

[8] BARTOLETTI, M., AND POMPIANU, L. An analysis of Bitcoin
OP RETURN metadata. In Financial Cryptography 4th Bitcoin
Workshop (2017). https://arxiv.org/abs/1702.01024.

[9] BEAVER, D., AND GOLDWASSER, S. Multiparty computation
with faulty majority. In 30th Annual Symposium on Foundations
of Computer Science (FOCS) (1989).

[10] BEEKMAN, J. A Denial of Service Attack against Fair
Computations using Bitcoin Deposits, 2014. https://

eprint.iacr.org/2014/911.

[11] BENET, J. https://ipfs.io/.

[12] BENTOV, I., BREIDENBACH, L., DAIAN, P., JUELS, A., LI,
Y., AND ZHAO, X. The cost of decentralization in 0x and
EtherDelta. http://hackingdistributed.com/2017/08/
13/cost-of-decent/, 2017.

[13] BENTOV, I., AND KUMARESAN, R. How to use Bitcoin to
design fair protocols. In Crypto (2) (2014), pp. 421–439.

[14] BENTOV, I., KUMARESAN, R., AND MILLER, A. Instantaneous
decentralized poker. In Asiacrypt (2017).

[15] BENTOV, I., MIZRAHI, A., AND ROSENFELD, M.
Decentralized prediction market without arbiters. In Financial
Cryptography 4th Bitcoin Workshop (2017).

[16] BENTOV, I., TIERNOLAN, ET AL. Alt chains and atomic
transfers. https://bitcointalk.org/index.php?topic=
193281.msg2224949#msg2224949, 2013.

[17] BROWN, D. G. How i wasted too long finding a concentration
inequality for sums of geometric variables. https://
cs.uwaterloo.ca/~browndg/negbin.pdf.

[18] CAPITALIZATIONS, C. M. https://coinmarketcap.com/
assets/.

[19] CLARK, J., BONNEAU, J., FELTEN, E. W., KROLL, J. A.,
MILLER, A., AND NARAYANAN, A. On decentralizing
prediction markets and order books. In WEIS (2014).

[20] CROMAN, K., DECKER, C., EYAL, I., GENCER, A. E.,
JUELS, A., KOSBA, A., MILLER, A., SAXENA, P., SHI,
E., SIRER, E. G., SONG, D., AND WATTENHOFER, R. On
scaling decentralized blockchains. In Financial Cryptography
3rd Bitcoin Workshop (2016).

[21] CURRENCIES ON THE BITCOIN BLOCKCHAIN, T. F.
https://tether.to/wp-content/uploads/2016/06/
TetherWhitePaper.pdf, 2016.

[22] DECKER, C., AND WATTENHOFER, R. A fast and scalable
payment network with Bitcoin duplex micropayment channels.
In 17th Stabilization, Safety, and Security of Distributed Systems
(SSS) (2015).

21

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://bitcointalk.org/index.php?topic=323443.0
https://bitcointalk.org/index.php?topic=323443.0
http://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
http://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
https://medium.com/on-banking/high-frequency-trading-on-the-coinbase-exchange-f804c80f507b
https://medium.com/on-banking/high-frequency-trading-on-the-coinbase-exchange-f804c80f507b
https://medium.com/on-banking/high-frequency-trading-on-the-coinbase-exchange-f804c80f507b
https://arxiv.org/abs/1702.01024
https://eprint.iacr.org/2014/911
https://eprint.iacr.org/2014/911
https://ipfs.io/
http://hackingdistributed.com/2017/08/13/cost-of-decent/
http://hackingdistributed.com/2017/08/13/cost-of-decent/
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://cs.uwaterloo.ca/~browndg/negbin.pdf
https://cs.uwaterloo.ca/~browndg/negbin.pdf
https://coinmarketcap.com/assets/
https://coinmarketcap.com/assets/
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

[23] DESMEDT, AND FRANKEL. Threshold cryptosystems. In
CRYPTO: Proceedings of Crypto (1989).

[24] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. F.
Tor: The second-generation onion router. In 13th USENIX
Security (2004).

[25] DREE12 (PSEUDONYM). List of major Bitcoin heists, thefts,
hacks, scams, and losses. https://bitcointalk.org/
index.php?topic=576337.

[26] DUBHASHI, D. P., AND PANCONESI, A. Concentration of
Measure for the Analysis of Randomized Algorithms. Cambridge
University Press, 2009.

[27] ENGLISH, S. M., ORLANDI, F., AND AUER, S.
Disintermediation of inter-blockchain transactions. CoRR
abs/1609.02598 (2016).

[28] FISCH, B. A., VINAYAGAMURTHY, D., BONEH, D., AND
GORBUNOV, S. Iron: Functional encryption using Intel SGX,
2017.

[29] GARAY, J., KIAYIAS, A., AND LEONARDOS, N. The Bitcoin
backbone protocol: Analysis and applications. In Eurocrypt
(2015).

[30] GENNARO, R., GOLDFEDER, S., AND NARAYANAN, A.
Threshold-optimal DSA/ECDSA signatures and an application to
Bitcoin wallet security. In 14th ACNS (2016).

[31] GOLDWASSER, S., AND LEVIN, L. Fair computation of general
functions in presence of immoral majority. In Proceedings of
Advances in Cryptologie (CRYPTO ’90) (Berlin, Germany, Aug.
1991), A. J. Menezes and S. A. Vanstone, Eds., vol. 537 of LNCS,
Springer, pp. 77–93.

[32] HEILMAN, E., ALSHENIBR, L., BALDIMTSI, F., SCAFURO,
A., AND GOLDBERG, S. TumbleBit: An untrusted
Bitcoin-compatible anonymous payment hub. https://

eprint.iacr.org/2016/575, 2016.

[33] HEILMAN, E., KENDLER, A., ZOHAR, A., AND GOLDBERG,
S. Eclipse attacks on Bitcoin’s peer-to-peer network. In
24th USENIX Security Symposium (USENIX Security 15)
(Washington, D.C., 2015), USENIX Association, pp. 129–144.

[34] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V.,
AND DEL CUVILLO, J. Using innovative instructions to create
trustworthy software solutions. In HASP (2013).

[35] JOHNSON, S., SCARLATA, V., ROZAS, C., BRICKELL,
E., AND MCKEEN, F. Intel Software Guard Extensions:
EPID provisioning and attestation services, 2016. https://

software.intel.com/en-us/blogs/2016/03/09/intel-
sgx-epid-provisioning-and-attestation-services.

[36] KIAYIAS, A., MILLER, A., AND ZINDROS, D. Non-interactive
proofs of proof-of-work. https://eprint.iacr.org/2017/
963, 2017.

[37] KIAYIAS, A., ZHOU, H.-S., AND ZIKAS, V. Fair and robust
multi-party computation using a global transaction ledger. In
Eurocrypt (2015).

[38] KNIGHT, S. http://www.reuters.com/article/us-
bitcoin-mtgox-wallet-idUSBREA2K05N20140321.

[39] KOSBA, A. E., MILLER, A., SHI, E., WEN, Z., AND
PAPAMANTHOU, C. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In IEEE
S&P (2016).

[40] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst 16, 2 (1998), 133–169.

[41] LAU, J. bip-color. https://github.com/jl2012/bips/
blob/color/bip-color.mediawiki, 2017.

[42] LAU, J. P2wpk. https://github.com/jl2012/bips/blob/
vault/bip-0VVV.mediawiki, 2017.

[43] LIN, H.-Y., AND HARN, L. Fair reconstruction of a secret.
Information Processing Letters 55, 1 (7 July 1995), 45–47.

[44] LIND, J., EYAL, I., KELBERT, F., NAOR, O., PIETZUCH, P. R.,
AND SIRER, E. G. Teechain: Scalable blockchain payments
using trusted execution environments. CoRR abs/1707.05454
(2017).

[45] LIND, J., EYAL, I., PIETZUCH, P. R., AND SIRER,
E. G. Teechan: Payment channels using trusted execution
environments. In Financial Cryptography 4th Bitcoin Workshop
(2017).

[46] LUU, L., AND VELNER, Y. KyberNetwork white
paper, 2017. https://kyber.network/assets/
KyberNetworkWhitepaper.pdf.

[47] MAPPUM (PSEUDONYM). Mercury – fully trustless
cryptocurrency exchange, 2015. https://bitcointalk.org/
index.php?topic=946174.0.

[48] MATETIC, S., AHMED, M., KOSTIAINEN, K., DHAR, A.,
SOMMER, D., GERVAIS, A., JUELS, A., AND CAPKUN, S.
ROTE: Rollback protection for trusted execution, 2017. http:

//eprint.iacr.org/2017/048.

[49] MCCORRY, P., HEILMAN, E., AND MILLER, A. Atomically
trading with Roger: Gambling on the success of a hardfork.
https://eprint.iacr.org/2017/694, 2017.

[50] MCCORRY, P., MÖSER, M., SHAHANDASHTI, S. F., AND HAO,
F. Towards Bitcoin payment networks. In Information Security
and Privacy - 21st Australasian Conference, ACISP (2016).

[51] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,
U. Innovative instructions and software model for isolated
execution. In HASP (2013).

[52] MCMILLAN, R. $1.2m hack shows why you should never store
Bitcoins on the internet. https://www.wired.com/2013/11/
inputs/, 2013.

[53] MILLER, A. Provable Security for Cryptocurrencies. PhD thesis,
University of Maryland, College Park, 2016.

[54] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
Bitcoin.org (2008).

[55] NAKAMOTO, S. https://bitcointalk.org/
index.php?topic=1786.msg22119#msg22119, 2010.

[56] OMNI. http://www.omnilayer.org/.

[57] OVED, M., AND MOSITES, D. Swap: A peer-to-peer protocol
for trading Ethereum tokens, 2017. https://swap.tech/
whitepaper/.

[58] PASS, R., SEEMAN, L., AND ABHI SHELAT. Analysis of the
Blockchain protocol in asynchronous networks. In Eurocrypt
(2017).

[59] PASS, R., SHI, E., AND TRAMER, F. Formal abstractions for
attested execution secure processors. In Eurocrypt (2017).

[60] POELSTRA, A., BACK, A., FRIEDENBACH, M., MAXWELL,
G., AND WUILLE, P. Confidential assets. In Financial
Cryptography Bitcoin Workshop. https://blockstream.com/
bitcoin17-final41.pdf.

[61] POON, J., AND DRYJA, T., 2016. https://

lightning.network/lightning-network-paper.pdf.

[62] PORTELA, B., BARBOSA, M., SCERRI, G., WARINSCHI, B.,
BAHMANI, R., BRASSER, F., AND SADEGHI, A.-R. Secure
multiparty computation from SGX. In Financial Cryptography
(2017).

22

https://bitcointalk.org/index.php?topic=576337
https://bitcointalk.org/index.php?topic=576337
https://eprint.iacr.org/2016/575
https://eprint.iacr.org/2016/575
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://eprint.iacr.org/2017/963
https://eprint.iacr.org/2017/963
http://www.reuters.com/article/us-bitcoin-mtgox-wallet-idUSBREA2K05N20140321
http://www.reuters.com/article/us-bitcoin-mtgox-wallet-idUSBREA2K05N20140321
https://github.com/jl2012/bips/blob/color/bip-color.mediawiki
https://github.com/jl2012/bips/blob/color/bip-color.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://kyber.network/assets/KyberNetworkWhitepaper.pdf
https://kyber.network/assets/KyberNetworkWhitepaper.pdf
https://bitcointalk.org/index.php?topic=946174.0
https://bitcointalk.org/index.php?topic=946174.0
http://eprint.iacr.org/2017/048
http://eprint.iacr.org/2017/048
https://eprint.iacr.org/2017/694
https://www.wired.com/2013/11/inputs/
https://www.wired.com/2013/11/inputs/
https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119
https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119
http://www.omnilayer.org/
https://swap.tech/whitepaper/
https://swap.tech/whitepaper/
https://blockstream.com/bitcoin17-final41.pdf
https://blockstream.com/bitcoin17-final41.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

[63] PORTNOY, E., AND ECKERSLEY, P. Intel’s management
engine is a security hazard, and users need a way to disable
it. https://www.eff.org/deeplinks/2017/05/intels-
management-engine-security-hazard-and-users-

need-way-disable-it.

[64] PROFITGENERATOR. EtherDelta - decentralized token
exchange, 2017. https://steemit.com/ethereum/
@profitgenerator/etherdelta-decentralized-token-

exchange.

[65] REDMAN, J. Altcoin exchange performs first atomic
swap between bitcoin and ethereum, 2017. https:

//news.bitcoin.com/altcoin-exchange-performs-
first-atomic-swap-between-bitcoin-and-ethereum/.

[66] REDMAN, J. Engineers demonstrate zcash/bitcoin atomic
swaps, 2017. https://news.bitcoin.com/engineers-
demonstrate-zcashbitcoin-atomic-swaps/.

[67] ROSENFELD, M. Colored coins. https://

bitcoil.co.il/files/Colored%20Coins.pdf and
https://bitcoil.co.il/BitcoinX.pdf, 2012.

[68] ROSENFELD, M. Analysis of hashrate-based double spending.
http://arxiv.org/abs/1402.2009, 2014.

[69] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. P2P
Mixing and Unlinkable Bitcoin Transactions. In NDSS 2017
(2017).

[70] SCHUH, F., AND LARIMER, D. BitShares. https:

//bravenewcoin.com/assets/Whitepapers/bitshares-
financial-platform.pdf.

[71] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy data analytics in the cloud using SGX. In
IEEE S&P (2015).

[72] SHAPESHIFT. https://shapeshift.io/.

[73] SONG, J. Atomic swaps, 2017. https://

bitcointechtalk.com/atomic-swaps-d6ca26b680fe.

[74] STANDARD #20, E. T. https://github.com/ethereum/
EIPs/issues/20.

[75] STRACKX, R., AND PIESSENS, F. Ariadne: A minimal approach
to state continuity. In 25th USENIX Security (2016).

[76] SZTORC, P. BitUSD isn’t worth the trouble. http://

www.truthcoin.info/blog/bitusd/, 2015.

[77] TODD, P. OP CHECKLOCKTIMEVERIFY. BIP 65,
https://github.com/bitcoin/bips/blob/master/bip-
0065.mediawiki, 2014.

[78] TRAMER, F., ZHANG, F., LIN, H., HUBAUX, J.-P., JUELS, A.,
AND SHI, E. Sealed-glass proofs: Using transparent enclaves to
prove and sell knowledge. In Euro S&P (2017).

[79] TRAN, M., LUU, L., KANG, M. S., BENTOV, I., AND SAXENA,
P. Obscuro: A secure and anonymous Bitcoin mixer using SGX,
2017.

[80] https://bitcoin.org/en/glossary/locktime.

[81] WARREN, W., AND BANDEALI, A. 0x: An open protocol
for decentralized exchange on the Ethereum blockchain, 2017.
https://0xproject.com/pdfs/0x white paper.pdf.

[82] WUILLE, P., ET AL. https://bitcoincore.org/en/2017/
03/23/schnorr-signature-aggregation/.

[83] WUILLE, P., MAXWELL, G., ET AL., 2015. https://

github.com/bitcoin-core/secp256k1.

[84] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel
attacks: Deterministic side channels for untrusted operating
systems. In Security and Privacy (SP), 2015 IEEE Symposium
on (2015), IEEE, pp. 640–656.

[85] YOUNG, J. China imposes new capital controls; Bitcoin
price optimistic, 2016. https://cointelegraph.com/
news/china-imposes-new-capital-controls-bitcoin-

price-optimistic.

[86] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND
SHI, E. Town Crier: An authenticated data feed for smart
contracts. In CCS (2016).

A Proof of Security for ACCS

Per Definition 1, let us prove that the all-or-nothing
requirement holds for the Πaccs protocol that we
described in Section 2.

We use TXOUTA,TXOUTB to denote the outputs
of the transactions TXA,TXB, respectively. We denote
by TXS

A,TX
S
B the transactions that spend TXOUTA and

TXOUTB in steps 3 and 4 of Πaccs, respectively.

Proposition 1. Assume that s0 = Ω(
√

t0), and that any
Bitcoin client that wishes to submit a valid transaction
will be able to broadcast the transaction and have it
included in one of the next s0 blocks. Assume that
the probability of reversing c0 Bitcoin blocks or 4c0
Litecoin blocks is negligible. Let E0 denote the event that
the all-or-nothing property holds w.r.t. the transactions
TXS

A and TXS
B. If hash(·) is preimage-resistant and the

signature scheme is existentially unforgeable, then ¬E0
occurs with negligible probability.

Proof sketch. We define the following events:

• E1 = {TXA was reversed after Bob broadcasted TXB}

• E2 = {TXB was reversed after Alice revealed x}

• E3 = {Bob spent TXOUTA before Alice revealed x}

• E4 = {Alice spent both TXOUTA and TXOUTB

without forging a signature}

• EF = {The adversary forged a signature}

• EA = {TXS
A was confirmed by the Bitcoin network}

• EB = {TXS
B was confirmed by the Litecoin network}

It is enough to prove that Pr[¬E0∩¬EF] is negligible,
because Pr[EF] is negligible by assumption and

Pr[¬E0] = Pr[(¬E0∩EF)∪ (¬E0∩¬EF)]

≤ Pr[EF]+Pr[¬E0∩¬EF] .

Assume that EF did not occur. If Alice redeems
TXOUTB then Bob will be able to redeem TXOUTA

unless either the block that contains TXA was reversed
on the Bitcoin blockchain (event E1), or TXOUTA was
spent after the c0 + t0 + s0 timeout expired (event E4).
More formally, we have EA∩¬EB∩¬EF ⊆ E1∪E4.

23

https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://steemit.com/ethereum/@profitgenerator/etherdelta-decentralized-token-exchange
https://steemit.com/ethereum/@profitgenerator/etherdelta-decentralized-token-exchange
https://steemit.com/ethereum/@profitgenerator/etherdelta-decentralized-token-exchange
https://news.bitcoin.com/altcoin-exchange-performs-first-atomic-swap-between-bitcoin-and-ethereum/
https://news.bitcoin.com/altcoin-exchange-performs-first-atomic-swap-between-bitcoin-and-ethereum/
https://news.bitcoin.com/altcoin-exchange-performs-first-atomic-swap-between-bitcoin-and-ethereum/
https://news.bitcoin.com/engineers-demonstrate-zcashbitcoin-atomic-swaps/
https://news.bitcoin.com/engineers-demonstrate-zcashbitcoin-atomic-swaps/
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://arxiv.org/abs/1402.2009
https://bravenewcoin.com/assets/Whitepapers/bitshares-financial-platform.pdf
https://bravenewcoin.com/assets/Whitepapers/bitshares-financial-platform.pdf
https://bravenewcoin.com/assets/Whitepapers/bitshares-financial-platform.pdf
https://shapeshift.io/
https://bitcointechtalk.com/atomic-swaps-d6ca26b680fe
https://bitcointechtalk.com/atomic-swaps-d6ca26b680fe
https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/20
http://www.truthcoin.info/blog/bitusd/
http://www.truthcoin.info/blog/bitusd/
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://bitcoin.org/en/glossary/locktime
https://0xproject.com/pdfs/0x_white_paper.pdf
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://cointelegraph.com/news/china-imposes-new-capital-controls-bitcoin-price-optimistic
https://cointelegraph.com/news/china-imposes-new-capital-controls-bitcoin-price-optimistic
https://cointelegraph.com/news/china-imposes-new-capital-controls-bitcoin-price-optimistic

Assume again that EF did not occur. If Bob redeems
TXOUTA then Alice will be able to redeem TXOUTB

unless either the block that contains TXB was reversed
on the Litecoin blockchain (event E2), or TXOUTB never
appeared on the Litecoin blockchain (event E3). More
formally, we have EB∩¬EA∩¬EF ⊆ E2∪E3.

Therefore, we obtain

Pr[¬E0∩¬EF]

= Pr
[(
(EA∩¬EB)∪ (EB∩¬EA)

)
∩¬EF

]
≤ Pr[EA∩¬EB∩¬EF]+Pr[EB∩¬EA∩¬EF]

≤ Pr[E1∪E4]+Pr[E2∪E3]

≤ Pr[E1]+Pr[E2]+Pr[E3]+Pr[E4] .

By assumption, Pr[E1] and Pr[E2] are negligible since c0
is large enough. Furthermore, Pr[E3] = negl(λ) because
the event E3 implies that Bob computed a preimage of
hash(Y).

To bound Pr[E4], we need to consider the event that the
Bitcoin chain grew by t0 + s0 blocks before the Litecoin
chain grew by 4t0 blocks. If this event occurs, then
Alice will be able to redeem TXOUTA first, and still
have enough time to redeem TXOUTB too. Note that the
Bitcoin network is expected to generate only t0 blocks by
the time that the Litecoin network generated 4t0 blocks.

Let Z = Z(t0 + s0,
1
5) be a random variable with

negative binomial distribution that counts the total
number of blocks that both the Bitcoin and Litecoin
networks generated by the time that the Bitcoin network
generated t0 + s0 blocks, hence E[Z] = 5(t0 + s0). By
using a standard tail inequality [17, 26] for the binomial
distribution B(µ ·E[Z], 1

5) with µ , t0
t0+s0

, we obtain

Pr[E4] = Pr[Z < 5t0] = Pr[Z < µ ·E[Z]]

= Pr
[

B(µ ·E[Z], 1
5
)> t0 + s0

]
< e−

1
3 (

1
µ
−1)2µ(t0+s0)

= e−
1
3 (s0/t0)2·t0 = e−

1
3 s0

2/t0 .

Thus, s0 = λ
√

t0 implies Pr[E4]< e−λ 2/3 = negl(λ).

Proposition 1 makes the assumption that clients cannot
be denied from communicating with the Bitcoin network
during a long enough time period. While DoS attack
on clients has been suggested as a possible vulnerability
of Bitcoin based protocols [10], our assumption is quite
reasonable as it is far more difficult to mount a DoS
attack on a client (that can connect to the internet from
various endpoints) in comparison to a DoS attack on a
server. However, in case the Bitcoin blocks approach
their full capacity due to a high transaction volume,
the client may indeed find it difficult to incorporate the
desired transaction in one of the next s0 blocks (see

for example [20] regarding the scalability prospects of
Bitcoin). Still, the client should be able to include her
transaction by attaching a high enough fee and thus
signal the Bitcoin miners to prioritize the transaction.

Notice that the chain growth ratio between Litecoin
and Bitcoin (i.e., the constant 4) does not influence the
proof, because the extra s0 confirmations in TXOUTA

correspond to 4s0 expected growth that TXOUTB

precludes.
Let us also note that the above proof makes the implicit

supposition that the computational power that is devoted
to the Bitcoin and Litecoin networks remains constant.
It is possible to generalize Proposition 1 by assuming
that the computational power may not fluctuate beyond
a certain bound.

B Implementation

We highlight parts of our reference code for the Tesseract
protocol ΠRTExch in Figures 19 and 20. The full source
code of our demo will be made public at a later time.

bool verifyMerklePath(const byte* root, const byte* leaf,
const byte** branch, int dirvec){

byte curr[SHA256_DIGEST_LENGTH];

memcpy(curr, leaf, SHA256_DIGEST_LENGTH);
byte_swap(curr, SHA256_DIGEST_LENGTH);

for(int i=0; dirvec>1; ++i,dirvec>>=1) {
if((branch[i]).empty()) {

sha256double(curr, curr, curr);
continue;

}
if(dirvec & 1)

sha256double(curr, branch[i], curr);
else

sha256double(branch[i], curr, curr);
}

byte_swap(curr, SHA256_DIGEST_LENGTH);
return memcmp(curr, root, SHA256_DIGEST_LENGTH);

}

Figure 19: Verify authentication path of a deposit.

time_t renew(time_t timestamp, long user_id, cointype fee){
if (book.find(user_id) == book.end()

|| timestamp + RENEW_PERIOD > book[user_id].timeout
|| book[user_id].left < fee) {
return -1;

} else {
book[user_id].volume -= fee;
book[user_id].left -= fee;

timestamp = max(book[user_id].timeout,
timestamp + DEPOSIT_PERIOD);

book[user_id].timeout = timestamp;
return timestamp;

}
}

Figure 20: Renewal order.

24

	Introduction
	Atomic cross-chain swaps
	Cryptocurrency Exchanges
	Centralized Exchange
	Exchange with Off-chain Channels and TTP
	Non-real-time Exchanges

	The Tesseract Design
	Eclipse Attacks
	Secure Communication
	Double Attestation

	Atomic Cross-Chain Settlements
	Naive Protocols
	Theoretical Protocol
	Practical Protocol
	Settlement with One Secure Processor

	Full Protocol
	Setup of the Servers

	Fungible Tokenized Coins
	Fiat Currencies
	Related Work
	Proof of Security for ACCS
	Implementation

