
Fully Verifiable Secure Delegation of Pairing
Computation: Cryptanalysis and An Efficient

Construction

Osmanbey Uzunkol1, Öznur Kalkar2,3, and İsa Sertkaya2

1 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, Germany
osmanbey.uzunkol@gmail.com

2 Mathematical and Computational Sciences TÜBİTAK BİLGEM, Turkey
{oznur.arabaci,isa.sertkaya}@tubitak.gov.tr

3 Department of Mathematics, Gebze Technical University

Abstract. We address the problem of secure and verifiable delegation
of general pairing computation. We first analyze some recently proposed
pairing delegation schemes and present several attacks on their security
and/or verifiability properties. In particular, we show that none of these
achieve the claimed security and verifiability properties simultaneously.
We then provide a fully verifiable secure delegation scheme VerPair un-
der one-malicious version of a two-untrusted-program model (OMTUP).
VerPair not only significantly improves the efficiency of all the previ-
ous schemes, such as fully verifiable schemes of Chevallier-Mames et al.
and Canard et al. by eliminating the impractical exponentiation- and
scalar-multiplication-consuming steps, but also offers for the first time
the desired full verifiability property unlike other practical schemes. Fur-
thermore, we give a more efficient and less memory consuming invo-
cation of the subroutine Rand for VerPair by eliminating the require-
ment of offline computations of modular exponentiations and scalar-
multiplications. In particular, Rand includes a fully verifiable partial del-
egation under the OMTUP assumption. The partial delegation of Rand
distinguishes VerPair as a useful lightweight delegation scheme when the
delegator is resource-constrained (e.g. RFID tags, smart cards or sensor
nodes).

1 Introduction

The rapid proliferation of mobile technologies and increasing ubiquitous net-
working of various intelligent devices via internet resulted in usable computing
paradigms of mobile computing and internet of things (IoT) with many advan-
tages. At the same time, cloud computing as a revolutionary computing paradigm
offers innovative, flexible and cost-efficient solutions for both individuals and
enterprises, including on-demand self-service capability, pay-per use, ubiquitous
network access, location-independent pooling of resources, scalability of services,
and rapid elasticity [36]. In other words, recent scientific and technological ad-
vances in mobile computing, IoT and cloud computing come with several novel

application areas with lots of potential. A very good example is the delegation
of computational tasks of a client to programs, applications, nearby or remote
services and servers. Since the targeted computation is prohibitively high or even
impossible in most applications (e.g. Big Data), delegation of such rather com-
plex, time-consuming, and usually heavy computational tasks to more powerful
entities has become the most expedient option along with its cost-effectiveness.
Of particular highly desirable practical interest is to delegate (or outsource)
complex computational tasks from resource-constrained and energy-limited units
and devices like smart cards, SIM cards, active/passive RFID tags and sensor
nodes. Delegating computation to potentially untrusted programs comes how-
ever also with new, complicated, and sometimes unique security and privacy
challenges. Although, it is highly desirable to have a non-interactive computa-
tional and bandwidth efficient delegation mechanism working independent of
the delegated functionality, general program obfuscation is unfortunately im-
possible even with fully homomorphic encryption techniques [22]. As a usable
and practical solution, delegation of the computation of the costly cryptographic
operations while keeping the security and privacy properties of the underlying
cryptographic mechanism unchanged has been the subject of many recent stud-
ies [25,20,17,15,18,29,19]. Beside the usual security and privacy requirements,
ensuring the verifiability of the delegated computation is of utmost importance.
In particular, insufficient verifiability comes with fatal consequences especially
if it is a part of an authentication protocol or a verification step of a digital
signature as also pointed out in [15,29].
Pairings. Pairing-based cryptography is demanded in most cryptographic so-
lutions like one round tripartite key exchange in Joux [26], identity-based en-
cryption scheme in [9] and short signatures of Boneh, Lynn, and Shacham [11].
Furthermore, it is required to obtain new cryptographic tools in the standard
model in order to propose innovative cryptographic solutions with a view towards
their various applications and deployments in mobile computing, IoT and cloud
computing. In particular, most applications benefit from pairing-based cryptog-
raphy like group and ring signatures [8,21], aggregate and verifiably encrypted
signatures [10], signcryption [33], homomorphic linear authenticators [43], cryp-
tographic accumulators [14], functional encryption [1], and zero-knowledge suc-
cinct non-interactive arguments of knowledge (zk-SNARKs) [5] with the new
novel applications to privacy in blockchain technologies, i.e. cryptocurrencies
like ethereum and zcash.
Computing pairings however forms one of the most expensive tasks among cryp-
tographic operations. Although reducing the computational cost of pairings has
been the subject of numerous studies in the literature [4,6,11,24,32,42], these
results are unfortunately still considerably far away of being practical enough to
be able to mount pairing computations within resource-constrained and energy-
limited units and devices. Even worse, recent advances on solving the discrete
logarithm problem in the target group of a paring function enforces to increase
the actual key sizes, thence increases further the computational complexity of
pairing computations substantially [30,3,31].

Delegation of Pairing Computation. Delegation of pairing computation to
more powerful and possibly untrusted servers is therefore a cost-effective way of
realizing pairing-based cryptography. Additionally, it is the unique computation,
space as well as energy constrained option for the deployments of pairings in
resource-constrained and energy-limited devices since its computation could ef-
fectively be realized without necessarily embedding it directly inside the devices.
Nevertheless, mobile devices, physically uncontrollable cheap sensor nodes, per-
sonal computers and/or remote servers could always be a target for dishonest
entities which they could possibly control by means of physical attacks, malwares
and/or malicious insiders as also partially pointed out by Canard et al. [15].
Related Work. In the context of delegating modular exponentiations, Hohen-
berger and Lysyanskaya [25] provided the first formal simulation-based security
notions for secure and verifiable delegation of cryptographic computations in the
presence of malicious powerful helpers. Following their work, different security
models for a delegated pairing computation can be summarized as follows:

– One-Untrusted Program (OUP): There exists a single malicious program
performing the delegated computation.

– One-Malicious version of a Two-Untrusted Program (OMTUP): There exist
two untrusted programs performing the delegated computation but exactly
one of them may also behave maliciously.

– Two-Untrusted Program (TUP): There exist two untrusted programs per-
forming the delegated computation and both of them may simultaneously
behave maliciously, but they do not maliciously collude.

Chevallier-Mames et al. [20] introduced the first fully verifiable delegation scheme
for pairings under the OUP model which later be improved by Kang et al. [28]
and Canard et al. [15]. As pointed out by Chen et al. [18] the main drawback
of these schemes is the replacement of the pairing computation with a scheme
executing the comparably costly interactive computations of modular exponenti-
ations and elliptic curve scalar multiplications. This contradicts inherently with
the major goal of secure delegation stemming originally from the realizability,
practicality and usability considerations. With the aim of practically feasible
secure delegation of pairing computation, Chen et al. [18] proposed the first ef-
ficient delegation scheme under the OMTUP assumption without requiring any
interactive computation of modular exponentiations and elliptic curve scalar
multiplications of the delegator. Tian et al. [44] and Arabaci et al. [2] improved
the computational overhead of this scheme further. The major drawback of these
schemes is however that an untrusted program could cheat the delegator with
probability 1/2 contradicting substantially with the desired verifiability of the
delegated computation. Almost at the same time, the first secure delegation
scheme with adjustable verifiability is proposed by Kiraz and Uzunkol [29] in
the context of group exponentiations under the OUP model. Like [29], Tian et
al. [44] proposed for the first time a pairing delegation scheme with the ad-
justable verifiability probability (1− 1/3s)2 under the TUP model, where s is a
predetermined parameter. Subsequently, Ren et al. [41] proposed another scheme

under the OMTUP assumption. The verifiability of this scheme is claimed to be
(1− 1/120(s− 1)2) with an adjustable s.
Our Contribution. In this paper, we primarily focus on the analysis of re-
cently proposed pairing delegation schemes, and design the first fully verifiable
secure delegation scheme VerPair for pairings under the OMTUP assumption. We
also observe that even though the existing precomputation techniques [13,12,45]
do not provide the computation of the form gab or u−1 with g, u ∈ G of a
(multiplicatively written) group G, most papers use these to produce values of
the form (a, b, gab) and u−1 for randomly chosen elements a, b or u as granted
[23,39,35,34,27]. Unfortunately, the only way for the delegator to produce such
values seems to compute them offline making the delegation scheme highly un-
suitable for resource-constrained devices. To eliminate the requirement of offline
computation of modular exponentiations (or elliptic curve scalar multiplications)
on the delegator’s side, we additionally give a new precomputation subroutine
Rand consisting of two parts. While one part of Rand produces values of the form
(t, gt) using the existing precomputation techniques, the other part delegates the
computation of the values of the form gab or u−1 to untrusted servers. The del-
egated part of Rand is constructed also as a fully verifiable secure delegation
scheme under the OMTUP assumption. This part delegates the costly offline
computation of the precomputation step to untrusted servers in contrast to the
previous proposals which implicitly require to compute such values offline by the
delegator itself. Besides reducing the offline computation of the delegator, the
partial delegation of Rand enables also a more efficient realization of VerPair by
reducing the online workload of the delegator. In particular, we give a complete
delegation scheme which requires neither online nor offline computation of mod-
ular exponentiations and elliptic curve scalar multiplications.
In particular, this paper has two major goals:

– Recently many new delegation schemes for pairings have been proposed to
meet the full verifiability property, (mostly) without interactive computa-
tions of modular exponentiations and elliptic curve scalar multiplications
[23,39,35,34,27]. Together with [41] we analyze these delegation schemes,
and present several attacks on their security and/or verifiability properties:

1. We show that the scheme in [41] does not satisfy the claimed verifiability.
More concretely, a malicious server Ui, i ∈ {1, 2}, could cheat the dele-
gator with probability at least 1/10(s− 1) instead of the authors’s claim
with probability 1/120(s− 1)2. Therefore, the scheme offered no signifi-
cant computational advantage when compared with the scheme in [44].
Additionally, communication overhead is unfortunately much higher (10
calls to the servers in [41] instead of 6 calls in [44]).

2. We show that the scheme in [23] does not satisfy the claimed security.
More concretely, we mount a simple brute-force attack that a malicious
server Ui, i ∈ {1, 2}, could prepare a look-up table with 3000 entries
from G1. If the private input A ∈ G1 is delegated once more to Ui (i.e.
to delegate the computation of e(A, Y) for arbitrary Y ∈ G2), then Ui
could easily find the secret input A with a simple search within the look-

up table. Obviously, the secret input B (hence e(A,B)) could easily be
found by Ui by a simple search within another look-up table (with 3000
entries from G2). Hence, the scheme is totally insecure.

3. We show that the scheme in [39] does not satisfy the full verifiability.
In particular, a malicious server Ui, i ∈ {1, 2}, could cheat the delegator
with probability at least 1/6.

4. We show that the scheme in [35] does not satisfy the full verifiability.
In particular, a malicious server Ui, i ∈ {1, 2}, could cheat the delegator
with probability at least 1/2.

5. We show that the scheme in [34] does not satisfy full verifiability. In par-
ticular, a malicious server U could cheat the delegator with probability
at least 1/6. Even worse, the scheme reveals the private points A ∈ G1

and B ∈ G2 resulting in a totally insecure scheme.
6. We show that the scheme in [27] does not satisfy the full verifiability.

In particular, a malicious server Ui, i ∈ {1, 2}, could always cheat the
delegator.

– We introduce the first fully verifiable secure delegation scheme VerPair un-
der the OMTUP assumption which does not require any interactive mod-
ular exponentiations and elliptic curve scalar multiplications. Additionally,
by reducing the requirement of the invocation of a Rand scheme by a partial
delegation, VerPair offers a considerably efficient and secure complete dele-
gated pairing computation mechanism. In particular, VerPair can effectively
be utilized even if the delegator has only highly limited resources.

2 Verifiable & Secure Delegation of General Pairing
Computation: Preliminaries and Security Model

In this section, we first revisit the basic notions related to pairings. Then, we
give a brief overview for the requirements of a secure and verifiable delegation
of the general pairing computation. This section ends with a simulation-based
security model for the delegation of pairings under the OMTUP assumption.

Remark 1. Our security model basically adapts the ideas of [25] for delegating
group exponentiations into the delegation of general pairing computation as in
previous works [18,44]. We note that it would also be possible to give a relaxed
security model based on indistinguishability. This could be done for example
firstly by adapting a security model recently proposed in the extended version of
Chevalier et al. [19] into the delegation of pairing computation which is originally
proposed for the delegation of group exponentiations without any verification
part. Secondly, the right indistinguishability-based verifiability notion could be
adapted into the delegation of pairing computation setting, for instance, by
using the verifiability definition of Cavallo et al. [16] (also originally proposed for
the delegation of group exponentiations). However, since the simulation-based
security notions form the most strong security models, we prefer also to use these
following the lines of the previous results.

2.1 Preliminaries

Pairings. Pairing-based cryptography requires computation of bilinear maps
of elliptic curves over finite fields. There are different choices for bilinear maps
mainly because of efficiency and security considerations which we mostly see as
an abstract generic operation and call them simply pairings. More formally, we
assume that (G1,+) =< P1 > and (G2,+) =< P2 > are two additive cyclic
groups of prime order q and (G3, ·) be a multiplicative cyclic group of order q,
where P1 ∈ G1 and P2 ∈ G2 are generators of G1 and G2, resp. A pairing is a
map

e : G1 ×G2 → G3

satisfying the following properties [7]:

– Bilinearity: For all P, P ′ ∈ G1, Q,Q
′ ∈ G2, e is a group homomorphism in

each component, i.e.
1. e(P + P ′, Q) = e(P,Q) · e(P ′, Q),
2. e(P,Q+Q′) = e(P,Q) · e(P,Q′).

– Non-degeneracy: e is non-degenerate in each component, i.e.,
1. For all non-zero P ∈ G1, there is an element Q ∈ G2 such that

e(P,Q) 6= 1,

2. For all non-zero Q ∈ G2, there is an element P ∈ G1 such that

e(P,Q) 6= 1.

– Computability: There exists an algorithm which computes the bilinear
map e in polynomial-time in the length of q.

Throughout the paper, we denote by Zq (or Fq) the field Z/qZ, and by Z∗q
the multiplicative group of Zq. The expression x ← T and x ← y denote the
probabilistic process of random and independent choice of x from a set T , and
assigning the value of x to a variable y, respectively.

Secure and Verifiable Delegation of Pairing Computations. Following
the lines of [20,15], a secure fully verifiable delegation protocol for pairing com-
putation is expected to satisfy informally the following main properties:

– Completeness: After completion of the protocol with an honest program
U , the delegator T obtains e(A,B) on the inputs A ∈ G1 and B ∈ G2, except
with negligible probability.

– Secrecy & Privacy: An untrusted program should not learn any informa-
tion about the input points A ∈ G1 and B ∈ G2. More formally, for any
malicious program U , there exists a simulator S such that for any A ∈ G1

and B ∈ G2, the output of S, to which the points A are Bare not given, is
computationally indistinguishable from the program’s view:

S c≡ ViewU (A,B).

– Verifiability The delegator should be able to detect a cheating program,
except with negligible probability. More formally, for any cheating program
U and for any input values A ∈ G1 and B ∈ G2, the delegator outputs either
⊥ or e(A,B) ∈ G3, except with negligible probability.

We call a program (trusted or untrusted) a server throughout this paper.

Steps of a Delegation Scheme: A delegation scheme for pairing computation
under the OMTUP assumption consists of mainly 4 steps:

1. Precomputation Rand: (Pseudo-)random pairs of the form (k1, k1P1) ∈
Zq × G1, (k2, k2P2) ∈ Zq × G2, and (k3, g

k3) ∈ Zq × G3 are computed to
randomize the input points A ∈ G1 and B ∈ G2, where g = e(P1, P2) ∈
G3. Additionally, inverses of the form t−1 ∈ Z∗q and some multiplications
of (pseudo-)random elements in Z∗q are sometimes computed to utilize the
delegation efficiently.

2. Randomizing the input points A ∈ G1, B ∈ G2. The input points are
randomized by the client by performing only point additions (PA’S) in G1

and G2 with precomputed (pseudo-)random points.
3. Delegation to servers. The randomized points (possibly together with

some other points from the precomputation step) are queried to the servers
U1 and U2. This delegation could be performed sequentially (different rounds)
or concurrently (more than one delegation of pairing computation in a single
round). For i = 1, 2, Ui(X,Y), Ui(α, h), and Ui(β, ·−1) denote the delegation
of e(X,Y) with X ∈ G1, Y ∈ G2, hα with h ∈ G3, α ∈ Z∗q , and β−1 with
β ∈ Z∗q , resp.

4. Verification of the delegated computation. Upon receiving the queries
from the servers U1 and U2 the validity of the delegated computation is
verified by performing comparison of the received data, and/or PA’s in G1

and G2, and modular multiplications (MM’s) in G3 with the received data
and some points from the precomputation step. If the verification fails, an
error message ⊥ is returned.

5. Derandomizing the outputs and computing e(A,B) ∈ G3. If the veri-
fication is successful, then the output e(A,B) is returned by performing only
PA’s in G1 and G2, and MM’s in G3 of the received data and some points
from the precomputation.

Remark 2. 1. Usually, a fixed number of offline elements (xi, xiP1, xiP2, g
xi)

are stored to T at the initialization of the system by a trusted server. Then,
Rand computes dynamic pairs of the form (k1, k1P1), (k2, k1P1), (k3, g

k3) by
choosing a random subset of the static values and performing PA’s and MM’s.
Rand could be realized in such a way that output distribution is statistically
close to the uniform distribution for carefully chosen parameters [13,12,45].

2. In this paper, we initiate a hybrid approach, i.e. we partially delegate Rand.
Note that the delegation of Rand could be done independent of the main
steps of the delegation which provides to reduce the online workload of the

delegator considerably while enabling the delegator to precompute values of
the form (a, b, gab) and u−1 for randomly chosen elements a, b ∈ Z∗q of (a
multiplicatively written) group G with g, u ∈ G. Since, the precomputation
techniques [13,12,45] do not include the computation of such gab, the only
realizable way of producing such values is to compute these offline by the
delegator although most papers regard them as granted. This makes these
schemes totally impractical when the delegator has restricted resources.

2.2 Definitions & Security Model

In this section, we adapt the simulation-based security notions of [25] following
the previous delegation schemes [18,44].
Informally, a trusted honest but resource-component part T securely delegates
some work to a potentially untrusted component U , and (T,U) forms a delegated-
secure implementation of a cryptographic scheme Alg if

· T and U jointly implements Alg = TU ,
· if T is given oracle access to a malicious U ′, U 6= U ′, then despite the

assumption that U ′ acts maliciously every time it is invoked by recording its
own computation over time, it cannot obtain any information about both
the input and the output of TU

′
.

Since U ′ is not the single entity acting maliciously and interacting with Alg, the
adversary A consists of two parts:

· the adversarial component U ′ operating in place of U ,
· an adversarial component environment E submitting adversarially chosen

inputs to Alg.

The fundamental assumption in [25] is that E and U ′ may develop a joint strat-
egy before until interacting with T , but they will not have a direct communica-
tion channel thereafter. According to this assumption, first logical divisions of
inputs to Alg are

· secret information solely available to T ,
· environmentally protected information available to both T and E but nor

available to U ′,
· protected information available to both T and U ′ but nor available to E,
· unprotected information available to T , E, and U ′.

This division includes in particular the cases where E may have access something
about the protected inputs to Alg which is either not available to U ′ or not
available to E. More concretely, T might hide some of these from U ′ whereas E
can clearly see all of its own adversarial inputs to Alg. Likewise, T might hide
some information from E whereas U ′ can see some of protected random inputs
generated solely by T which E cannot see as E and U ′ can only communicate
through T . Throughout the paper both environmentally protected and protected

information are called protected if there is no need to distinguish the cases from
which adversarial component the information is protected.
Moreover, the above divisions have additional subdivisions depending on whether
the inputs were generated honestly or adversarially. Note that there cannot
however exist a adversarial secret input.
Similarly, the outputs of Alg are logically divided into secret, protected, and
unprotected outputs. The simplified formal definition is given as follows (i.e. by
neglecting possible relations of the inputs and outputs to each other):

Definition 1. [25] (Algorithm with delegated-IO)
An algorithm Alg is said to obey the delegation input/output specification if it
takes five inputs, and produces three outputs. The first three inputs are generated
by an honest party T , and are classified by how much information about them
is available to the adversary A = (E,U ′), where E is the adversarial environ-
ment submitting adversarially chosen inputs to Alg, and U ′ is the adversarial
component operating in place of oracle U . The first input is called the honest,
secret input, which is unknown to both E and U ; the second is called the hon-
est, protected input, which may either be known to E, but is protected from U ,
or known to U , but is protected from E; and the third is called the honest, un-
protected input, which may be known by both E and U . In addition, there are
two adversarially-chosen inputs generated by the environment E; the adversarial,
protected input, which is known to E, but protected from U ; and the adversarial,
which may be known by both E and U . Similarly, the first output called secret is
unknown to both E and U ; the second is protected, which may be known to E,
but it is protected from U; and the third is unprotected, which may be known by
both E and U .

Definition 2. [25] (Delegated Security)
Let Alg(·, ·, ·, ·, ·) be an algorithm with delegated-IO. A pair of algorithms (T,U)
is said to be a delegated-secure implementation of an algorithm Alg if:
Completeness. TU is a correct implementation of Alg.
Security. For all probabilistic polynomial-time adversaries A = (E,U ′), there
exist probabilistic expected polynomial-time simulators (S1, S2) such that the fol-
lowing pairs of random variables are computationally indistinguishable. We as-
sume that the honestly-generated inputs are chosen by a process I.

– Pair One: EV IEWreal∼EV IEWideal:

• The view that the adversarial environment E obtains by participating in
the following REAL process:

EV IEW i
real = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, EV IEW i−1
real, x

i,hp , x
i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

TU
′(ustatei−1)(tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EV IEWreal = EV IEW i
real if stopi = TRUE.

The real process proceeds in rounds. In round i, the honest (secret, pro-
tected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using an honest,

stateful process I to which the environment does not have access. Then
the environment, based on its view from the last round, chooses (0) the
value of its estatei variable as a way of remembering what it did next time

it is invoked; (1) which previously generated honest inputs (xj
i

hs, x
ji

hp, x
ji

hu)

to give to TU
′

(note that the environment can specify the index ji of these
inputs, but not their values); (2) the adversarial, protected input xiap; (3)

the adversarial, unprotected input xiau; (4) the Boolean variable stopi

that determines whether round i is the last round in this process. Next,

the algorithm TU
′

is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au),

where tstatei−1 is T ’s previously saved state, and produces a new state
tstatei for T , as well as the secret yis, protected yip, and unprotected yiu
outputs. The oracle U ′ is given its previously saved state, ustatei−1, as
input, and the current state of U ′ is saved in the variable ustatei. The
view of the real process in roundi consists of estatei, and the values yip
and yiu. The overall view of the environment in the real process is just
its view in the last round, i.e. for i with stopi = TRUE.

• The IDEAL process:
EV IEW i

ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, EV IEW i−1
ideal, x

i,hp , x
i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y ip , Y
i
u, replace

i)←
SU
′(ustatei−1)

1 (sstatei−1, · · · , xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = replacei(Y ip , Y

i
u) + (1− replacei)(yip, yiu) :

(estatei, zip, z
i
u)}

EV IEWideal = EV IEW i
ideal if stopi = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input xhs, but given
the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y ip , Y
i
u) Note that this process is captured

by having the indicator variable replacei be a bit determining whether yip
will be replaced with Y ip . In doing so, it is allowed to query the oracle U ′;
moreover, U ′ saves its state as in the real experiment.

– Pair Two: UV IEWreal∼UV IEWideal:
• The view that the untrusted software U ′ obtains by participating in the

REAL process described in Pair One. UV IEWreal = ustatei if stopi =
TRUE.

• The IDEAL process:
UV IEW i

ideal = {(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)← E(1k, estatei−1, xihp, x
i
hu, y

i−1
p , yi−1u);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)← SU
′(ustatei−1)

2 (sstatei−1, xj
i

hu, x
i
au) :

(ustatei)}
UV IEWideal = UV IEW i

ideal if stopi = TRUE.
In the ideal process, we have a stateful simulator S2 who, equipped with
only the unprotected inputs (xihu, x

i
au), queries U ′. As before, U ′ may

maintain state.

In our security model we assume one-malicious version of a two-untrusted pro-
gram (OMTUP) model as we discussed in Introduction. More concretely, we
have U = (U1, U2), where only one of the Ui is assumed to be malicious, i = 1, 2.

Definition 3. (α-Efficiency)
A pair of algorithms (T,U1, U2) are an α-efficient delegated-implementation of
an algorithm Alg if (1) TU1,U2 is a complete implementation of Alg, and (2) ∀
inputs x, the running time of T is smaller than an α-multiplicative factor of the
running time of Alg(x).

Definition 4. (β-Verifiability)
A pair of algorithms (T,U1, U2) are a β-verifiable delegated implementation of
an algorithm Alg if (1) TU1,U2 is a complete implementation of Alg, and (2)
∀ inputs x, if U ′i , i = 1, 2 deviates from its advertised functionality during the

execution of T (U ′1,U
′
2)(x), T will detect the error with probability larger than β.

In particular, if T will always detect the error, except with negligible probability,
i.e. 1 − β is negligibly small, then a pair of algorithms (T,U1, U2) are a fully
verifiable delegated implementation of an algorithm Alg.

Definition 5. (α, β-Delegated Secure Implementation)
A pair of algorithms (T,U1, U2) are an (α, β)-delegated secure implementation of
an algorithm Alg if they are both α-efficient and β-verifiable. In particular, a pair
of algorithms (T,U1, U2) are a fully verifiable (α, 1)-delegated secure implemen-
tation of an algorithm Alg if they are a fully verifiable delegated implementation
of an algorithm Alg.

3 Verifiability And/Or Security Issues of Recent Schemes

In this section, we give security analysis of recently proposed delegation schemes
for general pairing computation [41,23,39,35,34,27]. To give a self-contained sec-
tion, and make the attacks easily understandable for readers, we explain each
attack after briefly recalling the original schemes.

3.1 Ren et al.’s Scheme from Security and Communication
Networks [41]

Ren et al. proposed the following scheme: The Rand algorithm outputs the values

t1, t2, a1P + a2P, a3P, a4P, b1P + b2P, b3P,

−(a1P + a2P + b3P),−(t2a1P + a2P),−(a1P + t2a2P),

a1Q+ a2Q, a3Q, b1Q+ b2Q, b3Q, b4Q,

−(b1Q+ b2Q+ a3Q),−(t1b1Q+ b2Q),−(b1Q+ t1b2Q),

e(a3P, a3Q), e(b3P, b3Q), e(a4P, b1Q+ b2Q)t1+1,

e(a1P + a2P, b4Q)t2+1, e(a1P + a2P, b1Q+ b2Q)−1,

where P is the generator of G1 (of prime order q) and Q is the generator of G2

(of prime order q), ai, bi ∈R Z∗q , 1 ≤ i ≤ 4, tj ∈ {2, 3, · · · , s}, and s ∈ N is a
small number.
Let T denote the delegator and U1 and U2 be the two untrusted servers. The
scheme in [41] is given as follows:

1. T queries U1 in random order as follows:

. U1(X1 = A+ a1P + a2P, Y1 = B + b1Q+ b2Q)←− α11 = e(X1, Y1),

. U1(X2 = A+ b1P + b2P, Y2 = a3Q)←− α12 = e(X2, Y2),

. U1(X3 = −(a1P + a2P + b3P), Y3 = B + b3Q)←− α13 = e(X3, Y3),

. U1(X4 = A+ a4P, Y4 = −(t1b1Q+ b2Q))←− α14 = e(X4, Y4),

. U1(X5 = −(t2a1P + a2P), Y5 = B + b4Q)←− α15 = e(X5, Y5).

2. Then similarly, T queries U2 in random order as follows:

. U2(X1 = A+ a1P + a2P, Y1 = B + b1Q+ b2Q)←− α21 = e(X1, Y1)

. U2(X6 = A− a3P, Y6 = −(b1Q+ b2Q+ a3Q))←− α22 = e(X6, Y6),

. U2(X7 = b3P, Y7 = B + a1Q+ a2Q)←− α23 = e(X7, Y7),

. U2(X8 = A+ a4P, Y8 = −(b1Q+ t1b2Q))←− α24 = e(X8, Y8),

. U2(X9 = −(a1P + t2a2P), Y9 = B + b4Q)←− α25 = e(X9, Y9).

3. Upon receiving computation results from both servers, T checks if

. α11
?
= α21,

. (α12α22e(a3P, a3Q))
t1+1 ?

= α14α24e(a4P, b1Q+ b2Q)t1+1,

. (α13α23e(b3P, b3Q))
t2+1 ?

= α15α25e(a1P + a2P, b4Q)t2+1.

If the check is not successful, then T outputs ⊥. Otherwise, using some precom-
puted values and α12, α13, α22, α23 the delegator T can compute e(A,B). We
refer to [41] for the details.
An Attack on The Verifiability of [41]: Assume that the server U1 is mali-
cious. The probability that U1 chooses one of the pairs (α12, α14) or (α13, α15)
out of 10 pairs from 5 random queries is at least 1/5. Then, U1 can guess the
right position of α12 or α13 with probability at least 1/2. Moreover, U1 (resp.
U2) could correctly guess the value of the right exponent ti with probability
1/(s− 1), i = 1, 2. Hence, a malicious server U1 (resp. U2) could correctly guess
(α12, α14) or (α13, α15) with the correct exponent ti with probability at least

1/10(s− 1).

Assume without loss of generality that (α12, α14) is the correctly guessed pair
with the exponent t1. Then, the server U1 could send the bogus values with using
an arbitrary element θ ∈ G3

γ12 = α12 · θ, γ14 = α14 · θt1+1

to the delegator T which successfully enable U1 to cheat the delegator T , and
pass the verification step with probability at least 1/10(s−1). Moreover, since af-
ter the verification step, the value α12 (resp. α13) is also used to recover e(A,B),
the output yields to a bogus value instead of e(A,B) with probability at least
1/10(s− 1). It is obvious that the same simple attack strategy could be used to
manipulate α22 or α23 and α24 or α25 for U2.
For s = 4, the verification step in [41] is successful with probability 1−1/10 ·3 ≈
0.967 instead of the author’s claim with probability ≈ 0.999. Now, if the verifi-
cation probabilities of [44] and [41] are chosen to be the same (i.e. by choosing
appropriate values for the adjustable verification probabilities in both schemes),
then it can be seen that the proposed scheme in [41] has almost no efficiency
benefit when carefully compared with the Tian et al.’s scheme [44]. Additionally,
it has worse communication overhead than [44] (with 10 calls to the servers in-
stead of 6 calls in [44]). Hence, the scheme in [41] is less practical than the scheme
in [44] with almost no computational advantages and requirement of additional
bandwidth.

3.2 Dong et al.’s Scheme from KSII Trans. Int. and Inf, Systems
[23]

Dong et al. proposed the following scheme: The Rand algorithm outputs the
following values

a1P, a2P, a3P, a4P, a5P, a6P, a7P,

b1Q, b2Q, b3Q, b4Q, b5Q, b6Q, b7Q,

e(a1P, b1Q)−1, e(a2P, (b4 + b6)Q)−1, ri, r
′
i, i ∈ {4, 5, 6, 7},

e(a3P, (b5 + b7)Q)−1, e((a4 + a6)P, b2Q)−1, e((a5 + a7)P, b3Q)−1,

where P is the generator of G1 (of prime order q), Q is the generator of G2 (of
prime order q), aj , bj ∈R Z∗q , 1 ≤ j ≤ 7, ri, r

′
i ∈ {±1,±2,±4}, and

r4b4 = r6b6, r5b5 = r7b7,

r′4a4 = r′6a6, r
′
5a5 = r′7a7,

7∑
j=4

bj = −b1,
7∑
j=4

aj = −a1.

Let T denote the delegator and U1 and U2 be the two untrusted servers. The
scheme in [23] is as follows:

1. T queries U1 in random order as follows:

. U1(A+ a1P,B + b1Q)←− θ11 = e(A+ a1P,B + b1Q),

. U1(A+ a2P, b4Q)←− α11 = e(A+ a2P, b4Q),

. U1(A+ a3P, b5Q)←− α12 = e(A+ a3P, b5Q),

. U1(a4P,B + b2Q)←− β11 = e(a4P,B + b2Q),

. U1(a5P,B + b3Q)←− β12 = e(a5P,B + b3Q).

2. Then similarly, T queries U2 in random order as follows:

. U2(A+ a1P,B + b1Q)←− θ21 = e(A+ a1P,B + b1Q),

. U2(A+ a2P, b6Q)←− α21 = e(A+ a2P, b6Q),

. U2(A+ a3P, b7Q)←− α22 = e(A+ a3P, b7Q),

. U2(a6P,B + b2Q)←− β21 = e(a6P,B + b2Q),

. U2(a7P,B + b3Q)←− β22 = e(a7P,B + b3Q).

Then, T performs the verification step using θ11, θ12, αij , βij , 1 ≤ i, j ≤ 2, and
after successful verification T computes e(A,B) by multiplying these values with
some precomputed values. We refer to [23] for the details of the verification step
and the computation of e(A,B).
An Attack on The Security of [23]: Since by the specification of the scheme,
the equations

a4P + a5P + (r′4/r
′
6)a4P + (r′5/r

′
7)a5P = −a1P

b4Q+ b5Q+ (r4/r6)b4Q+ (r5/r7)b5Q = −b1Q

hold. A malicious server U1 could prepare a preliminary look-up table with
each 1000 entries, since we have 10 possibilities for the correct pair a4P and
a5P (resp. similarly for b4Q and b5Q) and 10 possibilities for each ri/rj ∈
{±1/4,±1/2,±1,±2,±4} (resp. r′i/r

′
j ∈ {±1/4,±1/2,±1,±2,±4} with i ∈ {4, 5}

and j ∈ {6, 7}.
Then for each entry in the preliminary look-up table, we have 3 possibilities for
A+ a1P (resp. B + b1Q). Adding all these possibilities to the preliminary look-
up table yields to a look up table with 3000 entries for possible candidates of
A ∈ G1 (resp. another look-up table yields to a look up table with 3000 entries
for possible candidates of B ∈ G2).
If the delegator T uses A ∈ G1 (resp. B ∈ G2) to delegate a pairing computation
of the form e(A, Y) with Y ∈ G2 (resp. e(X,B) with X ∈ G1), then a malicious
server U1 could successfully find A (resp. B). Obviously, any delegation of pair-
ing computations of the form e(A, Y) and e(X,B) would leak the output value
e(A,B) ∈ G3. Hence, the scheme in [23] is completely insecure in its current
form.
The only possible way of having a secure version of the scheme in [23] seems to
to choose ri and r′i such that bit-lengths of ri and r′i are long enough, e.g. at
least circa 76-bits for 80-bits security level. On the other side, this would make
the scheme totally inefficient. In other words, in this case the scheme would
have a huge computational overhead when compared with a direct computation
of e(A,B) by the delegator T , which could directly annihilate the purpose of

pairing delegation, its raison d’étre. The computational complexity would then
be very similar to the schemes of Chaevallier-Mames et al., [20], Kang et al. [28],
and Canard et al. [15] as outlined in Introduction. Note also that the schemes
in [20,28,15] have less communication overhead than the scheme in [23].

3.3 Ren et al.’s Scheme from SCIENCE CHINA, Inf. Sciences [39]

Ren et al. proposed the following scheme: The Rand algorithm outputs the fol-
lowing values

a−1, b−1, aP, bP̂ , a2P, b2P̂ , e(aP, bP̂), e(a2P, bP̂)−1, e(aP, b2P̂)−1,

a−11 , b−11 , a1P, b1P̂ , a3P, b3P̂ , e(a1P, b1P̂), e(a3P, b1P̂)−1, e(a1P, b3P̂)−1,

where P is the generator of G1 (of prime order q), P̂ is the generator of G2 (of
prime order q), a, b, ai, bi ∈R Z∗q , 1 ≤ i ≤ 3.
Let T denote the delegator and U1 and U2 be the two untrusted servers. The
scheme in [39] is as follows:

1. T queries U1 in random order as follows:

. U1(A− aP,B − bP̂)←− α11 = e(A− aP,B − bP̂),

. U1(A− aP + a3P, b1P̂)←− α12 = e(A− aP + a3P, b1P̂),

. U1(a1P,B − bP̂ + b3P̂)←− α13 = e(a1P,B − bP̂ + b3P̂).

2. Then similarly, T queries U2 in random order as follows:

. U2(A−aP+a1P,B−bP̂+b1P̂)←− α21 = e(A−aP+a1P,B−bP̂+b1P̂),

. U2(A− aP + a2P, bP̂)←− α22 = e(A− aP + a2P, bP̂),

. U2(aP,B − bP̂ + b2P̂)←− α23 = e(aP,B − bP̂ + b2P̂).

3. T computes
. α12 · e(a3P, b1P̂)−1 = e(A− aP, b1P̂),
. α13 · e(a1P, b3P̂)−1 = e(a1P,B − bP̂),
. α22 · e(a2P, bP̂)−1 = e(A− aP, bP̂),
. α23 · e(aP, b2P̂)−1 = e(aP,B − bP̂).

4. T choices t1, t2 ∈R Z∗q and queries U1 in random order as follows:

. U1(e(A− aP, bP̂), t1b
−1)←− α14 = e(A− aP, t1P̂),

. U1(e(aP,B − bP̂), t2a
−1)←− α15 = e(t2P,B − bP̂),

5. Similarly, T queries U2 in random order as follows:

. U2(e(A− aP, b1P̂), t1b
−1
1)←− α24 = e(A− aP, t1P̂),

. U2(e(a1P,B − bP̂), t2a
−1
1)←− α25 = e(t2P,B − bP̂),

6. T verifies
. α14

?
= α24,

. α21
?
= α11 · e(A− aP, b1P̂) · e(a1P,B − bP̂) · e(a1P, b1P̂).

7. If the verification step fails T outputs ⊥.

8. Else, T outputs

e(A,B) = α11 · e(A− aP, bP̂), e(aP,B − bP̂) · e(aP, bP̂).

An Attack on The Verifiability of [39]: Suppose U1 is a malicious and U2 is
an honest server. Firstly, it could successfully guess the correct positions of α1i,
i = 1, 2, 3 with probability 1/6. After a successful guess, U1 knows a1P and b1P̂ ,
and could easily compute a3P by subtracting the first component of α12 from the
first component of α11 as well. Similarly, by subtracting the second component
of α13 from the second component of α11, the point b3P̂ could be computed by
U1. Then, U1 could compute e(a3P, b1P̂) and e(a1P, b3P̂). Moreover, the it could
compute values (

α12 · e(a3P, b1P̂)−1
)−1

= e(A− aP, b1P̂)−1,(
α13 · e(a1P, b3P̂)−1

)−1
= e(a1P,B − bP̂)−1.

Then, U1 could simply send to the delegator T the following bogus values instead
of α1i, i = 1, 2, 3:

θ11 = α11 · e(A− aP, b1P̂)−1 · e(a1P, b3P̂)−1,

θ12 = α2
12 · e(a3P, b1P̂)−1,

θ13 = α2
13 · e(a1P, b3P̂)−1.

After receiving the values θ1i, α2i, i = 1, 2, 3, the delegator T would compute the
following values following the scheme specification:

. θ12 · e(a3P, b1P̂)−1 = e(A− aP, 2b1P̂),

. θ13 · e(a1P, b3P̂)−1 = e(2a1P,B − bP̂),

. α22 · e(a2P, bP̂)−1 = e(A− aP, bP̂),

. α23 · e(aP, b2P̂)−1 = e(aP,B − bP̂).

In the second round, the malicious server U1 could send

θ14 = α2
14 = e(A− aP, 2t1P̂),

θ15 = α2
15 = e(2t2P,B − bP̂),

instead of α14 and α14, respectively. Note that U1 could manipulate α14 and
α15 with θ14 and θ15 with probability 1 since only squares are taken which are
independent of the correct positions of α14 and α15. Then, following the protocol
honestly, the second server U2 would compute

. U2(e(A− aP, 2b1P̂), t1b
−1
1)←− α24 = e(A− aP, 2t1P̂),

. U2(e(2a1P,B − bP̂), t2a
−1
1)←− α25 = e(2t2P,B − bP̂),

implying that

. θ14 = α24,

. α21 = θ11 · e(A− aP, 2b1P̂) · e(2a1P,B − bP̂) · e(a1P, b1P̂).

After passing the verification step with these bogus values, the output would be
the bogus value

e(A,B)e(A−aP, b1P̂)−1e(a1P, b3P̂)−1 = θ11·e(A−aP, bP̂), e(aP,B−bP̂)·e(aP, bP̂).

instead of e(A,B). Note that the values e(A− aP, b1P̂) and e(a1P,B − bP̂) are
computed by the honest server U2, hence these values remain unchanged.
This attack shows that the scheme in [39] does not satisfy the full verifiability,
and it is a scheme in which a malicious U1 could pass the verification step
with bogus values with probability at least 1/6. Hence, U1 could manipulate the
output with probability at least 1/6.

3.4 Luo et al.’s Scheme from IEEE TrustCom 2016 [35]

Luo et al. proposed a scheme for delegation of generic batch pairings [35]. They
use a multiplicative notation for the groups G1 and G2. To be consistent with
the rest of the paper, we summarize their scheme for a single delegation e(A,B),
where A ∈ G1 and B ∈ G2 in the usual additive notation. The Rand algorithm
outputs the following values

uP, 2uP, vQ, 2vQ,−2vQ, xP, 2xP, yQ, 2yQ,−2yQ,

e(P,Q)2uv, e(P,Q)2xy,

where P is the generator of G1 (of prime order q) and Q is the generator of G2

(of prime order q) and u, v, x, y ∈R Z∗q .
Let T denote the delegator and U1 and U2 be the two untrusted servers. The
scheme in [35] is as follows:

1. T queries U1 in random order as follows:

. U1(A+ uP,B + vQ)←− α1 = e(A+ uP,B + vQ),

. U1(A+ 2xP,−B − 2yQ)←− α2 = e(A+ 2xP,−B − 2yQ).

2. Then similarly, T queries U2 in random order as follows:

. U2(A+ xP,B + yQ)←− β1 = e(A+ xP,B + yQ),

. U2(A+ 2uP,−B − 2vQ)←− β2 = e(A+ 2uP,−B − 2vQ).

3. T verifies

α2
1 · β2 · e(P,Q)2uv

?
= β2

1 · α2 · e(P,Q)2xy.

4. If the verification step fails T outputs ⊥.
5. Else, T outputs

e(A,B) = α2
1 · β2 · e(P,Q)2uv.

An Attack on The Verifiability of [35]: Assume U1 is a malicious server. It
could successfully guess the positions of α1 and α2 with probability 1/2. Instead
of sending α1 and α2, U1 could send the bogus values θ1 = α1 ·C and θ2 = α2 ·C2

and would pass the verification step with probability at least 1/2, where C ∈ G3

is any arbitrary bogus value. Then, the scheme outputs C2e(A,B) instead of
e(A,B) with probability at least 1/2. Obviously, a malicious server U2 could
mount a similar simple attack.
This fairly simple attack shows that the authors’ claim in [35] of having a fully
verifiable scheme is unfortunately false.

3.5 Luo et al.’s Scheme from Advances in Internetworking, Data &
Web Technologies, 2018 [34]

Luo et al. proposed the following scheme for delegation of pairing computation
under OUP model [34]: The Rand algorithm outputs the following values

a, b, k1, k2, aP1, bP2, ak
−1
2 P1, bk

−1
1 P2, e(P1, P2)−ab(k1k2)

−1

,

where P1 is the generator of G1 (of prime order q) and P2 is the generator of G2

(of prime order q) and a, b, k1, k2 ∈R Z∗q .
Let T denote the delegator and U be the untrusted server. The scheme in [34]
is as follows:

1. T queries U1 in random order as follows:

. U(A+ aP1, B + bP2)←− V1 = e(A+ aP1, B + bP2),

. U(k1A+ ak−12 P1, k2B + bk−11 P2)
←− V2 = e(k1A+ ak−12 P1, k2B + bk−11 P2),

. U(A,B + bP2)←− V3 = e(A,B + bP2),

. U(A+ aP1, B)←− V4 = e(A+ aP1, B),

. U(k1A, k2B + bk−11 P2)←− V5 = e(k1A, k2B + bk−11 P2),

. U(k1A+ ak−12 P1, k2B)←− V6 = e(k1A+ ak−12 P1, k2B).

2. T verifies
V3 · V −14

?
= V5 · V −16 .

3. If the verification step fails T outputs ⊥.
4. Else, T outputs

e(A,B) =

(
V2 · e(P1, P2)−ab(k1k2)

−1

V1

)(k1k2−1)−1

.

Attacks on The Security and Verifiability of [35]: A malicious server
U could store 6 possible values of the first components of Vi (resp. U could
store probability 6 values of the second components of Vi). If the delegator
T uses either A ∈ G1 or B ∈ G2 to delegate a pairing computation of the
form e(A, Y) with Y ∈ G2 or to delegate a pairing computation of the form

e(X,B) with X ∈ G1, then a malicious server U1 could successfully find A or B.
Obviously, any delegation of both e(A, Y) and e(X,B) would leak the output
value e(A,B) ∈ G3, too. Hence, the scheme in [34] is completely insecure.
On the other side, the authors’ claim for full verifiability of the scheme in [34]
does not hold either. A malicious server U could guess the correct position of V1
with probability at least 1/6 (resp. the correct position of V2 with probability
at least 1/6) and outputs an arbitrary bogus value C1 ∈ G3 (resp. C2 ∈ G3)
instead of V1 (resp. V2), and pass the verification step with C1 (resp. C2). This
results in a bogus value instead of e(A,B) with probability at least 1/6.
In addition to having neither secure nor fully verifiable scheme, the scheme in
[34] is also totally inefficient, since the values k1A and k2B need to be computed
interactively. In particular, the scheme would be at least as computationally
inefficient as a direct computation of e(A,B) by the delegator T , which could
directly annihilate the purpose of pairing delegation, its raison d’étre.

3.6 Kalkar et al.’s Scheme from International Conference on
Information Security Theory and Practice (WISTP’2017) [27]

The following scheme is proposed by Kalkar et al.: The Rand algorithm outputs
the following values

α, β, x, y,m, n, αP1, xP1, yP1, αP1−xP1, αP1−yP1,mP2, nP2, βP2, e(αP1, βP2),

where P1 is the generator of G1 (of prime order q) and P2 is the generator of G2

(of prime order q) and α, β, x, y,m, n ∈R Z∗q .

1. T queries U1 in random order as follows:

– U1(A− αP1,mP2)←− A11 = e(A− αP1,mP2),
– U1(A− αP1, B − nP2)←− A12 = e(A− αP1, B − nP2),
– U1(αP1 − xP1, B − βP2)←− A13 = e(αP1 − xP1, B − βP2),
– U1(yP1, B − βP2)←− A14 = e(yP1, B − βP2).

2. Similarly, T queries U2 in random order as follows:

– U2(A− αP1, nP2)←− A21 = e(A− αP1, nP2),
– U2(A− αP1, B −mP2)←− A22 = e(A− αP1, B −mP2),
– U2(αP1 − yP1, B − βP2)←− A23 = e(αP1 − yP1, B − βP2),
– U2(xP1, B − βP2)←− A24 = e(xP1, B − βP2).

3. T verifies

– A11A22
?
= A21A12,

– A13A24
?
= A23A14.

4. If the verification step fails T outputs ⊥. T computes and outputs
5. Else, T outputs

A11A22A13A24e(P1, P2)αβ .

An Attack on The Verifiability of [27]: A malicious server U1 could send the
bogus values CA1i instead of A1i, i = 1, 2, 3, 4, and could successfully pass the
verification step always, i.e. with probability 1. Then, the delegator computes
the bogus output C2e(A,B) instead of e(A,B). Obviously, a malicious server U2

could also mount a similar attack, and could always pass the verification step
with bogus values.
This fairly simple attack shows that the the claim in [35] of having a fully veri-
fiable scheme is unfortunately false. In particular, no verifiability is provided in
[27].

4 VerPair: An Efficient Fully Verifiable Secure Delegation
Scheme For Pairing Computation

In this section, we first propose an efficient fully verifiable secure partial delega-
tion scheme for the precomputation step Rand. Secondly, we introduce VerPair
which is a fully verifiable efficient secure delegation scheme for general pairing
computation under the OMTUP assumption.

4.1 Rand: A Fully Verifiable Secure Partial Delegation Scheme of
The Precomputation Step

The precomputation scheme Rand consists of a precomputation step realized by
one of the existing techniques [13,12,45]. The other part consists of a delegation
scheme. Before initializing the subroutine Rand, a global security parameter κ is
chosen which outputs the global parameters

1. the prime number q,
2. the groups (G1,+), (G2,+), and (G3, ·) of order q,
3. the pairing map e : G1 ×G2 −→ G3,
4. the generators P1, P2, and g := e(P1, P2) of G1, G2, and G3, respectively.

Together with these global parameters, the static tuples

(α1, α1P1, α1P2), (α2, α2P1, α2P2) (1)

are computed at the initialization of the subroutine Rand, and loaded to the
delegator T (by a trusted party, e.g. by using HSM, TPM, etc.), where α1 and
α2 are random elements in Z∗q . Note that (α1, α1P1, α1P2) is secret and protected
from U2, but not necessarily from U1, and (α2, α2P1, α2P2) is secret and pro-
tected from U1, but not necessarily from U2. Rand takes no input except global
parameters and static tuples (1).
After calling Rand, the first part chooses random values a, b, s, , t ∈R Z∗q and
outputs

(a, aP1), (b, bP2), (s, sP1, sP2) and (t, gt). (2)

In the delegated second part of Rand, the delegator T chooses first randomly
t1, t2, c1, c2 ∈R Z∗q . Then,

1. T queries U1 in random order as follows:

. U1(a · b− t, g)←− γ1 = gab−t,

. U1(t1 · s− t, g)←− γ2 = gt1s−t,

. U1(t2 · s− t, g)←− γ3 = gt2s−t,

. U1(t1 − α1, P1)←− γ4 = (t1 − α1)P1,

. U1(t1 − α1, P2)←− γ5 = (t1 − α1)P2,

. U1(t2 − α2, P1)←− γ6 = (t2 − α2)P1,

. U1(t2 − α2, P2)←− γ7 = (t2 − α2)P2,

. U1(c1 · t1, ·−1)←− θ11 = c−11 t−11 ,

. U1(c2 · t2, ·−1)←− θ12 = c−12 t−12 .

2. T queries U2 in random order as follows:

. U2(ab− t, g)←− β1 = gab−t,

. U2(t1s− t, g)←− β2 = gt1s−t,

. U2(t2s− t, g)←− β3 = gt2s−t,

. U2(t1 − α1, P1)←− β4 = (t1 − α1)P1,

. U2(t1 − α1, P2)←− β5 = (t1 − α1)P2,

. U2(t2 − α2, P1)←− β6 = (t2 − α2)P1,

. U2(t2 − α2, P2)←− β7 = (t2 − α2)P2,

. U2(c1t1, ·−1)←− θ21 = c−11 t−11 ,

. U2(c2t2, ·−1)←− θ22 = c−12 t−12 .
3. After receiving γi, θ1j from U1 and βi, θ2j from U2, 1 ≤ i ≤ 7,≤ j ≤ 2, T

verifies
γi

?
= βi and θ1j

?
= θ2j . (3)

4. If Equations (3) do not hold simultaneously, then T outputs ⊥.
5. Else, T outputs

. ((a, aP1), (b, bP2), (s, sP1, sP2), (t, gt),
(t1, t1P1 = γ4 + α1P1, t1P2 = γ5 + α1P2),
(t2, t2P1 = γ6 + α2P1, t2P2 = γ7 + α2P2),
gab = γ1 · gt, gt1s = γ2 · gt, gt2s = γ3 · gt,
t−11 = c1 · θ11, t−12 = c2 · θ12, a · t−11 , a · t−12 , b · t−11 , b · t−12).

Remark 3. We note that the outputs of the delegated part of Rand is always
secret or (honest/adversarial) protected except possibly (t1, t1P1, t1P2) from U1

and (t2, t2P1, t2P2) from U2. We refer to Section 5 for the further details. Fur-
thermore, we here give a simple but more efficient two-server version for secure
delegation of the modular inversion t−1 mod q which is first introduced in [16].

4.2 VerPair: A Fully Verifiable Secure Delegation Scheme

The Rand scheme outputs the following values

((a, aP1), (b, bP2), (s1, s1P1), (s2, s2P2), (t, gt),

(t1, t1P1, t1P2), (t2, t2P1, t2P2),

gab, gt1s, gt2s,

t−11 , t−12 , at−11 , at−12 , bt−11 , bt−12),

where P1 is the generator of G1 (of prime order q) and P2 is the generator of G2

(of prime order q) and a, b, t1, t2, s ∈R Z∗q .
Let T denote the delegator and U1 and U2 be the two untrusted servers. The
inputs of VerPair are the outputs of Rand scheme and the secret, private inputs
A ∈ G1 and B ∈ G2.
The steps of VerPair are given as follows:

1. T queries U1 in random order as follows:

. U1(t1P1, B − bP2 − sP2)←− D11 = e(t1P1, B − bP2 − sP2),

. U1(A− aP1 − sP1, t1P2)←− D12 = e(A− aP1 − sP1, t1P2).

2. Then similarly, T queries U2 in random order as follows:

. U2(t2P1, B − bP2 − sP2)←− D21 = e(t2P1, B − bP2 − sP2),

. U2(A− aP1 − sP1, t2P2)←− D22 = e(A− aP1 − sP1, t2P2).

3. After receiving D11, D12 from U1 and D21, D22 from U2, T computes

. β1 = D11 · gt1s = e(t1P1, B − bP2),

. β2 = D12 · gt1s = e(A− aP1, t1P2),

. β3 = D21 · gt2s = e(t2P1, B − bP2),

. β4 = D22 · gt2s = e(A− aP1, t2P2).

4. Then, T queries U1 in random order as follows:

. U1(β3, at
−1
2)←− D13 = β

at−1
2

3 = e(aP1, B − bP2),

. U1(β4, bt
−1
2)←− D14 = β

bt−1
2

4 = e(A− aP1, bP2),

. U1(A− aP1, B − bP2)←− D15 = e(A− aP1, B − bP2).

5. Similarly, T queries U2 in random order as follows:

. U2(β1, at
−1
1)←− D23 = β

at−1
1

1 = e(aP1, B − bP2),

. U2(β2, bt
−1
1)←− D24 = β

bt−1
1

2 = e(A− aP1, bP2),

. U2(A− aP1, B − bP2)←− D25 = e(A− aP1, B − bP2).

6. T verifies

D13
?
= D23, D14

?
= D24, D15

?
= D25. (4)

7. If Equations (4) do not hold simultaneously, then T outputs ⊥.

8. Else, T outputs

e(A,B) = D13 ·D14 ·D15 · gab.

5 Efficiency & Security Analysis of Rand and VerPair

In this section, we analyze the security, verifiability and efficiency properties
of the delegated part of Rand and VerPair. Moreover, we compare VerPair with
the previous proposals with respect to its computational and communication
complexities for both the delegator T and the services Ui, i = 1, 2, i.e. the
overall communication overhead, number of rounds, memory requirements of
the delegator T , and the computational complexity for T .

Theorem 1. In the one-malicious version of a two-untrusted program model
(OMTUP), the algorithms (T,U1, U2) are a fully verifiable O(1

log q)-efficient delegated-
secure implementations of the delegated part of Rand scheme, where the static
inputs

(α1, α1P1, α1P2), (α2, α2P1, α2P2)

of Rand maybe honest, secret; or (α1, α1P1, α1P2) honest, unprotected from U1;
or (α2, α2P1, α2P2) honest, unprotected from U2.

Proof. We prove completeness, security, full verifiability and efficiency of Rand
as follows:
Completeness. Assume that the servers U1 and U2 run Rand honestly. Since
we delegate the same computations to both U1 and U2, we clearly have

γi = βi, θ1j = θ2j , for 1 ≤ i ≤ 7, j = 1, 2.

Hence, the first verification step of Rand is complete. Now, the following equali-
ties hold:

. γ1 · gt = gab−tgt = gab,

. γ2 · gt = gt1s−tgt = gt1s,

. γ3 · gt = gt2s−tgt = gt2s,

. γ4 + α1P1 = (t1 − α1)P1 + α1P1 = t1P1,

. γ5 + α1P2 = (t1 − α1)P2 + α1P2 = t1P2,

. γ6 + α2P1 = (t2 − α2)P1 + α2P1 = t2P1,

. γ7 + α2P2 = (t2 − α2)P2 + α2P2 = t2P2,

. c1θ11 = c1(c−11 t−11) = t−11 ,

. c2θ12 = c2(c−12 t−12) = t−12 .

Since the values a, b, t ∈ Z∗q with (aP1, bP2, sP1, sP1, g
t) are computed in the first

part of Rand using a precomputation subroutine, and the outputs at−1i , bt−1i ,
i = 1, 2, are solely computed by T itself, we are also done with completeness of
Rand. �
Security & Full verifiability. The proof is similar to [25]. We assume now that
A = (E,U ′1, U

′
2) is a probabilistic polynomial-time (PPT) adversary interacting

with a PPT-based algorithm T in the delegated-security model of Section (2).
Our fist claim is

EV IEWreal∼EV IEWideal,

e.g. Pair One in the security model that the external adversary environment E
learns nothing useful. Note that all static inputs

(α1, α1P1, α1P2), (α2, α2P1, α2P2)

are assumed to be honest, secret for an environmental adversary since neither
E and U ′1 nor E and U ′2 cannot communicate directly to develop a joint strat-
egy after interacting with T . Then, ignoring the ith round, a simulator S1 first
chooses elements xi, 1 ≤ i ≤ 9 randomly, and makes 18 random queries to U ′1
and U ′2

. U ′1(xi, P1)←− γi, U ′2(xi, P1)←− βi for i = 4, 6,

. U ′1(xi, P2)←− γi, U ′2(xi, P2)←− βi for i = 5, 7,

. U ′1(xi, g)←− γi, U ′2(xi, g)←− βi for i = 1, 2, 3,

. U ′1(x8, ·−1)←− θ11, U ′2(x8, ·−1)←− θ21,

. U ′1(x9, ·−1)←− θ12, U ′2(x9, ·−1)←− θ22.

Note that we do not consider the outputs at−1i , bt−1i , i = 1, 2, to prove the result
since it is solely computed by T without any interaction with E, U ′1 or U ′2. Then,
S1 behaves

. if the outputs of U ′1 and U ′2 are not equal for a randomly selected i, 1 ≤ i ≤ 9,
then the values Y ip =′′ error′′, Y iu = ∅, and replacei = 1 (corresponding to

the output (estatei,′′ error′′, ∅) in the ideal process) are produced by S1,
. if no ′′error′′ is detected , then then the values Y ip = ∅, Y iu = ∅, and

replacei = 0 (corresponding to the output (estatei, Y ip , Y
i
u) in the ideal pro-

cess) are produced by S1,
. otherwise, S1 selects a random element r and outputs Y ip = r, Y iu = ∅,

and replacei = 1 (corresponding to the output (estatei, r, Y iu) in the ideal
process).

In either cases, S1 saves the appropriate states.
The distributions of inputs in the real and ideal experiments are computation-
ally indistinguishable. In the ideal experiment, the inputs are chosen uniformly
at random. In the real experiment, all inputs of the delegated part of Rand are
independently randomized by the choice of uniformly distributed random ele-
ments t1, t2, c1, c2 ∈R Z∗q . Note that, by each invocation of Rand, new random
values are generated which are different from other invocations. Then, there are
two cases

. if U ′1 and U ′2 behave honestly both in the real and the ideal experiments
in the round i, then we have EV IEW i

real
∼EV IEW i

ideal since in the real

execution TU
′
1,U
′
2 perfectly runs Rand and in the ideal execution S1 does not

change the output,
. If one of U ′1 or U ′2 behaves dishonestly in the round i, than this can be de-

tected by both T and S1 with probability 1. The reason is that one server is
always honest under OMTUP, and only the equality of the same delegated
inputs are compared coming from an honest and a potentially dishonest

server. Then, any misbehavior could always be detected, and this will re-
sult an output of an ′′error′′. This argument also shows that Rand is fully
verifiable.

Note that it is impossible that Rand could be corrupted implying that S1 never
executes the case of selecting a random element r and returning Y ip = r, Y iu = ∅,
and replacei = 1 in the ideal experiment since Rand is fully verifiable, thence it
is impossible for both U ′1 and U ′2 to deviate from their functionalities. Thus, we
have

EV IEW i
real∼EV IEW

i
ideal

even in the case of a dishonest server U ′1 or U ′2. By the hybrid argument, we
conclude that

EV IEWreal∼EV IEWideal.

Secondly, we claim that UV IEWreal∼UV IEWideal, i.e. Pair Two of the delegated-
security model that the untrusted server Ui, i = 1 or i = 2, learns nothing useful.
By ignoring the ith round, a simulator S2 produces random queries for both U ′1
and U ′2, behaving exactly like S1, and saves its states. Furthermore, it saves
the states of (U ′1, U

′
2). Due to OMTUP assumption, an external environment

adversary cannot tell U ′1 or U ′2 that the simulator S2 produces bogus outputs
since neither E and U ′1 nor E and U ′2 can communicate directly to develop a
joint strategy after interacting with T . Similarly, U ′1 and U ′2 cannot communicate
directly to collaborate to test the random inputs. Now, we have the following
possibilities:

. (α1, α1P1, α1P2), (α2, α2P1, α2P2) are honest, secret for both U ′1 and U ′2,

. (α1, α1P1, α1P2) is honest, unprotected from U ′1, and/or (α2, α2P1, α2P2) is
honest, unprotected from U ′2.

If (α1, α1P1, α1P2), (α2, α2P1, α2P2) are honest, secret for both U ′1 and U ′2, then
U ′1 and U ′2 cannot distinguish the real queries from the random ones due to the
exactly same reason when interacting with S1, whence UV IEW i

real
∼UV IEW i

ideal.
Hence, by a hybrid argument

UV IEWreal∼UV IEWideal.

If (α1, α1P1, α1P2) is honest, unprotected from U ′1, then t1, t1P1, t1P2 are unpro-
tected from U ′1 but honest, secret for U ′2. If further (α2, α2P1, α2P2) is honest,
unprotected from U ′2, then t1, t1P1, t1P2 are unprotected from U ′2 but honest,
secret for U ′1. Then, the simulation S2 is trivial for unprotected values, i.e. S2

behaves the same way as in the real execution. In this case, the rest of the proof
follows exactly as above for honest, secret static inputs, whence

UV IEWreal∼UV IEWideal.�

Efficiency. Since Rand needs

. two modular multiplications (MM’s) to prepare c1t1 and c2t2,

. four elliptic curve point additions (PA’s) to compute

t1P1, t1P2, t2P1, t2P2,

. three MM’s to compute gab, gt1s, gt2s,

. two MM’s to compute t−11 and t−12 , and

. four MM’s to compute at−11 , bt−11 , at−12 , and bt−12 .

Moreover, computation of modular exponents and elliptic curve scalar multi-
plications take O(log q) steps (e.g. by square-and-multiply and double-and-add
methods or their variants). Therefore, (T,U1, U2) is an O(1/ log q)-efficient im-
plementation of Rand.�

Theorem 2. In the one-malicious version of a two-untrusted program model,
the algorithms (C,U1,U2) are a fully verifiable O(1

log q)-efficient delegated-secure

implementations of VerPair, where the inputs (A,B) may be honest, secret; or
honest, protected; or adversarial protected.

Proof. We prove completeness, security, full verifiability and efficiency of VerPair
as follows:
Completeness. Assume that the servers U1 and U2 run VerPair honestly. It is
not difficult to see that

D13 = β
at−1

2
3 = e(aP1, B − bP2)

= β
at−1

1
1 = D23,

and

D14 = β
bt−1

2
4 = e(A− aP1, bP2)

= β
bt−1

1
2 = D24.

Similarly,
D15 = e(A− aP1, B − bP2) = D25.

Hence, the verification step of VerPair is complete. Now,

D13 ·D14 ·D15 · gab = β
at−1

2
3 · βbt

−1
2

4 · e(A− aP1, B − bP2) · gab

= e(aP1, B − bP2) · e(A− aP1, bP2) · e(A− aP1, B − bP2) · e(aP1, bP2)

= e(aP1, B − bP2) · e(aP1, bP2) · e(A− aP1, bP2) · e(A− aP1, B − bP2)

= e(aP1, B) · e(A− aP1, B)

= e(A,B).�

Full Verifiability. Assume without loss of generality that U1 is a malicious
server capable of cheating the delegator T with non-negligible probability. Let

h = gω ∈ G3 be given. Now, we consider the algorithms TU1,U2 implementing
VerPair for which aP1 = ωP1 is chosen. The delegator T verifies at the end of
the scheme

D13 = β
ωt−1

2
3 = e(ωP1, B − bP2) = β

ωt−1
1

1 = D23, (5)

D14 = β
bt−1

2
4 = e(A− ωP1, bP2) = β

bt−1
1

2 = D24, (6)

and
D15 = e(A− ωP1, B − bP2) = D25. (7)

Since both D15 and D25 are used to delegate e(A − ωP1, B − bP2) and U2 is
honest, U1 can only cheat T during the verification formulas (5) and (6). Let
x, y ∈ Z∗q with A− ωP1 − sP1 = xP1, B − bP2 − sP2 = yP2 be given. Instead of
sending D11 = gxt1 (resp. D12 = gyt1), U1 chooses bogus values θ1, θ2 ∈ Z∗q and

send Γ11 = gθ1 and Γ12 = gθ2 to the delegator. Then, T computes

. ϕ1 = Γ11 · gt1s = gθ1+t1s,

. ϕ2 = Γ12 · gt1s = gθ2+t1s,

. β3 = D21 · gt2s = e(t2P1, B − bP2),

. β4 = D22 · gt2s = e(A− ωP1, t2P2).

instead of β1 and β2. Note that β3 and β4 are correct values since U2 is honest.
Then, U2 computes in the second round

. φ23 = (gθ1+t1s)ωt
−1
1 = gθ1ωt

−1
1 +sω, and

. φ24 = (gθ2+t1s)bt
−1
1 = gθ2bt

−1
1 +sb

instead of D23 and D24 following TU1,U2 honestly. Hence, in order to pass the
verification steps (5) and (6), U1 must know exactly the values of φ23 and φ24.
Note that if B − bP2 = y2P2 and A − ωP1 = x1P1, then U1 knows further
β3 = gx1t2 and β4 = gy1t2 , and the values ωt−12 and bt−12 from the scheme
specification. Furthermore, sP1 (resp. sP2) is also known by U1 in the second
round; since by subtracting A−ωP1 (resp. B− bP2) from the first component of
D12 (resp. from the second component of D11), U1 can easily obtain sP1 (resp.
sP2). Then, in order to compute the values

. φ23 = gθ1ωt
−1
1 +sa = gω(θ1t

−1
1 +s) = (gθ1t

−1
1 +s)ω, and

. φ24 = gθ2bt
−1
1 +sb = gb(θ2t

−1
1 +s) = (gθ2t

−1
1 +s)b.

U1 needs to know the exponents ω and b from hω1 and hb2 with non-negligible

probability due the fact that h1 = gθ1t
−1
1 +s, h2 = gθ2t

−1
1 +s ∈ G3 are known

to U1. Notice that, ω, b and ωb cannot also be computed from ωt−12 , bt−12 and
ωb−t by the proof of secrecy of the delegated part of Rand, i.e. t2 is only available

to U2. Therefore, if U1 can compute ω from hθ1t
−1
1 +s = hω1 , thence solves the

discrete logarithm problem (DLP) to the base g, with non-negligible probability.
Since, U1 is a polynomially bounded adversary, this gives a contradiction. �
Security. The proof is similar to the proof of Theorem (1). We assume now that
A = (E,U ′1, U

′
2) is a probabilistic polynomial-time (PPT) adversary interacting

with a PPT-based algorithm T in the delegated-security model of Section (2).
Our fist claim is

EV IEWreal∼EV IEWideal,

e.g. Pair One in the security model that the external adversary environment E
learns nothing useful. If inputs (A,B) are either honest, protected or adversarial
protected, then a simulator S1 behaves exactly as in the real execution, i.e. it
never requires to access (A,B) since both of them are not secret to the adversary
E. We now assume that (A,B) are honest, secret inputs. Then, ignoring the
ith round, S1 first chooses elements `i ∈ Z∗q , 1 ≤ i ≤ 8 randomly, computes
(`1P1, `2P2, `3P1, `4P2) for U ′1 and (`4P1, `6P2, `7P1, `8P2), and makes 2 random
queries to U ′1

. U ′1(`1P1, `2P2)←− D11,

. U ′1(`3P1, `4P2)←− D12,

and 2 random queries to U ′2

. U ′2(`5P1, `6P2)←− D21,

. U ′2(`7P1, `8P2)←− D22.

After receiving the outputs of U ′1 and U ′2, the simulator S1 chooses random
elements (g1, γ1), (g2, γ2) ∈ G3×Z∗q and random elements `9, `10 ∈ Z∗q , compute
(`9P1, `10P2), and queries randomly to U ′1

. U ′1(g1, γ1)←− D13,

. U ′1(g2, γ2)←− D14,

. U ′1(`9P1, `10P2)←− D15,

similarly, S1 chooses random elements (g3, γ3), (g4, γ4) ∈ G3 × Z∗q and random
elements `11, `12 ∈ Z∗q , compute (`11P1, `12P2), and queries randomly to U ′2

. U ′2(g3, γ3)←− D23,

. U ′1(g4, γ4)←− D24,

. U ′1(`11P1, `12P2)←− D25.

Then, S1 behaves

. if the outputs D1i of U ′1 and D2i U
′
2 are not equal for a randomly selected

i, 3 ≤ i ≤ 5, then the values Y ip =′′ error′′, Y iu = ∅, and replacei = 1

(corresponding to the output (estatei,′′ error′′, ∅) in the ideal process) are
produced by S1,

. if no ′′error′′ is detected , then then the values Y ip = ∅, Y iu = ∅, and

replacei = 0 (corresponding to the output (estatei, Y ip , Y
i
u) in the ideal pro-

cess) are produced by S1,
. otherwise, S1 selects a random element r and outputs Y ip = r, Y iu = ∅,

and replacei = 1 (corresponding to the output (estatei, r, Y iu) in the ideal
process).

In either cases, S1 saves the appropriate states.
The distributions of inputs in the real and ideal experiments are computation-
ally indistinguishable. In the ideal experiment, the inputs are chosen uniformly
at random. In the real experiment, all inputs of VerPair are independently ran-
domized by the choice of uniformly distributed random elements. Note that,
by each invocation of VerPair, new random values are generated by Rand which
are different from other invocations, and computationally indistinguishable from
random elements. Since VerPair is a fully verifiable secure-delegated scheme, we
only have two cases

. if U ′1 and U ′2 behave honestly both in the real and the ideal experiments
in the round i, then we have EV IEW i

real
∼EV IEW i

ideal since in the real

execution TU
′
1,U
′
2 perfectly runs VerPair, and in the ideal execution S1 does

not change the output,
. If one of U ′1 or U ′2 behaves dishonestly in the round i, than this can be

detected by both T and S1 with probability 1, see full verifiability.

In particular, it is impossible that VerPair could be corrupted implying that S1

never executes the case of selecting a random element r and returning Y ip = r,

Y iu = ∅, and replacei = 1 in the ideal experiment, see Remark (4.2) for further
details. This implies that it is impossible for both U ′1 and U ′2 to deviate from
their functionalities. Thus, we have

EV IEW i
real∼EV IEW

i
ideal

even in the case that one of U ′i , i = 1, 2, misbehaves. By the hybrid argument,
we conclude that

EV IEWreal∼EV IEWideal.

It is clear that this argument only works if only one server misbehaves (under
OMTUP model), i.e. if both U1 and U2 are malicious simultaneously, then the
misbehavior in this case is not independent of the inputs (A,B) whereas the
misbehavior of only one of Ui, i=1,2, is independent of the inputs (A,B).
Secondly, we claim that

UV IEWreal∼UV IEWideal,

i.e. Pair Two of the delegated-security model that the untrusted server Ui, i = 1
or i = 2, learns nothing useful. For a round i, a simulator S2 behaves exactly
like S1 to produce random queries by ignoring the ith round for both U ′1 and
U ′2, and saves its states. Furthermore, it saves the states of (U ′1, U

′
2). Due to

OMTUP assumption, an external environment adversary can tell neither to U ′1
nor to U ′2 that the simulator S2 produces bogus outputs since the output in
the real experiment is not corrupted, and neither E and U ′1 nor E and U ′2 can
communicate directly in order to develop a joint strategy after interacting with
T . Hence, honest, secret; honest, protected; or adversarial protected inputs are
all private for both U ′1 and U ′2, although E could easily distinguish between these
real and ideal experiments. The reason, exactly as in the case of interacting with

S1, is that in the ith round of the real experiment, the values given to either
U ′1 or U ′2 are completely re-randomized by Rand, and S2 generates random,
independent queries for both U ′1 and U ′2 in the ideal experiment. Thus, we have

UV IEW i
real∼UV IEW

i
ideal

for each round i. It follows then by a hybrid argument

UV IEWreal∼UV IEWideal.�

Efficiency. Since VerPair needs

. four elliptic curve point additions (PA’s) to compute

A− aP1, B − bP2, A− aP1 − sP1, B − bP2 − sP2,

. four MM’s to compute βi for 1 ≤ i ≤ 4,

. three MM’s to compute e(A,B).

Furthermore, computation of modular exponents and elliptic curve scalar multi-
plications take O(log q) steps (e.g. by square-and-multiply and double-and-add
methods or their variants). Hence, (T,U1, U2) is an O(1/ log q)-efficient imple-
mentation of VerPair.�

Remark 4. 1. Note that revealing information about α1 to U ′1 (resp. α2 to U ′2)
in Theorem (1) corresponds for instance to the case that U ′1 (resp. U ′2) is
a computationally unbounded adversary that can use an effective discrete
logarithm solver (DLP-solver) to retrieve t1 from t1P1 or t1P2 (resp. t2 from
t2P1 or t2P2), e.g. by means of an efficient quantum algorithm, and sub-
sequently using t1 (resp. t2), to obtain the values α1 (resp. α2) of Rand.
Hence, Theorem (1) implies that Rand offers security even in the presence
of a computationally unrestricted adversary corrupting one of U1 or U2.

2. On the other hand, security proof of Theorem (2) relies on the proof of its
full verifiability. Since, full verifiability is only guaranteed in the presence
of polynomially bounded adversaries, VerPair offers security against polyno-
mially bounded adversarial server Ui, i = 1, 2, whereas a computationally
unbounded adversary could cheat the delegator T by means of a DLP-solver
such that the third case in the proof of Theorem (2) could happen that
VerPair could be corrupted implying that a simulator S1 executes in the ith
round the case of selecting a random element r and returning Y ip = r, Y iu = ∅,
and replacei = 1 in the ideal experiment. Hence, the proof of Theorem (2)
implies that VerPair offers security in the presence of a polynomially bounded
adversary corrupting one of U1 or U2.

6 Comparison

Delegation Scheme Secrecy Verifiability Client’s workload Servers’ workload #Rounds
(output) (real)

Luo et al. [34] no 0 4PA, 4MM, 2SM, 3MI, 1ME 6P 1

Dong et al. [23] no 1 6PA, 19MM 10P 1

Kalkar et al. [27] yes 0 4PA, 6MM 8P 1

Luo et al. [35] yes 1/2 8PA, 6MM 4P 1

Ren et al. [39] yes 5/6 8PA, 14MM 6P, 4ME 2

Ren et al. [41] (s = 4) yes 0.967 8PA, 19MM 10P 1

Chevallier-Mames et al. [20] yes 1 4PA, 6MM, 6SM, 10ME 4P 2

Kang et al. [28] yes 1 2PA, 3MM, 4SM, 7ME 4P 2

Canard et al. [15] yes 1 2PA, 1MM, 1TM, 4SM, 2ME 4P 1

VerPair yes 1 4PA, 7MM 6P, 4ME 2

Table 1. Comparison of the Delegator’s Computational Costs and Communication
Complexities.

In this section, we compare VerPair with the previous results claiming full veri-
fiability. Let SM represent scalar multiplication in G1,G2, ME modular expo-
nentiation in G3, MI modular inverse in G3, PA point addition in G1,G2, TM
test membership in GT , and P a pairing computation.
For the efficiency comparison, we mainly focus on fully verifiable pairing delega-
tion schemes, and do not focus on the schemes that does not hold their premises
by either leaking e(A,B) or not being fully verifiable. This process leaves us three
schemes beside VerPair, [20], [28], and [15]. These are unfortunately the most in-
efficient algorithms since they contain modular exponentiations and membership
testing operations; VerPair achieves much better performance results as expected.
Furthermore, VerPair has also much better performance even when compared
with the delegation schemes which are not fully verifiable. For example, if we
consider the schemes with highest verifiability guarantees [39], [41], we can also
see from Table (1) that VerPair is much more efficient. In Table (1), we write
security and verifiability issues and inefficient parts of the schemes in red to
emphasize the problems of each delegation scheme. Hence, VerPair is the first
efficient fully verifiable pairing delegation scheme requiring neither costly SM
nor ME online operations on the delegator’s side. Additionally, partial delega-
tion of Rand scheme eliminates also the requirement of the offline computation
of costly SM, ME, and MI operations on the delegator’s side. Therefore, par-
tially delegated Rand and VerPair enables for the first time a complete general
delegation mechanism without any offline and online computation of SM, ME
and MI operations.

160-bit MNT 256-bit BN 512-bit KSS 640-bit BLS

Pairing 0.0032647 0.0049727 0.0440744 0.0754905

Canard et al. [15] 0.0042152 0.00656252 0.0447128 0.161772

Ren et al. [39] 0.0001405 0.0002814 0.0012098 0.0021017

VerPair 0.0000837 0.0001726 0.0007897 0.0013833
Table 2. Comparison of VerPair with pairing calculation for different choices of curves

0 0.2 0.4 0.6 0.8 1

·104

0

20

40

60

Rounds

T
im

e
(i

n
se

co
n
d
s)

Pairing

Canard

VerPair

Fig. 1. Timing for different number of rounds on a 256-bit BN curve

Numerical Results. From fully verifiable schemes apart from VerPair, we
choose the one that requires least computational overhead [15]. Again from [39]
[41], we choose the one that requires less information [40]. These schemes are im-
plemented together with VerPair using the MIRACL library [38] on a 3.40 GHz
Intel Core i7-3770 processor, compiled with GCC, with standard /O2 compiler
optimization. One can find the average results for 10000 trials on Table (2). For
[15], the values that can be precomputed are assumed to be computed offline,
and also membership test operation is not included in timed section.
Using a 256-bit BN curve, computation times of a pairing, the scheme in [15],
and VerPair are compared. The results can be seen in Figure (1).

Communication Cost. In order to be able to propose a scheme with full veri-
fiability, we required two rounds in VerPair. We left it as an open question either
to propose a non-interactive fully verifiable secure delegation of pairings without

any online computation of SM, ME, and MI operations, or to prove its impos-
sibility. We however conjecture that it is impossible to have a non-interactive
fully verifiable delegation scheme as long as the description of the groups G1,
G2, and G3 are known by the servers. Hence, the tradeoff of achieving the full
verifiability is either to perform costly online operations like SM, ME, and MI,
or to add another round to the delegation. In practice however, Meulenaer et al.
in their seminal work [37] give a model regarding the total energy consumption
of cryptographic operations in wireless sensor networks by measuring the energy
consumptions in MICAz and TelosB sensor nodes. In particular, this analysis
shows that the computation of a single SM (or a ME operation) requires con-
siderably more energy than a single round of communication (considering the
total communication overhead including Transmit, Listen, Receive, Compute,
Sleep). Hence, the risk of causing single point of failure is considerably higher in
the schemes in [20] and [15] than VerPair since they require several SM and ME
operations while VerPair requires only an additional round in order to achieve
the full verifiability.

7 Conclusion

Main focus of this study is to deal with the problem of fully verifiable secure
delegation of general pairing computation. By presenting the concrete attack
scenarios, we show that several pairing delegation schemes do not satisfy the
claimed verifiability and/or security guarantees. Then, we propose an efficient
and fully verifiable secure delegation scheme VerPair under one-malicious version
of a two-untrusted-program model (OMTUP). The proposed scheme involves a
precomputation step Rand and pairing delegation scheme VerPair. We also point
out that it is also possible to reduce the overall scheme computation overhead by
partially delegating Rand. Later, we give a detailed security analysis of VerPair
using a variant of the Hohenberger and Lysyanskaya’s simulation-based security
model. Using the MIRACL library[38], we implement VerPair on different paring-
friendly elliptic curves, present implementation results, and compare these re-
sults with the previous schemes. Even if the network and communication costs,
and the cost of actual computation of the costly precomputation step is not
included in performance tests, VerPair scheme runs considerably more efficient
than all the previous schemes. As possible future work, it is highly desirable
either (a) to propose fully verifiable secure delegation schemes for pairing com-
putation under the TUP assumption, or even more interesting under the OUP
assumption, which do not require any online computation of costly modular
exponentiations and elliptic curve scalar multiplications (b) to show impossibil-
ity results. As another future work for the practical deployment of the pairing
delegation, studying intensively the trade-offs between computational efficiency,
memory requirement of the delegator, concrete cryptographic protocols to be
delegated, and secure implementation aspects is highly required.

References

1. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Advances in Cryptology – EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 – May 4, 2017, Proceedings, Part I. pp. 601–
626. Springer International Publishing, Cham (2017), https://doi.org/10.1007/
978-3-319-56620-7_21

2. Öznur Arabacı, Kiraz, M.S., İsa Sertkaya, Uzunkol, O.: More efficient secure out-
sourcing methods for bilinear maps. Cryptology ePrint Archive, Report 2015/960
(2015), https://eprint.iacr.org/2015/960

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Cryptol-
ogy ePrint Archive, Report 2017/334 (2017), http://eprint.iacr.org/2017/334

4. Barreto, P.S.L.M., Galbraith, S.D., hÉigeartaigh, C.Ó., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptography
42(3), 239–271 (Mar 2007), https://doi.org/10.1007/s10623-006-9033-6

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cy-
cles of elliptic curves. In: Advances in Cryptology – CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II. pp. 276–294. Springer Berlin Heidelberg, Berlin, Heidelberg (2014),
https://doi.org/10.1007/978-3-662-44381-1_16

6. Beuchat, J.L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal
ate pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing-Based Cryptography - Pairing 2010: 4th International Confer-
ence, Yamanaka Hot Spring, Japan, December 2010. Proceedings. pp. 21–39.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https://doi.org/10.1007/
978-3-642-17455-1_2

7. Blake, I., Seroussi, G., Smart, N.: Advances in Elliptic Curve Cryptography. Cam-
bridge University Press, New York, NY, USA (2005)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in
Cryptology – CRYPTO 2004: 24th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 2004. Proceedings. pp. 41–55.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004), https://doi.org/10.1007/
978-3-540-28628-8_3

9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Advances in Cryptology (CRYPTO 2001). Lecture Notes in Computer Science,
vol. 2139, pp. 213–229. Springer Berlin Heidelberg (2001), http://dx.doi.org/

10.1007/3-540-44647-8_13

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably en-
crypted signatures from bilinear maps. In: Advances in Cryptology — EURO-
CRYPT 2003: International Conference on the Theory and Applications of Cryp-
tographic Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings. pp. 416–432.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003), https://doi.org/10.1007/
3-540-39200-9_26

11. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pair-
ing. Journal of Cryptology 17(4), 297–319 (2004), http://dx.doi.org/10.1007/
s00145-004-0314-9

12. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factor-
ing based schemes via precomputations. In: Advances in Cryptology — EURO-

https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://eprint.iacr.org/2015/960
http://eprint.iacr.org/2017/334
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/s00145-004-0314-9

CRYPT’98: International Conference on the Theory and Application of Crypto-
graphic Techniques Espoo, Finland, May 31 – June 4, 1998 Proceedings. pp. 221–
235. Springer Berlin Heidelberg, Berlin, Heidelberg (1998), https://doi.org/10.
1007/BFb0054129

13. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Advances in Cryptology — EUROCRYPT’ 92: Work-
shop on the Theory and Application of Cryptographic Techniques Balatonfüred,
Hungary, May 24–28, 1992 Proceedings. pp. 200–207. Springer Berlin Heidelberg,
Berlin, Heidelberg (1993), https://doi.org/10.1007/3-540-47555-9_18

14. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Advances in Cryptology, CRYPTO 2002:
22nd Annual International Cryptology Conference Santa Barbara, California, USA,
August 18–22, 2002 Proceedings. pp. 61–76. Springer Berlin Heidelberg, Berlin,
Heidelberg (2002), https://doi.org/10.1007/3-540-45708-9_5

15. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) Applied Cryptogra-
phy and Network Security: 12th International Conference, ACNS 2014, Lausanne,
Switzerland, June 10-13, 2014. Proceedings. pp. 549–565. Springer International
Publishing, Cham (2014), https://doi.org/10.1007/978-3-319-07536-5_32

16. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of group exponentiation to a single server. In: Radio Frequency Identi-
fication: 11th International Workshop, RFIDsec 2015, New York, NY, USA, June
23-24, 2015, Revised Selected Papers. pp. 156–173. Springer International Publish-
ing, Cham (2015), https://doi.org/10.1007/978-3-319-24837-0_10

17. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
Computer Security – ESORICS 2012: 17th European Symposium on Research in
Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings. pp. 541–556.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012), https://doi.org/10.1007/
978-3-642-33167-1_31

18. Chen, X., Susilo, W., Li, J., Wong, D.S., Ma, J., Tang, S., Tang, Q.: Efficient al-
gorithms for secure outsourcing of bilinear pairings. Theoretical Computer Science
562(Supplement C), 112 – 121 (2015), http://www.sciencedirect.com/science/
article/pii/S0304397514007282

19. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponenti-
ation to a single server: Cryptanalysis and optimal constructions. In: Computer
Security – ESORICS 2016: 21st European Symposium on Research in Computer
Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part I. pp. 261–
278. Springer International Publishing, Cham (2016), https://doi.org/10.1007/
978-3-319-45744-4_13

20. Chevallier-Mames, B., Coron, J.S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150
(2005), http://eprint.iacr.org/2005/150

21. Chow, S.S.M., Yiu, S.M., Hui, L.C.K.: Efficient identity based ring signature.
In: Applied Cryptography and Network Security: Third International Conference,
ACNS 2005, New York, NY, USA, June 7-10, 2005. Proceedings. pp. 499–512.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005), https://doi.org/10.1007/
11496137_34

https://doi.org/10.1007/BFb0054129
https://doi.org/10.1007/BFb0054129
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-24837-0_10
https://doi.org/10.1007/978-3-642-33167-1_31
https://doi.org/10.1007/978-3-642-33167-1_31
http://www.sciencedirect.com/science/article/pii/S0304397514007282
http://www.sciencedirect.com/science/article/pii/S0304397514007282
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-319-45744-4_13
http://eprint.iacr.org/2005/150
https://doi.org/10.1007/11496137_34
https://doi.org/10.1007/11496137_34

22. van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-
preserving cloud computing. Cryptology ePrint Archive, Report 2010/305 (2010),
https://eprint.iacr.org/2010/305

23. Dong, M., Ren, Y., Zhang, X.: Fully verifiable algorithm for secure outsourcing
of bilinear pairing in cloud computing. KSII Transactions on Internet and Infor-
mation Systems pp. 3648–3663 (2017), http://www.itiis.org/digital-library/
manuscript/file/1753/TIIS+Vol+11,+No+7-19.pdf

24. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. Information The-
ory, IEEE Transactions on 52(10), 4595–4602 (Oct 2006), http://dx.doi.org/10.
1109/TIT.2006.881709

25. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Theory of Cryptography, Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3378, pp. 264–282. Springer (2005),
http://www.iacr.org/cryptodb/archive/2005/TCC/3678/3678.pdf

26. Joux, A.: A one round protocol for tripartite diffie-hellman. Journal of Cryptology
17(4), 263–276 (2004), http://dx.doi.org/10.1007/s00145-004-0312-y

27. Kalkar, Ö., Kiraz, M.S., Sertkaya, İ., Uzunkol, O.: A more efficient 1-checkable
secure outsourcing algorithm for bilinear maps. to appear in Proceedings of The
11th WISTP International Conference on Information Security Theory and Prac-
tice (WISTP’2017) (2018)

28. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation.
Cryptology ePrint Archive, Report 2005/259 (2005), https://eprint.iacr.org/
2005/259

29. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourc-
ing of cryptographic computations. International Journal of Information Security
15(5), 519–537 (Oct 2016), https://doi.org/10.1007/s10207-015-0308-7

30. Kiraz, M.S., Uzunkol, O.: Still wrong use of pairings in cryptography. Cryptology
ePrint Archive, Report 2016/223 (2016), https://eprint.iacr.org/2016/223

31. Kiyomura, Y., Inoue, A., Kawahara, Y., Yasuda, M., Takagi, T., Kobayashi, T.:
Secure and efficient pairing at 256-bit security level. In: Applied Cryptography and
Network Security: 15th International Conference, ACNS 2017, Kanazawa, Japan,
July 10-12, 2017, Proceedings. pp. 59–79. Springer International Publishing, Ap-
plied Cryptography and Network Security: 15th International Conference, ACNS
2017 (2017), https://doi.org/10.1007/978-3-319-61204-1_4

32. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In:
Cryptography and Coding, Lecture Notes in Computer Science, vol. 3796, pp. 13–
36. Springer Berlin Heidelberg (2005), http://dx.doi.org/10.1007/11586821_2

33. Libert, B., Quisquater, J.J.: New identity based signcryption schemes from pair-
ings. Cryptology ePrint Archive, Report 2003/023 (2003), https://eprint.iacr.
org/2003/023

34. Luo, X., Yang, X., Niu, X.: An efficient and secure outsourcing algorithm for bi-
linear pairing computation. In: Advances in Internetworking, Data & Web Tech-
nologies: The 5th International Conference on Emerging Internetworking, Data &
Web Technologies (EIDWT-2017). pp. 328–339. Springer International Publishing,
Cham (2018), https://doi.org/10.1007/978-3-319-59463-7_33

35. Luo, Y., Fu, S., Huang, K., Wang, D., Xu, M.: Securely outsourcing of bi-
linear pairings with untrusted servers for cloud storage. In: 2016 IEEE Trust-
com/BigDataSE/ISPA. pp. 623–629 (Aug 2016), https://doi.org/10.1109/

TrustCom.2016.0118

https://eprint.iacr.org/2010/305
http://www.itiis.org/digital-library/manuscript/file/1753/TIIS+Vol+11,+No+7-19.pdf
http://www.itiis.org/digital-library/manuscript/file/1753/TIIS+Vol+11,+No+7-19.pdf
http://dx.doi.org/10.1109/TIT.2006.881709
http://dx.doi.org/10.1109/TIT.2006.881709
http://www.iacr.org/cryptodb/archive/2005/TCC/3678/3678.pdf
http://dx.doi.org/10.1007/s00145-004-0312-y
https://eprint.iacr.org/2005/259
https://eprint.iacr.org/2005/259
https://doi.org/10.1007/s10207-015-0308-7
https://eprint.iacr.org/2016/223
https://doi.org/10.1007/978-3-319-61204-1_4
http://dx.doi.org/10.1007/11586821_2
https://eprint.iacr.org/2003/023
https://eprint.iacr.org/2003/023
https://doi.org/10.1007/978-3-319-59463-7_33
https://doi.org/10.1109/TrustCom.2016.0118
https://doi.org/10.1109/TrustCom.2016.0118

36. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST Special
Publication 800-145 (2011)

37. de Meulenaer, G., Gosset, F., Standaert, F.X., Pereira, O.: On the energy cost of
communication and cryptography in wireless sensor networks. In: 2008 IEEE In-
ternational Conference on Wireless and Mobile Computing, Networking and Com-
munications. pp. 580–585 (Oct 2008), https://doi.org/10.1109/WiMob.2008.16

38. MIRACL: Multiprecision integer and rational arithmetic C/C++ library. CertiVox
UK Ltd., (accessed 2017-09-07) (2016), https://github.com/miracl/MIRACL

39. Ren, Y., Ding, N., Wang, T., Lu, H., Gu, D.: New algorithms for verifiable out-
sourcing of bilinear pairings. Science China Information Sciences 59(9), 99103 (Aug
2016), https://doi.org/10.1007/s11432-016-5550-8

40. Ren, Y., Ding, N., Wang, T., Lu, H., Gu, D.: New algorithms for verifiable outsourc-
ing of bilinear pairings. Science China Information Sciences 59(9), 99103 (2016),
http://dx.doi.org/10.1007/s11432-016-5550-8

41. Ren, Y., Dong, M., Niu, Z., Du, X.: Non-interactive verifiable outsourcing algo-
rithm for bilinear pairing with improved checkability. Security and Communica-
tion Networks pp. 1–9 (2017), http://downloads.hindawi.com/journals/scn/

aip/4892814.pdf

42. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings
on smartcards. In: Cryptographic Hardware and Embedded Systems - CHES 2006.
Lecture Notes in Computer Science, vol. 4249, pp. 134–147. Springer Berlin Hei-
delberg (2006), http://dx.doi.org/10.1007/11894063_11

43. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Advances in Cryp-
tology - ASIACRYPT 2008: 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia, De-
cember 7-11, 2008. Proceedings. pp. 90–107. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008), https://doi.org/10.1007/978-3-540-89255-7_7

44. Tian, H., Zhang, F., Ren, K.: Secure bilinear pairing outsourcing made more effi-
cient and flexible. In: Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security. pp. 417–426. ASIA CCS ’15, ACM, New
York, NY, USA (2015), http://doi.acm.org/10.1145/2714576.2714615

45. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely
outsourcing exponentiations with single untrusted program for cloud storage. In:
Computer Security - ESORICS 2014: 19th European Symposium on Research in
Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I.
pp. 326–343. Springer International Publishing, Cham (2014), https://doi.org/
10.1007/978-3-319-11203-9_19

https://doi.org/10.1109/WiMob.2008.16
https://github.com/miracl/MIRACL
https://doi.org/10.1007/s11432-016-5550-8
http://dx.doi.org/10.1007/s11432-016-5550-8
http://downloads.hindawi.com/journals/scn/aip/4892814.pdf
http://downloads.hindawi.com/journals/scn/aip/4892814.pdf
http://dx.doi.org/10.1007/11894063_11
https://doi.org/10.1007/978-3-540-89255-7_7
http://doi.acm.org/10.1145/2714576.2714615
https://doi.org/10.1007/978-3-319-11203-9_19
https://doi.org/10.1007/978-3-319-11203-9_19

	Fully Verifiable Secure Delegation of Pairing Computation: Cryptanalysis and An Efficient Construction

