
On the Round Complexity of OT Extension

Sanjam Garg1?, Mohammad Mahmoody2??, Daniel Masny1? ? ?, and Izaak
Meckler1

1 University of California, Berkeley
2 University of Virginia

Abstract. We show that any OT extension protocol based on one-way
functions (or more generally any symmetric-key primitive) either requires
an additional round compared to the base OTs or must make a non-black-
box use of one-way functions. This result also holds in the semi-honest
setting or in the case of certain setup models such as the common random
string model. This implies that OT extension in any secure computation
protocol must come at the price of an additional round of communica-
tion or the non-black-box use of symmetric key primitives. Moreover,
we observe that our result is tight in the sense that positive results can
indeed be obtained using non-black-box techniques or at the cost of one
additional round of communication.

1 Introduction

Multiparty secure computation (MPC) [Yao82, GMW87] allows mutually dis-
trustful parties to compute a joint function on their inputs, from which the
parties learn their corresponding outputs but nothing more. Oblivious transfer
(OT) [Rab81,EGL85,BCR87,Kil88,IPS08] is the fundamental building block for
two and multiparty secure computation.

An OT protocol is a two-party protocol between a sender with inputs x0, x1
and a receiver with input bit b. An OT protocol allows the receiver to only learn
xb while b remains hidden from the sender. OT is a very powerful tool and is
sufficient to realize any secure computation functionality [Kil88, IPS08]. Never-
theless, all known constructions of OT have the drawback of being significantly
less efficient than “symmetric-key primitives” like block ciphers or hash func-
tions. This comparatively low efficiency seems to be unavoidable as black-box
constructions of OT from one-way functions are known to be impossible [IR89].

? Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

?? Supported by NSF CAREER award CCF-1350939, a subcontract on AFOSR Award
FA9550-15-1-0274, and University of Virginia’s SEAS Research Innovation Award.

? ? ? Supported by the Center for Long-Term Cybersecurity (CLTC, UC Berkeley).

2

Overcoming this difficulty, one promising approach is to use OT extension. OT
extension allows a sender and a receiver to extend a relatively small number
of base OTs to a much larger number of OTs using only symmetric-key primi-
tives (e.g., one-way functions, pseudorandom generators, collision-resistant hash
functions, etc.), which are indeed much cheaper.

Beaver first proposed the idea of such an OT extension protocol [Bea96].
Beaver’s protocol solely relied on a security parameter number of base OTs and,
perhaps surprisingly, only on a pseudorandom generator (PRG). This insight
– that a small number of inefficient base OTs could be efficiently extended to
a large number of OTs – has been a crucial step in overcoming the efficiency
limitation of OT in particular and multiparty computation in general. Beaver’s
construction, however, made an expensive non-black-box use of the underlying
PRG leading to inefficient protocols.

In an influential work, Ishai, Kilian, Nissim and Pentrank [IKNP03] obtained
an OT extension (referred to as IKNP) which made only black-box use of the
underlying cryptographic primitive, which could be realized using a random ora-
cle. This yielded a significantly more efficient protocol in comparison to Beaver’s
protocol. They also observed that the random oracle in their construction can be
relaxed to the notion of a correlation robust hash function. Follow up works on
OT extension achieve security against stronger adversaries [NNOB12, ALSZ15]
or reduce communication and computation costs [KK13].

The practical impact of the OT extension protocols has been enormous. OT
extension can be used to improve the computational efficiency of virtually any
implementation of secure MPC. In particular, the standard recipe for realizing
efficient secure computation protocols is as follows. We start with the OT-hybrid
model where everyone has access to an ideal OT functionality called OT-hybrid.
Then instantiate an OT extension using the OT-hybrid, which implies that only
black-box access to the OTs is used. An efficient secure computation proto-
col is then realized using OT extension to minimize the number of public-key
operations. Use of OT extension yields remarkable efficiency gains for many
implemented protocols (e.g. see [ALSZ13]).

In addition to the computational efficiency, round complexity is another
parameter of concern in the construction of efficient secure computation pro-
tocols. Significant research effort has been made toward realizing round effi-
cient OT [NP01, AIR01, HK12, PVW08] and round efficient two-party [KO04,
ORS15] and multiparty [BMR90, AJL+12, GGHR14, MW16, GMPP16, GS17a,
BL17, GS17b] secure computation protocols. Several of these protocols are also
black-box in the use of the underlying cryptographic primitives. However, all
these works only yield protocols (with a given round complexity) using a large
number public-key operations. Ideally, we would like to construct OT extension
protocols that can be used to reduce the number of public-key operations needed
in these protocols while preserving the round complexity and the black-box na-
ture of the underlying protocol. This brings us to our following main question:

Can we realize a round-preserving OT extension protocol which
makes only black-box use of “symmetric-key” cryptographic primitives?

3

The random oracle model (ROM) accurately captures the black-box use of
such symmetric-key primitives, as it directly provides us with ideally strong
hash functions as well as block-ciphers or even ideal ciphers [CPS08, HKT11].
Therefore, in order to answer the above question, we study the possibility of OT
extension protocols in the ROM that preserve the round complexity.3

1.1 Our Results

We provide a negative answer to the above main question. In other words, we
show that any OT extension protocol based on so called symmetric-key prim-
itives, requires either an additional round compared to the base OTs or must
make a non-black-box use of symmetric-key primitives. We capture black-box
use of one-way functions, or even correlation-robust hash functions, as well as
common random string setup4 by proving our impossibility result under the
idealized notion of these primitives which is provided by a random oracle. In
particular, we prove the following theorem.

Theorem 1 (Impossibility of round-preserving OT extension in ROM–
Informally Stated). Suppose a sender S and a receiver R want to perform m
OTs in r rounds using a random oracle, and they both have access to n, r-round
OTs (i.e. the receiver obtains its outputs at the end of round r) where n < m.
Then, if S and R can ask polynomially many more queries to the random oracle,
one of them could always break security of the m OTs.

Theorem 1 holds even for an extension from n string OTs to m = n + 1 bit
OTs, and even for the setting of semi-honest security. It also gives an alternative,
and arguably simpler, proof to Beaver’s impossibility result that information-
theoretically secure OT extension does not exist in the plain model [Bea96]. We
sketch the main ideas in Section 1.2 and provide the details in Section 3.

Additionally, we observe that our results are tight in two different ways.
First, the IKNP protocol [IKNP03] realizes black-box OT extension using one
additional round. Second, our result is also tight with respect to the black-box use
of the symmetric-key primitives captured by random oracles. Beaver’s original
protocol provided OT extension in which the receiver has no control over which
input he receives (it will be chosen at random). This notion of OT is often referred
to as “random” OT. The known generic way of going from “random” OTs to
“chosen” OTs will add another round [EGL85]. We observe (see Section A) that
Beaver’s original non-black-box OT extension protocol [Bea96], which only relies
on a PRG, can be modified to provide round-preserving “chosen-input” OTs, but
this result will require non-black-box use of the PRG.

We remark that our results have implications in several other settings, for
example, in the plain model under malicious security. In this setting, an OT

3 The only symmetric-key primitive not directly implied by a random oracle is one-way
permutations. However, most negative results in the random oracle model, including
our work, extend to one-way permutations using standard techniques [IR89].

4 Note that a random oracle also provides a common random string for free.

4

protocol takes at least 4 rounds [KO04,ORS15]. Therefore, our results imply that
in this setting, black-box OT extension protocols must be at least five rounds
while a non-black-box construction with four rounds can be realized. Another
example is the correlated setup model [FKN94, IKM+13, BGI+14] where our
results imply that there is no non-interactive OT extension even in the presence
of a random oracle. Interestingly, this setting behaves very differently from a
setting of shared randomness, where the amount of shared randomness can be
easily increased by using the random oracle as a PRG. On the contrary, in case
of a single communication round, the IKNP protocol [IKNP03] can be used to
increase the amount of correlated randomness in this setting.

Finally, we note that our impossibility result of Theorem 1 also holds for
the case of random permutation oracle model. The proof of Theorem 1 directly
extends to this setting using the standard trick introduced in [IR89]. Namely,
the attacker can always ask all the oracle queries of input lengths at most c · log κ
for sufficiently large constant c, in which case, the probability of the honest par-
ties, the simulator, or the attacker (of the random oracle model) itself getting
a collision while accessing the random oracle on input of length > c log κ is suf-
ficiently small. However, without collisions, (length preserving) random oracles
and random permutation oracles are the same.

1.2 Technical Overview

In this section, we explain the key ideas behind the proof of our main impossi-
bility result of Theorem 1. For a formal treatment, see Section 3. In a nutshell,
we first present an entropy-based information-theoretic argument for the plain
model, where there are no oracles involved beyond the hybrid OTs. We then ex-
tend our attack to the random oracle model, by making use of the ‘dependency
learner’ of [IR89,BMG09,HOZ16,BM17], which is a algorithms that allows us to
‘approximate’ certain plain-model arguments also in the random oracle model.
As we will see, the combination of these two steps will make crucial use of the
round-preserving property of the (presumed) OT-extension construction.

To explain the core ideas behind our proofs, it is instructive to even define a
2-round-preserving OT extension protocol, to see how the definition accurately
models the concept of round-preserving OT extension, and because we are partic-
ularly interested in ruling out black-box 2-round OT extension protocols. Below,
we first describe the notation and the simplifying assumptions for this special
case (of 2-round extensions), before going over the ideas behind the proof.

Notation and the simplified setting. Here we define some basic notations
and also state some simplifying assumptions, some of which are without loss
of generality when we focus on 2-round-preserving OT extensions, and the rest
are relaxed when proving the formal attack in Section 3. Here we focus on the
case of extending n instances of OT, into m instances for some m � n. (This
is without loss of generality as even “one-more” OT extension, i.e., m = n + 1,
can be used to get polynomially many more OTs – e.g., see [LZ13].)

5

Inputs and outputs: Let [m] := {1, . . . ,m}. Suppose ~b = (b1, . . . , bm) ∈
{0, 1}m are the choice bits of the receiver R and x = (x0i , x

1
i)i∈[m] ∈ {0, 1}2m are

the pairs of bits that the sender holds as its input. (Our main negative result
holds even if the hybrid OTn provides string OTs, but in this simplified exposi-
tion, we work with bit OTs.) The receiver R wishes to get output (xbii)i∈[m].

The oracle and OT hybrid: The two parties have access to a random oracle
H as well as n instances of a OT-hybrid functionality for bit inputs which we
denote with OTn. When using OTn, R and S will not reverse their roles such
that R always receives the output from OTn. This is without loss of generality
for a round preserving OT extension for the following reason. First note that the
last message of the constructed OT should be from the sender to the receiver,
as otherwise it could be dropped. Moreover, we use a hybrid OTn that requires
(here) two rounds to deliver its output. Therefore, if both the used hybrid OTs
and constructed OTs have the same (here two) rounds, the last messages of the
hybrid and the constructed OTs should both go from the sender to the receiver.
Thus, we model the 2-round-preserving OT extension in the ROM as follows.

1. R sends a single message t1 to S, and it also chooses and submits the input
~c = (c1, . . . , cn) to the hybrid OTn.

2. S sends a single message t2 to R, and it also chooses and submits inputs
(y0i , y

1
i)i∈[n] to the hybrid OTn.

3. R also receives γ = (ycii)i∈[n] from OTn.

4. R outputs what is supposed to be (xbii)i∈[m].

We assume in this simplified exhibition that the protocol has perfect com-
pleteness, namely the receiver obtains the correct answer with probability one.

An information theoretic attack for the no-oracle setting. Our starting
point is an inefficient (information theoretic) attack on OT extension when there
are no oracles involved. The fact that OT extension protocols, regardless of
their round complexity, can not be information theoretically secure was already
shown by Beaver [Bea96], and the work of Lindell and Zarosim [LZ13] improved
that result to derive one-way functions from OT extensions. As we will see, our
information theoretic attack has the main feature that in the round-preserving
OT extension setting, it can be adapted to the random oracle model by also
using tools and ideas from [IR89,BMG09,HOZ16] where new challenges arise.

Now we describe an attack for the sender and an attack for the receiver in
the case that they pick their inputs ~b, x uniformly at random, and will show that
at least one of these attacks will succeed with non-negligible probability. Ruling
out the possibility of secure OT for the random-inputs case is stronger and it
rules out the general (selected-input) case as well. Also note that when we refer
to attacking parties here, what we formally mean, is a semi-honest execution
of the protocol, followed by a distinguisher (as part of the attack) who is able
to use the view of the honest execution to make distinguishing predictions that
shall not be possible in case of semi-honest security. For simplicity, we combine
these two steps and simply refer to them as the attacker.

6

– Attacking sender Ŝ. Since Ŝ gets no output, in a secure protocol the
random input ~b ∈ {0, 1}m of the receiver shall remain indistinguishable from
a uniform Um in eyes of the receiver who knows the transcript T = (t1, t2).
(See Lemma 19 for a formalization.) Therefore, a natural attacking strategy

for the sender Ŝ is to look at the transcript T at the end, and based on that
information, try to distinguish the true ~b (in case it is revealed to him) from

a random uniform string Um of length m.5 Thus, if the distribution of (~b, T),
is ε-far from (Um, T) for non-negligible ε, the protocol is not secure, because

given the transcript T an efficient sender can distinguish ~b from Um.

– Attacking receiver R̂. After running the protocol honestly to get the
actual output for the honestly chosen input ~b, the cheating receiver R̂ tries
to also find another input ~b′ 6= ~b together with its corresponding correct

output {xb
′
i
i }i∈[m]. If R̂ could indeed do so, it would be a successful attack

since in at least one of the locations i ∈ [m], the receiver will read both of
(x0i , x

1
i), though that shall not be possible for semi-honest secure protocols.

(See Lemma 20 for a formalization.) By the perfect completeness of the

protocol,6 all R̂ needs to do is to find another fake view V ′R for the receiver

such that: (1) V ′R contains ~b′ 6= ~b as its input, and that (2) V ′R is consistent
with the transcript T , the input c given to OTn, as well as the output γ
obtained from it. Finding such V ′R efficiently, violates sender’s security.

One of Ŝ, R̂ succeeds: an entropy-based argument. If the attacking sender
Ŝ described above does not succeed with a non-negligible advantage, it means
that (~b, T), as a random variable, is statistically close to (Um, T), which in turn
implies that (with high probability over T) conditioned on the transcript T ,

the receiver’s input ~b has close to (full) m bits of entropy.7 (See Lemma 14 for

a formalization of this argument.) Therefore, if the malicious receiver R̂, after
finishing the honest execution encoded in the view VR, “re-samples” a fake view
V ′R from the distribution of its view conditioned on T , denoted (VR | T), then

it will get a different ~b′ 6= ~b, as part of V ′R with some noticeable probability. (See
Lemma 15 for a formalization of this argument.) However, as described above,

the attacking receiver R̂ also needs to condition its sampled view V ′R ← (V′R |
T,~c, γ) on its input c given to OTn and the output γ obtained from it to get a

correct output {xb
′
i
i }i∈[m] for the new fake input ~b′ 6= ~b. It can be shown that if

m > |~c|+ |γ| = 2n, then there is still enough entropy left in the sampled ~b′, even
after further conditioning on ~c, γ (and transcript T). Therefore, if m� 2n, then
at least one of the attacks succeeds with non-negligible probability.

5 Technically, the true input ~b or independent random input Un are not given to the
sender in an actual execution of the protocol, but for a secure protocol, these two
shall remain indistinguishable even if revealed (see Lemma 19).

6 Our formal proof of Section 3 does not assume perfect completeness.
7 This is why we choose to work with Shannon entropy, as we want distributions close

to Um to have almost full entropy; this does not hold e.g., for min-entropy.

7

Polynomial-query attacks in the random oracle model. The above in-
formation theoretic argument for the no-oracle case no longer works when we
move to the ROM for the following simple reason. A fresh fake sample V ′R for the
receiver’s view that is consistent with the transcript T and OT-hybrid inputs c
and output γ might be inconsistent with oracle query-answer pairs that already
exist in sender’s view, because the fake view V ′R might make up some answers
to some oracle queries that are also asked by the sender but received a different
answer from the actual oracle. Therefore, we will not have any guarantee that
the faked sampled view of the the sender leads to correct outputs for the new
fake input ~b′. In fact, because we already know that OT extension in the random
oracle model is possible [IKNP03], the above issue is inherent when we try to
extend our attack to the ROM. However, we have not yet used the fact that we
are aiming at attacks that succeed for round-preserving OT extensions. Below,
we first describe a natural (yet insufficient) idea for extending our information-
theoretic attack to the ROM, and then will extend this idea further by also
relying on the round-preserving aspect of the construction.

1st try: using “dependency learner” of [IR89,BMG09,HOZ16,BM17].
As described above, when we move to the oracle setting, the random oracle H
creates further correlation between the views of S and R beyond what the tran-
script (or OTn) does. One natural idea for removing the correlation made by a
random oracle between the views of two parties is to use the so-called ‘depen-
dency learner’ Eve algorithm of [BMG09,BMG09,HOZ16,BM17] (see Theorem
17). The Eve algorithm is a deterministic algorithm such that for any input-
less, two-party, protocol A,B in the ROM, given the public transcript T of the
interaction between A,B, Eve asks polynomially-many oracle queries from the
random oracle H in a way that conditioned on the view of Eve (that includes
T and its oracle query-answer pairs PE) the views of A,B become close to in-
dependent random variables.8 The magic of the algorithm Eve is that, because
both parties can run it at the end, the parties can pretend that PE is also part
of the transcript, and thus we get an augmented transcript VE = (T, PE) that
includes (almost) all of the correlation between the views of the two parties.

The above simple idea fails, however, because of the additional involvement
of OTn in the protocol, which creates further correlation between the views of
the parties. Consequently, this seemingly simple issue prevents us from being
able to run the Eve algorithm to (almost) eliminate the correlation between
S,R views, as the Eve algorithm only applies to inputless protocols in the ROM
that have no other source of communication other than the transcript.

2nd try: using the dependency learner over a shortened protocol. Recall
that we are dealing with round-preserving OT extensions, and have not used this
property yet! One consequence of this assumption is that we can now assume
that the OT-hybrid output γ is sent to the receiver after the last message t2

8 In the plain model, the views of two interacting parties are independent given the
transcript, and this enables the information theoretic attack against OT extension.

8

is sent. Now, if we stop the execution of R right after t2 is sent and call this
modified variant of R the algorithm R1, even though the input ~c is submitted
to OTn by R1, no output is received by R1 from OTn yet, therefore we would
not have any correlated randomness distributed between the parties through
OTn hybrid. Therefore, our new modified two party protocol S,R1 would be a
simple inputless protocol in the ROM over which we can execute the dependency
learner Eve over its transcript T = (t1, t2). Indeed, if we run Eve with respect to
S,R1, Eve will gather enough information about the oracle encoded in its oracle
query-answer set (PE) so that the views of S and R1, conditioned on Eve’s view
(T, PE), would be close to a product distribution. Therefore, we can hope to
again use an approximate version of our information theoretic argument in the
no-oracle setting by interpreting T ′ = (T, PE) as the new ‘transcript’.

Finishing receiver’s execution. The above argument (of applying the depen-
dency learner Eve over a shortened variant R1 of R) still does not lead to an
actual attack, because we need to finish the execution of R1, which is only a
partial execution of the receiver, to obtain the actual output corresponding to
the fake input ~b′. Only then, we can call R̂ a successful attack. With this goal in
mind, let us call R2 to be the the rest of the execution of the cheating receiver
which starts right after finishing the first part R1. Namely, R2 takes over the
computation of R1 to finish it, and the first thing it receives is the output γ of
OTn. However, to obtain the actual output, there might be further necessary
oracle calls to the random oracle H. Since R̂ is interested to know the output
~b′ planted in the fake view V ′R, the execution of R2 using V ′R needs to pretend
that V ′R is the actual view of the receiver, which in turn implies pretending that
the original honest view VR does not exist.

Leveraging on the lack of intersection queries. Interestingly, it turns out that
another crucial property of the dependency learner algorithm Eve (i.e. Part 2 of
Theorem 17) allows us to get a consistent execution of R2 using the fake view
V ′R while pretending that the original honest (non-fake) execution of the receiver
(encoded in view VR) does not exist. Namely, Eve’s algorithm guarantees that,
with high probability over T ′ = (T, PE), there will be no ‘intersection queries’
between the set of queries asked by the honest sender and the original (i.e.,
honest) partial execution of the receiver that obtains the first output (of input
~b) for the attacker R̂. In a nutshell, what we do to finish the execution of R2 is
to answer with fresh random strings, any query q that is not learned by Eve but
is in the view of the original honest receiver’s execution. In Section 3 we show
that a careful case analysis proves this strategy to lead to a correct continuation
of the fake view V ′R obtaining the right output for the fake input ~b′.

Organization. In Section 2 we describe the basic notation, main definitions, and
some useful lemmas. In Section 3 we formalize and prove our main impossibility
result of Theorem 1. In Appendix A we observe that Beaver’s non-black-box
round-preserving OT extension [Bea96] could be “chosen input”.

9

2 Preliminaries

Logarithms in this work are taken base 2. For a bit b, we denote bit 1− b by b.
We use PPT to denote a probabilistic, polynomial-time Turing machine.

Notation on random variables. All the distributions and random variables
in this paper are finite. We use bold font to denote random variables. We
usually use the same non-bold letter for samples form the random variables, so
by Q ← Q we indicate that Q is sampled from the distribution of the random
variable Q. By (X,Y) we denote a joint distribution over random variables
X and Y. By X ≡ Y we denote that X and Y are identically distributed.
For jointly distributed (X,Y,Z), when random variable Z is clear from the
context, by ((X,Y) | Z) we denote the distribution of (X,Y) conditioned on
Z = Z. By (X × Y) we denote a product distribution in which X and Y are
sampled independently from their marginal distributions. For jointly distributed
(X,Y,Z) and any Z ← Z, we denote ((X|Z) × (Y|Z)) by (X × Y)|Z. For a
finite set S, by x← S we denote that x is sampled from S uniformly at random.
By Supp(X) we denote the support set of the random variable X, defined as
Supp(X) := {x | Pr[X = x] > 0}. Un is the uniform distribution over {0, 1}n.

Notation on events. An event B is simply a set, so for any random variable X,
the probability Pr[X ∈ B] := Pr[X ∈ B∩Supp(X)] is well defined. More formally,
we assume B ⊆ U is a subset of the ‘universe’ set U where Supp(X) ⊆ U for any
‘relevant’ random variable X (in our analyses). In particular, we could refer to
the same event B across different random variables. For any particular sample
X ← X, we say that the event B holds over X iff X ∈ B.9 For an event B by
B we denote to the complement (with respect to the underlying universe U).
Therefore, Pr[X ∈ B] = 1 − Pr[X ∈ B] is always well defined. By PrD[B] or
Pr[B;D] we mean the probability of B for sampling process described by D.

2.1 Lemmas about Statistical Distance and Mutual Dependency

Definition 2 ((Conditional) statistical distance). By SD(X,Y) we denote
the statistical distance between random variables X,Y defined as

SD(X,Y) = max
B

Pr[X ∈ B]− Pr[Y ∈ B] =
1

2
·
∑
Z

|Pr[X = Z]− Pr[Y = Z]|.

We call X and Y ε-close, denoted by X ≈ε Y, if SD(X,Y) ≤ ε.
For an event A, we let SDA(X,Y) = SD((X | A), (Y | A)), denote the con-

ditional statistical distance of X,Y, and for correlated random variable Z, by
SDZ(X,Y) we denote SD((X | Z = Z), (Y | Z = Z)), and we also let

SDZ(X,Y) = E
Z←Z

SDZ(X,Y).

9 In this terminology, B is seen as a property that holds for all X ∈ B, but not for the
rest. In fact, we define our events B using properties over objects in the universe.

10

In the following lemma, is a well-known10 fact stating that statistical distance
is the maximum advantage of distinguishing two distributions.

Lemma 3. Let D be any potentially randomized (distinguishing) algorithm. Then:
Pr[D(X) = 1] − Pr[D(Y) = 1] ≤ SD(X,Y) and the equality can be achieved by
any ‘canonical’ distinguisher such that: C(Z) = 1 if Pr[X = Z] > Pr[Y = Z],
and C(Z) = 0 if Pr[X = Z] < Pr[Y = Z].

The following well-known lemma11 states that statistically close distributions
could be sampled jointly while they are equal with high probability.

Lemma 4 (Coupling vs. statistical distance). SD(X,Y) ≤ ε iff there is a
way to jointly sample (X,Y) such that Pr[X = Y] ≥ 1− ε.

The following lemma says that if X ≡ X′ in two pairs of jointly distributed
random variables (X,Y), (X′,Y′), then the statistical distance of the two pairs
could be written as a linear combination of conditional probabilities.

Proposition 5. SD((X,Y), (X,Y′)) = EX←X SD((Y | X), (Y′ | X)). More-
over, if SD((X,Y), (X,Y′)) = ε, any canonical distinguisher D of the following
form ε-distinguishes (X,Y) from (X,Y′):

– If Pr[Y = Y | X] > Pr[Y′ = Y | X], then D(X,Y) = 1.
– If Pr[Y = Y | X] < Pr[Y′ = Y | X], then D(X,Y) = 0.
– If Pr[Y = Y | X] = Pr[Y′ = Y | X], then D(X,Y) ∈ {0, 1} arbitrarily.

Proof. We prove both parts using Lemma 3. By Lemma 3, SD((X,Y), (X,Y′))
equals the maximum advantage by which a distinguisher D can distinguish the
two distributions (X,Y), (X,Y′). Now, such D is always given a sample X ← X
from X ≡ X′ first, conditioned on which it has to maximize Pr[D(Y | X) =
1] − Pr[D(Y′ | X) = 1]. However, for each X, the maximum of Pr[D(Y |
X) = 1] − Pr[D(Y′ | X) = 1] is again described by Lemma 3 to be equal to
SD((Y | X), (Y′ | X)). Furthermore, the canonical distinguisher described above
works due to the canonical distinguisher of Lemma 3 ut

The following definition from [BM17] is a measure of correlation between
jointly distributed pairs of random variables.

Definition 6 ((Conditional) mutual dependency [BM17]). For a joint
distribution (X,Y), we define their mutual-dependency as MutDep(X,Y) =
SD((X,Y), (X×Y)). For correlated (X,Y,Z), and for Z ← Z, we define

MutDepZ(X,Y) = SDZ((X,Y), (X×Y)) = SD(((X,Y)|Z), (X|Z ×Y|Z))

to be the mutual dependency of X,Y conditioned on the given Z, and we let

MutDepZ(X,Y) = E
Z←Z

MutDepZ(X,Y).

10 For example, see Exercise 8.61 from [Sho09].
11 For example, see lemma 3.6 of [Ald83] for a proof.

11

The following proposition follows from Proposition 5 and Definition 6.

Proposition 7. It holds that MutDep(X,Y) = EX←X SD((Y | X),Y).

Lemma 8. For a joint distribution (X,Y), the statistical distance between the
following distributions is at most 2 ·MutDep(X,Y). (Note how Y, Y ′ are flipped.)

1. Sample (X,Y)← (X,Y), independently sample Y ′ ← Y, output (X,Y, Y ′).
2. Sample (X,Y)← (X,Y), independently sample Y ′ ← Y, output (X,Y ′, Y).

Proof. The following hybrid distribution is MutDep(X,Y)-far from either of the
distributions in Lemma 8. Sample X ← X, Y1, Y2 ← Y all independently and
output (X,Y1, Y2). Therefore, the claim follows from the triangle inequality. ut

Lemma 9. Let X = (A,B,C) be correlated random variables. Let another joint
distribution X′ = (A′,B′,C′) be defined as follows.

– Sample A′ ← A, then C ′ ← (C | A = A′), then B′ ← (B | C = C ′), and
output the sample X ′ = (A′, B′, C ′).

Then SD(X,X′) = MutDepC(A,B). Furthermore, if C = f(B) is a function of
only B (in the joint distribution X) then SD(X,X′) ≤ 2 ·MutDep(A,B).

Remark 10. Before proving Lemma 9, note that the second conclusion would be
false if C could also depend on A. For example, consider the case where A,B,C
are all random bits conditioned on A ⊕ B ⊕ C = 0. In that case, without
conditioning on C, MutDep(A,B) = 0 as A,B are independent. However, given
any specific bit C ← C, the distributions of A,B would be correlated, and their
conditional mutual-dependency would be 1/2, so MutDepC(A,B) = 1/2.

Proof (of Lemma 9). First, we show SD(X,X′) = MutDepC(A,B). Note that
C ≡ C′, so we can apply Proposition 7. For a given C ← C ≡ C′, for (X | C) we
will sample (A,B) jointly, while in (X′ | C′ = C) we will sample from (A | C) ≡
(A′ | C′ = C) and (B | C) = (B′ | C′ = C) independently from their marginal
distributions. Now, we show that SD(X,X′) ≤ 2 ·MutDep(X,Y), if we further
know that C is only a function of B. Consider a third joint distribution X′′ =
(A′′,B′′,C′′) ≡ (A × (B,C)); namely, (B′′,C′′) ≡ (B,C), and A′′ is sampled
from the marginal distribution of A. Firstly, note that for every A← A, B ← B,
it holds that (C′′ | A′′ = A,B′′ = B) ≡ (C | B = B) ≡ (C | A = A,B = B),
because A′′ is independently sampled from (B′′,C′′), and that C = f(B) is only
a function of B. Therefore, because the conditional distribution of C ≡ C′′ is
the same given (A′′ = A,B′′ = B) or (A = A,B = B), by Lemma 12,

SD(X,X′′) = SD((A,B), (A′′,B′′)) = MutDep(A,B). (1)

Secondly, for all A ← A, C ← C, it holds that (B′′ | A′′ = A,C′′ = C) ≡
(B | C = C) ≡ (B′ | A′ = A,C′ = C), so by Lemma 12, it holds that

SD(X′,X′′) = MutDep(A,C) ≤ SD(X,X′′) = MutDep(A,B). (2)

Therefore, by the triangle inequality and Equations (1) and (2), it holds that
SD(X,X′) ≤ SD(X,X′′) + SD(X′,X′′) ≤ 2 ·MutDep(A,B). ut

12

Variations of the following lemma are used in previous works.12 It states an
intuitive way to bound the statistical distance of sequences of random variables
in systems where there exist some low-probability ‘bad’ events, and conditioned
on those bad events not happening the two systems proceed statistically closely.
Here we only need this specific variant for random systems with two blocks.

Lemma 11 (Bounding statistical distance of pairs). Let X = (X1,X2)
and X′ = (X′1,X

′
2) be two jointly distributed pairs of random variables where

SD(X1,X
′
1) ≤ α. Let B be an event (i.e. an arbitrary set) such that for every

X1 ∈ Supp(X1) ∩ Supp(X′1) \ B it holds that SD((X2 | X1 = X1), (X′2 | X′1 =
X1)) ≤ β. Then, it holds that

SD(X,X′) ≤ α+ β + Pr[X1 ∈ B].

Proof. Using two direct applications of Lemma 4, we show how to sample (X,X′)
jointly in a way that Pr[X = X′] ≥ 1− (α+ β+ ρ) where Pr[X1 ∈ B] = ρ. Then
Lemma 11 follows (again by an application of Lemma 4).

Firstly, by Lemma 4 we can sample (X1,X
′
1) jointly, while Pr[X1 = X′1] ≥

1 − α. Now, we expand the joint sampling of (X1,X
′
1) to a full joint sampling

of (X,X′) ≡ (X1,X2,X
′
1,X

′
2) as follows. We first sample (X1, X

′
1)← (X1,X

′
1)

from their joint distribution. Then, for each sampled (X1, X
′
1), we sample the

distributions (X2,X
′
2 | X1, X

′
1) also jointly such that Pr[X2 = X′2 | X1, X

′
1] =

1 − SD((X2 | X1), (X′2 | X ′1)). We can indeed do such joint sampling, again
by applying Lemma 4, but this time we apply that lemma to the conditional
distributions (X2 | X1, X

′
1) ≡ (X2 | X1) and (X′2 | X1, X

′
1) ≡ (X′2 | X ′1).

Now, we lower bound Pr[X1 = X′1∧X2 = X′2] when we sample all the blocks
through the joint distribution (X1,X2,X

′
1,X

′
2) defined above. First, we know

that Pr[X1 = X′1] ≥ 1 − α and Pr[X1 6∈ B] ≥ 1 − ρ, therefore Pr[X1 = X′1 6∈
B] ≥ 1−α− ρ. Moreover, for any such X1 ∈ Supp(X1)∩ Supp(X′1) \B, we have

Pr[X2 = X′2 | X1 = X′1 = X1] ≥ 1− SD((X2 | X1), (X′2 | X′1 = X1)) ≥ 1− β.

Therefore, the lemma follows by a union bound. ut

The following useful lemma could be derived as a special case of Lemma 11
above by letting B = Supp(X1) ∪ Supp(X′1) and β = 0.

Lemma 12. If (X,Y), (X′,Y′) are joint distributions and (Y | X) ≡ (Y′ |
X′ = X) for all X ∈ Supp(X)∩Supp(X′), then SD((X,Y), (X′,Y′′)) = SD(X,X′).

2.2 Lemmas about Shannon Entropy

Definition 13 ((Conditional) Shannon entropy). For a random variable
X, its Shannon entropy is defined as H(X) = EX←X log(1/Pr[X = X]). The
conditional (Shannon) entropy is defined as H(X | Y) = EY←Y H(X | Y). The

12 For example see Lemma 2.2 of [GKLM12].

13

binary (Shannon) entropy function H(ε) = −p log p− (1− p) log(1− p) is equal
to the entropy of a Bernoulli process with probability ε.13

Jensen’s inequality implies that we always have H(X) ≥ H(X | Y) ≥ 0.

Lemma 14 (Lower bounding entropy using statistical distance). Sup-
pose SD(X,Un) ≤ ε. Then H(X) ≥ (1− ε) · n−H(ε).

Proof. Since SD(X,Un) ≤ ε, using Lemma 4 we can sample (X,Un) jointly
such that Pr[X 6= Un] ≤ ε. In this case, we have

n = H(Un) ≤ H(Xn,Un) = H(X) + H(Un | X) ≤ H(X) + H(ε) + ε · log(2n − 1)

where the last inequality follows from Fano’s lemma [Fan68]. Therefore, we get
H(X) ≥ (1− ε) · n−H(ε). ut

Lemma 15 (Upper-bounding collision probability using (conditional)
Shannon entropy). Suppose Supp(X) ⊆ {0, 1}n.

1. If H(X) ≥ 2/3, then it holds that

Pr
X1,X2←X

[X1 6= X2] ≥ 1

10n
.

2. If H(X | Y) ≥ 5/6 for a jointly distributed (X,Y), then it holds that

Pr
Y←Y,X1,X2←(X|Y)

[X1 6= X2] ≥ 1

60 · n2
.

Proof. First, we prove Part 1. In the following let ε = 1/(10n) ≤ 1/10. Our first
goal is to show that PrX1,X2←X[X1 6= X2] ≥ ε. There are two cases to consider:

1. Case (1): Suppose first that there is some A ⊆ Supp(X) with ε ≤ pA =
PrX←X[X ∈ A] ≤ 1 − ε. Then, letting B = Supp(X) \ A, we also have
ε ≤ PrX←X[X ∈ B] ≤ 1− ε. Since A and B are disjoint, we have

Pr
X1,X2←X

[X1 6= X2] ≥ Pr
X1,X2←X

[X1 ∈ A, X2 ∈ B or X1 ∈ B, X2 ∈ A]

= 2 · pA · (1− pA) ≥ 2 · ε · (1− ε) = 2 · ε− 2 · ε2 ≥ ε.

The last inequality follows from ε ≤ 1/10, which implies ε ≥ 2ε2.

2. If we are not in Case (1) above, then for every A ⊆ Supp(X), PrX←X[X ∈
A] < ε or PrX←X[X ∈ A] > 1− ε. In particular, for every X ∈ Supp(X), we
have Pr[X = X] < ε or Pr[X = X] > 1− ε. Now there are two cases:

13 The notation is well defined: If the input ε is a real number, by H(ε) we mean the
binary entropy, and otherwise we mean the entropy of a random variable.

14

(a) For all X ∈ Supp(X), Pr[X = X] < ε. In this case, because ε < 1/10, we
can build a set A ⊆ Supp(X) that implies being in Case (1). Namely, let
A0,A1, . . . ,Am be a sequence of sets where where Ai = {1, . . . , i} ⊆ [m] =
Supp(X). Suppose i is the smallest number for which Pr[X ∈ Ai] ≥ ε,
which means Pr[X ∈ Ai−1] < ε. In this case we have:

Pr[X ∈ Ai] ≤ Pr[X ∈ Ai−1] + Pr[X = i] < 2ε < 1− ε

where the last inequality follows from ε < 1/10.
(b) There is some X ∈ Supp(X) where Pr[X = x] > 1− ε. Now suppose we

sample X jointly with a Boolean B where B = 0 iff X = X. So, we get:

2/3 ≤ H(X) ≤ H(B) + H(X | B)

= H(B) + Pr[B = 0] ·H(X | B = 0) + Pr[B = 1] ·H(X | B = 1)

< H(ε) + Pr[B = 0] · 0 + ε · n
≤ H(1/10) + 1/10

< 1/2 + 1/10 (because H(1/10) < 1/2)

which is a contradiction.

Now we prove Part 2. Because we have H(X | Y) ≥ 5/6, and because H(X |
Y) ≤ n for any Y ← Y, by an averaging argument it holds that PrY←Y[H(X |
Y) > 2/3] ≥ 1/(6n). That is because otherwise, H(X | Y) would be at most
(2/3) · (1 − 1/(6n)) + n · (1/(6n)) < 5/6. Therefore, with probability at least
1/(6n) we get Y ← Y for which we have

Pr[X1 6= X2;Y ← Y, X1, X2 ← (X | Y)] ≥ 1/(10n).

The claim then follows by using the chain rule. ut

2.3 Lemmas about the Random Oracle Model

Definition 16 (Random Oracles). A random oracle H(·) is a randomized
function such that for all x ∈ {0, 1}∗, H(x) is independently mapped to a random
string of the same length |x|.

Even though the above definition is for infinite random oracles, in this work
we are only interested and only use finite random oracles, as there is always an
upper bound (based on the security parameter) on the maximum length of the
queries asked by a polynomial time algorithm.

Notation on oracle-aided algorithms. For any view VA of a party A with
access to some oracle O, by Q(VA) we refer to the set of queries to O in the view
VA, and by P(VA) we denote the set of of oracle query-answer pairs in VA. So,
Q(·),P(·) are operators that extract the queries or query-answer pairs. When it
is clear from the context, we might simply use QA = Q(VA) and by PA = P(VA).

15

When A is an interactive algorithm, if A has no inputs and uses randomness rA,
and if T is the transcript of the interaction, then VA = (rA, T, PA).

Variants of the following lemma were implicit in [IR89, BMG09] and stated
in [DLMM11]. See the works of [HOZ16,BM17] for formal proofs.

Theorem 17 (Dependency learner [IR89,BMG09,HOZ16,BM17]). Let
(A,B) be an interactive protocol between Alice and Bob in which they might
use private randomness (but no inputs otherwise) and they each ask at most
m queries to a random oracle H. Then, there is a deterministic eavesdropping
algorithm Eve (whose algorithm might depend on Alice and Bob and) who gets
as input δ ∈ [0, 1] and the transcript T of the messages exchanged between Alice
and Bob, asks at most poly(m/δ) queries to the random oracle H, and we have:

1. The average of the statistical distance between (VA,VB) and (VA × VB)
conditioned on VE is at most δ. Namely,

MutDepVE
(VA,VB) = E

VE←VE
MutDep((VA | VE), (VB | VE)) ≤ δ.

2. The probability that Alice and Bob have an ‘intersection query’ outside of
the queries asked by Eve to the random oracle is bounded as follows:

Pr[Q(VA) ∩Q(VB) 6⊆ Q(VE)] ≤ δ.

The two parts of Theorem 17 could be derived from each other, but doing
that is not trivial and involves asking more oracle queries from the oracle. We
will use both of the properties in our formal proof of our main result in Section 3.

Notation for indistinguishability in the ROM. For families of random vari-
ables {Xκ}, {Yκ} by Xκ ≡c Yκ we mean that {Xκ}, {Yκ} are indistinguishable
against nonuniform PPT algorithms. When we are in the random oracle model,
we use the same notation Xκ ≡c Yκ when the distinguishers are poly(κ)-query
algorithms. Namely, for any poly(κ)-query oracle-aided algorithm D there is a
negligible function ε, such that Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1] ≤ ε(κ), where
the probabilities are over the inputs Xκ,Yκ and the randomness of D and the
oracle H. When κ is clear from the context, we write X ≡c Y for simplicity.

2.4 OT and its Multi-input Variant k-OT in the ROM

In this subsection, we recall the notions of OT and its multi-input version on k
inputs, denoted k-OT. We will also prove basic lemmas that allows us to prove
the existence of attacks against semi-honest security of k-OT.

We start by defining (multi-) oblivious transfer (OT) formally.

Definition 18 (k-OT). A k-parallel 1-out-of-2 oblivious transfer (OT). func-
tionality (k-OT) is a two-party functionality between a sender S and a receiver
R as follows. The sender has input {x0i , x1i }i∈[k] which are arbitrary strings, and

the receiver has the input ~b ∈ {0, 1}k. The sender receives no output at the end,
while the receiver receives {xbii }i∈[k].

16

Semi-honest security of k-OT. We use standard definition of simulation-
based security, see e.g. [Lin16]. In particular, for any semi-honest secure OT
protocol between S and R, there are two PPT simulator SimS ,SimR such that
for any input ~b of R and any input x = {x0i , x1i }i∈[k] for S, it holds that:

SimS(x) ≡c VS(x,~b) and SimR(~b, {xbii }i∈[k]) ≡c VR(x,~b).

Plain model security vs. the ROM security. In the plain model all the
parties (including the simulator and the adversary and the distinguishers) are
PPT algorithms. In the random random oracle model we, the honest parties and
the simulators are oracle-aided PPTs, while the distinguishers are poly(κ)-query
(computationally unbounded) algorithms accessing the random oracle H.14 Re-
call that by the notation defined at the end of Section 2 we can use the same
notation ≡c for indistinguishably against poly(κ) distinguishers in the ROM.

Sufficient conditions for breaking the semi-honest security of k-OT.
We now state and prove two simple lemmas showing that the attacks that we
construct in Section 3 are indeed attacks according to the standard definition
of simulation-based security, see e.g. [Lin16]. The following lemma, states the
intuitive fact that in any OT protocol, the input of the sender should remain in-
distinguishable from a random string, if the receiver chooses its input randomly.

Lemma 19. Let (S,R) be a semi-honest secure m-OT protocol in the plain
model (resp., in the ROM) in which the receiver’s inputs are chosen uniformly
at random from {0, 1}m, and in which S,R are PPTs (resp., oracle-aided PPTs).

Fix any input x for the sender. Let ~b ≡ Um be the uniformly random inputs of
the receiver and VS(x, ~b) the random variable denoting the view of the sender

(for inputs x, ~b being used by the sender and the receiver). Then we have

(VS(x, ~b), ~b) ≡c (VS(x, ~b)×Um).

(Recall that in the ROM, the distinguisher is an poly(κ)-query, computationally
unbounded, algorithm for security parameter κ.)

Proof. We prove the lemma for the computational setting in the plain model
where the distinguishers are PPT algorithms. The same proof holds for the
random oracle model in which the distinguishers are poly(κ)-query oracle-aided
algorithms accessing a random oracle H, where κ is the security parameter.

By the security definition of OT, there is a PPT simulator SimS such that
for any input ~b of R it simulates the view of S:

SimS(x) ≡c VS(x,~b).

14 Note that this definition is for a setting where the random oracle is the sole source of
hardness. E.g., this is how the security of the protocol in [IKNP03] could be proved.

17

Hence, by averaging over ~b ← ~b, we have (VS(x, ~b), ~b) ≡c (SimS(x), ~b) for

uniform ~b. (In other words, if the latter two were distinguishable, one could

distinguish SimS(x) from VS(x,~b) by the same advantage for some ~b.) Since

SimS(x) is independent of the receiver’s input ~b, we conclude

(VS(x, ~b), ~b) ≡c (SimS(x), ~b) ≡ SimS(x)×Um ≡c VS(x, ~b)×Um. ut

Lemma 20. Let (S,R) be a semi-honest secure m-OT protocol in which the
sender’s inputs are chosen uniformly at random and in which S,R are PPTs
(resp., oracle-aided PPTs). Fix any input vector ~b for the receiver. Let x =

{x0
i ,x

1
i }i∈[m] be uniformly random inputs for the sender, and let VR(x,~b) be the

random variable denoting the view of the receiver (when the inputs x,~b are used
by the two parties). Then, it holds that

(VR(x,~b), {xbii }i∈[m]) ≡c (VR(x,~b)× {x′i}i∈[m])

where x′i’s are independent uniformly random strings of the appropriate length.

Proof. As in the proof of Lemma 19, we only prove the lemma for the computa-
tional setting in the plain model where the distinguishers are PPT algorithms.
The same proof holds for random oracle model in which the distinguishers are
poly(κ)-query algorithms in the random oracle model, for security parameter κ.

By the security definition of m-OT, there is a PPT simulator SimR such that
for any input {x0i , x1i }i∈[m] of S it simulates the view of R:

SimR(~b, {xbii }i∈[m]) ≡c VR(x,~b).

Hence (VR(x,~b), {xbii }i∈[m]) ≡c (SimR(~b, {xbii }i∈[m]), {xbii }i∈[m]) holds for uni-

form x. Since SimR(~b, {xbii }i∈[m]) is independent of {xbii }i∈[m] (i.e., the sender’s
input that is not learned by receiver), similarly to Lemma 19, we conclude that

(VR(x,~b), {xbii }i∈[m]) ≡c VR(x,~b)× {x′i}i∈[m].

ut

Remark 21. In Section 3, we will use Lemma 19 for getting a (computationally
unbounded) poly(κ)-query attacking sender. Namely, instead of directly breaking
the semi-honest security definition of k-OT, our attacking semi-honest sender
(or more accurately, the distinguisher), will pursue a different goal based on
Lemma 19. Namely, based on his own view, the attacking sender will try to
distinguish the receiver’s actual input ~b from an independently uniform string.

Similarly, we will use Lemma 20 to get a (computationally unbounded)
poly(κ)-query attacking receiver. Namely, our attacking semi-honest receiver

(i.e., the distinguisher) will find another input ~b′ 6= ~b and read sender’s inputs

according to ~b′. Doing so would be a successful attack by Lemma 20.

18

3 Impossibility of Round-preserving OT Extension in the
Random Oracle Model

In this section we formally state and prove our main impossibility result, Theo-
rem 1. We start by formalizing the model for round-preserving OT extension.

OT extension is the task of using a limited number of “base OTs” to generate
an increased number of OTs. The weakest possible form of OT extension is
using n base OTs to construct n + 1 OTs, but doing so is also sufficient as
this can be repeated to get further extension (e.g., see [LZ13]). In our definition
of OT extension, we model base OTs with an OT-hybrid functionality. This
functionality can be seen as a trusted third party that receives the inputs of
sender and receiver over a perfectly secure channel and sends to the receiver the
output of the base OTs. The presence of an OT-hybrid functionality is often
referred to as the OT-hybrid model [IKNP03].

Here, we are particularly interested in the notion of a round-preserving OT
extension protocol. Intuitively, this is an OT extension which uses the same
number of rounds as the base OTs that implement the OT-hybrid functionality.
Given an r-round-preserving OT extension protocol E from n-OTs to (n + 1)-
OTs, one may then instantiate OTn with a concrete r-round OT to obtain (n+1)-
OT that also works in r rounds.

The following definition formalizes the hybrid model using which we model
OT extension protocols that preserve the round complexity of the base OTs. We
first describe the model, and then we will discuss some subtle aspects of it.

Definition 22 (Round-preserving OT extension). A round-preserving OT
extension protocol is a 2-party protocol with the following form.

1. S has input {x0i , x1i }i∈[n+1] and R has input ~b = (b1, . . . , bn+1).
2. Both of S,R can query the random oracle H at any time.
3. R and S exchange r = poly(κ) number of messages t1, . . . , tr.
4. By the time S sends the final message tr to R, S has submitted its inputs
{y0i , y1i }i∈[n] and R has submitted its input ~c = (c1, . . . , cn) to OTn.

5. Right after S sends the final message to R, R receives {ycii }i∈[n] from OTn.

6. R outputs, perhaps after more queries to H, what is supposed to be {xbii }i∈[n+1].

The completeness and semi-honest security of OT extension is defined based on
the semi-honest security of k-OT (Definition 18) for k = n+ 1.

When to submit inputs to hybrid OTn. We emphasize that the output
from the OT-hybrid functionality is received only after the final message has
been sent. This is the case because the OT-hybrid functionality in an r-round
OT extension protocol is implemented using an r-round base OT protocol, which
produces its output after receiving the final message. In this definition, the par-
ties choose their inputs for OTn at some points before the last message. Note
that, “naturally” the inputs to a r-round OT functionality should be submitted

19

at the beginning, but allowing the parties to choose their inputs to OTn more
flexibly only makes our impossibility result stronger.

In Definition 22, messages exchanged in an extension protocol are not allowed
to depend on the intermediate messages of the base OT protocol. This is justified
since these messages are simulatable. Moreover, without loss of generality, we
assume that OTn is never used in the “opposite” direction (with the sender
acting as the receiver and the receiver as the sender), because then there would
be not enough rounds for the output of OTn affecting any message sent to
the receiver, who is the only party with an output. Indeed, not surprisingly,
the known protocols [WW06] for switching the sender/receiver roles of the OT
require additional rounds. This role-switching is used in the OT extension of
the IKNP protocol [IKNP03], which also requires one more round. In fact, our
impossibility result shows that the result of [IKNP03] is round-optimal (though
it is not round-preserving) among all black-box protocols for OT extension using
symmetric-key primitives.

Based on Definition 22 above, we can now state Theorem 1 formally.

Theorem 23. Let (S,R) be a round-preserving OT extension protocol (accord-
ing to Definition 22) with security parameter κ using random oracle H as follows.

1. The n ≤ poly(κ) OTs modeled by OTn are allowed to be string OTs.
2. (S,R) implement bit (n+ 1)-OT with λ = negl(κ) completeness error.
3. Either of (S,R) ask at most m = poly(κ) queries to the random oracle H.

Then the constructed (n + 1)-OT cannot be (even semi-honest) secure for both
of S or R against adversaries who can ask poly(m · n) ≤ poly(κ) queries to H.

In particular, either of S or R can execute the protocol honestly, then ask
poly(κ) more queries, and then break the (semi-honest) security of the con-
structed bit (n + 1)-OT by advantage 1

poly(n) ≥
1

poly(κ) according to either of

the attacks described in Lemma 19 or Lemma 20.

The above theorem proves that for any round-preserving OT extension protocol,
there is always a poly(κ)-query attack by one of the parties that succeeds in
breaking the semi-honest security of the protocol with non-negligible advantage
1/ poly(κ). In fact, we show how to break the security of such protocols even
when the main inputs (but not those of the hybrid OTn) are chosen at random.

3.1 Proving Theorem 23

In the rest of this section, we prove Theorem 23 above.

Notation. First we clarify our notation used.

– ~b = (b1, . . . , bn+1) ∈ {0, 1}n+1 isR’s own input, and it submits ~c = (c1, . . . , cn)
∈ {0, 1}n as its input to OTn during the execution of the protocol.

– (x0i , x
1
i)i∈[n+1] is S’s input, and it submits {y0i , y1i }i∈[n] as its input to OTn.

– For r ∈ N, T = (t1, . . . , tr) is the transcript of the protocol.

20

– γ is the output of OTn that R receives after tr is sent to R.
– VS and VR denote, in order, the views of S and R, where VR only includes

the receiver’s view before receiving γ from OTn.

We will show that by asking poly(κ) queries after executing the protocol
honestly: either the sender can distinguish the receiver’s uniformly random input
from an actual independent random string, which is an attack by Lemma 19, or
the receiver can read both of sender’s inputs for an index i with non-negligible
probability15), which is an attack by Lemma 20.

We first define each party’s attack and then will prove that one of them will
succeed with non-negligible probability. Both attacks will make heavy use of the
‘dependency learning’ attack of Theorem 17. We will use that lemma for some
sufficiently small parameter δ that will be chosen when we analyze the attacks.

Construction 24 (Sender’s attack Ŝ) Here Ŝ tries to distinguish between an

independently sampled random string from {0, 1}n+1 and the actual input ~b (cho-
sen at random and then) used by the receiver, based on the transcript T of the
(honestly executed protocol) and its knowledge about the random oracle H.

1. Ŝ chooses its own input x = (x0i , x
1
i)i∈[n+1] uniformly at random.

2. After the last message tr is sent, Ŝ runs the Eve algorithm of Theorem 17
over the full transcript T = (t1, . . . , tr) for sufficiently small δ (to be chosen
later) over the following modified version (S,R1) of the original protocol, to
learn a set of oracle query-answer pairs PE .
– S and R choose their inputs uniformly at random.
– R1 stops right after the last message is sent (right before γ is delivered).

Note that even though S,R1 submit some inputs to OTn, because no outputs
are received by R1 and because all inputs are chosen at random, this is a
randomized “inputless” protocol between S,R1 for which we can indeed run
the attacker Eve of Theorem 17.

3. Ŝ then considers the distribution (VR | VE = VE) conditioned on the
obtained Eve view VE = (T, PE), where T is the transcript and PE are
the oracle query-answer pairs learned by Eve.16 Then, given an input from
{0, 1}n+1, Ŝ tries to use the maximum-likelihood method to distinguish re-

ceiver’s input ~b from a random string. Namely, given a string β, Ŝ outputs
1 if Pr[~b = β | VE] > 2−(n+1), where ~b is the random variable denoting the

receiver’s input ~b, and it outputs 0 otherwise. In other words, Ŝ, outputs 1
if the given β, from the eyes of Eve, is more likely to be the actual receiver’s
input ~b than being sampled from Un+1 independently.

15 One can always guess a bit with probability 1/2, however, if the receiver specifies
explicitly that she has found both inputs of the sender correctly with non-negligible
probability, this is a violation of security and cannot be simulated efficiently in the
ideal world. Our attacking receiver will indeed specify when she succeeds.

16 More formally, the distinguishing task is done by the distinguisher, and thus Ŝ tries
to obtain a view that is not simulatable. However, for simplicity of the exposition,
we combine the semi-honest attacker and the distinguisher.

21

An interesting thing about the above attack is that here the sender somehow
chooses to ‘forget’ about its own view and only considers Eve’s view (which still
includes the transcript), but doing this is always possible since Eve’s view is part
of the attacking sender’s view.

Construction 25 (Receiver’s attack R̂) R̂ follows the protocol honestly, de-
noted by the honest execution R, but its goal is to obtain also another output
not corresponding to its original input ~b. (Doing this would establish an attack
by Lemma 20.) In order to get to this goal, in addition to executing R honestly

to obtain the ‘default’ output (xbii)i∈[n+1] with respect to ~b, the cheating receiver

R̂ also runs the following algorithm, denoted by R′, that tries to find the output
with respect to some other input ~b′ 6= ~b. R′ will try to pick ~b′ 6= ~b in a way that it
remains consistent with the transcript T as well as the received OT-hybrid output
γ (by enforcing the consistency with the OT-hybrid input ~c), so that the obtained

output is correct with respect to ~b′. Formally, the algorithm R′ is equal to R until
the last message tr is sent from S (i.e., we refer to this partial execution as R1),

but then R′ (as part of the attack R̂) diverges from R’s execution as follows.

1. After the last message tr is sent by the sender S, the cheating receiver R̂ runs
the Eve algorithm of Theorem 17 over the same input-less protocol (S,R1)

used by Ŝ in Construction 24 (where inputs are chosen at random and the
protocol ends when tr is sent) to obtain Eve’s view VE = (T, PE) for the same

δ used by Ŝ in Construction 24.
2. R̂ then samples from the distribution V ′R ← (VR | VE = VE ,~c = ~c) where

VR denotes the random variable encoding the view of the inputless protocol
(S,R1) over which the Eve algorithm is executed. Now, R̂ interprets V ′R as
the (partial) execution of R′ till tr is sent (i.e., only reflecting the R1 part),
and it continues executing R′ to a full execution of the receiver as follows.

3. Upon receiving γ from OTn, R′ continues the protocol (as the receiver) using
the partial view V ′R and γ as follows. Note that in order to finish the execu-
tion, all we have to do is to describe how each oracle query q made by the
(remaining execution of) R′ is answered. Let L be an empty set and then
update it inductively, whenever a new query q is asked by R′, as follows.
(a) If q ∈ Q(V ′R), then use the corresponding answer specified in V ′R.
(b) Otherwise, if (q, a) ∈ L for some a, use a as answer to q.
(c) Otherwise, if q ∈ Q(VR) \ (Q(VE) ∪ Q(V ′R)),17 pick a random answer a

for query q, and also add (q, a) to L for the future.
(d) Otherwise, ask q from the real random oracle H.
When the emulation of R′ is completed, output whatever is obtained as the
output of R′ corresponding to the input ~b′ described in V ′R.

Now we show that at least one of the attacks Ŝ, R̂ above succeeds.

17 To have q ∈ Q(VR) \ (Q(VE) ∪ Q(V ′
R)) means that q is not asked by Eve and it is

not in the fake receiver’s view V ′
R (for partial execution R1), but q is in the honest

original execution of R1.

22

Claim 1 Either the attacking sender Ŝ of Construction 24 will distinguish ~b
from Un+1 with advantage at least Ω(1/n), or the attacking receiver R̂ of Con-

struction 25 can obtain correct outputs corresponding to its random ~b as well
as some ~b′ 6= ~b with probability at least Ω(1/n2) − O(λ + δ), where λ is the
completeness error of the protocol and δ is the selected Eve parameter.

Proving Theorem 23 using Claim 1. Because λ = negl(κ) < o(1/n2), by
choosing δ = o(1/n2) in Claim 1, either the attacking sender of Construction 24
will break the security by Lemma 19, or the attacking receiver of Construction 25
succeeds in breaking the security with advantage Ω(1/n2) (by asking poly(κ)
oracle queries) by Lemma 20. In the following, we will prove Claim 1.

3.2 Proof of Claim 1

In this subsection, we will prove Claim 1. Let ε = 1/(1000n+ 1000).

When Ŝ succeeds. If it holds that SDVE (~b,Un+1) ≥ ε, then because the

attacking Ŝ of Construction 24 is indeed using the canonical distinguisher of
Proposition 5 (i.e., the maximum likelihood predicate), by Lemma 3 and Propo-

sition 5, Ŝ will be able to ε-distinguish the true randomly chosen input ~b of the
receiver R from a uniform string Un+1 by advantage at least ε. Therefore, by

Lemma 19, R̂ succeeds in breaking the security with non-negligible advantage ε.
So, in what follows we assume that Ŝ does not succeed, and based on this

we show that R̂ does indeed succeed in its attack.

When R̂ succeeds. In what follows we always assume

E
VE←VE

SD((~b | VE),Un+1) = SDVE (~b,Un+1) < ε =
1

1000n+ 1000
(3)

and we will show, using Inequality (3) and Lemma 20, that the receiver’s at-

tacker R̂ will succeed with the non-negligible probability. First note that by just
continuing the protocol honestly, the receiver will indeed find the right output
for its sampled ~b with probability at least 1 − λ where λ is the completeness
error. So all we have to prove is that with probability Ω(1/n2) − O(δ) − λ, it

will simultaneously hold that (1) ~b′ 6= ~b and (2) the receiver R′ gets the output

corresponding to ~b′ (and sender’s actual input x). To prove this, it will suffice
to prove the following two statements:

– Pr[~b′ 6= ~b] ≥ Ω(1/n2) where ~b and ~b′ are the random variables denoting

the original and the fake inputs of R̂.
– The receiver will get the right answer for ~b′ with probability 1−O(δ)− λ.

Then, by a union bound, we can conclude that the R̂ will indeed manage to
launch a successful attack with probability Ω(1/n2)−O(δ+λ). In the following
we will formalize and prove the above two claims in forms of Claims 2 and 3.

23

Claim 2 If Inequality (3) holds, then Pr[~b′ 6= ~b] ≥ Ω(1/n2) where the probabil-

ity is over the randomness of the sender S, cheating receiver R̂, and H.

Proof. By sampling the components of the system ‘in reverse’, we can imagine
that first (T, PE) = VE ← VE is sampled from its corresponding marginal distri-
bution, then ~c ← (~c | VE) is sampled, then (VS , VR) ← ((VS ,VR) | VE ,~c), and
finally V ′R ← (VR | VE ,~c) are sampled, each conditioned on previously sampled
components of the system. We will rely on this order of sampling in our argu-
ments below. However, we can ignore the sampling of VS , when we want to com-
pare the components VR, V

′
R and the relation between ~b,~b′. Thus, we can think

of VR, V
′
R as two independent samples from the same distribution (VR | VE ,~c).

Consequently, ~b,~b′ are also two independent samples from (~b | VE ,~c).
By Inequality (3) and an averaging argument over the sampled VE ← VE ,

with probability at least 1 − 1/10 over the choice of VE ← VE , it holds that

SDVE (~b,Un+1) < ε′ = 1
100n+100 . We call such VE a ‘good’ sample. For any good

VE , using Lemma 14 it holds that H(~b | VE) ≥ (1− ε′) · (n+ 1)−H(ε′), and since
the length of ~c is n, by further conditioning on random variable ~c we have:

H(~b | VE ,~c) ≥ (1− ε′) · (n+ 1)− n−H(ε′) = 1− ε′ · (n+ 1)−H(ε′) ≥ 9/10

where the last inequality follows from ε′ ≤ 1/200, and H(1/200) < 1/20. There-

fore, by Lemma 15 (using X = ~b,Y = (VE ,~c)) we conclude that the event ~b 6= ~b′

happens with probability at least Ω(1/n2). Finally, since VE is a good sample

with probability Ω(1), we can still conclude that ~b 6= ~b′ happens with probability
at least Ω(1/n2), finishing the proof of Claim 2. ut

Claim 3 If Inequality (3) holds, then with probability 1 − λ − O(δ) (over the

randomness of the honest sender S, the cheating receiver R̂, and the oracle H)

the cheating receiver R′ obtains the correct answer for ~b′ (i.e., x
b′1
1 , . . . , x

b′n+1

n+1).

Proof. We want to argue that the full sampled view of the fake receiver R′
(including V ′E followed by the computation as described in the fake execution

R′ as part of R̂) will be statistically close to an actual honest execution of the
protocol (i.e., a full execution of R over random input). For this goal, we define
and compare the outcomes of the following experiments. For clarity, and because
we use the same names for random variables in different experiments, we might
use 〈X〉Z to emphasize that we are referring to X in the experiment Z.

Outputs of experiments. The output of the experiments below are vectors
with six components. Therefore, the order of the elements in these vectors is very
important, and e.g., if we change their order, that changes the actual output.

– Real experiment. This experiment outputs 〈VE ,~c, VS , VR, V ′R, P ′〉Real where
VE is Eve’s view, VS is sender’s view, VR is receiver’s honestly generated view
(till last message is sent), V ′R is the sampled fake view of R′ only till last

message is sent (VR, V
′
R are both part of the view of R̂), and P ′ is the set of

24

query-answer pairs that R′ generates after γ (i.e., the message coming from
OTn after the last message is sent) is sent (some of which are answered using
real oracle H and the rest are emulated using random coin tosses).

– Ideal experiment. In this experiment, we also sample a fake receiver’s view
V ′R the same as in the Real experiment, but then there is no real attack
happening and we use the real oracle H to obtain the query-answer pairs P
to finish the computation of R (which is the original honest execution) using
the honest partial view VR. At the end we output 〈VE ,~c, VS , V ′R, VR, P 〉Ideal.
Other the change from P ′ to P , note the crucial that we are switching the
locations of the real and fake receiver views VR, V

′
R in the output vector.

Remark 26 (Why not containing γ explicitly in outputs of experiments?). Note
that even though γ is not included explicitly in the output of the experiment, it is
implicitly there, because γ is a deterministic function of VS and ~c. In particular,
because both VR, V

′
R are consistent with ~c, they can both lead to correct answers

for sender inputs ~b,~b′. In addition, if we did include γ in the outputs of the
experiments, it would not change their statistical distance.

Remark 27 (Why outputting VR, V
′
R both?). Note that our final goal is to show

that the fake view V ′R in the Real experiment ‘behaves closely’ to the actual
honest view VR in the Ideal experiment. So, one might wonder why we include
both in the analysis of the experiments. The reason is that the honest and fake
views VR, V

′
R in the Real experiment are not independent of each other, so if we

want to continue the execution of V ′R in the Real experiment to finish the view of

R′ (to get the output corresponding to the fake input ~b′) we need to be aware of
the oracle queries whose answers are already fixed as part of the view of VR. The
reason is that we have to answer (some of them) intentionally at random, because
corresponding queries in the Ideal experiment are being asked for the first time.
In order to answer such queries the same way that they are answered in the Ideal
experiment, we need to keep track of them in both experiments and avoid some
‘bad’ events that prevent us from answering from the right distribution.

To prove Claim 3, it is enough to prove O(δ)-closeness of experiments.
If we show that the outputs of the two experiments are O(δ) (statistically) close,
then by the completeness error in the ideal word, which is at most λ, we could
conclude that the completeness error in the real world over the randomness of
〈VE ,VS ,VR,P〉Ideal is at most λ + O(δ), where the completeness now means
that the fake view of the attacking receiver is obtaining the right answer!

To prove that the two experiments’ outputs are O(δ) close, we do the following:

1. We first prove that 〈VE ,~c,VS ,VR,V′R〉Real ≈O(δ) 〈VE ,~c,VS ,V′R,VR〉Ideal.
2. Then we show that Pr[〈VE ,~c,VS ,VR,V′R〉Real ∈ B] ≤ δ for some ‘bad’ event

B. (Recall that an event in this work is simply a set, and the same set can be
used as an event for different random variables, as long as their samples are
inside a universe where B is also defined.) Intuitively, the bad event captures

25

the event fact that an ‘intersection’ query exists between the views of the
sender and the receiver that is missed by Eve. Indeed, we could also bound
the probability of the same event B in the Ideal experiment, however we
simply bound it in Real and that turns out to be enough.

3. Finally, we show that as long as the event B does not happen over the sam-
pled α = 〈VE ,~c, VS , VR, V ′R〉Real ← 〈VE ,~c,VS ,VR,V′R〉Real (i.e., α 6∈ B) and
if the sampled prefixes of the outputs are equal α = 〈VE ,~c, VS , V ′R, VR〉Ideal =
〈VE ,~c, VS , VR, V ′R〉Real, then the corresponding distributions

(〈P〉Ideal | 〈VE ,~c, VS , V ′R, VR〉Ideal) ≡ (〈P′〉Real | 〈VE ,~c, VS , VR, V ′R〉Real)

will be identically distributed.

If we prove the above 3 claims, the O(δ) closeness of the experiments’ out-
puts will follow from Lemma 11, which will finish the proof of Claim 3. To
apply Lemma 11, we let X1 = 〈VE ,~c,VS ,VR,V′R〉Real,X2 = 〈P′〉Real,X′1 =
〈VE ,~c,VS ,V′R,VR〉Ideal,X′2 = 〈P〉Ideal. We will prove the above 3 items through
Claim 4, Claim 5 and Claim 6 below.

Claim 4 〈VE ,~c,VS ,VR,V′R〉Real ≈O(δ) 〈VE ,~c,VS ,V′R,VR〉Ideal.

Proof. By Part 1 of Theorem 17 it holds that in the real world:

E
(VE)←(VE ,~c)

MutDep((VS ,VR)Real | VE) ≤ δ.

By averaging over VE ← VE and then using Lemma 9 (and letting C :=
~c,B := VR,A := VS) and noting that ~c is only a function of VR, it holds that

E
(VE ,~c)←(VE ,~c)

MutDep((VS ,VR)Real | VE ,~c) ≤ 2δ.

For a fixed (VE ,~c)← (VE ,~c), we can use Lemma 8 (by letting X ≡ (VS | VE ,~c)
and Y ≡ (VR | VE ,~c)) and then average over (VE ,~c)← (VE ,~c) to conclude

E
(VE ,~c)←(VE ,~c)

SD((〈VS ,VR,V′R〉Real | VE ,~c), (〈VS ,V′R,VR〉Ideal | VE ,~c)) ≤ 4δ.

Finally, by Proposition 5, the left side of the above inequality is the same as
SD(〈VE ,~c,VS ,VR,V′R〉Real, 〈VE ,~c,VS ,V′R,VR〉Ideal), finishing the proof. ut

In the definition below, roughly speaking, the ‘bad’ event B contains possible
outputs of the experiments for which some intersection queries exist between the
views of the sender S and the receiver R that are missed by the Eve algorithm.

Definition 28 (The bad event B). Let U be a ‘universe’ containing all possi-
ble outputs of the two experiments (and maybe more elements) defined as follows:

{〈z1, . . . z5〉 | z1 ∈ Supp(VE), z2 ∈ Supp(~c), z3 ∈ Supp(VS), z4, z5 ∈ Supp(VR)}.

Let the ‘bad’ event B ⊆ U be the set that:

B = {α = 〈z1, z2, z3, z4, z5〉 | α ∈ U,Q(z4) ∩Q(z3) 6⊆ Q(z1)}

Namely, if we interpret z1, z3, z4 as views of oracle-aided algorithms and extract
their queries, it holds that Q(z4) ∩Q(z3) 6⊆ Q(z1).

26

The following claim implies that with high probability, a sample from the
output of the Real experiment does not fall into B. (In other words, the property
by which B is defined, does not hold over the sampled output).

Claim 5 Pr[〈VE ,~c,VS ,VR,V′R〉Real ∈ B] ≤ δ.

Proof. The claim directly follows from the second property of Eve’s algorithm
(i.e., Part 2 in Theorem 17). Namely, a sample

α = 〈z1, z2, z3, z4, z5〉 ← 〈VE ,~c,VS ,VR,V′R〉Real

will have components corresponding to z1 = VE , z3 = VS , z4 = VR, and so by
Part 2 of Theorem 17 we know that with probability at least 1− δ it holds that
Q(VS) ∩ Q(VR) ⊆ Q(VE). Therefore, α ∈ B would happen in Real experiment
with probability at most δ. ut

Remark 29 (Other possible choices for defining bad event B and stating Claim 5).
One can also define an alternative version B′ of the bad event B based on the
modified condition Q(z5) ∩Q(z3) 6⊆ Q(z1) (i.e., using z5 instead of z4), and one
can also choose either of Real or Ideal experiments for bounding the probability
of the bad event (B or B′) by O(δ). This gives rise to four possible ways of
defining the bad event and bounding it in an experiment. We note that all four
cases above (i.e., both variations of the bad event B or B′ in both of the Real
and the Ideal) experiments can be proved to happen with probability at most
O(δ). Furthermore, all of these four possible choices could be used (together with
Lemma 11) for bounding the statistical distance of the output of experiments
Real and Ideal by O(δ). In fact, once we show that statistical distance of the
output of experiments Real and Ideal is O(δ), we can go back and derive all four
combinations (of choosing the bad event from B or B′ and stating Claim 5 in
either of Real or Ideal experiments) to be true. Thus, basically all of these four
choices are “equivalent” up to constant factors in the bound we get in Claim 5.
Nonetheless, among these four choices, we found the choice of the bad event B
according to Definition 28 and stating Claim 5 in the Real experiment to be the
simplest choice to prove (using Theorem 17) and use for proving Claim 3 (by
bounding the statistical distance of the outputs of experiments using Lemma 11).

Claim 6 If samples α = 〈VE ,~c, VS , V ′R, VR〉Ideal = 〈VE ,~c, VS , VR, V ′R〉Real are
equal, and if event B does not happen over the sample α (i.e., α 6∈ B), then

(〈P〉Ideal | 〈VE ,~c, VS , V ′R, VR〉Ideal) ≡ (〈P′〉Real | 〈VE ,~c, VS , VR, V ′R〉Real).

Proof. We show that conditioned on the same sample α being the prefix of the
outputs of the two experiments, the random process that generates the last com-
ponents 〈P′〉Real and 〈P〉Ideal are identically distributed in the two experiments.

After sampling α = 〈VE ,~c, VS , V ′R, VR〉Ideal, every new query q will be an-
swered as follows in Ideal: If q is already inQ(VE)∪Q(VS)∪Q(VR) then the answer
is already fixed and that answer will be used, otherwise q will be answered at ran-
dom (by the random oracle H). Since we are assuming 〈VE ,~c, VS , V ′R, VR〉Ideal =

27

〈VE ,~c, VS , VR, V ′R〉Real, we would like to prove that in the Real experiment, q is
answered similarly. Indeed, we will prove that in the Real experiment, if q is
already in 〈Q(VE)∪Q(VS)∪Q(V ′R)〉Real then the fixed answer will be used, and
otherwise q will be answered at random. We make the following case study in
the Real experiment based on the algorithm of R̂ from Construction 25. (In the
second case below we make a crucial use of the fact that the event B has not hap-
pened over the current sample 〈VE ,~c, VS , V ′R, VR〉Ideal = 〈VE ,~c, VS , VR, V ′R〉Real.)

1. If q ∈ 〈Q(V ′R)〉Real, then R̂ uses the answer stated in V ′R. Otherwise:

2. if q ∈ 〈Q(VR) \ (Q(VE)∪Q(V ′R))〉Real, R̂ answers q at random (and keeps its
answer in a list L to reuse in case of being asked again). In the ideal world,
this query q would be part of the fake view 〈V ′R〉Ideal (recall the fake and real
views are switched across the Real vs. Ideal experiments) which is ignored in
the Ideal world when we generate 〈P 〉Ideal, and so we have two cases:
(a) If q is already in 〈Q(VS)〉Real, it means that α ∈ B for α =
〈VE ,~c, VS , V ′R, VR〉Ideal = 〈VE ,~c, VS , VR, V ′R〉Real which is not true.

(b) Otherwise, q 6∈ 〈Q(VS)〉Real = 〈Q(V ′S)〉Ideal, which means that q is a new
query in the ideal world, and so it is answered at random, just like how
it is answered in the real world by the attacker R̂.

3. If above cases do not happen, but q is still part of 〈Q(VE) ∪ Q(VS)〉Real, R̂
would forward this query to be asked from the actual random oracle H which
would also get the correct answer (i.e., the same answer stated in VE or VS).

Therefore, in all cases q will be answered from the same distribution across the
Real and Ideal experiments. This shows that the process of generating the last
component of the output of these experiments is identically distributed. ut

This finishes the proof of Claim 3. ut

References

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119–135, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany. 2

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany. 2

Ald83. David Aldous. Random walks on finite groups and rapidly mixing markov
chains. In Séminaire de Probabilités XVII 1981/82, pages 243–297.
Springer, 1983. 10

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computa-
tion. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13, pages 535–548, Berlin, Germany, November 4–8, 2013. ACM
Press. 2

28

ALSZ15. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer extensions with security for malicious
adversaries. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 673–701, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany. 2

BCR87. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In Andrew M. Odlyzko, editor, CRYPTO’86, vol-
ume 263 of LNCS, pages 234–238, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany. 1

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of pri-
vate computations. In 28th ACM STOC, pages 479–488, Philadephia, PA,
USA, May 22–24, 1996. ACM Press. 2, 3, 5, 8, 31

BGI+14. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd
Meldgaard, and Anat Paskin-Cherniavsky. Non-interactive secure mul-
tiparty computation. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 387–404, Santa Bar-
bara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany. 4

BL17. Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via
garbled interactive circuits. Cryptology ePrint Archive, Report 2017/1125,
2017. EUROCRYPT 2018. 2

BM17. Boaz Barak and Mohammad Mahmoody. Merkle’s key agreement protocol
is optimal: An O(n2) attack on any key agreement from random oracles.
Journal of Cryptology, 30(3):699–734, Jul 2017. 4, 7, 10, 15

BMG09. Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are opti-
mal - an O(n2)-query attack on any key exchange from a random oracle. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science,
pages 374–390. Springer, 2009. 4, 5, 7, 15

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513, Baltimore, MD, USA, May 14–16, 1990. ACM Press. 2

CPS08. Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random
oracle model and the ideal cipher model are equivalent. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 1–20, Santa Barbara,
CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany. 3

DLMM11. Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal
Malkin. On black-box complexity of optimally-fair coin-tossing. In Theory
of Cryptography Conference - TCC 2011, 2011. 15

EGL85. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637–647,
1985. 1, 3

Fan68. Robert M Fano. Transmission of Information. A Ststistical Theory of Com-
munications. Mit Press, 1968. 13

FKN94. Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure compu-
tation (extended abstract). In 26th ACM STOC, pages 554–563, Montréal,
Québec, Canada, May 23–25, 1994. ACM Press. 4

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-
round secure MPC from indistinguishability obfuscation. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 74–94, San Diego, CA, USA,
February 24–26, 2014. Springer, Heidelberg, Germany. 2

29

GKLM12. Vipul Goyal, Virendra Kumar, Satya Lokam, and Mohammad Mahmoody.
On black-box reductions between predicate encryption schemes. Theory of
Cryptography, pages 440–457, 2012. 12

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Poly-
chroniadou. The exact round complexity of secure computation. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 448–476, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. 2

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press. 1

GS17a. Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-
round MPC from bilinear maps. In 58th FOCS, pages 588–599. IEEE
Computer Society Press, 2017. 2

GS17b. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. Cryptology ePrint Archive, Re-
port 2017/1156, 2017. EUROCRYPT 2018. 2

HK12. Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-
message oblivious transfer. Journal of Cryptology, 25(1):158–193, January
2012. 2

HKT11. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98, San
Jose, CA, USA, June 6–8, 2011. ACM Press. 3

HOZ16. Iftach Haitner, Eran Omri, and Hila Zarosim. Limits on the usefulness of
random oracles. Journal of Cryptology, 29(2):283–335, 2016. 4, 5, 7, 15

IKM+13. Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in se-
cure computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 600–620, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Ger-
many. 4

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany. 2, 3, 4, 7, 16, 18, 19

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572–591, Santa Barbara, CA, USA, August 17–
21, 2008. Springer, Heidelberg, Germany. 1

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing (STOC), pages 44–61. ACM Press,
1989. 1, 3, 4, 5, 7, 15

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
20–31, 1988. 1

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for
transferring short secrets. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 54–70, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. 2

30

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 335–354, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Heidelberg, Germany. 2, 4

Lin16. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. Cryptology ePrint Archive, Report 2016/046, 2016. 16

LZ13. Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious
transfer. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
519–538, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.
4, 5, 18

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 2

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 681–700, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany. 2

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th SODA, pages 448–457, Washington, DC,
USA, January 7–9, 2001. ACM-SIAM. 2

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
339–358, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidel-
berg, Germany. 2, 4

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571, Santa Barbara, CA,
USA, August 17–21, 2008. Springer, Heidelberg, Germany. 2

Rab81. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981. 1

Sho09. Victor Shoup. A computational introduction to number theory and algebra.
Cambridge university press, 2009. 10

WW06. Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
222–232, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidel-
berg, Germany. 19

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164, Chicago, Illinois, November 3–5,
1982. IEEE Computer Society Press. 1

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, Octo-
ber 27–29, 1986. IEEE Computer Society Press. 31

31

A Non-Black Box, Round-Preserving OT Extension

In this section, we describe our observation that Beaver’s non-black-box round-
preserving OT extension protocol [Bea96] could be twisted to construct “chosen”
OT rather than “random” OT.

Below, we describe this observation only for the case of two-round protocols,
however the idea applies to extending any r-round OT extension in a round-
preserving, yet non-black-box, way.

We start by recalling the formal definitions of garbled circuits.

A.1 Garbled Circuits

Circuit garbling is a primitive that was introduced and constructed by Yao
[Yao86]. Intuitively, it transforms a circuit and its inputs in a way such that the
circuit can only be evaluated for one specific input (in case the right labels of
that input are given) but for any other input the output remains hidden. More
formally, a circuit garbling scheme consists of two PPTs Garble, Eval as follows.

Garble (1κ, C): Garble takes as input a circuit C and outputs a garbled circuit
Ĉ together with input labels {L0

i , L
1
i }i∈[n], where n is the input length of C.

Eval (Ĉ, {Lxii }i∈[n]): Eval takes as input a garbled circuit Ĉ and a set of input
labels {Lxii }i∈[n] that correspond to an input x ∈ {0, 1}n. It evaluates circuit

Ĉ and outputs its output.

A circuit garbling is correct if for any circuit C and any input x ∈ {0, 1}n

Pr[Eval(Ĉ, {Lxii }i∈[n]) = C(x); (Ĉ, {L0
i , L

1
i }i∈[n])← Garble(1κ, C)] ≥ 1−negl(κ),

where the probability is taken over the random coins of Eval and Garble.
A simulator Sim for a circuit garbling scheme takes as input an output C(x)

for a circuit C and input x and outputs a garbled circuit Ĉ and a set of input
labels {Lxii }i∈[n]. A circuit garbling is secure if for any PPT algorithm A, any
circuit C and any input x

|Pr[A(Ĉ, {Lxii }i∈[n]) = 1]− |Pr[A(Ĉ ′, {L′xii }i∈[n]) = 1]| ≤ negl(κ),

where the probabilities are taken over the random coins of A, Garble, and Sim and
(Ĉ, {L0

i , L
1
i }i∈[n]) ← Garble(1κ, C), (Ĉ ′, {L′xii }i∈[n]) ← Sim(1κ, C(x), top(C)).

Here, top(C) denotes the topology of C.

A.2 Non-Black Box, Round-Preserving OT Extension

We observe that Beaver’s OT extension protocol [Bea96] can be adapted to
yield 1-out-of-2 “chosen” OT rather than “random” OT. In the following, we
describe this adaptation. This is a simple extension of Beaver’s protocol that to
the best of our knowledge has not appeared in the literature before. It is a round-
preserving OT extension protocol, secure against honest but curious adversaries.

32

It is unaffected by our impossibility result as it makes non-black-box use of a
cryptographic functionality – namely, a pseudo-random generator.

Let PRG : {0, 1}κ → {0, 1}κ+` be a pseudo-random generator and Garble a

circuit garbling. S and R interact in the following way, where ~b = (b1, . . . , bκ+`)
are the receiver’s choice bits and {x0i , x1i }i∈[κ+`] is the sender’s input.

1. In the first round, R chooses a random seed s ← {0, 1}κ . He sends a =

PRG(s)⊕~b to the sender and s to the OT-hybrid functionality OTκ.

2. S computes the circuit C[a,{x0
i ,x

1
i }i∈[κ+`]]

(s′) : output {xb
′
i
i }i∈[κ+`] for ~b′ = a⊕

PRG(s′), where s′ is its input and a, {x0i , x1i }i∈[κ+`] are hardwired within the

circuit. She then computes (Ĉ, {L0
i , L

1
i }i∈[κ])← Garble(C) where {L0

i , L
1
i }i∈[κ]

are the input labels.
3. S sends {L0

i , L
1
i }i∈[κ] to OTκ and sends Ĉ to R.

4. R receives {Lsii }i∈[κ] from OTκ and Ĉ from S. He uses the labels to evaluate

Ĉ yielding C[a,{x0
i ,x

1
i }i∈[κ+`]]

(s) = {xbii }i∈[κ+`] as his output.

It is straightforward to see that this protocol is perfectly correct. I.e., the
receiver always produces the correct outputs.

Theorem 30. Let PRG be εPRG indistinguishable from uniform and Garble have
εGarble simulation security. Then, the proposed OT extension is εPRG simulatable
for an honest but curious PPT sender and εGarble simulatable for an honest but
curious PPT receiver.

Proof. Let there be a honest but curious PPT receiver R. Then, we construct
a simulator SimR that simulates up to εGarble adversary R in the ideal world.
SimR has access to an ideal functionality which he can query a single time on ~b

to receive {xb
′
i
i }i∈[κ+`].

Notice that an honest but curious receiver will send a = PRG(s) ⊕~b to the
sender and s to the OT-hybrid functionality. In the end, R expects the output of
the OT-hybrid functionality {Lsii }i∈[κ] and a message from the sender, which is

the garbled circuit Ĉ. We construct a simulator SimR as follows. SimR receives
a, s from A and computes ~b′ := a ⊕ PRG(s). Then, SimR sends ~b′ to the ideal

functionality to receive {xb
′
i
i }i∈[κ+`]. This will serve as input to the simulator of

the garbling procedure Garble which outputs Ĉ together with the labels {Lsii }i∈[κ]
for input s. Note that the topology of C is public. Now SimR computes its output,
i.e. the view of R for input ~b′, messages s, {Lsii }i∈[κ] and Ĉ.

Notice that both views are identical except to the distribution of {Lsii }i∈[κ]
and Ĉ. To argue that the view of R and the output of SimR are close, we use a
distinguisher D against the circuit garbling. Let D′ be a distinguisher that dis-
tinguishes VR and the output of SimR. D receives challenge Ĉ and {Lsii }i∈[κ],
which is either a partial output of Garble(C) or the output of SimGarble(C(s)).
Simultaneously, D generates a view of R for Ĉ, {Lsii }i∈[κ] and random remain-
ing inputs. D invokes D′ on this view and outputs D′’s output. Therefore the

33

probability that D breaks the garbling is lower bounded by the probability that
D′ distinguishes the views. More formally,

εGarble = |Pr[DD′
(Ĉ, {Lsii }i∈[κ]) = 1]− Pr[DD′

(Ĉ ′, {L′isi}i∈[κ]) = 1]|
≥ |Pr[D′(VR) = 1]− Pr[D′(SimR) = 1]|,

where
(Ĉ, {L0

i , L
1
i }i∈[κ])← Garble(1κ, C)

and (Ĉ ′, {L′xii }i∈[κ])← Sim(1κ, C(x), top(C)).

For the security against a honest but curious sender S, we construct a simu-
lator SimS . Notice that S receives a message a = PRG(s)⊕~b and sends a garbled
circuit Ĉ to R and its labels {L0

i , L
1
i }i∈[κ]. We construct a simulator SimS as

follows. SimS chooses a uniformly at random. Since S follows the protocol, SimS
can evaluate Ĉ for {L0

i }i∈[κ] and for {L1
i }i∈[κ]. Therefore SimS will learn from

these evaluations all input strings {y0i , y1i }i∈[κ+`], which SimS will send to the
ideal functionality F . Similarly, we will show that the view of S and the output
of SimS are εPRG close. Notice that both views are identical except message a.

We construct a distinguisher D that will distinguish PRG(s) from uniform
given a distinguisher D′ for the view of S and the output of SimS . D receives
a challenge u which is either uniform or PRG(s) and an generates the view of
S for a and random remaining inputs. D invokes D′ on the generated view and
outputs the output of D′. Hence, D breaks the security of PRG with probability

εPRG = |Pr[DD′
(u) = 1;u = PRG(s)]− Pr[DD′

(u) = 1;u uniform]|
≥ |Pr[D′(VR) = 1]− Pr[D′(SimR) = 1]|.

ut

	On the Round Complexity of OT Extension

