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Abstract. We present here new multivariate schemes that can be seen
as HFE generalization having a property called ‘Two-Face’. Particularly,
we present five such families of algorithms named ‘Dob’, ‘Simple Pat’,
‘General Pat’, ‘Mac’, and ‘Super Two-Face’. These families have con-
nections between them, some of them are refinements or generalizations
of others. Notably, some of these schemes can be used for public key
encryption, and some for public key signature. We introduce also new
multivariate quadratic permutations that may have interest beyond cryp-
tography.

Keywords: Multivariate Cryptography, HFE Generalization, new multivariate
quadratic permutations (=new DO permutation polynomials).

1 Introduction, The Two-Face Technique

In the search for post-quantum cryptography, multivariate schemes are still in-
teresting options. Plenty of them have been proposed but unfortunately most
of them were cryptographically broken, such as the Matsumoto Imai scheme
C* or its variant SFLASH [GMO02,FMS08,DDY*09]. However, some of these
schemes are still valid such as UOV or HFE with well chosen perturbations
[FP09,HBHO6]. At present, it seems more difficult to build secure multivariate
encryption scheme than multivariate signature schemes. In this paper, we present
new families of public key multivariate schemes for encryption or signature, in-
spired by HFE.

We first recall here a simple description of the HFE scheme. See [Pat96]. As
generally in the multivariate schemes, the context is a finite field F, (the ground
field) and one of its extensions F . of degree n. A natural isomorphism between
[y (or more precisely F, [z]/g(z) for any irreducible polynomial g over F, of
degree n, see [LN96]) and F . allows to consider simultaneously univariate and
multivariate versions of polynomials. The starting point of the HFE scheme is an
univariate polynomial P(a) over F,n, having the two following main properties.

(1) Its multivariate version is a set of quadratic multivariate polynomials. This
means that its univariate version has the following form.

P(a) = Zai,jaq”rqj + Zﬁiaqi +7.
— -
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Such polynomials are sometimes called (extended) Dembowski-Ostrom poly-
nomials [DO68,DY13]. In this paper we will call them simply ‘DO’, or will
refer to their multivariate counterparts as ‘quadratic multivariate’ polyno-
mials.

(2) The degree of P(a) in a is small.

From (1), with the help of two more secret affine polynomials S and T, the
product So PoT is also DO, so it can be publicly output as a set of multivariate
quadratic equations. Moreover, some “perturbations” can be applied to this set
of equations, in order to increase the security of the HFE obtained. For example,
some of the n equations can be kept secret, this is called the perturbation "—"
(minus). From (2), the solutions in a of the equations P(a) = b can be efficiently
computed.

The so called Two-Face technique we present now, can be seen as a gener-
alization of HFE in the sense that the two previously mentioned properties (1)
and (2) are held by two different but related polynomials. More generally, we are
interested in cases where it is possible to find two equivalent faces of polynomial
equations, having the prescribed properties, thereafter described.

Face (1) E;(a) = bwhere E; is DO. Its role is to allow two additional permuta-
tions S and T to hide the inner structure of F; into a set of quadratic polyno-
mial equations, multivariate version the composition product So E;oT(x) =
y. Unlike in HFE, the degree of E; is high.

Face (2) FE(a,b) = 0. Its role is to allow the extraction of solutions in a, since
its degree in a is low, even though its degree in b may be high. Conversely,
Face 2 is not DO in a and cannot be used to output multivariate quadratic
equations.

We will explain later on how F; and E, are related.
In this article, we will present:

How to design a multivariate scheme named ‘Dob’ from the Dobbertin poly-

nomial that resist as far as we know, all known attacks by introducing some

“perturbations” in Sec. 2.

More general “Two-Face” schemes where we use polynomials that are not

necessarily permutations, named ‘Simple Pat’ and ‘General Pat’, in Sec. 3

and 4.

— Two-Face schemes where we use precisely permutation polynomials, named
‘Mac’, in Sec. 5.

— Generalization of the ‘Two-Face’ concept, in Sec. 6.

2 The “Dob” Schemes

2.1 Dobbertin Permutation

This is the original family from which we imagined the Two-face properties.
Dobbertin in [Dob99] proved that P(z) = 22" +' + 2% + 2 is a permutation
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polynomial over Iy for every odd n, where n = 2m — 1. The “Two-face” name
comes from the fact that from the first equation

Eqi(x) = 2?2 L =y, (1)
we can get a second one:
By(w,y) =2 + 2%y +2° + 2ty + 232" + )+’ 00 =0 (2)

A proof that we can get (2) from (1) can be obtained by hand easily. Introduce
an intermediate variable z = 22" . Use the fact that since n = 2m — 1, we
get 22" = 22" = 22 (implicitly, polynomial computations over Fyn are done
modulo 7" —z). Then eliminate z between the two equations y = zz+x° 4 and
y?" = 22242+ 2. This gives (z*+22)(2® +2+y)+ (2® +x+y)> +2%y?" = 0 and
then (2). We see from (1) that we have a DO polynomial in z. However, its degree
in z is high, which makes difficult to solve the equation in z directly. Nevertheless,
from (2) it is possible to compute x knowing y, by solving a polynomial equation
of degree 9 only.

2.2 Cryptanalysis of the ‘nude Dob’

If we used directly (1) into a ‘nude Dob’ scheme i.e. without any perturbation,
we would get a weak scheme, totally broken by Grébner basis computation. More
precisely the degree of regularity obtained in a Grdbner basis attack is always
only 3 in the experiments we conducted. (The degree of regularity is the highest
degree that must be used in order to the Grébner basis computation to succeed).
The reason is most probably related to the fact that from FE;(x) = y, one may
derive equations of the kind E(z,y) = 0, linear in x, and of small degree in
y. We have looked for equations of the kind Y cyz; + 3 Bivi + > vijziy; =0
that may be satisfied by the multivariate version of x and y, that is to say the
kind of equations ‘a la Patarin’ (see [Pat00]) used for the cryptanalysis of the
Matsumoto-Imai C* scheme. We founded no such equations, nor equations in
degree 2 in y, valid for the Dobbertin permutations (more precisely for n > 11,
in fact some of them exist for n < 10). However, it is more likely that due
to the simple form of the Dobbertin permutation, such equations with higher
degree in y may exist. In practice, such equations are sufficient to retrieve x from
1y, since they are linear in z, and this explains why the ‘Dob’ scheme without
perturbation is weak.

However, with adequate perturbations the modified scheme resists so far all
the attacks we know. Precisely, we recommend the perturbations +, @, —, &),
described hereafter. They lead to what we call the “Dob” schemes.

2.3 Need for perturbations

HFE is a well studied system. We will call ‘nude HFE’ the scheme with no per-
turbations. Today’s best attacks on ‘nude HFE’ are quasi-polynomial. However,
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with some well chosen modifications, HFE seems much more strong. Similarly
for Two-Face that is inspired from HFE, it seems reasonable to recommend a
choice of perturbations that aim to thwart known attacks. Here are the main
ones we would like to recommend.

"@", circle plus Let k be a small integer. Let vq,...,vx be k secret linear
combinations of x1,...,z,. This perturbation @ adds n secret quadratic
combinations of v1,...,v; to each variable yq,...,¥y,. This can be removed
when the secret key is known, by an exhaustive search on vy,...,v%, at a
cost in ¢*.

"+" plus Let k be a small integer. Let ¢, ..., qx be k secret quadratic combi-
nations of x1, ..., z,. This perturbation + adds n secret linear combinations
of q1,...,qr to each variable y1, ..., y,. This can be removed when the secret
key is known by an exhaustive search on ¢i,...,qs, at a cost in ¢".

"—", minus This is simply the forgetting operator that removes a small amount
of k equations. This perturbation cost almost nothing in signature, but it
has a cost in ¢* in encryption, this is why it is more often used in signature.

"®", circle v Let k be a small integer. Let vy, ..., v be k secret linear com-
binations of z1, ..., x,. This perturbation ) turns a multiplicative constant
of the variable z in a vector of n random secret linear combinations of the k
variables vy, ...,v;. This can be removed when the secret key is known, by
an exhaustive search on vy, ..., v, at a cost in ¢*.

Since the introduction of perturbations is critical for the security, these per-
turbations must be considered as an essential part of the design of the scheme.

2.4 “Dob” Encryption Schemes

For the encryption schemes, we suggest the perturbations + and @. Perturba-
tions + and (P combined thwart the Minrank attack and attacks against the
kernels of the differential equations. See [FGS05,DGS07].

Formally the public polynomial is Pub=So PoT 4+ H o R+ U o L, where

— R is a set of r random quadratic polynomials in n variables;
— H is a set of n random linear polynomials in r variables;
— L is a set of s random linear polynomials in n variables;
— U is a set of n random quadratic polynomials in s variables.

For encryption of a message x of n bits, compute and publish y = Pub(z). For
decryption of a message y of n bits, guess by exhaustive search two vectors p;
and po of respectively r and s bits. Solve in z the equation S o P o T(z) =
y — H(p1) — U(p2). Stop when R(x) = p1 and L(z) = ps.

Example of parameters. For example, the parameters n = 129, r = s = 6
give a very efficient scheme with a security level of 289, Decryption costs 2'2 root
computations of a 9 degree polynomial. At present we do not know any specific
attack that could defeat it.
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2.5 “Dob” Signature Schemes

For the signature schemes, we suggest the perturbation —. Formally the public
polynomial is Pub = (So PoT),,_,, where (.),—, are the first n — r equations.
For the signature of a message y of n — r bits, expand the message to n bits in
y*, solve in z the equation S o P o T'(x) = yx*, then publish the message and its
signature (y, z). For the verification of a signed message (y,z) of (n — r,n) bits,
compute and check if y = Pub(x).

We mention that the devastating attack based on a property of the differential
of the central polynomial of SFLASH (see [BFM11]) does not apply in our case.
Indeed, since the Dobertin polynomial holds 2 quadratic monomials instead of
one in the case of SFLASH, then the kernel of the public key has no exploitable
expression. For the same reason, the attack based on another property of the
differential (searching for multiplications) (see [DFSS07]) is also ineffective in
the Dobbertin case.

Example of parameters. The example of parameters n = 257, r = 129 seems
to be a possible implementation for a security level of 2!2%, and again we do not
know any specific attack that could apply.

Remark 1. In this section, we could have considered the polynomial F;(z) =
22"+ 4 2% + ax with a # 1, and then used the perturbation & on a. However
in this case, E; is generally not a permutation any more. We have preferred for
‘Dob’ to use other perturbations and keep the permutation property.

3 The (Simple) Pat Polynomial Family

This is the generic family that can be obtained from any suitable polynomial
P using the Two-Face technique and generalizing the ‘Dob’ family. In this case,
the degree n is odd, and as for the ‘Dob’ family and we note n = 2m — 1. The
polynomial P has the particular following form.

i<d
Ei(z) = P(z) = 27"t + > izt (1)

i=0, i=¢7, i=¢i +q*

In other words, we have P(z) = 29" +' + Q(z), where @ is DO ans its degree
is bounded by a small value d. Using the same remark as for the ‘Dob’ family,
we can derive also a second equation by eliminating an intermediate variable
z=2129" between y = P(x) and y?" = P(x)9". The elimination gives

d

By(z,y) =2y — Q@) + Y ol 27 (y - Q2))' —y* 2" =0.  (2)
=0

We can also easily see that the degree in x of this equation is bounded by
max(2d + g — 1, d?).
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From this polynomial P of the simple ‘Pat’ family, we can obviously define
in the same way a Two-Face scheme, as with the ‘Dob’ family, using also the
same kind of perturbations. However, since the polynomials of the ‘Pat’ family
are not permutations in general, performance of the secret key is slowed since
computation of roots of a polynomial may retrieve several values, up to the
degree of the polynomial in theory, a small amount in practise, and so stays
attractive. From a security point of view, none of the known attacks apply to
the ‘Pat” Two-Face schemes, nor the ‘Dob’ family, which is a special case of the
‘Pat’ family, however the bijective property of ‘Dob’ may become the target of
future attacks. Therefore, it is good to have some options as backup.

Here are some examples.

Ezxample 1.
q=2, d=5 B(zz)=xz+2"+2>

= B(x7xqm) = 22"t 4% 4 a8
— 2B 4 2?4 220y 12 20 + 2By + 2Ty + 2%y + 25yt + 25
+ x5y2m + x3y4 + x2y3 + y5
Ezample 2.
, d=6, B(r,z)=zz+2%+2°

Ei(z) = B(z, 27" ) = 2"t 4 20 4 2P
Bo(z,y) = 2% + 2% 4 232 4 280 4 22T 4 2% 1 2y 4 222 4 oy 4 2202

—|—I13 +1‘12 4

q=72

Yy + =2+ x10y4 + x7y4 + x7y + x6y4 + x6y2m + xy5 + y6

The examples above illustrate how F; and Es seem very different, yet related
to the same solutions in z, since precisely, solutions in = of Ej(x) = y are by
design solutions of Fs(z,y) = 0. The polynomial E5 has many monomials with
various degrees in x, and its multivariate counterpart has therefore a high degree.

Experiments show that random ‘Simple Pat’ schemes with parameter d have
similar regularity degree as random HFE with parameter d2. We shall investigate
in the future if there is a way to increase the degree of regularity.

Experimental Results. See Table 1: ‘d2’ is the degree in x of E5, ‘dreg’ is the
degree of regularity, ‘deg’ is the degree of the HFE polynomial.

4 The (General) Pat Polynomial Families

We generalize one step ahead the previous definition by selecting a polynomial
B in two variables over F .., say = and 2. We choose B to have the special form:

i<d i<d i+5<d

B(z,z) = Z a; Tt + Z Bzt + Z 'yl-ijizj

i=0, i=qJ, i=q¢i +q* i=q9, i=qi+q" i=q*, j=q
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Simple Pat Original HFE

d|q| d2 |n |dreg| |deg| n |dreg
92| 81 |39] 4 36 (25| 4
10{2| 100 (39| 5 36 (32| 4
12|2| 144 (23| 5 36 (41| 4
20|2| 400 25| 5 81 (41| 4
24|2| 576 |25| 5 | |128|25| 4
32|2|1024|25| 5 | |129|25| 5
33|2|1089(25| 6 | |257|25| 5
34|2(1156(25| 6 | |513]25| 6

Table 1. Comparison ‘Simple Pat’ vs HFE

That is, we require that B has an extended ‘Dembowski-Ostrom’ form in two
variables, and its total degree is bounded by d. Again we choose an odd degree n
and set m such that n = 2m—1. Then we define our Face (1) with the polynomial
FE, given by:

m

Ei(z) = B(z,z? ). (1)

Then E; is by design DO. The special form of B has been chosen in such a
way that we can also mimic the idea of the ’Dob’ and simple 'Pat’ family;
that is introduce on purpose an intermediate variable z = x¢" . Therefore we
have y = Ej(x) = B(x,z). This gives also y?" = B(x,2)?" . In this latter, we
can replace each occurrence of z¢" by z, and each occurrence of z¢" by 9.
Formally, this is equivalent to replace z by 4" and x by 27" " Therefore we
get 4" = B(zqm_l,mqm)qm. Now, the same idea to get a second equation is to
eliminate z between those two equations. It becomes difficult to get the result by
hand, but the classical tool called ‘Resultant’ or ‘Eliminant’ (see [Sal99,GCL92])
does perfectly the job on a computer (see ‘Resultant’ on ‘Magma’, [BCP97]).
We use the notation Res for ‘Resultant’. So our second equation is given by:

Ba(z,y) = Res(B(x,2) =y, BT a7 )" —y1") = 0. 2)

One of the interests of (2) should be that its degree in x is small, otherwise
it would be useless. It is possible to estimate this degree. Let us consider one
generic monomial x'z/ of B(x,z), then in B’ = B(zqm_l,xqm)qm, it becomes
1992, Since the degree of B is bounded by d, then the degree of B’ is bounded
by ¢d. The theory of resultants gives us that the degree in z of (2), that is
Res, (B(z,2) —y, B'(z,y) —y9" ), is bounded by qd>.
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Ezample 1.

q=2 d=3 n=2m-—1
z=2" t:y2m
By(z) = B(z,2) = 2% + 22 + 2°
Eg(x,y):x18+x15+x12y+x12t+m11 +x9+x7+x6y2+m6t2+
Ot +at+ 2ty + 3P+ 2P+ P+ P+ Pyt + 88

Example 2.
qg=2 d=5 n=2m-1
z=2a" t:yzm
Ey(x) = B(z,2) =22 + 2z + o + 2°
Eo(z,y) = 2 + 230 + 235 4 23%y 4+ 2% + 233 4 132y 4 231 4 290y 4 o204

xZSy + 2%+ x27y + 2% + x%y + 226 + x25y + 2%t 4 225+

1’24yt + x24y + 1’24t + {E23t =+ .%'23 + $22yt +x22y + x19y+

x18y2 + xlSy + 21718 +I17y + 11717t +f£17 + 1‘16yt +I16y+

21562 4 215 1 215 4 Wyt 4 p Wyt 4 oty 4+ 2l 4 2Byt
o382 4 2t a2yt ot y? 4oty 4 2t 4 M
wl0y% 4 1042 4 10042 4 100 4 210, | 1044 4 p104 0
29t + x8y2t + xgyt2 + xsyt + xsy + 282 + x7y2+

x7yt2 + 252 + 2% + :£5yt2 + 203 + a:4y2t + x4yt3—|—
x4t+x3t3+m3+x2yt3+m2y+xt+x+y+t5

4.1 Scheme construction

We describe how to construct a Two-Face cryptosystem, using the special families
we have just introduced. The first step is the selection of the following parame-
ters: the values of ¢, n, the polynomial B and two secret affine permutations of
Fy, S and T'. For the perturbations, we can use "+", "®", and "®" as defined
above. Then we have to make public the coordinates of P = SoE;oT over F, as
quadratic multivariate polynomials. Then as usual, the public key can be used
either, given z, to compute y such that P(xz) =y, or given (z,y), to check that
P(z) = y. The secret key is used, given y, to compute x such that P(z) = y. To
do so, one first uses S to translate the problem into the hidden space, then uses
E, instead of E; to find a solution, then uses 1" to translate the solution back
into the public space. One may argue here that Fs may have several solutions. It
is sufficient to consider that the number of solutions is bounded and in practice
it is low, and therefore it is possible to enumerate them all and select the suitable
one.
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4.2 Practical Experiments

See Table 2.

General MacPat Original HFE

d |q| deg | n |dreg|| deg | n |dreg
912|162 |25 5 36 (25| 4
10|2| 200 |25| 5 36 (32| 4
14|2| 200 25| 5 36 41| 4
16(2| 512 25| 5 81 (41| 4
17|2| 578 |25| 6 || 128 (25| 4
17|2| 578 |29| 6 || 129 (25| 5
17(2| 578 [31| 6 257 |25| 5
17|2| 578 33| 6 || 513 (25| 6
18|2| 648 |25| 6 ||1025|32| 6
20(2| 800 25| 6 ||2049(33| 6
30(2|1152(33| 6 ||3072(33| 6
50(2|4608(33| 7 ||4097|33| 7

Table 2. Comparison ‘General Pat’ vs HFE

5 The Mac Polynomial Family

This is the generalization of the Dobbertin family, and also the specialization of
the general ‘Pat’ families, to special families for which the corresponding poly-
nomial P(x) is specially a permutation polynomial. For these families, we found
that only ¢ = 2P is possible. Indeed, we point out here that such permutation
polynomials families are very sparse and the ones we give here were found by
exhaustive search. Here are some examples.

Ezample 1.
g=2 d=4 n=2m—-1, n#0 (mod3), andn#0 (mod 5)
z=a2" t=y*"

Ey(z) = B(z,2) = 2?2® + 2?2 + 22

Ey(z,y) = a'y? + oty + et + By + ¥t +ay +at + > + 12+t

Ezample 2.
gq=2 d=6 n=2m—-1, n#0 (mod7)
z=22" t= yzm
Ey(z) = B(z,2) = 2*2® + 2%z + 22
By(x,y) = 28y + 28¢% 4+ 28 + 27t + 25 + 25t + 2%y + 2ty + 239°+

m3y+£2y2+$2y+xy+y4+y2+t
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Ezample 3.

q=2 d=8 n=2m-1, n#0 (mod 15)
z=2a" t:yzm
Ey(x) = B(z,2) = 2*2* + 2%z + 22
Eg(x,y)—x16y4+x 6y + 210t + 215y 4 2My? + 2y + 213y 4+ 2122+
o2y 4+ M+ 2% 4 20y + 210 + 2% 4 2% + 2By +
w8t+x7y+w6t2+x6t+m y+x4t2+m4t+x3t+22y+
222 a2t oy ot Fyt At 4t

Ezample 4.
g=4 d=5 n=2m—-1, n#0 (mod3)
z=2a" t—y
f= generator of F,
FBy(x) = B(z,2) = fa° + o'z + x2* + f22°
Ea(z,y) = 2100 f2x97+x80y+fm80t+fx76 42T 4 258y

$68t—|—f.1‘60yt+1‘57yt+f2$54yt+f2$52 +f3351yt—|—fx49
+ 2%yt + 2Pyt + foyt 4+ fi0% + a0y +
3%t + 230yt 4+ 2yt + 23 yt? + faPByt+

f2x32y +{E32t+$30yt+$28 +f23327yt+ f2$25+
f1'24yt+l‘21yt+1320y4 + fm20y3t+ f21’20y2t2+

$20yt3 + f$20y+ f$20t4 + f21‘20t+ f2$18yt+ f2x17y4+
1’17y3t+ fx17y2t2 +f2$17yt3 +£L’17t4 + f2$16y2t+
1‘16yt2 +fx15yt+x10y2t+fx10yt2 +f2x8y4+
x8y3t+fx8y2t2 +f2x8yt3 +.’L’8t4 + fx5y4+
f2x5y3t+x5y2t2 + fﬂ?5yt3 +f2I5t4 +y5 + fy4t+

fyt' + ft°

Remark 1. As for the proven case of Dobbertin’s polynomial family, in the Mac
cases (permutation polynomials), the two faces are equivalent, that is given y,

Ei(x) =y and Es(x,y) = 0 have exactly the same solutions in z.

Remark 2. Example 3 present a family of DO permutation polynomials for ¢ = 4.
This opens the possibility of finding infinite families of DO permutation polyno-
mials over F for ¢ = 2P. This might be of cryptographic interest, since bigger ¢

may give smaller public keys, and of mathematical interest as well.
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6 Other Generalizations

6.1 Three or a few more Blocks, ‘Super Two-Face’

Taking back the idea of the ‘Pat’ schemes, let consider that the variable z is
‘duplicated’ more than twice, a small number of times, three times for instance.
We then consider B(z, 21, 22) a DO polynomial of small degree, in 3 variables.
We can then define E(z) = B(z, xqm,xqm). Let suppose that n =3m — 1. We
have then 29" 029" 024" = 24" = 24. Therefore, by letting z; = 27", 2o = z?m,
we have also 29 = zgm. Then by eliminating z; and 29 in the following system,

B(x,21,22) =y
B )T =y
B(ng_l,xqm7 zi]m)q2m _ yq2m

we get similarly Fs(z,y) = 0. We call this scheme ‘Super Two-Face’ as it shows
that it can expand the family very largely. By this mean, we also discovered new
DO permutation polynomials. Experiments are still undergoing.

6.2 More Blocks

Ultimately, by using a quadratic polynomial B(x, 21, ..., z,—1), and the implicit
equations 2y = 2%, 20 = 27, ..., 2,1 = 21 ,, x = 2! |, one can define similarly
Ei(x) = B(a:,xq,xqz, . ,anfl). An open problem is to find possible values of
B such that finding Fs is easy.

7 Conclusion

HFE ([Pat96]) is one of the main multivariate schemes existing nowadays. In
the state of the art of cryptanalysis, ([FJ03,BFP11b,BFP11a]) ‘nude’ HFE (i.e.
without perturbation) has a “quasi-polynomial” attack. With addition of well
chosen perturbations, HFE seems very efficient (mostly in signature scheme), and
no realistic attacks are known. In this article, we have largely widen the family
of public-key schemes that can be created from multivariate polynomials close to
HFE. For this we have introduced the ‘Two-Face’ concept, that is, we have split
the equation of HFE, into two different but related ones, with separated roles,
equations (1) and (2) in this article, which is maybe the most important point
in this article, from a cryptographic point of view. This enabled us to design
many variants (‘Dob’, ‘Simple Pat’, ‘General Pat’, ‘Mac’, ‘Super Two-Face’...).
We have then tested attacks by Groébner basis computation on these variants.
Unfortunately, as for HFE, most of these ‘nude Two-Face’ variants (without
perturbation) show a small regularity degree very similar to the behavior of
‘nude HFE’. However, we still have many polynomials to test.

Nevertheless, as for HFE (and some others generalizations like ‘Intermediate
Field System’ [BPS08]) as soon as some appropriate perturbations are added,
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the regularity degree increases and then Grobner basis attacks don’t work any
more.

We have started our study by the Dobbertin permutation polynomial family
and our ‘Dob’ scheme. For cryptographic applications, the permutation property
is not required and this led us to our ‘Pat’ schemes. Surprisingly, we were able to
discover easily new DO permutation polynomials and then it led us to the ‘Mac’
schemes, and it seems that such more polynomials could be easily found. This of
course has a mathematical interest per se, since it is quite surprising because the
probability that a random DO polynomial is a permutation is very small. It seems
that our ‘Two-Face’ technique gave us a ‘gold mine’ of DO permutations as their
probability is much higher. Moreover, all those new DO permutation polynomials
have like the Dobbertin one a generic form which makes them infinite families.

Permutations present also a cryptographic interest, since it speeds up the
cryptographic computations, since there is only one root to compute. For exam-
ple our scheme ‘Dob’ based on the Dobbertin permutation polynomials seems
currently very efficient and resistant to all known attacks as soon as it includes
perturbations.

We have also looked at the attacks against the Matsumoto-Imai C* scheme
and its variant SFLASH ([DFSS07,BFM11]) and explain why they can’t a priori
apply to ‘Dob’. In this article we have also suggested some possible realistic
parameters for our schemes.
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