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Abstract

Linear cryptanalysis considers correlations between linear input and output combiners for block
ciphers and stream ciphers. Daemen and Rijmen (2007) had obtained the distributions of the corre-
lations between linear input and output combiners of uniform random functions and uniform random
permutations. The present work generalises these results to obtain the distributions of the corre-
lations between arbitrary input and output combiners of uniform random functions and uniform
random permutations.
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1 Introduction

One of the basic tools for analysing symmetric key ciphers is a possible correlation between linear
combinations of the input and output of a primitive. If this correlation is different from that of an
idealised version of the primitive, then a distinguishing attack becomes possible. Determining whether
a distinguishing attack is indeed possible requires the knowledge of the distributions of correlations
for the idealised primitives. Two kinds of idealised primitives are usually considered, namely uniform
random functions and uniform random permutations. For example, a uniform random permutation
is an idealisation of a block cipher while a uniform random function is an idealisation of the state to
keystream map in a stream cipher.

The distributions of the correlations between linear combinations of input and output for uniform
random functions and uniform random permutations were derived in [1]. For the case of uniform random
permutations, the distribution was earlier stated without proof in [3].

Our Contributions

This work extends the results of Daemen and Rijmen [1] by considering the correlation between arbitrary
combiners of the input and output of uniform random functions and uniform random permutations. For
any input combiner and any output combiner, the complete distributions of the correlations in the two
cases are derived. The results are more conveniently stated in terms of the weight of the XOR of the input
and the output combiners. For the case of a uniform random function, we show that the distribution of
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the weight is given by the convolution of two binomial distributions; if the output combiner is balanced,
then the weight distribution is given by a binomial distribution. For the case of a uniform random
permutation, we show that the distribution of the weight is given by a hypergeometric distribution.

Our approach to proving the results is different from that in [1]. The proofs in [1] consist essentially
of counting Boolean functions. Instead we have used direct probability arguments. This yields proofs
which are simple and at the same time work for arbitrary combiners.

2 Preliminaries

An m-variable Boolean function f is a map f : {0, 1}m → {0, 1}. The weight wt(f) of f is defined to
be the cardinality of the support of f , i.e.,

wt(f) = #{α ∈ {0, 1}m : f(α) = 1}.

The function f is said to be balanced if wt(f) = 2m−1.
Let f, g : {0, 1}m → {0, 1} be two Boolean functions. By f ⊕ g we denote the Boolean function

h : {0, 1}m → {0, 1} where h(α) = f(α)⊕ g(α) for all α ∈ {0, 1}m. The correlation between f and g is
denoted as C(f, g) and is defined to be

C(f, g) = 1− wt(f ⊕ g)

2m−1
.

An (m,n) function S is a map S : {0, 1}m → {0, 1}n. Let φ : {0, 1}m → {0, 1} and ψ : {0, 1}n →
{0, 1}. Given S, φ and ψ, we define a Boolean function

fS [φ, ψ] : {0, 1}m → {0, 1}, where fS [φ, ψ](α) = φ(α)⊕ ψ(S(α)). (1)

The function φ is a combiner of the input of S while the function ψ is a combiner of the output of
S. Both φ(·) and ψ(S(·)) are m-variable Boolean functions. So, it is meaningful to talk about the
correlation between these two functions. This correlation will be denoted as CS(φ, ψ) and is equal to

CS(φ, ψ) = = 1− wt(fS [φ, ψ])

2m−1
. (2)

So, CS(φ, ψ) measures the correlation between the combiner of the input as given by φ and the combiner
of the output as given by ψ. From (2), determining CS(φ, ψ) essentially boils down to determining
wt(fS [φ, ψ]).

Probability distributions: Ber(p) denotes the Bernoulli distribution with probability of success p;
Bin(k, p) denotes the binomial distribution with k trials and probability of success p; HG(k, k1, s) denotes
the hypergeometric distribution corresponding to a population of size k of which k1 are of a specified
type and k − k1 are of a different type and a sample of size s is drawn without repetition.

3 Case of Uniform Random Function

Let ρ be a function picked uniformly at random from the set of all functions from {0, 1}m to {0, 1}n.
Such a ρ is a uniform random (m,n) function. An equivalent way to view ρ is the following. Let
α0, . . . , α2m−1 be an enumeration of {0, 1}m. Let Xi = ρ(αi), i = 0, . . . , 2m − 1. Then the random
variables X0, . . . , X2m−1 are independent and uniformly distributed over {0, 1}n.
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Theorem 1. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean
functions respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m. For 0 ≤ i ≤ 2m − 1, define
Wi = fρ[φ, ψ](αi). Then Wi ∼ Ber(pi), where

pi =
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
. (3)

If ψ is a balanced Boolean function, then Wi ∼ Ber(1/2).

Proof. Let Xi = ρ(αi). Since ρ is a uniform random function, Xi is uniformly distributed over {0, 1}n.
We have

Wi = fρ[φ, ψ](αi) = φ(αi)⊕ ψ(ρ(αi)) = φ(αi)⊕ ψ(Xi).

Let Yi = ψ(Xi). Then Yi is a binary valued random variable where Yi takes the value 1 if and only
if Xi lies in the support of ψ. Since Xi is uniformly distributed over {0, 1}n, the probability that Xi

lies in the support of ψ is wt(ψ)/2n. So, Pr[Yi = 1] = wt(ψ)/2n and Pr[Yi = 0] = (2n − wt(ψ))/2n.
Consequently,

Pr[Wi = 1] = Pr[φ(αi)⊕ ψ(Xi) = 1]

= Pr[Yi = 1⊕ φ(αi)]

=
(1− φ(αi))wt(ψ) + φ(αi)(2

n − wt(ψ))

2n

=
wt(ψ) + φ(αi)(2

n − 2wt(ψ))

2n
= pi.

This shows that Wi follows Ber(pi).
If ψ is a balanced Boolean function, then wt(ψ) = 2n−1 in which case pi = 1/2 and so Wi follows

Ber(1/2).

We are interested in the weight of the function fρ[φ, ψ].

Proposition 1. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean
functions respectively. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m and Wi = fρ[φ, ψ](αi). Let

W = wt(fρ[φ, ψ]). Then W =
∑2m−1

i=0 Wi.

Proof. The following calculation shows the result.

W = wt(fρ[φ, ψ]) = #{αi : fρ[φ, ψ](αi) = 1} = #{i : Wi = 1} =
2m−1∑
i=0

Wi.

Theorem 2. Let ρ be a uniform random (m,n) function. Let φ and ψ be m and n-variable Boolean
functions respectively. Then

Pr [wt(fρ[φ, ψ]) = w] =

w∑
t=0

(
w0

t

)(
2m − w0

w − t

)(w1

2n

)2m−w−w0+2t (
1− w1

2n

)w0+w−2t
(4)

where w0 = wt(φ) and w1 = wt(ψ).
Further, if ψ is a balanced Boolean function, i.e., w1 = 2n−1, then wt(fρ[φ, ψ]) ∼ Bin(2m, 1/2).
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Proof. Let α0, . . . , α2m−1 be an enumeration of {0, 1}m and Xi = ρ(αi) as in Theorem 1. Note

Wi = fρ[φ, ψ](αi) = φ(αi)⊕ ψ(Xi).

Since the random variables X0, . . . , X2m−1 are independent, so are the random variables W0, . . . ,W2m−1.
From Proposition 1, wt(fρ[φ, ψ]) = W =

∑2m−1
i=0 Wi where Wi ∼ Ber(pi) with pi given by (3).

Note that pi takes either the value wt(ψ)/2n or (2n − wt(ψ))/2n according as φ(αi) equals 0 or 1. So,

W0, . . . ,W2m−1 is a sequence of 2m Poisson trials, where each Wi either follows Ber
(
wt(ψ)
2n

)
or follows

Ber
(
2n−wt(ψ)

2n

)
. Thus, W can be written as the sum of two binomially distributed random variables Z1

and Z2, i.e., W = Z1 + Z2, where

Z1 ∼ Bin

(
wt(φ),

wt(ψ)

2n

)
and Z2 ∼ Bin

(
2m − wt(φ),

2n − wt(ψ)

2n

)
.

Consequently, the distribution of W is given by the convolution of these two binomial distributions.
Simplifying the expression for the convolution, we obtain the stated result.

The special case of Theorem 2 where φ and ψ are non-trivial linear functions was given in [1]. The
proof of this result in [1] is a counting argument which uses the fact that when ψ is a non-trivial balanced
function, wt(ψ) = 2n−1. So, the proof in [1] covers the case of ψ being a balanced function. Theorem 2
provides the general result without any conditions on ψ (or φ).

4 Case of Uniform Random Permutation

Let m = n and we consider the set of all bijections from {0, 1}n to itself, i.e., the set of all permutations
of {0, 1}n. There are 2n! such permutations.

Proposition 2. Let S be any permutation of {0, 1}n; let φ and ψ be n-variable Boolean functions. Let
x be an integer such that 0 ≤ x ≤ min(wt(φ),wt(ψ)). Then

#{α : φ(α) = 1 and ψ(S(α)) = 1} = x

if and only if
wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

Proof. Define

A0,0 = {α : φ(α) = 0, ψ(S(α)) = 0};
A0,1 = {α : φ(α) = 0, ψ(S(α)) = 1};
A1,0 = {α : φ(α) = 1, ψ(S(α)) = 0};
A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}.

The sets A0,0, A0,1, A1,0 and A1,1 are mutually disjoint; A0,0 ∪A0,1 = {α : φ(α) = 0}; A1,0 ∪A1,1 = {α :
φ(α) = 1} and so

#A0,0 + #A0,1 = 2n − wt(φ),
#A1,0 + #A1,1 = wt(φ).

(5)
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Further, A0,0∪A1,0 = {α : ψ(S(α)) = 0}. Since S is a permutation, {α : ψ(S(α)) = 0} = {β : ψ(β) = 0}.
So, A0,0 ∪A1,0 = {β : ψ(β) = 0} and similarly, A0,1 ∪A1,1 = {β : ψ(β) = 1} leading to

#A0,0 + #A1,0 = 2n − wt(ψ),
#A0,1 + #A1,1 = wt(ψ).

(6)

Equations (5) and (6) imply that #A1,1 = x if and only if #A0,1 + #A1,0 = wt(φ) + wt(ψ)− 2x.
Note that the support of fS [φ, ψ] is A0,1 ∪ A1,0 and A1,1 = {α : φ(α) = 1, ψ(S(α)) = 1}. So,

#{α : φ(α) = 1, ψ(S(α)) = 1} = x if and only if wt(fS [φ, ψ]) = wt(φ) + wt(ψ)− 2x.

From Proposition 2, given the functions φ and ψ, the possible weights that fS [φ, ψ] can take for any
permutation S of {0, 1}n are the elements of the set

{wt(φ) + wt(ψ)− 2x : 0 ≤ x ≤ min(wt(φ),wt(ψ))}. (7)

Suppose π is picked uniformly from the set of all permutations of {0, 1}n. We are interested in the
probability that fπ[φ, ψ] takes a value from the set given by (7).

Theorem 3. Let π be a uniform random permutation of {0, 1}n; let φ and ψ be n-variable Boolean
functions. Then for 0 ≤ x ≤ min(wt(φ),wt(ψ)),

Pr[wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(wt(φ)
x

)(2n−wt(φ)
wt(ψ)−x

)(
2n

wt(ψ)

) . (8)

If both φ and ψ are balanced functions, then

Pr[wt(fπ[φ, ψ]) = wt(φ) + wt(ψ)− 2x] =

(
2n−1

x

)2(
2n

2n−1

) . (9)

Proof. Let α0, . . . , α2n−1 be an enumeration of {0, 1}n and let Xi = π(αi). Unlike the case where π is a
uniform random function, the random variables X0, . . . , X2n−1 are not independent. Instead, it is more
convenient to view these random variables in the following manner. Consider an urn containing balls
labelled α0, . . . , α2n−1. Balls are picked one by one from the urn without replacement and we number
the trials from 0 to 2n − 1. Then the random variable Xi is the label of the ball picked in trial number
i.

Consider the random Boolean function g(α) = ψ(π(α)). A Boolean function is defined by its support.
So, it is sufficient to choose wt(ψ) balls from the urn and let the labels of these balls define the support of
g. From Proposition 2, the probability that wt(fπ[φ, ψ]) = wt(φ)+wt(ψ)−2x is equal to the probability
that the cardinality of the set

A1,1 = {α : φ(α) = 1 and ψ(π(α)) = 1} = {α : φ(α) = 1 and g(α) = 1}

is x.
To obtain this probability, we consider the following equivalent random experiment. As before,

consider the urn containing balls labelled α0, . . . , α2n−1. Further, say that a ball labelled αi is ‘red’ if
φ(αi) = 1 and otherwise it is ‘black’. Now, consider that wt(ψ) balls are drawn from this urn which
defines the support of g. The event that we are interested in is that x of these wt(ψ) are ‘red’ while
the other wt(ψ) − x are ‘black’. The probability of this event is the probability that #A1,1 = x which
is given by the right hand side of (8). Then (8) follows from Proposition 2.

In the case where both φ and ψ are balanced functions, both their weights are equal to 2n−1. So,

substituting 2n−1 for wt(φ) and wt(ψ) in (8) and using
(

2n−1

2n−1−x
)

=
(
2n−1

x

)
yields (9).
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The expression given on the right hand side of (8) is the probability mass function of the hypergeo-
metric distribution. In the special case where φ and ψ are non-trivial linear functions, the distribution
given by (9) was proved in [1].

5 Conclusion

In this paper, we have obtained the distributions of the correlations between arbitrary input and output
combiners of uniform random functions and uniform random permutations. These generalise earlier
results by Daemen and Rijmen [1] who had considered only linear combiners.
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