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Abstract

Dynamic Searchable Symmetric Encryption (DSSE) allows to delegate keyword search and �le
update over an encrypted database via encrypted indexes, and therefore provides opportunities
to mitigate the data privacy and utilization dilemma in cloud storage platforms. Despite its merits,
recent works have shown that e�cient DSSE schemes are vulnerable to statistical attacks due to the
lack of forward-privacy, whereas forward-private DSSE schemes su�ers from practicality concerns
as a result of their extreme computation overhead. Due to signi�cant practical impacts of statistical
attacks, there is a critical need for new DSSE schemes that can achieve the forward-privacy in a
more practical and e�cient manner.

We propose a new DSSE scheme that we refer to as Forward-private Sublinear DSSE (FS-DSSE).
FS-DSSE harnesses special secure update strategies and a novel caching strategy to reduce the com-
putation cost of repeated queries. Therefore, it achieves forward-privacy, sublinear search complex-
ity, low end-to-end delay, and parallelization capability simultaneously. We fully implemented our
proposed method and evaluated its performance on a real cloud platform. Our experimental evalu-
ation results showed that the proposed scheme is highly secure and highly e�cient compared with
state-of-the-art DSSE techniques. Speci�cally, FS-DSSE is one to three magnitude of times faster
than forward-secure DSSE counterparts.

1 Introduction

Cloud computing enables massive computation and storage resources that o�er a wide range of ser-
vices. One of the most important cloud facilities is Storage-as-a-Service (SaaS) to allow the client to
outsource their data to the cloud and thereby, reducing the data management and maintaining costs.
Despite its merits, this service also brings severe privacy issues. Once the client outsources their data
to the cloud, they lose control over the privacy of their data. This may leak critical information to the
cloud or malicious entities if the cloud is compromised (e.g., a malware). Although standard encryption
techniques such as AES can enable the data con�dentiality, it also prevents the user from searching or
updating information on the cloud and therefore, completely invalidates the bene�ts of SaaS services.

To address the aforementioned privacy versus data utilization dilemma, Dynamic Searchable Sym-
metric Encryption (DSSE) techniques have been proposed, which allow the client to encrypt their own
data in such a way that it can be later searched and dynamically updated [13]. This is achieved via the
creation of an encrypted index containing a set of keyword-�le pairs, which associate search/update
tokens with the outsourced �les encrypted with standard symmetric encryption (e.g., AES). A number
of DSSE schemes have been proposed in the literature, each o�ering various security, functionality, and
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Table 1: Security and (amortized) asymptotic complexity of some state-of-the-art DSSE schemes.

Property/Scheme
Security Storage Complexity

ParallelizableUpdate Size
Privacy

Forward
Privacy Client State Encrypted

Index Search Cost Update Cost

Πdyn
2lev [4] 7 7  (1)  (N ′)  (

r+dw
p )  (m′′ + r ′′) 3

SUISE [8] 7 7  (m′)  (N ′)  (r)  (m′′) 7

Stefanov et al. [17] 7 3  (N ′� )  (N ′) (min
{
dw + logN ′

r log3 N ′

}

)  (m′′ log2 N ′) 7

2D-DSSE [21] 3 3  (m + n)  (m ⋅ n)  (
n
p)  (m) 3

Sophos [1] 7 3  (m log n)  (N ′)  (r + dw )  (m′′) 7

FS-DSSE 3 3  (1)  (m ⋅ n)  (
r+dw
p )  (m) 3

∙ m and n denote the maximum number of keywords and �les, respectively. m′ < m and n′ < n denote the actual number of keywords and �les, respectively.
N ′ ≤ m′ ⋅ n′ is # of keyword-�le pairs. m′′ = # of unique keywords included in an updated �le, r = # of �les matching search query, p = # of processors,
0 < � < 1, dw = # of historical update (add/delete) operations on keyword w , r ′′ = (accumulated) # of unique keywords being newly added.
We omitted the security parameter � for analyzed complexity cost.

e�ciency trade-o�s (e.g., [4, 21, 1, 2, 20, 14]).

Research Gaps. Recently, several studies have shown that the most e�cient (sublinear) DSSE schemes
leak signi�cant information and are vulnerable to statistical inference analysis (e.g., [15, 3, 22]). For
instance, Zhang et al. [22] has demonstrated a �le-injection attack strategy which can recover all key-
words being searched or updated in DSSE. It has been identi�ed that the forward-privacy is an imper-
ative security feature for modern DSSE schemes to mitigate the impact of such attacks. Speci�cally, a
DSSE is called forward-private if the search query does not reveal any information that can be exploited
to determine the content of the �les being added or deleted in the future [17]. However, to the best
of our knowledge, a very limited number of forward-private DSSE schemes have been proposed, all of
which su�er from the e�ciency and practicality concerns. It is due to the fact that they either incur
polylogarithmic/linear search overhead (e.g., [17, 21]) or rely on Public Key Cryptography (PKC) which
is known to be computational costly (e.g., [1]). Therefore, it is vital to develop a new DSSE scheme that
o�ers forward-privacy in a more e�cient and practical manner.

Our contributions. In this paper, we propose a new DSSE scheme that o�ers important features for
practical deployment including forward-privacy, sublinear search time with parallelization support, and
low client storage. This is achieved by harnessing a secure update strategy on a special encrypted index
structure along with a novel caching strategy using a dictionary data structure to partially store the
result of previous search queries. We refer our scheme as Forward-Private and Sublinear DSSE (FS-DSSE)
scheme, with the following desirable properties:
∙ High-Speed Search with Full Parallelization: The proposed scheme o�ers the lowest search delay
among its counterparts. From the asymptotic point of view, our search complexity is (i) equivalent to
the most e�cient yet forward-insecure DSSE scheme [4], and (ii) lower than state-of-the-art forward-
private DSSE schemes (see Table 1). Our proposed scheme is also fully parallellizable, and therefore,
can take advantadge of multi-threading techniques o�ered by the cloud. The experimental evaluation
showed that, our search delay was comparable to the most e�cient yet forward-insecure DSSE scheme,
while it was one to three orders of magnitude faster than its forward-private counterparts [1] (see
Section 6).
∙ Low Client Storage Overhead: The proposed scheme features  (1) client storage overhead, in which
the client only needs to store a few symmetric keys. This property allows the proposed scheme to be
deployed on mobile devices where the client has a limited memory capacity.
∙ High Security: Our scheme not only achieves forward-privacy as the important security feature, but
also can hide the size information of some operations on the encrypted index similar to [21]. Speci�cally,
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the proposed scheme does not leak the number of actual keyword-�le pairs in update operation, and the
encrypted index size as de�ned in [17]. Note that such information is leaked in most state-of-the-arts
DSSE schemes (except [21]), which might be exploited in statistical attacks.
∙ Full-�edged implementation and evaluation on real infrastructure: We fully implemented the proposed
scheme and extensively evaluated its performance on a real computing infrastructure. The experimen-
tal result demonstrated that the proposed scheme is highly e�cient, which showed the potentials to be
deployed on real-world breach-resilient infrastructure.

Table 1 presents the overall comparison in terms of security, operation complexity and storage
overhead between our scheme and some recent DSSE schemes.

2 Related Work

The concept of searchable encryption (SE) was �rst introduced by Song et al. [16]. Subsequently, Curt-
mola et al. in [6] de�ned the standard security notion called IND-CKA2 for searchable encryption prim-
itives and presented a IND-CKA2-secure SSE scheme that achieves a sublinear search time. Such static
schemes have limited practical applications as they do not support update functionality (dynamism).
Kamara et al. in [13] were among the �rst to de�ne the concept of DSSE, which supports dynamic oper-
ations by using an encrypted index, but leaks information during update and is not parallelizable [13].
Later, Kamara et al. provided an improvement over their previous scheme, which leaks less information
and is parallelizable [11]. A number of SE schemes have been introduced, each featuring various trade-
o�s between the security, functionality and e�ciency [4, 8, 17, 1, 21, 14]. For instance, the schemes
in [4, 17, 21] support single keyword search with high security. The scheme in [2] supports multi-
keyword ranked search, followed by a re�nement which o�ers higher e�ciency [18]. The scheme in
[20] is specially designed for location-based services to perform geometric range queries on encrypted
spatial data. The scheme in [19] supports multi-dimensional range query functionality that enables
e�cient searches over multi-dimensional tree-based database, but does not support update capability.

Most SE schemes inevitably leak access patterns and therefore, are vulnerable to statistical inference
attacks which are �rst exploited by Islam et al. in [10] that leverages the access pattern (de�ned as the
�les that a keyword appears in). Some DSSE schemes (e.g. [9]) are proposed to prevent these attacks
but they are neither e�cient nor fully secure. Although these statistical attacks can be prevented by
Oblivious Random Access Machine (ORAM) [7] or Private Information Retrieval (PIR) [5] techniques,
they are known to be extremely costly for practical deployment.

3 Preliminaries

Notation. We denote  = (Setup, Enc, Dec) as an IND-CPA-secure symmetric encryption where k ←
 .Setup(1�) generates a symmetric key k given a security parameter �; c ←  .Enck(M) returns the
ciphertext c of the message M encrypted with key k; M ←  .Deck(c) returns the plaintext M of the
ciphertext c which is previously encrypted by k. A Pseudo Random Function (PRF) is a polynomial-time
computable function, which is indistinguishable from a true random function by any PPT adversary.
Table 1 summarizes some notable notations that will be frequently used in our proposed scheme in the
next Section.

System Model. Our system model consists of one client and one server. The server is assumed to be
honest-but-curious, meaning that it will not inject malicious inputs to compromise the protocol, but
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Table 2: Notation in FS-DSSE scheme.

I Incidence Matrix-based encrypted index
wi , fj Keyword and �le with IDs i, j, resp.

ri Row Key
ui Row Counter (Initially set to 1)
vi Row State (0 if row key is revealed to server, 1 otherwise)
c Encrypted �le

n,m Maximum number of keywords and �les in DB, resp.
D[i] Dictionary to store �le indexes for each keyword
Tw Keyword hash table.

I[i, j].st State bit indicating the last access type† on I[i, j]
†I[i, j].st = 1 if last access is update, and I[i, j].st = 0 if it is search.

can extract the information from the protocol transcript as much as possible. We assume that the client
communicates with the server via a secure channel (e.g., TLS) in the synchronous model.

We present the de�nition of DSSE as follows:

De�nition 1. ADSSE scheme is a tuple of one algorithm and two protocols DSSE = (Setup, Search, Update)

1. (I,, � ,) ← Setup(1� , ): It takes as input a security parameter �, a list of (plaintext) documents
and returns an encrypted index I, a list of encrypted �les , a state � , and a key  .

2. (, � ′) ← Search(w, I, �): The client inputs the key , a keyword w to be searched, the server
inputs the encrypted index I and a state � . The protocol outputs the search result to the client, and
outputs a new state � to the server.

3. (I′,′, � ′) ← Update(f , I, � ,): The client inputs the key , a �le to be updated f , the servers
inputs the encrypted index I, the state � and the list of encrypted �les . The protocol outputs to the
server a newly updated encrypted index I′, the updated state � ′, and the updated list of encrypted
�les ′ where f is added or deleted.

In the following section, we present our proposed FS-DSSE scheme according to De�nition 1.

4 The Proposed Scheme

Intuition. Our main observation is that the search query in standard DSSE will reveal a part of the
encrypted index to the server while retrieving the corresponding encrypted �les. Therefore, once a
keyword is searched again, it is not necessary to repeat the computation on the encrypted index to
extract corresponding �les that were previously revealed. Instead, one can leverage a more compact
and simple data structure (e.g., dictionary) to store �le IDs revealed in the �rst search so that if the
same query is repeated, the server will simply get the results stored in this data structure. This strategy
will amortize the computation cost incurred in the �rst search operation and therefore, will make DSSE
schemes more e�cient. Note that the price to pay for gaining this search e�ciency is (in worst case)
doubling the server storage overhead.

The second objective is to �nd a DSSE scheme that e�ciently adopts the aforementioned strategy.
We observe that, the DSSE scheme in [21] o�ers a high level of security including forward-privacy with
the cost of linear search complexity. This computation cost can be signi�cantly reduced by using our
proposed caching strategy mentioned above. Therefore, we take the DSSE scheme in [21] as the base

4



case to construct FS-DSSE with the caching strategy. We start by giving some brief overview about
the data structures used in our scheme, some of which are borrowed from [21]. We refer an interested
reader to [21] for detailed description.

4.1 FS-DSSE Data structures

FS-DSSE leverages three di�erent types of data structure as follows:

4.1.1 Incidence matrix

Similar to [21], we construct the encrypted index using an incidence matrix I, which represents the
keyword-�le relationships via its cell values. Speci�cally, I[i, j] = 1 if the keyword indexing at row i
appears in the �le indexing at column j, and I[i, j] = 0 if otherwise. Search and update operations will
access a row and a column of I, respectively. We encrypt I bit-by-bit with IND-CPA encryption. Each
cell of I has a bit state as I[i, j].st to keep track of the last access operation (search/update) on it. We
refer reader to [21] for detailed description.

4.1.2 Hash table

We use a hash table Tw to determine the row indexes assigned to the keywords in I. For simplicity, we
assume �les are indexed from 1 to n and therefore, it is not required to create a hash table for them. In
Tw , we additionally store a counter for each keywordw as ci ← Tw[i].c, where i is the index ofw in Tw ,
which is incremented after each �le update operation to achieve the forward-privacy. We refer reader
to [21] for detailed description. We also store a state bit for each keyword w in Tw as vi ← Tw[i].v,
which indicates if the keyword has just been searched (vi = 0) or updated (vi = 1). In FS-DSSE scheme,
we store Tw at the server, where all counters inside Tw are encrypted, to achieve  (1) client storage,
in which some of its components will be retrieved �rst during the search and update operations (see
Section 4.2).

4.1.3 Dictionary

FS-DSSE leverages a caching strategy at the server to reduce the computation cost of repeated search
operations. We employ a dictionary data structure D to store the search result of the queries when the
keyword is �rst searched. D can be considered as an array of sizem, where D[i] stores the list of �le IDs
which is revealed when searching the keyword indexing at row i in I. D is encrypted with IND-CPA
encryption and is updated if there are �le operations performed on I in between the search queries. We
present the update policy in the following section to keep D consistent.

4.2 Detailed FS-DSSE Procedures

In this section, we present the detailed procedures in FS-DSSE according to De�nition 1 as follows:

Setup: First, the client creates the encrypted �les  and encrypted index and sends them to the server
by calling FS-DSSE.Setup procedure. This procedure (i) generates three keys  used to encrypt the
�les, the incidence matrix, and the counters in the hash table, (ii) extracts keywords from the input
�les, each being assigned to a row index via the hash table Tw , and (iii) sets the corresponding value
for each I[i, j]. Note that a counter for each keyword is also stored in Tw , which will be used to derive
a key to achieve the forward-privacy during update. Finally, the client encrypts the incidence matrix I,
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(I,, � ,) ← FS-DSSE.Setup(1� , ): Create encrypted index

1: k1 ←  .Gen(1�) and (k2, k3)
$← {0, 1}�

2: Set  ← {k1, k2, k3}
3: Extract keywords (w1, … , wm′ ) from  = {fid1 , … , fidn′ }
4: Set counter ui = 1, state vi = 1 for each wi in hash table Tw
5: Set I[i, j] ← 1 where i is the keyword index in Tw and 0 ≤ j ≤ n if fj contains keyword i
6: Generate row keys ri ← PRF(k2||i||ui) for 1 ≤ i ≤ m
7: Encrypt each row of I with key ri for 1 ≤ i ≤ m
8: Encrypt counters in hash table Tw with k3
9: Encrypt all �les  with k1 as  = {cj ∶ cj ←  .Enck1(fj )}

10: return (I,, � ,), where � ← Tw (Send (I,, �) to server)

Figure 1: FS-DSSE Setup algorithm.

counters in hash table Tw and all �les  , and sends them to the server, while keeping the key  secret.

Search: To search a keywordw , the client �rst requests the encrypted counter ofw stored in Tw . Then,
they send a search token containing the row index i and the row key ri derived from the counter, to
the server. If the keyword is being searched for the �rst time, then the server decrypts the whole row
I[i, ∗]with ri , adds all column indexes j, where I[i, j] = 1, to the dictionary D[i], and encrypts D[i]1. The
server returns the corresponding encrypted �les matching with such indexes to the client.

If a previously-searched keyword is searched, the server retrieves indexes of corresponding en-
crypted �les by simply decrypting D[i]. It is important to note that D[i] might need to be updated,

(, � ′) ← FS-DSSE.Search(w, I, �)
Client:
1: Let i be index of w in Tw
2: Download the counter ui of keyword wi in Tw
3: Decrypt ui with k3 and generate key ri ← PRF(k2||i||ui)
4: Send (i, v′i , ri) to server
Server: On receive (i, v′i , ri):
5: if i is �rst-time searched then
6: Let I′[i, ∗] be the decryption of I[i, ∗] using key ri
7: D[i] ← {j ∶ I′[i, j] = 1}
8: Encrypt D[i]
9: else

10: Decrypt D[i]
11: Let J = {j ∶ I[i, j].st = 1}
12: for each j in J do
13: Let I′[i, j] be the decryption of I[i, j] using key ri
14: Add j to D[i] if I′[i, j] = 1, or delete j if otherwise
15: Send  = {cj ∶ j ∈ D[i]} to client
16: Re-encrypt D[i], set I[i, ∗].st = 0 and Tw [i].v ← 0
17: return (, � ′), where � ′ ← Tw with i-th entry being updated
Client: On receive 
18: fj ←  .Deck1(cj ) for each cj ∈ 

Figure 2: FS-DSSE Search protocol.

1Server encrypts D with a self-generated key just to preserve the data privacy against outside attackers.
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given that there are some �le update operations on I that happened after the latest search on wi . This
is achieved by checking the state bit I[∗, ∗].st . Speci�cally, if I[i, j].st = 1, then the server decrypts I[i, j]
and adds the entry j to D[i] if I[i, j] = 1 (or deletes j if I[i, j] = 0).

The use of data structure D enables FS-DSSE to have an amortized sublinear search complexity.
Speci�cally, the computation cost of the �rst query is  (n) while that of repeated queries is  (r),
where r is the result size of the �rst query. The amortized cost is  (r + dw ), where dw is the number
of updates, after n search repetitions.

Update: Given an updated �le fj , the client extracts the updated keywords and creates an unencrypted
column I[∗, j], which represents the relationship between fj with all the keywords in DB. The client then
generates m row keys ri according to corresponding counters stored in Tw at the server. To achieve the
forward-privacy, the client must encrypt I[∗, j] with fresh keys, which are unknown to the server. This
can be done by generating the row key with the incremented counter, given that the key generated with
the current counter has been previously revealed to the server during the previous searches. Finally,
the client sends the encrypted column and the encrypted �les to the server, where the encrypted index
and encrypted database are updated accordingly.

(I′,′, � ′) ← FS-DSSE.Update(fj , I, � ,)
Client:
1: Set I[∗, j] ← 0 and c ← NULL
2: Download all counters ui and states vi (1 ≤ i ≤ m) in Tw
3: Download state column I[∗, j].st
4: Let V = {i ∶ vi = 0}
5: Extract keywords (w1, … , wt ) from fj
6: Decrypt counters ui with k3, and set ui ← ui + 1 for each i ∈ V
7: Generate keys ri ← PRF(k2||i||ui)
8: Set I[xi , j] ← 1 for 1 ≤ i ≤ t , where xi is index of wi in Tw
9: Encrypt fj as cj ←  .Enck1(fj )

10: Encrypt each row I[i, j] with row keys ri , for 1 ≤ i ≤ m
11: Let u⃗ ← (u1, … , un), where each ui is encrypted with k3
12: Send (I[∗, j], cj , j, u⃗) to server
Server: On receive (I[∗, j], cj , j, u⃗)
13: Tw [i].u ← ui and set Tw [i].v ← 1 for 1 ≤ i ≤ m
14: Set I[∗, j] ← I[∗, j] and I[∗, j].st ← 1
15: return (I′,′, � ′), where I′ = I with column j updated, ′ =  updated with cj , � ′ = Tw with counters

and states updated

Figure 3: FS-DSSE Update protocol.

5 Security Analysis

The security of DSSE schemes is de�ned with the dynamic IND-CKA2 notion presented in [13], which is
re�ned from static IND-CKA2 in [6] that captures information leakages from search and update tokens.
This notion pertains to leakage functions , which quanti�es precisely what information is leaked from
the ciphertext and the tokens. For the sake of completeness, we provide the detailed leakages functions
and IND-CKA2 de�nition in Appendix. Let1 and2 be a leakage function which captures information
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leakage in FS-DSSE including the maximum number of keywords and �les, �le IDs, the size of each �le
and access patterns (see Appendix for detailed description). FS-DSSE achieves the following security.

Theorem 1. FS-DSSE is (1,2)-IND-CKA2 secure.

Proof (sketch). We refer readers to [21].

Theorem 2. FS-DSSE is forward-private.

Proof (sketch). The forward-privacy implies that the content of the updated �les should not be linked
with any previous search operations. FS-DSSE harnesses the update strategy in [21], in which the
update operation uses all fresh row keys which were never revealed to the server. It is achieved by
increasing the keyword counter maintained in the hash table Tw .

6 Performance Evaluation

We �rst describe our implementation details, experimental setup and evaluation metrics with state-
of-the-art schemes. We then present the performance of the proposed scheme along with in-depth
comparison.

6.1 Experimental Setup and Evaluation Metrics

Software library. Our implementation uses the following libraries: tomcrypt for cryptographic prim-
itives; Intel AES-NI for AES-CTR encryption acceleration; google-sparsehash for hash table; zeroMQ
for network communication.

Hardware setting. We used a Desktop with Intel Xeon E3-1231v3 @ 3.40 GHz and 16GB RAM at the
client side. We leveraged our on-campus computing platform equipped with 32 CPUs @ 2.70GHz, and
512GB RAM as the server.

Database. We used the full Enron email dataset, including 517401 �les and 1728833 distinct keywords
according to the standard tokenization method. The total number of keyword-�le pairs is around 108.

Comparison. We compare FS-DSSE with some state-of-the art DSSE schemes including the scheme
in [21] (called as 2D-DSSE), Sophos [1] and Πdyn

2lev [4]. For Sophos and 2D-DSSE, we used their public
open-source since their implementation setting is same with ours (C/C++), but we only simulated Πdyn

2lev
due to its lack of open-source C/C++ implementation.

Evaluation Metrics. We evaluated all schemes according to search and update delay. To compare the
search time, we searched from least-common keywords (e.g., only appears in 1,2 �les) to most-common
keywords (e.g., appears in 100% �les) with 10% intervals. We applied the same strategy to compare the
update times. We present the cost breakdown of search and update operations for our scheme.

6.2 Performance Evaluation and Comparison

We present the end-to-end delays for search and update operations of FS-DSSE and its counterparts in
Fig. 4a and 4b, respectively. One may notice that FS-DSSE achieves the fastest search time among the
counterparts in most cases, where it is even 1.4× faster than the most e�cient yet forward-insecure
scheme (Πdyn

2lev).
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Figure 4: The latency of FS-DSSE and its counterparts. In (a), we excluded Sophos scheme [1] since its
plot is beyond the y-axis limit.

Since search complexity of 2D-DSSE is linear with the maximum number of �les in database, its
search time was constant in any size of search query results. Due to the sublinear property, FS-DSSE
is faster than 2D-DSSE, for the most of the keywords, where it is up to 35× faster when searching
least-common keywords. 2D-DSSE is only 8ms faster than FS-DSSE when searching the most-common
keywords. The search time of Sophos could not �t into this graph due to its heavy public key operations.
Speci�cally, we measured that end-to-end delay to be around 20 seconds even when searching for least-
common keywords.

FS-DSSE has a constant update time similar to 2D-DSSE for all �les with di�erent number of key-
words associated to, since they are both linear with the number of keywords in the database. The
latency di�erence between them is that in FS-DSSE, we store Tw at the server instead of the client as
in 2D-DSSE to achieve  (1) client storage, which incurs an extra round of communication overhead.
On the other hand, update time of Πdyn

2lev is the fastest. It is due to the fact that Πdyn
2lev scheme has a

smaller encrypted index size and therefore, random access is performed on a smaller memory region.
Moreover, the random access cost dominates the total update cost in our scheme. The Update cost of
Sophos increases linearly with the number of keywords associated with the updated �le. The cost is
lower than FS-DSSE when �le is associated with 8.18% of the total number of keywords and it is higher
for the rest. Since the update cost of Sophos is dominated with the public key operations performed at
the client-side, when the �le is associated with 100% of keywords, it is 11.39× slower than FS-DSSE.

We also studied the detailed cost of search operation in FS-DSSE to observe the factors that had
the most impact on the total delay. It is depicted in Fig. 5 that total delay is mostly dominated by the
server computation with the increasing number of �les associated with the keyword. Even though
server performs symmetric key encryption/decryption in parallel using 32 cores, it still dominates the
total time since our network speed is extremely fast and the size of the dictionary D, that stores the
indexes, highly increases. Since generating search token does not incur any expensive operations, the
client computation cost is negligible.

Update cost of our scheme is constant as the number of keywords associated with the updated �le
increases (see Fig. 4b). Our measurements showed that update cost of our scheme is dominated by
the I/O access due to non-contiguous memory access. The second major dominating cost of update
operation is the client computation, which requires the re-encryption of the encrypted index column
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Figure 5: Cost breakdown of search query in FS-DSSE.

with new keys to achieve forward-privacy. Since the network speed is fast in this experiment, the
communication cost is lower than other factors.

7 Conclusion

In this paper, we presented a new DSSE scheme that o�ers forward-privacy, sublinear search complex-
ity and low end-to-end delay simultaneously. This is achieved by harnessing forward-private update
strategies on 2-dimensional encrypted index along with a novel caching strategy to reduce the com-
putation time incurred in repeated search queries. Our experimental results showed that the proposed
scheme is highly secure and it outperforms state-of-the-art forward-private counterparts.
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Appendix
In [13], the search and �le-access patterns in DSSE are de�ned as follows:

• Given search queryw at time t , the search pattern(I,Query, t) is a binary vector of length t with a 1 at location
i if the search time i ≤ t was for w , and 0 otherwise. The search pattern indicates whether the same keyword
has been searched in the past or not.
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• Given search query wi at time t , the �le-access pattern Δ(I, , w, t) is identi�ers w of �les having wi .

In [21], leakage functions are de�ned as follows:

De�nition 2 (Leakage functions [21]). Let (1,2) be leakage functions such that:

1. (m, n,, ⟨|fid1 |, … , |fidn |⟩) ← 1(I, ): Given the index I and the set of �les  (including their identi�ers),
1 outputs the maximum number of keywords m, the maximum number of �les n, the identi�ers  = {id1,
… , idn} of  and the size of �le |fidj | for 1 ≤ j ≤ n (which also implies the size of its corresponding ciphertext
|cidj |).

2. ((I,Query, t), Δ(I, , w, t)) ← 2(I, , w, t): Given the index � , the set of �les  and a keyword w for a
search operation at time t , it outputs the search pattern  and �le-access pattern Δ.

De�nition 3 (IND-CKA2 Security [6, 13]). Let be a stateful adversary and  be a stateful simulator. Consider
the following probabilistic experiments:

Real(�): The challenger executes  ← Setup(1�).  produces (I, ) and receives (
 ,) ← Enc(�, )
from the challenger.  makes a polynomial number of adaptive queries Query ∈ (w, fid , fid′ ) to the challenger. If
Query = w is a keyword search query then receives a search token �w ← SearchToken(, w) from the challenger.
If Query = fid is a �le addition query then  receives an addition token (�f , c) ← AddToken(, fid ) from the
challenger. If Query = fid′ is a �le deletion query then receives a deletion token � ′f ← DeleteToken(, fid′ ) from
the challenger. Eventually, returns a bit b that is output by the experiment.

Ideal, (�):  produces (�, ). Given 1(I, ),  generates and sends (
 ,) to  .  makes a polynomial
number of adaptive queries Query ∈ (w, fid , fid′ ) to  . For each query,  is given 2(I, , w, t). If Query = w then
 returns a simulated search token �w . If Query = fid or Query = fid′ ,  returns a simulated addition token �f or
deletion token � ′f ,respectively. Eventually, returns a bit b that is output by the experiment.

A DSSE is said to be (1,2)-secure against adaptive chosen-keyword attacks (CKA2-security) if for all PPT
adversaries , there exists a PPT simulator  such that

| Pr[Real(�) = 1] − Pr[Ideal, (�) = 1]| ≤ neg(�).
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