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Abstract. We investigate the security of a public-key encryption scheme, the Indeterminate Equation Cryp-
tosystem (IEC), introduced by Akiyama, Goto, Okumura, Takagi, Nuida, and Hanaoka at SAC 2017 as post-
quantum cryptography. They gave two parameter sets PS1 (n, p, deg X, q) = (80, 3, 1, 921601) and PS2 (n, p, deg X, q) =
(80, 3, 2, 58982400019).
The paper gives practical key-recovery and message-recovery attacks against those parameter sets of IEC
through lattice basis-reduction algorithms. We exploit the fact that n = 80 is composite and adopt the idea
of Gentry’s attack against NTRU-Composite (EUROCRYPT2001) to this setting. The summary of our attacks
follows:
– On PS1, we recover 84 private keys from 100 public keys in 30–40 seconds per key.
– On PS1, we recover partial information of all message from 100 ciphertexts in a second per ciphertext.
– On PS2, we recover partial information of all message from 100 ciphertexts in 30 seconds per ciphertext.

Moreover, we also give message-recovery and distinguishing attacks against the parameter sets with prime
n, say, n = 83. We exploit another subring to reduce the dimension of lattices in our lattice-based attacks and
our attack succeeds in the case of deg X = 2.
– For PS2’ (n, p, deg X, q) = (83, 3, 2, 68339982247), we recover 7 messages from 10 random ciphertexts

within 61,000 seconds ≈ 17 hours per ciphertext.
– Even for larger n, we can �nd short vector from lattices to break the underlying assumption of IEC. In

our experiment, we can found such vector within 330,000 seconds ≈ 4 days for n = 113.
keywords: Public-Key Encryption, Indeterminate Equations Cryptosystem, Post-quantum cryptography.

1 Introduction

Algebraic-Surface Cryptosystem (ASC) is a public-key cryptosystem based on the section-�nding problem. Let
Rn,q := Zq[t]/(tn − 1) and consider Rn,q[x, y]. The section-�nding problem over Rn,q[x, y] is, given an algebraic
surface X(x, y) = 0, �nding the section u = (ux, uy) ∈ R2

n,q such that X(ux, uy) = 0 [AG06,AGM09]. Recently,
the new version of ASC, the IEC encryption scheme, was proposed by Akiyama, Goto, Okumura, Takagi, Nuida,
and Hanaoka at SAC 2017 [AGO+18], where IEC stands for Indeterminate Equation Cryptosystem. The authors
investigate the security of IECs by considering the lattice-based attacks and de�ne two sets of parameter values,
PS1 (n, p, deg X, q) = (80, 3, 1, 921601) and PS2 (n, p, deg X, q) = (80, 3, 2, 58982400019).

1.1 Our Contribution

We give practical-time lattice-based attacks against the IECs.
Our �rst attack is combining the original lattice-based attack with Gentry’s attack [Gen01] against NTRU

Composite [Sil01]. Let d be a non-trivial divisor of n, say, 40. We can consider the subring Rd,q[x, y] instead of
Rn,q[x, y]. This modi�cation allows us to employ a smaller lattice than that in the original lattice-based attacks.
Our attack succeeds as follows:

– On PS1, we mount a key-recovery attack. Our attack �nds 84 secret keys from 100 random keys. The attack
took approximately 30 seconds per key.

– On PS1, we mound a partial-message-recovery attack. Our attack �nds partial messages of all 100 pairs of
random public key and ciphertext. The attack took approximately 0.5 seconds per try.

– On PS2, we mound a partial-message-recovery attack. Our attack �nds partial messages of all 100 pairs of
random public key and ciphertext. The attack took approximately 30 seconds per try.

We exploit another class of subring Rn,q[x] of Rn,q[x, y] to reduce the dimension of lattices in our lattice-
based attacks. Our attack succeeds in the case of deg X = 2 as follows:



– For (n, p, deg X) = (83, 3, 2), we recover 7 messages out of 10 random ciphertexts in 61,000 seconds≈ 17 hours
per ciphertext.

– Even for larger n, we can �nd short vector which enables us to break the underlying assumption of IEC. We
can �nd such vector for n = 113 within 330,000 seconds ≈ 4 days.

Responsible Disclosure Process: We already noti�ed the authors of our attacks before making this paper public. We
informed them by email on September 28th with key-recovery attack on PS1, October 2nd with partial-message-
recovery attack on PS1 and PS2, October 17th with message-recovery attack on (n, p, deg X) = (83, 3, 2), and
November 2nd with distinguishing attack on variant of PS2 with n ≥ 83. The authors reported that they have
changed parameter values and they run their experiments further. We publish this paper after Akiyama et al. pub-
lished their revised paper and their NIST PQC submission [AGO+17b,AGO+17a].

1.2 Organization

We de�ne notations and review lattices in section 2. We review the IEC scheme in section 3 and the original
lattice-based attacks in section 4. We recall Gentry’s attack in section 5. We combine them in section 6 and give
new attacks in section 7. The experimental results are reported in section 8.

2 Preliminaries

Notations: The security parameter is denoted by κ.
For a positive integer q, we de�ne Zq := Z/(qZ) and Z+q := {0, 1, . . . , q − 1}. For a positive integer n, we

de�ne Rn := Z[t]/(tn − 1). For two positive integers n and q, we de�ne Rn,q := Zq[t]/(tn − 1). We also de�ne a
subset Rn,q,p of Rn,q as a set of all Zp-coe�cient polynomials in Rn,q , that is,

Rn,q,p :=

{
f =

n−1∑
i=0

fiti ∈ Rn,q

����� fi ∈ {0, 1, . . . , p − 1} ⊂ Zq

}
.

Let R be a ring and consider R[x, y]. For R and a set of indices Γ ⊆ Z2
≥0, we de�ne

F(Γ, R) :=
{

f ∈ R[x, y] | f =
∑
(i, j)∈Γai j xiy j

}
,

a set of all polynomials in R[x, y] which only consists of xiy j terms for (i, j) ∈ Γ. We will refer Γ as the term set.
(Those notations are borrowed from [AGO+18].) We de�ne the total degree of f (x, y) ∈ R[x, y] as the maximum
of the sums of the exponents of the variables in the term ai j xiy j .

Polynomials: We review the notations which bridge polynomials in Rn and n-dimensional vectors (and matrices).
For integers n and q, let us de�ne two functions:

vecn : Rn,q → Z
n : f = f0 + f1t + · · · + fn−1tn−1 7→ ( f0, f1, . . . , fn−1)

Rotn : Rn,q → Z
n×n : f 7→= { fj−i mod n}i, j=0,...,n−1 =

©­­­­­­«

vecn( f )
vecn(t f )
vecn(t2 f )

...
vecn(tn−1 f )

ª®®®®®®¬
.

We have
vecn( f ) · Rotn(g) = vecn( f · g) and Rotn( f ) · Rotn(g) = Rotn( f · g)

Lattices: Given n-linearly independent vectors B = {b0, . . . , bn−1} ⊂ R
m, the lattice generated by them is the set

of vectors

L(B) = Zn · B = {
n−1∑
i=0

xibi | xi ∈ Z}.

The vectors B are known as a basis of the lattice. If n = m, we say the lattice is the full-rank. In what follows,
we only consider full-rank lattices.
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The determinant or volume vol(Λ) of a full-rank lattice Λ is the absolute value of the determinant of any
given basis B of Λ, that is, vol(Λ) = |det(B)|. The dual of a lattice Λ, denoted by Λ∗, is the lattice consisting of
the set of all vectors z ∈ Rm orthogonal to any vectors v ∈ Λ, that is, Λ∗ = {z ∈ Rm | 〈z, y〉 = 0 for all y ∈ Λ}.

We also de�ne q-ary lattices. For A ∈ Zn×mq ,

Λq(A) := {z ∈ Zm | z = sA (mod q) for some s ∈ Zn}

Λ
⊥
q (A) := {e ∈ Zm | eA> ≡ 0 (mod q)}.

We have
Λ
⊥
q (A) = q · Λq(A)

∗ and Λq(A) = q · Λ⊥q (A)
∗.

See e.g., [GPV08, Section 5].
The basis ofΛq is easily obtained. For example, we obtain the basis by considering a matrix

(
A

qIm

)
and taking

the row echelon form of the matrix.

SVP and CVP: Finally we de�ne shortest-vector problem and closest-vector problem. The shortest-vector prob-
lem (SVP) is, given a latticeΛ, �nding a non-zero vector v ∈ Λ\ {0} such that ‖v‖ ≤ ‖x‖ for any non-zero lattice
vector x ∈ Λ \ {0}. The closet-vector problem (CVP) is, given a lattice Λ and a target vector t, �nding a lattice
vector w ∈ Λ such that ‖w − t‖ ≤ ‖x − t‖ for any lattice vector x ∈ Λ.

The Gaussian heuristic says that the m-dimensional full-rank lattice contains a short vector of length ap-
proximately

γ =

√
m

2πe
det(L)1/m.

If our target vector v is su�ciently smaller than γ, then we expect the LLL or BKZ algorithm �nd the short vector
v.

3 IEC Scheme

Parameters: In the IEC scheme, we will employ X ∈ R[x, y] as a public key, r, e ∈ R[x, y] as a random polynomials
in ciphertexts. The IEC involves several parameters, (p, q, n) and (ΓX, Γr, ΓXr ):

1. p, q: primes and p � q
2. n: the degree of Rn,q = Zq[t]/(tn − 1)
3. ΓX : The term set of X(x, y)
4. wX : The total degree of X
5. Γr : The term set of the random polynomial r(x, y)
6. wr : The total degree of r
7. ΓXr : The term set of the random polynomial e(x, y)

Akiyama et al. de�ned
ΓXr := {(i, j) + (k, l) | (i, j) ∈ ΓX, (k, l) ∈ Γr }

in order to avoid the linear algebraic attacks against the previous cryptosystems [AGO+18, Section 2.2]. They
also require large q as

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr (1)

to make the scheme perfectly correct. They implicitly de�ned

ΓX = {(i, j) ∈ Z2
≥0 | i + j ≤ wX } and Γr = {(i, j) ∈ Z2

≥0 | i + j ≤ wr }.

Although ΓX and Γr can be di�erent, they always take ΓX = Γr . Hence, they just parameterize deg X instead of
wX and wr . They give two sets of parameter values in Table 1.
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Table 1: Proposed sets of parameter values [AGO+18, Table 3]. PS2’ is obtained by setting n = 83 in PS2
n p q deg X deg r #ΓXr |sk | (bits) |pk | (bits) |ct | (bits)

PS1 80 3 921601 1 1 6 256 4755 9510
PS2 80 3 58982400019 2 2 15 256 17174 42935

PS2’ 83 3 68339982247 2 2 15 264 17928 44820

Key Generation: The secret key is a small solution of the indeterminate equation X(x, y) = 0. We denote the
solution by

u : (x, y) = (ux(t), uy(t)) ∈ R2
n,q,p .

The public key is the indeterminate equation X(x, y) = 0 that has a small solution u. We denote it by

X(x, y) =
∑
(i, j)∈ΓX

ai j xiy j, where ai j ∈ Rn,q .

Akiyama et al. recommend to choose ai j except a00 uniformly at random and set a00 := −
∑
(i, j)∈ΓX \{(0,0)} ai juixu j

y .

Encryption: A plaintext is treated as m(t) ∈ Rn,q,p . The ciphertext is

c(x, y) := m(t) + X(x, y) · r(x, y) + p · e(x, y) ∈ F(ΓXr, Rn,q),

where we choose r(x, y) ← F(Γr, Rn,q) and e(x, y) ← F(ΓXr, Rn,q,p).

Decryption: Given a ciphertext c(x, y) ∈ F(ΓXr, Rn,q),
1. Compute c(ux, uy) ∈ Rn,q

2. regard c(ux, uy) as a polynomial in Rn (= Z[t]/(tn − 1)), compute m′(t) := c(ux, uy) mod p, and output m′(t)

Notice that c(ux, uy) = m(t) + p · e(ux, uy) ∈ Rn,q because X(ux, uy) = 0 ∈ Rn,q . By the condition on
q and p, if c is a valid ciphertext, then c(ux, uy) mod q = m(t) + p · e(ux, uy) ∈ Rn. Thus, we have m(t) =
(c(ux, uy) mod q) mod p.

See our implementation in Listing 1.1.

3.1 Security Assumption

Let X(ΓX, Rn,q, p) be the set of X(x, y) which has a small solution u, that is,

X(ΓX, Rn,q, p) := {X ∈ F(ΓX, Rn,q) | ∃ux, uy ∈ Rn,q,p : X(ux, uy) = 0}.

Akiyama et al. de�ned the following decision problem:
De�nition 3.1 (IE-LWE Problem). For parameters n, p, q, ΓX, Γr , and ΓXr , we de�ne two sets

U := X(ΓX, Rn,q, p) ×F(ΓXr, Rn,q)

T := {(X, Xr + e) | X ∈ X(ΓX, Rn,q, p), r ∈ F(Γr, Rn,q), e ∈ F(ΓXr, Rn,q,p)}.

The IE-LWE problem is distinguishing the multivariate polynomials chosen from a ‘noisy’ set T of polynomials from
a ‘uniform’ set U.

The IE-LWE assumption states that it is infeasible to solve the IE-LWE problem, where X is chosen by the
key-generation algorithm Gen.
De�nition 3.2 (IE-LWE Assumption). For parameters n, p, q, ΓX, Γr , and ΓXr , a key-generation algorithm Gen,
and an adversary A, we de�ne A’s advantage as

Advie-lwe
Gen,A(κ) :=

����Pr
[
X ← Gen(1κ); r ← F(Γr, Rn,q); e← F(ΓXr, Rn,q,p);Y := Xr + e;A(X,Y ) → 1

]
− Pr

[
X ← Gen(1κ);Y ← F(ΓXr, Rn,q);A(X,Y ) → 1

] ���� .
We say that the IE-LWE assumption on Gen holds if for any PPT adversary A, its advantage Advie−lwe

Gen,A(κ) is negli-
gible in κ.

Akiyama et al. showed that the IEC scheme (Gen, Enc,Dec) is IND-CPA secure if the IE-LWE assumption on
Gen holds [AGO+18, Theorem 1].
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4 Review of Linear-Algebraic Attacks

We review the linear-algebraic attacks in [AGO+18]. In the following, we omit the subscript n from Rotn and
vecn.

4.1 Key-Recovery Attack

We review the example in the case deg X = 1.
We are given X(x, y) = a00 + a10x + a01y and want to �nd a small solution (ux, uy) ∈ R2

n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

This implies
vec(ux) · Rot(a10) + vec(uy) · Rot(a01) ≡ vec(−a00) (mod q),

that is, (
vec(ux), vec(uy)

)
·

(
Rot(a10)

Rot(a01)

)
≡ vec(−a00) (mod q).

Therefore, we let
Akr1 = [Rot(a10)

> | Rot(a01)
>] ∈ Zn×2n

q

and consider the lattice

Λ
⊥(Akr1) = {v ∈ Z

2n | v · A>kr1 ≡ 0 (mod q)}

= {(vx, vy) ∈ Z
2n | vx · Rot(a10) + vy · Rot(a01) ≡ 0 (mod q)}.

Now, we consider a target vector t ∈ Z2n, an arbitrary solution of t · A>kr1 ≡ vec(−a00) (mod q). Solving the CVP
instance (Λ⊥(Akr1), t), we obtain a vector w ∈ Λ⊥(Akr1). We let ū = (vec(ux), vec(uy)) := t − w.

We have ū · A>kr1 ≡ vec(−a00) (mod q) because ū = t − w. In addition, we expect that the norm of ū is small,
since w is the close vector to t and ū is the di�erence.

Remark 4.1. In the case of deg X = deg r = 2, we have X(x, y) = a00 + a10x + a01y + a20x2 + a11xy + a02y
2 and

consider a matrix

Akr2 = [Rot(a10)
> | Rot(a01)

> | Rot(a20)
> | Rot(a11)

> | Rot(a02)
>] ∈ Zn×5n

q .

4.2 Message-Recovery Attack

We again review the example in the case deg X = 1 and deg r = 1.
Let us consider f (x, y) = p · e(x, y) + m ∈ F(ΓXr, Rn,q). The ciphertext c of m has the relation

∑
(i, j)∈ΓXr

ci j xiy j =
©­«

∑
(i, j)∈ΓX

ai j xiy j
ª®¬ · ©­«

∑
(i, j)∈Γr

ri j xiy j
ª®¬ + ©­«

∑
(i, j)∈ΓXr

fi j xiy j
ª®¬ . (2)

Let us consider the following matrix

Amr1 =
©­«

1 x y x2 xy y2

1 A00 A10 A01
x A00 A10 A01
y A00 A10 A01

ª®¬ ∈ Z3n×6n,

where Ai j := Rot(ai j) ∈ Zn×n. Let

r̄ :=
(
vec(r00), vec(r10), vec(r01)

)
∈ Z3n,

f̄ :=
(
vec( f00), vec( f10), vec( f10), vec( f20), vec( f11), vec( f02)

)
∈ Z6n,

c̄ :=
(
vec(c00), vec(c10), vec(c10), vec(c20), vec(c11), vec(c02)

)
∈ Z6n.
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According to Equation 2, we have
c̄ ≡ r̄ · Amr1 + f̄ (mod q).

Now, we consider a lattice

Λq(Amr1) = {z ∈ Z6n | z ≡ sAmr1 (mod q) for some s ∈ Z3n}

and a target vector c̄ ∈ Z6n. Solving the CVP instance (Λq(Amr1), c̄), we obtain w ∈ Λq(Amr1). We let v̄ := c̄ − w.
Now, we have c̄ ≡ sA+ v̄ (mod q) for some s ∈ Z3n and expect that v̄ is small. If we obtain v̄ = f̄ , we �nally

obtain m by taking it modulo p.

Remark 4.2. In the case of deg X = deg r = 2, we will consider a matrix

Amr2 =

©­­­­­­­«

1 x y . . . x4 x3y x2y2 xy3 y4

1 A00 A10 A01
x A00
y A00
x2 A20 A11 A02
xy A20 A11 A02
y2 A20 A11 A02

ª®®®®®®®¬
∈ Z6n×15n,

and solve the CVP instance with 15n-dimensional lattice.

Experimental Results: Akiyama et al. estimate IEC’s security by mounting these attacks against the small param-
eter sets n = 10, 20, . . . , 60 for deg X = 1 and n = 10, 20, 30, 40 for deg X = 2. Their environment is

– CPU: AMD Opteron(TM) Processor 848
– Memory: 64 GB
– OS: Linux version 2.6.18-406.el5.centos.plus
– Software: Magma Ver2.21-5

They also de�ne q as small as possible.
They mount a key-recovery attack, which succeeds if and only if (ux, uy) ∈ Rn,q,p satisfying X(ux, uy) = 0 is

found. In their experiments, the key-recovery attack for deg X = 1 failed for n ≥ 50 and that for deg X = 2 failed
even for n ≥ 10.

They also mount a message-recovery attack, which, given X and Xr+e, succeeds if and only if e = (e1, . . . , e6n)

with ei ∈ [0, p − 1] is found. The message-recovery attack for deg X = 1 failed for n ≥ 50. Curiously, the attack
for deg X = 2 succeed to �nd short e even for n = 40. (They seem stop their experiment due to time constraint.
Their experiment took about 230000 seconds ≈ 2.7 days to process a 600-dimensional lattice.)

5 Review of Gentry’s Attack

We review Gentry’s attack against NTRU-Composite [Sil01]. Let us consider NTRU’s key generation and en-
cryption: Roughly speaking, we choose a secret key ( f , g) ∈ R2

n,q,p and compute a public key as h = g/ f ∈ Rn,q .
The ciphertext of plaintext m ∈ Rn,q,p with randomness r ∈ Rn,q,p is c = phr + m ∈ Rn,q .

Lattice Attack: Coppersmith and Shamir [CS97] pointed out that a short vector (vecn( f ), vecn(g)) ∈ Z2n is in a
lattice spanned by a matrix

LCS :=
(
Rotn(1) Rotn(h)
Rotn(0) Rotn(q)

)
∈ Z2n×2n.

We have h = g/ f mod q and this implies f h + kq = g for some k ∈ Rn. Therefore, (vecn( f ), vecn(k)) ·
LCS = (vecn( f ), vecn(g)) as we wanted. Hence, we solve the SVP problem on the lattice and expect to �nd
(vecn( f ), vecn(g)) ∈ Z2n as the solution.
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Gentry’s Attack: Gentry pointed out that there is a ring homomorphism θ : Rn → Rd , where d | n is a non-trivial
divisor.

Theorem 5.1 ([Gen01, Theorem 1]). Let n be a composite, and d be a non-trivial divisor of n. The mapping

θ : Rn → Rd : f =
n−1∑
i=0

fiti 7→
d−1∑
i=0

(
n/d−1∑
j=0

fjd+i

)
ti

is a ring-homomorphism.

Gentry considered the 2d-dimensional lattice analogue of Λ(LCS), the lattice spanned by a matrix

Ld =

(
Rotd(1) Rotd(θ(h))
Rotd(0) Rotd(q)

)
∈ Z2d×2d .

The lattice Λ(Ld) contains a short vector
(
vecd(θ( f )), vecd(θ(g))

)
, whose norm is approximately equals to that

of
(
vecn( f ), vecn(g)

)
(see [Gen01, Appendix A.2]). Therefore, we expect the basis-reduction algorithm, say, LLL

or BKZ, �nds θ( f ) and θ(g). We can exploit this partial information θ( f ) as follows:

1. Message-Recovery Attack: We have θ( f ) · θ(c) = θ( f ) · θ(m) + pθ(r) · θ(g) mod q. Thus, the expected
magnitudes of coe�cients of θ( f ) · θ(m) + pθ(r) · θ(g) are small, then we can recover θ(m).

2. Secret-Key Recover Attack: Using θ( f ) and θ(g) as hint, we again solve the SVP problem and �nd ( f , g).
Indeed, Gentry succeeds to �nd f in the case of (n, q, p) = (256, 127, 2) in his experiment.

6 Attacks against Composite n

We employ Gentry’s idea. Let us expand the range of the homomorphism θ : Rn → Rd to

θ : Rn,q[x, y] → Rd,q[x, y].

6.1 Key-Recovery Attack for deg X = 1

We are given X(x, y) = a01x + a01y + a00 and want to �nd a small solution (ux, uy) ∈ R2
n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

Applying the homomorphism θ, we have

θ(a10) · θ(ux) + θ(a01) · θ(uy) + θ(a00) = 0 (in Rd,q).

Thus, we can try to �nd (θ(ux), θ(uy)) by using the lattice-basis reduction algorithms on the lattice of dimension
2d (< 2n).

The concrete attack consists of two sub-attacks, �nding θ(ux) and θ(uy) and �nding ux and uy by using those
hints. The details follow.

Finding θ(ux) and θ(uy): We set

Akr1,d = [Rotd(θ(a10))
> |Rotd(θ(a01))

>] ∈ Zd×2d
q

and want to �nd a short vector vd satisfying

vd · A>kr1,d ≡ vecd(−θ(a00)) (mod q). (3)

We consider a lattice Λ⊥q (Akr1,d). Let t ∈ Z2d be an arbitrary solution of Equation 3. We solve the CVP instance
(Λ⊥q (Akr1,d), t) and obtain w ∈ Λ⊥q (Akr1,d).

Now, we have “short” v̄d := t−w satisfying Equation 3. Let us interpret the vector v̄d as the pair of polynomials
(v
(d)
x , v

(d)
y ) ∈ R2

d,q
. and assume that v(d)x = θ(ux) and v

(d)
y = θ(uy).

We have vol(Λ⊥q (Akr1,d)
)
= qd , γ ≈

√
2d/(2πe) ·vol(Λ⊥q (Akr1,d)

)1/2d
=

√
d/πe ·q1/2, and ‖vd ‖ ≤ 2p

√
2d. Since

γ � ‖vd ‖, that is, the target vector is very shorter than the expected length of the shortest vector, we expect
that the LLL/BKZ algorithm can �nd vd .
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Finding ux and uy : We already have a hint (θ(ux), θ(uy)). In this paper, we consider a simpler method than
Gentry’s one: We set

Akr1,hint =


Rotn(a10)

> Rotn(a01)
>

Id · · · Id︸      ︷︷      ︸
n/d

Id · · · Id︸      ︷︷      ︸
n/d

 ∈ Z(n+2d)×2n
q

and try to �nd a short vector v satisfying

v · A>kr1,hint ≡
(
vecn(−a00), vecd(θ(ux)), vecd(θ(uy))

)
(mod q). (4)

We again consider a lattice Λ⊥q (Akr1,hint). Let t ∈ Z2n be an arbitrary solution of Equation 4. We solve the CVP
instance (Λ⊥q (Akr1,hint), t) and obtain w. Now, we have a short vector v̄ := t − w satisfying Equation 4.

Interpreting the vector v̄ as the pair of polynomials (ux, uy) ∈ R2
n,q , we have a10 · ux + a01 · uy + a00 = 0 in

Rn,q as we wanted.
We have vol(Λ⊥q (Akr1,hint)

)
= qn+d . γ ≈

√
2n/(2πe) · vol(Λ⊥q (Ad)

)1/2n
=

√
d/πe · q1+d/n, and ‖v̄‖ ≤ p

√
2n.

Since γ � ‖v̄‖, we expect that the LLL/BKZ algorithm can �nd the target vector v̄.

6.2 Partial-Message-Recovery Attack for deg X = 1

We try to �nd θ(m) mod p from a ciphertext c of m. If so, it easily breaks the IND-CPA security of the IEC scheme.
For simplicity, we de�ne f (x, y) = pe(x, y) + m, which results in θ( f ) = pθ(e) + θ(m). Since θ is a ring

homomorphism from Rn[x, y] → Rd[x, y], we have

θ(c) = θ(r) · θ(X) + θ( f ).

Let us consider the following matrix:

Apmr1,d := ©­«
1 x y x2 xy y2

1 A′00 A′10 A′01
x A′00 A′10 A′01
y A′00 A′10 A′01

ª®¬ ∈ Z3d×6d,

where A′i j := Rotd(θ(ai j)) ∈ Zd×d . Let

r̄d :=
(
vecd(θ(r00)), vecd(θ(r10)), vecd(θ(r01))

)
∈ Z3d,

c̄d :=
(
vecd(θ(c00)), vecd(θ(c10)), vecd(θ(c01)), vecd(θ(c20)), vecd(θ(c11)), vecd(θ(c02))

)
∈ Z6d,

f̄d :=
(
vecd(θ( f00)), vecd(θ( f10)), vecd(θ( f01)), vecd(θ( f20)), vecd(θ( f11)), vecd(θ( f02))

)
∈ Z6d .

We have
c̄d ≡ r̄d · Apmr1,d + f̄d (mod q).

Now, we consider a lattice Λq(Apmr1,d) and solve the CVP instance (Λq(Apmr1,d), c̄d) and obtain v̄d . Let us
interpret the vector v̄d as a tuple of polynomials (v00, v10, v01, v20, v11, v02) ∈ R6

d,q
. Suppose that we have v̄d = f̄d ,

if so, we have v00 = θ( f00) and, thus,

v00 ≡ θ( f00) ≡ pθ(e00) + θ(m) ≡ θ(m) (mod p).

We have vol(Λ⊥q (Apmr1,d)
)
= q3d , γ ≈

√
6d/(2πe) ·vol(Λ⊥q (Ad)

)1/6d
=

√
3d/πe ·q1/2, and ‖v̄d ‖ ≤ (n/d)p2√6d.

We expect that the LLL/BKZ algorithm can �nd v̄d , because γ � ‖v̄d ‖.

6.3 Partial-Message-Recovery Attack for deg X = 2

In the case of deg X = deg r = 2, we consider a matrix

Apmr2,d =

©­­­­­­­«

1 x y . . . x4 x3y x2y2 xy3 y4

1 A′00 A′10 A′01
x A′00
y A′00
x2 A′20 A′11 A′02
xy A′20 A′11 A′02
y2 A′20 A′11 A′02

ª®®®®®®®¬
∈ Z6d×15d,
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where A′i j := Rotd(θ(ai j)) ∈ Zd×d . By the similar way, we solve the CVP instance (Λq(Apmr2,d), c̄d) and obtain
v̄d , which corresponding to a tuple of polynomials (v00, v10, . . . , v04) ∈ R15

d,q
. We output v00 mod p as θ(m) mod p.

We have vol(Λ⊥q (Apmr2,d)
)
= q9d , γ ≈

√
15d/(2πe) · vol(Λ⊥q (Ad)

)1/15d
=

√
15d/2πe · q3/5, and ‖v̄d ‖ ≤

(n/d)p2√15d. We expect that the LLL/BKZ algorithm can �nd v̄d because γ � ‖v̄d ‖.

7 Attacks against Prime n

After reporting the previous attacks to the authors of [AGO+18], they set n as a prime, say, n = 83 (and q =
68339982247) [Aki17]. In this section, we propose a sub-ring attack, which is applicable to the case that n is a
prime.

(Non-trivial) subring: Notice that Rn,q[x] is a subring of Rn,q[x, y]. We consider a ring homomorphism

π : Rn,q[x, y] 7→ Rn,q[x] : f (x, y) 7→ f (x, 0).

We have the relation c(x, y) = r(x, y) · X(x, y) + f (x, y), where f (x, y) = pe(x, y) + m. Applying the ring
homomorphism π, we obtain

π(c) ≡ π(r) · π(X) + π( f ) ≡ π(r) · π(X) + p · π(e) + m (mod q) (5)

and notice that the max norm of π( f ) is at most that of f = p · e + m.

7.1 Message-Recovery Attack against deg X = 1

Let us recall the message-recovery attack against deg X = 2 in subsection 4.2. We consider

Amr1 :=
©­­«

1 x y x2 xy y2

1 A00 A10 A01

x A00 A10 A01

y A00 A10 A01

ª®®¬ ∈ Z3n×6n,

c̄ := (vecn(c00), vecn(c10), vecn(c01), vecn(c20), vecn(c11), vecn(c02)) ∈ Z
6n,

where Ai j := Rotn(ai j) ∈ Zn×n, and try to solve the CVP instance (Λq(Amr1), c̄) to �nd f̄ .
In the lattice-based attacks, we often shorten the basis of the lattice and the target vector to reduce the

dimension. Here, we give another approach to shorten them.

Concrete Attack: Deleting the rows and columns whose indices contain y from A and c̄, we obtain

A′mr1 :=

( 1 x x2

1 A00 A10

x A00 A10

)
∈ Z2n×3n,

c̄′ :=
(
vecn(c00), vecn(c10), vecn(c20)

)
∈ Z5n.

Letting

r̄ ′ = (vecn(r00), vecn(r10)) ∈ Z
2n,

f̄ ′ = (vecn( f00), vecn( f10), vecn( f20)) ∈ Z
3n,

we have
c̄′ ≡ r̄ ′ · A′mr1 + f̄ ′ (mod q),

which corresponds to Equation 5. Thus, solving the CVP instance (Λq(A′mr1), c̄
′), we expect to �nd f̄ ′ and obtain

m := vecn( f00) mod p.
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Gaussian Heuristic: This shortening reduces the dimension of the lattice from 5n = 415 to 3n = 249. We have
vol(Λq(A′mr2)

)
= qn and γ ≈

√
3n/(2πe) · vol(Λq(A′)

)1/3n
=

√
3n/2πe · q1/3 and ‖ f̄ ′‖ ≤ p2√3n. In our parameter

setting, we have γ ≈ 380.81 and ‖ f̄ ′‖ ≤ 142.02 and the gap between γ and ‖ f̄ ′‖ is not so large. Thus it seems
hard to �nd f̄ ′ in this setting.

7.2 Message-Recovery Attack against deg X = 2

Let us recall the message-recovery attack against deg X = 2 in subsection 4.2. We consider Amr2 ∈ Z
6n×15n and

c̄ := (vecn(c00), vecn(c10), vecn(c01), . . . , vecn(c04)) ∈ Z
15n, and try to solve the CVP instance (Λq(Amr2), c̄) to �nd

f̄ .

Concrete Attack: Deleting the rows and columns whose indices contain y from A and c̄, we obtain

A′mr2 :=
©­­«

1 x x2 x3 x4

1 A00 A10 A20

x A00 A10 A20

x2 A00 A10 A20

ª®®¬ ∈ Z3n×5n,

c̄′ := (vecn(c00), vecn(c10), vecn(c20), vecn(c30), vecn(c40)) ∈ Z
5n.

Letting

r̄ ′ = (vecn(r00), vecn(r10), vecn(r20)) ∈ Z
3n,

f̄ ′ = (vecn( f00), vecn( f10), vecn( f20), vecn( f30), vecn( f40)) ∈ Z
5n,

we have
c̄′ ≡ r̄ ′ · A′mr2 + f̄ ′ (mod q),

which corresponds to Equation 5. Thus, solving the CVP instance (Λq(A′mr2), c̄
′), we expect to �nd f̄ ′ and obtain

m := vecn( f00) mod p.

Gaussian Heuristic: We note that this shortening reduces the dimension of the lattice from 15n = 1243 to 5n =
415. We have vol(Λq(A′mr2)

)
= q2n and γ ≈

√
5n/(2πe) · vol(Λq(A′)

)1/5n
=

√
5n/2πe · q2/5 and ‖ f̄ ′‖ ≤ p2√5n.

In our parameter setting, γ ≈ 106330.25 and ‖ f̄ ′‖ ≤ 183.35. We expect that the LLL/BKZ algorithm can �nd a
short vector f̄ ′ because of this large gap.

7.3 Distinguishing Attack for deg X = 1 and deg X = 2

Further, we try to falsify the IE-LWE assumption, that is to distinguish (X, c) = (X, Xr + e) from (X, u). In order
to do so, we try to �nd a short vector v̄′ from Λq(A′mr1). If c is Xr + e, then we have 〈c̄′, v̄′〉 mod q is “short,”
while if c is chosen uniformly at random, then 〈c̄′, v̄′〉 mod q is distributed according to the uniform distribution
over Zq .

This can also be applied to the case of deg X = 2.

8 Experiments

We run our experiment on a virtual machine on our company’s internal private cloud. Our environment is

– CPU: QEMU Virtual CPU version 2.5+
– Memory: 32GB
– OS: CentOS7 (Linux version 3.10.0-693.5.2.el7.x86_64)
– Software: SageMath version 8.0
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8.1 Key-Recovery Attack for deg X = 1

We mount our attack in subsection 6.1 with n = 80 and d = 40. We employ the default BKZ algorithm in
SageMath 8.0 as the lattice-basis reduction algorithm and the rounding algorithm to solve the CVP instance. We
generate 100 key pairs and try to �nd a pair (ux, uy) ∈ R2

n,q,p satisfying X(ux, uy) = 0. In our experiment, 84
secret keys are found from 100 public keys. The attack used an average CPU time of 32.68 seconds per key on a
single core of our server. (min: 29.16, avg: 32.68, med: 32.54, max: 39.11)

The script is in Listing 1.2. We did not check the other settings, say, d = 20 or d = 16.

8.2 Partial-Message-Recovery Attack for deg X = 1

We mount our attack in subsection 6.2 with n = 80 and d = 10. We employ the default BKZ algorithm with
block size 10 as the lattice-basis reduction algorithm and the embedding algorithm to solve the CVP instance.
We generate 100 pairs of a public key and a random ciphertext on a random plaintext. In our experiment, all
partial message θ(m) mod p are recovered. The attack used an average CPU time of 0.47 seconds per key on a
single core of our server. (min: 0.29, avg: 0.47, med: 0.46, max: 0.73)

8.3 Partial-Message-Recovery Attack for deg X = 2

We mount our attack in subsection 6.3 with n = 80 and d = 10. We employ the default BKZ algorithm as the
lattice-basis reduction algorithm and the embedding algorithm to solve the CVP instance. We generate 100 pairs
of a public key and a random ciphertext on a random plaintext. In our experiment, all partial message θ(m) mod p
are recovered. The attack used an average CPU time of 33.40 seconds per key on a single core of our server. (min:
20.95, avg: 33.40, med: 32.41, max: 84.77)

8.4 Message-Recovery Subring Attack for deg X = 2

We mount our attack in subsection 7.2 with n = 83 (and q = 68339982247). We employ the BKZ algorithm with
options block_size=10,fp="rr",precision=150 as the lattice-basis reduction algorithm and the embedding
algorithm to solve the CVP instance. We generate 10 pairs of a public key and a random ciphertext on a random
plaintext. In our experiment, all message m are recovered. The attack used an average CPU time of 54842.55 sec-
onds per key on a single core of our server. (min: 51481.51, avg: 54842.55, med: 54127.69, max: 61770.88)

8.5 Distinguishing Subring Attack for deg X = 2

We mount our attack in subsection 7.3 with various prime n with p = 3 and a smallest prime q satisfying
Equation 1. We generate 10 public keys on each n ∈ {83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149} and
try to �nd a short vector v̄′ in the lattice Λq(A′mr2). We employ the BKZ algorithm with options block_size=10,
fp="rr", precision=150 up to n = 113 and block_size=10, fp="rr", precision=200 for n ≥ 127 as the
lattice-basis reduction algorithm.

The timing results are summarized in Figure 1 and the qualities of v̄′ are summarized in Figure 2. The attack
on n = 83, 113, 149 used an average CPU time of 57471.10, 309815.82, 762618.22 seconds per key. The attack on
n = 83, 113 found short vectors v̄′ such that the average of ratio ‖v̄′‖/q is 0.021, and 0.11. In the case of n = 149,
we fail to �nd short vectors v̄′.

We check the quality of v̄′ as follows. We generate 50000 random errors ei(x, y) ∈ F(ΓXr, Rn,q, p) and 50000
random polynomials ui(x, y) ∈ F(ΓXr, Rn,q). We then compute compute δi := v̄′·ēi modc q and ξi := v̄′·ūimodc q,
where we denote by modc the centered modulo operator. We check how they vary.

For example, in the case of n = 113, we take the worst vector v̄′ with ‖v̄′‖/q = 0.12. Although this is the
worst vector, it is enough to distinguish the errors from uniform as the histogram in Figure 3 shows.

9 Conclusion

In this paper, we propose two strategies to reduce the dimension of lattices in lattice-based attacks. The �rst one
is for composite n and is inspired by Gentry’s attack [Gen01] against NTRU Composite [Sil01]. This strategy
exploits the ring homomorphism θ : Rn,q[x, y] → Rd,q[x, y] to reduce the dimension of lattices in lattice-based
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Fig. 1: Summary of Running Time

attacks. The second one is for prime n and exploits another class of subring Rn,q[x] of Rn,q[x, y] to reduce the
dimension. The message-recovery attack succeeds in the case deg X = 2 but fails in the case deg X = 1. The
distinguishing attack also succeeds in larger n, say, n = 113.

We �nally note that we have already reported our attacks to Akiyama et al. and the parameter settings in their
paper on Cryptology ePrint Archive [AGO+17b] and NIST PQC submission [AGO+17a] re�ected our attacks.
They further investigated lattice-based attacks and estimated the security by following the security-estimation
methods of the LWE problems [AGVW17,ADPS16,BDGL15,Che13]. See their paper for details.
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Fig. 3: Histogram of δi (blue lines) and ξi (orange lines). We count q/30

A Implementation

Listing 1.1: ref.sage
# Reference Implementation of IEC
# Load this file
# n = 80; p=3; wx=1; wr=1;
# load('ref.sage ')

# Parameters ====================
def gen_G(upper_bound , lower_bound ):

# compare with total deg. if equal , (1,0) < (0,1)
def my_key(a):

return (a[0] + a[1], a[1], a[0])
# i for index of x, j for index of y
l = [(i,j) for j in range(upper_bound +1) \

for i in range(upper_bound +1) \
if (lower_bound <= i+j) and (i+j <= upper_bound )]

return sorted(l, key=my_key)

GX = gen_G(wx ,0); Gr = gen_G(wr ,0)
GXr = gen_G(wx+wr ,0); GXp = gen_G(wx ,1)

def bd(n,p):
return len(GXr) * p * (p-1) * (n * (p -1))^( wx+wr)

q = next_prime(bd(n,p))

# Rings ====================
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Zq = Integers(q)
R.<t> = Zq[]
Rq = R.quotient(t^n-1)
F.<x,y> = Rq[]

# Random polys ====================
def random_tpoly(p): return R([ randint(0,p-1) for _ in range(n)])

def random_template(p,indices ):
a = 0
for (i,j) in indices:

a += Rq(random_tpoly(p)) * x^i * y^j
return a

def random_r (): return random_template(q,Gr)
def random_e (): return random_template(p,GXr)

# Cryptosystem ====================
def skgen ():

return random_tpoly(p), random_tpoly(p)

def pkgen(ux,uy):
X = random_template(q,GXp)
X -= X(ux,uy)
return X

def encrypt(X,m):
return Rq(m)+ X * random_r () +p * random_e ()

def decrypt(ux,uy,c):
cu = c(ux,uy)
mt = cu.lift (). change_ring(ZZ). change_ring(Integers(p))
# output mt in Rq
return mt.change_ring(Integers(q))

Listing 1.2: KRA-PS1.sage
# key -recovery attack for PS1

# Make the experiment reproducible
# (at least on given platform/Sage version)
set_random_seed (0)

n = 80; p=3; wx=1; wr=1; d=int(n/2)

load('ref.sage')

# Rings ====================
Rqd = R.quotient(t^d-1)
Fd = F.change_ring(Rqd)

# ====================
def circulant_matrix(b,n):

# Input: b in Zq[t] (not Zq[t]/(t^n-1) !!!)
# Output: circlant b
return matrix(ZZ,n,n,lambda i,j: b.monomial_coefficient(t^((j-i) % n)))

def vectorize(b,n):
return circulant_matrix(b,n)[0]

def roundingCVP(v,L):
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l = v * L.inverse ()
lround = vector(map(lambda x: round(x), l))
w = lround * L
return w

def recover_folded_sk_roundingCVP(folded_X ):
Alist = []
for (i,j) in GXp:

a = folded_X.monomial_coefficient(Fd(x^i*y^j))
Alist.append(circulant_matrix(a.lift(),d). transpose ())

A_kr = block_matrix(ZZ ,1,len(GXp),Alist)
Z = block_matrix(ZZ ,[[ A_kr], [q * identity_matrix(d*len(GXp ))]])
Z = Z.echelon_form(include_zero_rows=false)
L = (q * Z.transpose (). inverse ()). change_ring(ZZ)
L = L.BKZ()

# solve CVP by rounding
a00 = folded_X.monomial_coefficient(Fd(1)). lift()
target_vector = vector(Zq,list(vectorize(-a00 ,d)))
Aq = A_kr.change_ring(Zq)
target_t = Aq.solve_right(target_vector ). change_ring(ZZ)
w = roundingCVP(target_t ,L)
v = target_t - w
return v, R(list(v[0:d])), R(list(v[d:2*d]))

def recover_sk_from_folded_sk(X,vv):
def f(i,j):

return 1 if int(n/d) * i <= j and j < int(n/d) * (i+1) else 0

Alist = []
for (i,j) in GXp:

a = X.monomial_coefficient(F(x^i*y^j))
Alist.append(circulant_matrix(a.lift(),n). transpose ())

A_kr = block_matrix(ZZ ,1,len(GXp),Alist)

Tp = matrix(ZZ,len(GXp),len(GXp)*int(n/d),lambda i,j: f(i,j))
T = Tp.tensor_product(identity_matrix(d))

A_kr_hint = block_matrix(ZZ ,[[ A_kr],[T]])
Z = block_matrix(ZZ ,[[ A_kr_hint], [q * identity_matrix(len(GXp)*n)]])
Z = Z.echelon_form(include_zero_rows=false)
L = (q * Z.transpose (). inverse ()). change_ring(ZZ)
L = L.BKZ()

# solve CVP by rounding
a00 = X.monomial_coefficient(F(1)). lift()
target_vector = vector(Zq,list(vectorize(-a00 ,n)) + list(vv))
Aq = A_kr_hint.change_ring(Zq)
target_t = Aq.solve_right(target_vector ). change_ring(ZZ)
w = roundingCVP(target_t ,L)
v = target_t - w
return v, R(list(v[0:n])), R(list(v[n:2*n]))

def test(pairs=10,debug=true):
succ = 0
tottime = 0.0
for npair in range(pairs):

ux ,uy = skgen()
X = pkgen(ux,uy)
if debug:
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print "----- Key pair %d -----" % (npair)

tm = cputime(subprocesses=True)
folded_X = X.change_ring(Rqd)
folded_v , folded_ux , folded_uy = recover_folded_sk_roundingCVP(folded_X)
if debug:

print "X", X
print "folded X", folded_X
print "folded v", folded_v
print "folded ux", folded_ux
print "folded uy", folded_uy

v, ux_cand , uy_cand = recover_sk_from_folded_sk(X,folded_v)
tottime += float(cputime(tm))
if debug:

print "v", v
print "ux_cand", ux_cand
print "uy_cand", uy_cand

if ux == ux_cand and uy == uy_cand:
succ += 1

print "===== Results ====="
print "Total time for extraction: %f seconds." % (tottime)
print "Average time for extraction: %f seconds." % (tottime/pairs)
print "Successful recoveries: %d/%d (%f)." % \

(succ ,pairs ,RR(100* succ/pairs))

test (100, false)
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