
Practical Cryptanalysis of a Pulblic-key Encryption Scheme
Based on Non-linear Indeterminate Equations at SAC 2017

Keita Xagawa

3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan
xagawa.keita@lab.ntt.co.jp

Abstract. We investigate the security of a public-key encryption scheme, the Indeterminate Equation Cryp-
tosystem (IEC), introduced by Akiyama, Goto, Okumura, Takagi, Nuida, and Hanaoka at SAC 2017 as post-
quantum cryptography. They gave two parameter sets PS1 (n, p, deg X, q) = (80, 3, 1, 921601) and PS2 (n, p, deg X, q) =
(80, 3, 2, 58982400019).
The paper gives practical key-recovery and message-recovery attacks against those parameter sets of IEC
through lattice basis-reduction algorithms. We exploit the fact that n = 80 is composite and adopt the idea
of Gentry’s attack against NTRU-Composite (EUROCRYPT2001) to this setting. The summary of our attacks
follows:
– On PS1, we recover 84 private keys from 100 public keys in 30–40 seconds per key.
– On PS1, we recover partial information of all message from 100 ciphertexts in a second per ciphertext.
– On PS2, we recover partial information of all message from 100 ciphertexts in 30 seconds per ciphertext.

Moreover, we also give message-recovery and distinguishing attacks against the parameter sets with prime
n, say, n = 83. We exploit another subring to reduce the dimension of lattices in our lattice-based attacks and
our attack succeeds in the case of deg X = 2.
– For PS2’ (n, p, deg X, q) = (83, 3, 2, 68339982247), we recover 7 messages from 10 random ciphertexts

within 61,000 seconds ≈ 17 hours per ciphertext.
– Even for larger n, we can �nd short vector from lattices to break the underlying assumption of IEC. In

our experiment, we can found such vector within 330,000 seconds ≈ 4 days for n = 113.
keywords: Public-Key Encryption, Indeterminate Equations Cryptosystem, Post-quantum cryptography.

1 Introduction

Algebraic-Surface Cryptosystem (ASC) is a public-key cryptosystem based on the section-�nding problem. Let
Rn,q := Zq[t]/(tn − 1) and consider Rn,q[x, y]. The section-�nding problem over Rn,q[x, y] is, given an algebraic
surface X(x, y) = 0, �nding the section u = (ux, uy) ∈ R2

n,q such that X(ux, uy) = 0 [AG06,AGM09]. Recently,
the new version of ASC, the IEC encryption scheme, was proposed by Akiyama, Goto, Okumura, Takagi, Nuida,
and Hanaoka at SAC 2017 [AGO+18], where IEC stands for Indeterminate Equation Cryptosystem. The authors
investigate the security of IECs by considering the lattice-based attacks and de�ne two sets of parameter values,
PS1 (n, p, deg X, q) = (80, 3, 1, 921601) and PS2 (n, p, deg X, q) = (80, 3, 2, 58982400019).

1.1 Our Contribution

We give practical-time lattice-based attacks against the IECs.
Our �rst attack is combining the original lattice-based attack with Gentry’s attack [Gen01] against NTRU

Composite [Sil01]. Let d be a non-trivial divisor of n, say, 40. We can consider the subring Rd,q[x, y] instead of
Rn,q[x, y]. This modi�cation allows us to employ a smaller lattice than that in the original lattice-based attacks.
Our attack succeeds as follows:

– On PS1, we mount a key-recovery attack. Our attack �nds 84 secret keys from 100 random keys. The attack
took approximately 30 seconds per key.

– On PS1, we mound a partial-message-recovery attack. Our attack �nds partial messages of all 100 pairs of
random public key and ciphertext. The attack took approximately 0.5 seconds per try.

– On PS2, we mound a partial-message-recovery attack. Our attack �nds partial messages of all 100 pairs of
random public key and ciphertext. The attack took approximately 30 seconds per try.

We exploit another class of subring Rn,q[x] of Rn,q[x, y] to reduce the dimension of lattices in our lattice-
based attacks. Our attack succeeds in the case of deg X = 2 as follows:

– For (n, p, deg X) = (83, 3, 2), we recover 7 messages out of 10 random ciphertexts in 61,000 seconds≈ 17 hours
per ciphertext.

– Even for larger n, we can �nd short vector which enables us to break the underlying assumption of IEC. We
can �nd such vector for n = 113 within 330,000 seconds ≈ 4 days.

Responsible Disclosure Process: We already noti�ed the authors of our attacks before making this paper public. We
informed them by email on September 28th with key-recovery attack on PS1, October 2nd with partial-message-
recovery attack on PS1 and PS2, October 17th with message-recovery attack on (n, p, deg X) = (83, 3, 2), and
November 2nd with distinguishing attack on variant of PS2 with n ≥ 83. The authors reported that they have
changed parameter values and they run their experiments further. We publish this paper after Akiyama et al. pub-
lished their revised paper and their NIST PQC submission [AGO+17b,AGO+17a].

1.2 Organization

We de�ne notations and review lattices in section 2. We review the IEC scheme in section 3 and the original
lattice-based attacks in section 4. We recall Gentry’s attack in section 5. We combine them in section 6 and give
new attacks in section 7. The experimental results are reported in section 8.

2 Preliminaries

Notations: The security parameter is denoted by κ.
For a positive integer q, we de�ne Zq := Z/(qZ) and Z+q := {0, 1, . . . , q − 1}. For a positive integer n, we

de�ne Rn := Z[t]/(tn − 1). For two positive integers n and q, we de�ne Rn,q := Zq[t]/(tn − 1). We also de�ne a
subset Rn,q,p of Rn,q as a set of all Zp-coe�cient polynomials in Rn,q , that is,

Rn,q,p :=

{
f =

n−1∑
i=0

fiti ∈ Rn,q

����� fi ∈ {0, 1, . . . , p − 1} ⊂ Zq

}
.

Let R be a ring and consider R[x, y]. For R and a set of indices Γ ⊆ Z2
≥0, we de�ne

F(Γ, R) :=
{

f ∈ R[x, y] | f =
∑
(i, j)∈Γai j xiy j

}
,

a set of all polynomials in R[x, y] which only consists of xiy j terms for (i, j) ∈ Γ. We will refer Γ as the term set.
(Those notations are borrowed from [AGO+18].) We de�ne the total degree of f (x, y) ∈ R[x, y] as the maximum
of the sums of the exponents of the variables in the term ai j xiy j .

Polynomials: We review the notations which bridge polynomials in Rn and n-dimensional vectors (and matrices).
For integers n and q, let us de�ne two functions:

vecn : Rn,q → Z
n : f = f0 + f1t + · · · + fn−1tn−1 7→ (f0, f1, . . . , fn−1)

Rotn : Rn,q → Z
n×n : f 7→= { fj−i mod n}i, j=0,...,n−1 =

©­­­­­­«

vecn(f)
vecn(t f)
vecn(t2 f)

...
vecn(tn−1 f)

ª®®®®®®¬
.

We have
vecn(f) · Rotn(g) = vecn(f · g) and Rotn(f) · Rotn(g) = Rotn(f · g)

Lattices: Given n-linearly independent vectors B = {b0, . . . , bn−1} ⊂ R
m, the lattice generated by them is the set

of vectors

L(B) = Zn · B = {
n−1∑
i=0

xibi | xi ∈ Z}.

The vectors B are known as a basis of the lattice. If n = m, we say the lattice is the full-rank. In what follows,
we only consider full-rank lattices.

2

The determinant or volume vol(Λ) of a full-rank lattice Λ is the absolute value of the determinant of any
given basis B of Λ, that is, vol(Λ) = |det(B)|. The dual of a lattice Λ, denoted by Λ∗, is the lattice consisting of
the set of all vectors z ∈ Rm orthogonal to any vectors v ∈ Λ, that is, Λ∗ = {z ∈ Rm | 〈z, y〉 = 0 for all y ∈ Λ}.

We also de�ne q-ary lattices. For A ∈ Zn×mq ,

Λq(A) := {z ∈ Zm | z = sA (mod q) for some s ∈ Zn}

Λ
⊥
q (A) := {e ∈ Zm | eA> ≡ 0 (mod q)}.

We have
Λ
⊥
q (A) = q · Λq(A)

∗ and Λq(A) = q · Λ⊥q (A)
∗.

See e.g., [GPV08, Section 5].
The basis ofΛq is easily obtained. For example, we obtain the basis by considering a matrix

(
A

qIm

)
and taking

the row echelon form of the matrix.

SVP and CVP: Finally we de�ne shortest-vector problem and closest-vector problem. The shortest-vector prob-
lem (SVP) is, given a latticeΛ, �nding a non-zero vector v ∈ Λ\ {0} such that ‖v‖ ≤ ‖x‖ for any non-zero lattice
vector x ∈ Λ \ {0}. The closet-vector problem (CVP) is, given a lattice Λ and a target vector t, �nding a lattice
vector w ∈ Λ such that ‖w − t‖ ≤ ‖x − t‖ for any lattice vector x ∈ Λ.

The Gaussian heuristic says that the m-dimensional full-rank lattice contains a short vector of length ap-
proximately

γ =

√
m

2πe
det(L)1/m.

If our target vector v is su�ciently smaller than γ, then we expect the LLL or BKZ algorithm �nd the short vector
v.

3 IEC Scheme

Parameters: In the IEC scheme, we will employ X ∈ R[x, y] as a public key, r, e ∈ R[x, y] as a random polynomials
in ciphertexts. The IEC involves several parameters, (p, q, n) and (ΓX, Γr, ΓXr):

1. p, q: primes and p � q
2. n: the degree of Rn,q = Zq[t]/(tn − 1)
3. ΓX : The term set of X(x, y)
4. wX : The total degree of X
5. Γr : The term set of the random polynomial r(x, y)
6. wr : The total degree of r
7. ΓXr : The term set of the random polynomial e(x, y)

Akiyama et al. de�ned
ΓXr := {(i, j) + (k, l) | (i, j) ∈ ΓX, (k, l) ∈ Γr }

in order to avoid the linear algebraic attacks against the previous cryptosystems [AGO+18, Section 2.2]. They
also require large q as

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr (1)

to make the scheme perfectly correct. They implicitly de�ned

ΓX = {(i, j) ∈ Z2
≥0 | i + j ≤ wX } and Γr = {(i, j) ∈ Z2

≥0 | i + j ≤ wr }.

Although ΓX and Γr can be di�erent, they always take ΓX = Γr . Hence, they just parameterize deg X instead of
wX and wr . They give two sets of parameter values in Table 1.

3

Table 1: Proposed sets of parameter values [AGO+18, Table 3]. PS2’ is obtained by setting n = 83 in PS2
n p q deg X deg r #ΓXr |sk | (bits) |pk | (bits) |ct | (bits)

PS1 80 3 921601 1 1 6 256 4755 9510
PS2 80 3 58982400019 2 2 15 256 17174 42935

PS2’ 83 3 68339982247 2 2 15 264 17928 44820

Key Generation: The secret key is a small solution of the indeterminate equation X(x, y) = 0. We denote the
solution by

u : (x, y) = (ux(t), uy(t)) ∈ R2
n,q,p .

The public key is the indeterminate equation X(x, y) = 0 that has a small solution u. We denote it by

X(x, y) =
∑
(i, j)∈ΓX

ai j xiy j, where ai j ∈ Rn,q .

Akiyama et al. recommend to choose ai j except a00 uniformly at random and set a00 := −
∑
(i, j)∈ΓX \{(0,0)} ai juixu j

y .

Encryption: A plaintext is treated as m(t) ∈ Rn,q,p . The ciphertext is

c(x, y) := m(t) + X(x, y) · r(x, y) + p · e(x, y) ∈ F(ΓXr, Rn,q),

where we choose r(x, y) ← F(Γr, Rn,q) and e(x, y) ← F(ΓXr, Rn,q,p).

Decryption: Given a ciphertext c(x, y) ∈ F(ΓXr, Rn,q),
1. Compute c(ux, uy) ∈ Rn,q

2. regard c(ux, uy) as a polynomial in Rn (= Z[t]/(tn − 1)), compute m′(t) := c(ux, uy) mod p, and output m′(t)

Notice that c(ux, uy) = m(t) + p · e(ux, uy) ∈ Rn,q because X(ux, uy) = 0 ∈ Rn,q . By the condition on
q and p, if c is a valid ciphertext, then c(ux, uy) mod q = m(t) + p · e(ux, uy) ∈ Rn. Thus, we have m(t) =
(c(ux, uy) mod q) mod p.

See our implementation in Listing 1.1.

3.1 Security Assumption

Let X(ΓX, Rn,q, p) be the set of X(x, y) which has a small solution u, that is,

X(ΓX, Rn,q, p) := {X ∈ F(ΓX, Rn,q) | ∃ux, uy ∈ Rn,q,p : X(ux, uy) = 0}.

Akiyama et al. de�ned the following decision problem:
De�nition 3.1 (IE-LWE Problem). For parameters n, p, q, ΓX, Γr , and ΓXr , we de�ne two sets

U := X(ΓX, Rn,q, p) ×F(ΓXr, Rn,q)

T := {(X, Xr + e) | X ∈ X(ΓX, Rn,q, p), r ∈ F(Γr, Rn,q), e ∈ F(ΓXr, Rn,q,p)}.

The IE-LWE problem is distinguishing the multivariate polynomials chosen from a ‘noisy’ set T of polynomials from
a ‘uniform’ set U.

The IE-LWE assumption states that it is infeasible to solve the IE-LWE problem, where X is chosen by the
key-generation algorithm Gen.
De�nition 3.2 (IE-LWE Assumption). For parameters n, p, q, ΓX, Γr , and ΓXr , a key-generation algorithm Gen,
and an adversary A, we de�ne A’s advantage as

Advie-lwe
Gen,A(κ) :=

����Pr
[
X ← Gen(1κ); r ← F(Γr, Rn,q); e← F(ΓXr, Rn,q,p);Y := Xr + e;A(X,Y) → 1

]
− Pr

[
X ← Gen(1κ);Y ← F(ΓXr, Rn,q);A(X,Y) → 1

] ���� .
We say that the IE-LWE assumption on Gen holds if for any PPT adversary A, its advantage Advie−lwe

Gen,A(κ) is negli-
gible in κ.

Akiyama et al. showed that the IEC scheme (Gen, Enc,Dec) is IND-CPA secure if the IE-LWE assumption on
Gen holds [AGO+18, Theorem 1].

4

4 Review of Linear-Algebraic Attacks

We review the linear-algebraic attacks in [AGO+18]. In the following, we omit the subscript n from Rotn and
vecn.

4.1 Key-Recovery Attack

We review the example in the case deg X = 1.
We are given X(x, y) = a00 + a10x + a01y and want to �nd a small solution (ux, uy) ∈ R2

n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

This implies
vec(ux) · Rot(a10) + vec(uy) · Rot(a01) ≡ vec(−a00) (mod q),

that is, (
vec(ux), vec(uy)

)
·

(
Rot(a10)

Rot(a01)

)
≡ vec(−a00) (mod q).

Therefore, we let
Akr1 = [Rot(a10)

> | Rot(a01)
>] ∈ Zn×2n

q

and consider the lattice

Λ
⊥(Akr1) = {v ∈ Z

2n | v · A>kr1 ≡ 0 (mod q)}

= {(vx, vy) ∈ Z
2n | vx · Rot(a10) + vy · Rot(a01) ≡ 0 (mod q)}.

Now, we consider a target vector t ∈ Z2n, an arbitrary solution of t · A>kr1 ≡ vec(−a00) (mod q). Solving the CVP
instance (Λ⊥(Akr1), t), we obtain a vector w ∈ Λ⊥(Akr1). We let ū = (vec(ux), vec(uy)) := t − w.

We have ū · A>kr1 ≡ vec(−a00) (mod q) because ū = t − w. In addition, we expect that the norm of ū is small,
since w is the close vector to t and ū is the di�erence.

Remark 4.1. In the case of deg X = deg r = 2, we have X(x, y) = a00 + a10x + a01y + a20x2 + a11xy + a02y
2 and

consider a matrix

Akr2 = [Rot(a10)
> | Rot(a01)

> | Rot(a20)
> | Rot(a11)

> | Rot(a02)
>] ∈ Zn×5n

q .

4.2 Message-Recovery Attack

We again review the example in the case deg X = 1 and deg r = 1.
Let us consider f (x, y) = p · e(x, y) + m ∈ F(ΓXr, Rn,q). The ciphertext c of m has the relation

∑
(i, j)∈ΓXr

ci j xiy j =
©­«

∑
(i, j)∈ΓX

ai j xiy j
ª®¬ · ©­«

∑
(i, j)∈Γr

ri j xiy j
ª®¬ + ©­«

∑
(i, j)∈ΓXr

fi j xiy j
ª®¬ . (2)

Let us consider the following matrix

Amr1 =
©­«

1 x y x2 xy y2

1 A00 A10 A01
x A00 A10 A01
y A00 A10 A01

ª®¬ ∈ Z3n×6n,

where Ai j := Rot(ai j) ∈ Zn×n. Let

r̄ :=
(
vec(r00), vec(r10), vec(r01)

)
∈ Z3n,

f̄ :=
(
vec(f00), vec(f10), vec(f10), vec(f20), vec(f11), vec(f02)

)
∈ Z6n,

c̄ :=
(
vec(c00), vec(c10), vec(c10), vec(c20), vec(c11), vec(c02)

)
∈ Z6n.

5

According to Equation 2, we have
c̄ ≡ r̄ · Amr1 + f̄ (mod q).

Now, we consider a lattice

Λq(Amr1) = {z ∈ Z6n | z ≡ sAmr1 (mod q) for some s ∈ Z3n}

and a target vector c̄ ∈ Z6n. Solving the CVP instance (Λq(Amr1), c̄), we obtain w ∈ Λq(Amr1). We let v̄ := c̄ − w.
Now, we have c̄ ≡ sA+ v̄ (mod q) for some s ∈ Z3n and expect that v̄ is small. If we obtain v̄ = f̄ , we �nally

obtain m by taking it modulo p.

Remark 4.2. In the case of deg X = deg r = 2, we will consider a matrix

Amr2 =

©­­­­­­­«

1 x y . . . x4 x3y x2y2 xy3 y4

1 A00 A10 A01
x A00
y A00
x2 A20 A11 A02
xy A20 A11 A02
y2 A20 A11 A02

ª®®®®®®®¬
∈ Z6n×15n,

and solve the CVP instance with 15n-dimensional lattice.

Experimental Results: Akiyama et al. estimate IEC’s security by mounting these attacks against the small param-
eter sets n = 10, 20, . . . , 60 for deg X = 1 and n = 10, 20, 30, 40 for deg X = 2. Their environment is

– CPU: AMD Opteron(TM) Processor 848
– Memory: 64 GB
– OS: Linux version 2.6.18-406.el5.centos.plus
– Software: Magma Ver2.21-5

They also de�ne q as small as possible.
They mount a key-recovery attack, which succeeds if and only if (ux, uy) ∈ Rn,q,p satisfying X(ux, uy) = 0 is

found. In their experiments, the key-recovery attack for deg X = 1 failed for n ≥ 50 and that for deg X = 2 failed
even for n ≥ 10.

They also mount a message-recovery attack, which, given X and Xr+e, succeeds if and only if e = (e1, . . . , e6n)

with ei ∈ [0, p − 1] is found. The message-recovery attack for deg X = 1 failed for n ≥ 50. Curiously, the attack
for deg X = 2 succeed to �nd short e even for n = 40. (They seem stop their experiment due to time constraint.
Their experiment took about 230000 seconds ≈ 2.7 days to process a 600-dimensional lattice.)

5 Review of Gentry’s Attack

We review Gentry’s attack against NTRU-Composite [Sil01]. Let us consider NTRU’s key generation and en-
cryption: Roughly speaking, we choose a secret key (f , g) ∈ R2

n,q,p and compute a public key as h = g/ f ∈ Rn,q .
The ciphertext of plaintext m ∈ Rn,q,p with randomness r ∈ Rn,q,p is c = phr + m ∈ Rn,q .

Lattice Attack: Coppersmith and Shamir [CS97] pointed out that a short vector (vecn(f), vecn(g)) ∈ Z2n is in a
lattice spanned by a matrix

LCS :=
(
Rotn(1) Rotn(h)
Rotn(0) Rotn(q)

)
∈ Z2n×2n.

We have h = g/ f mod q and this implies f h + kq = g for some k ∈ Rn. Therefore, (vecn(f), vecn(k)) ·
LCS = (vecn(f), vecn(g)) as we wanted. Hence, we solve the SVP problem on the lattice and expect to �nd
(vecn(f), vecn(g)) ∈ Z2n as the solution.

6

Gentry’s Attack: Gentry pointed out that there is a ring homomorphism θ : Rn → Rd , where d | n is a non-trivial
divisor.

Theorem 5.1 ([Gen01, Theorem 1]). Let n be a composite, and d be a non-trivial divisor of n. The mapping

θ : Rn → Rd : f =
n−1∑
i=0

fiti 7→
d−1∑
i=0

(
n/d−1∑
j=0

fjd+i

)
ti

is a ring-homomorphism.

Gentry considered the 2d-dimensional lattice analogue of Λ(LCS), the lattice spanned by a matrix

Ld =

(
Rotd(1) Rotd(θ(h))
Rotd(0) Rotd(q)

)
∈ Z2d×2d .

The lattice Λ(Ld) contains a short vector
(
vecd(θ(f)), vecd(θ(g))

)
, whose norm is approximately equals to that

of
(
vecn(f), vecn(g)

)
(see [Gen01, Appendix A.2]). Therefore, we expect the basis-reduction algorithm, say, LLL

or BKZ, �nds θ(f) and θ(g). We can exploit this partial information θ(f) as follows:

1. Message-Recovery Attack: We have θ(f) · θ(c) = θ(f) · θ(m) + pθ(r) · θ(g) mod q. Thus, the expected
magnitudes of coe�cients of θ(f) · θ(m) + pθ(r) · θ(g) are small, then we can recover θ(m).

2. Secret-Key Recover Attack: Using θ(f) and θ(g) as hint, we again solve the SVP problem and �nd (f , g).
Indeed, Gentry succeeds to �nd f in the case of (n, q, p) = (256, 127, 2) in his experiment.

6 Attacks against Composite n

We employ Gentry’s idea. Let us expand the range of the homomorphism θ : Rn → Rd to

θ : Rn,q[x, y] → Rd,q[x, y].

6.1 Key-Recovery Attack for deg X = 1

We are given X(x, y) = a01x + a01y + a00 and want to �nd a small solution (ux, uy) ∈ R2
n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

Applying the homomorphism θ, we have

θ(a10) · θ(ux) + θ(a01) · θ(uy) + θ(a00) = 0 (in Rd,q).

Thus, we can try to �nd (θ(ux), θ(uy)) by using the lattice-basis reduction algorithms on the lattice of dimension
2d (< 2n).

The concrete attack consists of two sub-attacks, �nding θ(ux) and θ(uy) and �nding ux and uy by using those
hints. The details follow.

Finding θ(ux) and θ(uy): We set

Akr1,d = [Rotd(θ(a10))
> |Rotd(θ(a01))

>] ∈ Zd×2d
q

and want to �nd a short vector vd satisfying

vd · A>kr1,d ≡ vecd(−θ(a00)) (mod q). (3)

We consider a lattice Λ⊥q (Akr1,d). Let t ∈ Z2d be an arbitrary solution of Equation 3. We solve the CVP instance
(Λ⊥q (Akr1,d), t) and obtain w ∈ Λ⊥q (Akr1,d).

Now, we have “short” v̄d := t−w satisfying Equation 3. Let us interpret the vector v̄d as the pair of polynomials
(v
(d)
x , v

(d)
y) ∈ R2

d,q
. and assume that v(d)x = θ(ux) and v

(d)
y = θ(uy).

We have vol(Λ⊥q (Akr1,d)
)
= qd , γ ≈

√
2d/(2πe) ·vol(Λ⊥q (Akr1,d)

)1/2d
=

√
d/πe ·q1/2, and ‖vd ‖ ≤ 2p

√
2d. Since

γ � ‖vd ‖, that is, the target vector is very shorter than the expected length of the shortest vector, we expect
that the LLL/BKZ algorithm can �nd vd .

7

Finding ux and uy : We already have a hint (θ(ux), θ(uy)). In this paper, we consider a simpler method than
Gentry’s one: We set

Akr1,hint =


Rotn(a10)

> Rotn(a01)
>

Id · · · Id︸ ︷︷ ︸
n/d

Id · · · Id︸ ︷︷ ︸
n/d

 ∈ Z(n+2d)×2n
q

and try to �nd a short vector v satisfying

v · A>kr1,hint ≡
(
vecn(−a00), vecd(θ(ux)), vecd(θ(uy))

)
(mod q). (4)

We again consider a lattice Λ⊥q (Akr1,hint). Let t ∈ Z2n be an arbitrary solution of Equation 4. We solve the CVP
instance (Λ⊥q (Akr1,hint), t) and obtain w. Now, we have a short vector v̄ := t − w satisfying Equation 4.

Interpreting the vector v̄ as the pair of polynomials (ux, uy) ∈ R2
n,q , we have a10 · ux + a01 · uy + a00 = 0 in

Rn,q as we wanted.
We have vol(Λ⊥q (Akr1,hint)

)
= qn+d . γ ≈

√
2n/(2πe) · vol(Λ⊥q (Ad)

)1/2n
=

√
d/πe · q1+d/n, and ‖v̄‖ ≤ p

√
2n.

Since γ � ‖v̄‖, we expect that the LLL/BKZ algorithm can �nd the target vector v̄.

6.2 Partial-Message-Recovery Attack for deg X = 1

We try to �nd θ(m) mod p from a ciphertext c of m. If so, it easily breaks the IND-CPA security of the IEC scheme.
For simplicity, we de�ne f (x, y) = pe(x, y) + m, which results in θ(f) = pθ(e) + θ(m). Since θ is a ring

homomorphism from Rn[x, y] → Rd[x, y], we have

θ(c) = θ(r) · θ(X) + θ(f).

Let us consider the following matrix:

Apmr1,d := ©­«
1 x y x2 xy y2

1 A′00 A′10 A′01
x A′00 A′10 A′01
y A′00 A′10 A′01

ª®¬ ∈ Z3d×6d,

where A′i j := Rotd(θ(ai j)) ∈ Zd×d . Let

r̄d :=
(
vecd(θ(r00)), vecd(θ(r10)), vecd(θ(r01))

)
∈ Z3d,

c̄d :=
(
vecd(θ(c00)), vecd(θ(c10)), vecd(θ(c01)), vecd(θ(c20)), vecd(θ(c11)), vecd(θ(c02))

)
∈ Z6d,

f̄d :=
(
vecd(θ(f00)), vecd(θ(f10)), vecd(θ(f01)), vecd(θ(f20)), vecd(θ(f11)), vecd(θ(f02))

)
∈ Z6d .

We have
c̄d ≡ r̄d · Apmr1,d + f̄d (mod q).

Now, we consider a lattice Λq(Apmr1,d) and solve the CVP instance (Λq(Apmr1,d), c̄d) and obtain v̄d . Let us
interpret the vector v̄d as a tuple of polynomials (v00, v10, v01, v20, v11, v02) ∈ R6

d,q
. Suppose that we have v̄d = f̄d ,

if so, we have v00 = θ(f00) and, thus,

v00 ≡ θ(f00) ≡ pθ(e00) + θ(m) ≡ θ(m) (mod p).

We have vol(Λ⊥q (Apmr1,d)
)
= q3d , γ ≈

√
6d/(2πe) ·vol(Λ⊥q (Ad)

)1/6d
=

√
3d/πe ·q1/2, and ‖v̄d ‖ ≤ (n/d)p2√6d.

We expect that the LLL/BKZ algorithm can �nd v̄d , because γ � ‖v̄d ‖.

6.3 Partial-Message-Recovery Attack for deg X = 2

In the case of deg X = deg r = 2, we consider a matrix

Apmr2,d =

©­­­­­­­«

1 x y . . . x4 x3y x2y2 xy3 y4

1 A′00 A′10 A′01
x A′00
y A′00
x2 A′20 A′11 A′02
xy A′20 A′11 A′02
y2 A′20 A′11 A′02

ª®®®®®®®¬
∈ Z6d×15d,

8

where A′i j := Rotd(θ(ai j)) ∈ Zd×d . By the similar way, we solve the CVP instance (Λq(Apmr2,d), c̄d) and obtain
v̄d , which corresponding to a tuple of polynomials (v00, v10, . . . , v04) ∈ R15

d,q
. We output v00 mod p as θ(m) mod p.

We have vol(Λ⊥q (Apmr2,d)
)
= q9d , γ ≈

√
15d/(2πe) · vol(Λ⊥q (Ad)

)1/15d
=

√
15d/2πe · q3/5, and ‖v̄d ‖ ≤

(n/d)p2√15d. We expect that the LLL/BKZ algorithm can �nd v̄d because γ � ‖v̄d ‖.

7 Attacks against Prime n

After reporting the previous attacks to the authors of [AGO+18], they set n as a prime, say, n = 83 (and q =
68339982247) [Aki17]. In this section, we propose a sub-ring attack, which is applicable to the case that n is a
prime.

(Non-trivial) subring: Notice that Rn,q[x] is a subring of Rn,q[x, y]. We consider a ring homomorphism

π : Rn,q[x, y] 7→ Rn,q[x] : f (x, y) 7→ f (x, 0).

We have the relation c(x, y) = r(x, y) · X(x, y) + f (x, y), where f (x, y) = pe(x, y) + m. Applying the ring
homomorphism π, we obtain

π(c) ≡ π(r) · π(X) + π(f) ≡ π(r) · π(X) + p · π(e) + m (mod q) (5)

and notice that the max norm of π(f) is at most that of f = p · e + m.

7.1 Message-Recovery Attack against deg X = 1

Let us recall the message-recovery attack against deg X = 2 in subsection 4.2. We consider

Amr1 :=
©­­«

1 x y x2 xy y2

1 A00 A10 A01

x A00 A10 A01

y A00 A10 A01

ª®®¬ ∈ Z3n×6n,

c̄ := (vecn(c00), vecn(c10), vecn(c01), vecn(c20), vecn(c11), vecn(c02)) ∈ Z
6n,

where Ai j := Rotn(ai j) ∈ Zn×n, and try to solve the CVP instance (Λq(Amr1), c̄) to �nd f̄ .
In the lattice-based attacks, we often shorten the basis of the lattice and the target vector to reduce the

dimension. Here, we give another approach to shorten them.

Concrete Attack: Deleting the rows and columns whose indices contain y from A and c̄, we obtain

A′mr1 :=

(1 x x2

1 A00 A10

x A00 A10

)
∈ Z2n×3n,

c̄′ :=
(
vecn(c00), vecn(c10), vecn(c20)

)
∈ Z5n.

Letting

r̄ ′ = (vecn(r00), vecn(r10)) ∈ Z
2n,

f̄ ′ = (vecn(f00), vecn(f10), vecn(f20)) ∈ Z
3n,

we have
c̄′ ≡ r̄ ′ · A′mr1 + f̄ ′ (mod q),

which corresponds to Equation 5. Thus, solving the CVP instance (Λq(A′mr1), c̄
′), we expect to �nd f̄ ′ and obtain

m := vecn(f00) mod p.

9

Gaussian Heuristic: This shortening reduces the dimension of the lattice from 5n = 415 to 3n = 249. We have
vol(Λq(A′mr2)

)
= qn and γ ≈

√
3n/(2πe) · vol(Λq(A′)

)1/3n
=

√
3n/2πe · q1/3 and ‖ f̄ ′‖ ≤ p2√3n. In our parameter

setting, we have γ ≈ 380.81 and ‖ f̄ ′‖ ≤ 142.02 and the gap between γ and ‖ f̄ ′‖ is not so large. Thus it seems
hard to �nd f̄ ′ in this setting.

7.2 Message-Recovery Attack against deg X = 2

Let us recall the message-recovery attack against deg X = 2 in subsection 4.2. We consider Amr2 ∈ Z
6n×15n and

c̄ := (vecn(c00), vecn(c10), vecn(c01), . . . , vecn(c04)) ∈ Z
15n, and try to solve the CVP instance (Λq(Amr2), c̄) to �nd

f̄ .

Concrete Attack: Deleting the rows and columns whose indices contain y from A and c̄, we obtain

A′mr2 :=
©­­«

1 x x2 x3 x4

1 A00 A10 A20

x A00 A10 A20

x2 A00 A10 A20

ª®®¬ ∈ Z3n×5n,

c̄′ := (vecn(c00), vecn(c10), vecn(c20), vecn(c30), vecn(c40)) ∈ Z
5n.

Letting

r̄ ′ = (vecn(r00), vecn(r10), vecn(r20)) ∈ Z
3n,

f̄ ′ = (vecn(f00), vecn(f10), vecn(f20), vecn(f30), vecn(f40)) ∈ Z
5n,

we have
c̄′ ≡ r̄ ′ · A′mr2 + f̄ ′ (mod q),

which corresponds to Equation 5. Thus, solving the CVP instance (Λq(A′mr2), c̄
′), we expect to �nd f̄ ′ and obtain

m := vecn(f00) mod p.

Gaussian Heuristic: We note that this shortening reduces the dimension of the lattice from 15n = 1243 to 5n =
415. We have vol(Λq(A′mr2)

)
= q2n and γ ≈

√
5n/(2πe) · vol(Λq(A′)

)1/5n
=

√
5n/2πe · q2/5 and ‖ f̄ ′‖ ≤ p2√5n.

In our parameter setting, γ ≈ 106330.25 and ‖ f̄ ′‖ ≤ 183.35. We expect that the LLL/BKZ algorithm can �nd a
short vector f̄ ′ because of this large gap.

7.3 Distinguishing Attack for deg X = 1 and deg X = 2

Further, we try to falsify the IE-LWE assumption, that is to distinguish (X, c) = (X, Xr + e) from (X, u). In order
to do so, we try to �nd a short vector v̄′ from Λq(A′mr1). If c is Xr + e, then we have 〈c̄′, v̄′〉 mod q is “short,”
while if c is chosen uniformly at random, then 〈c̄′, v̄′〉 mod q is distributed according to the uniform distribution
over Zq .

This can also be applied to the case of deg X = 2.

8 Experiments

We run our experiment on a virtual machine on our company’s internal private cloud. Our environment is

– CPU: QEMU Virtual CPU version 2.5+
– Memory: 32GB
– OS: CentOS7 (Linux version 3.10.0-693.5.2.el7.x86_64)
– Software: SageMath version 8.0

10

8.1 Key-Recovery Attack for deg X = 1

We mount our attack in subsection 6.1 with n = 80 and d = 40. We employ the default BKZ algorithm in
SageMath 8.0 as the lattice-basis reduction algorithm and the rounding algorithm to solve the CVP instance. We
generate 100 key pairs and try to �nd a pair (ux, uy) ∈ R2

n,q,p satisfying X(ux, uy) = 0. In our experiment, 84
secret keys are found from 100 public keys. The attack used an average CPU time of 32.68 seconds per key on a
single core of our server. (min: 29.16, avg: 32.68, med: 32.54, max: 39.11)

The script is in Listing 1.2. We did not check the other settings, say, d = 20 or d = 16.

8.2 Partial-Message-Recovery Attack for deg X = 1

We mount our attack in subsection 6.2 with n = 80 and d = 10. We employ the default BKZ algorithm with
block size 10 as the lattice-basis reduction algorithm and the embedding algorithm to solve the CVP instance.
We generate 100 pairs of a public key and a random ciphertext on a random plaintext. In our experiment, all
partial message θ(m) mod p are recovered. The attack used an average CPU time of 0.47 seconds per key on a
single core of our server. (min: 0.29, avg: 0.47, med: 0.46, max: 0.73)

8.3 Partial-Message-Recovery Attack for deg X = 2

We mount our attack in subsection 6.3 with n = 80 and d = 10. We employ the default BKZ algorithm as the
lattice-basis reduction algorithm and the embedding algorithm to solve the CVP instance. We generate 100 pairs
of a public key and a random ciphertext on a random plaintext. In our experiment, all partial message θ(m) mod p
are recovered. The attack used an average CPU time of 33.40 seconds per key on a single core of our server. (min:
20.95, avg: 33.40, med: 32.41, max: 84.77)

8.4 Message-Recovery Subring Attack for deg X = 2

We mount our attack in subsection 7.2 with n = 83 (and q = 68339982247). We employ the BKZ algorithm with
options block_size=10,fp="rr",precision=150 as the lattice-basis reduction algorithm and the embedding
algorithm to solve the CVP instance. We generate 10 pairs of a public key and a random ciphertext on a random
plaintext. In our experiment, all message m are recovered. The attack used an average CPU time of 54842.55 sec-
onds per key on a single core of our server. (min: 51481.51, avg: 54842.55, med: 54127.69, max: 61770.88)

8.5 Distinguishing Subring Attack for deg X = 2

We mount our attack in subsection 7.3 with various prime n with p = 3 and a smallest prime q satisfying
Equation 1. We generate 10 public keys on each n ∈ {83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149} and
try to �nd a short vector v̄′ in the lattice Λq(A′mr2). We employ the BKZ algorithm with options block_size=10,
fp="rr", precision=150 up to n = 113 and block_size=10, fp="rr", precision=200 for n ≥ 127 as the
lattice-basis reduction algorithm.

The timing results are summarized in Figure 1 and the qualities of v̄′ are summarized in Figure 2. The attack
on n = 83, 113, 149 used an average CPU time of 57471.10, 309815.82, 762618.22 seconds per key. The attack on
n = 83, 113 found short vectors v̄′ such that the average of ratio ‖v̄′‖/q is 0.021, and 0.11. In the case of n = 149,
we fail to �nd short vectors v̄′.

We check the quality of v̄′ as follows. We generate 50000 random errors ei(x, y) ∈ F(ΓXr, Rn,q, p) and 50000
random polynomials ui(x, y) ∈ F(ΓXr, Rn,q). We then compute compute δi := v̄′·ēi modc q and ξi := v̄′·ūimodc q,
where we denote by modc the centered modulo operator. We check how they vary.

For example, in the case of n = 113, we take the worst vector v̄′ with ‖v̄′‖/q = 0.12. Although this is the
worst vector, it is enough to distinguish the errors from uniform as the histogram in Figure 3 shows.

9 Conclusion

In this paper, we propose two strategies to reduce the dimension of lattices in lattice-based attacks. The �rst one
is for composite n and is inspired by Gentry’s attack [Gen01] against NTRU Composite [Sil01]. This strategy
exploits the ring homomorphism θ : Rn,q[x, y] → Rd,q[x, y] to reduce the dimension of lattices in lattice-based

11

Fig. 1: Summary of Running Time

attacks. The second one is for prime n and exploits another class of subring Rn,q[x] of Rn,q[x, y] to reduce the
dimension. The message-recovery attack succeeds in the case deg X = 2 but fails in the case deg X = 1. The
distinguishing attack also succeeds in larger n, say, n = 113.

We �nally note that we have already reported our attacks to Akiyama et al. and the parameter settings in their
paper on Cryptology ePrint Archive [AGO+17b] and NIST PQC submission [AGO+17a] re�ected our attacks.
They further investigated lattice-based attacks and estimated the security by following the security-estimation
methods of the LWE problems [AGVW17,ADPS16,BDGL15,Che13]. See their paper for details.

Acknowledgment

The author would like to thank Akiyama, Goto, Okumura, Takagi, Nuida, and Hanaoka for their kindness and
fruitful discussions. The author would like to thank anonymous reviewers of PQCrypto 2018 for their valuable
comments. The author �nally would like to thank the XFARM Team for providing their could.

References

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - A new hope. In
Thorsten Holz and Stefan Savage, editors, USENIX Security Symposium 2016, pages 327–343. USENIX Association,
2016. See also https://eprint.iacr.org/2015/1092. 12

AG06. Koichiro Akiyama and Yasuhiro Goto. A public-key cryptosystem using algebraic surfaces. In PQCrypto 2006,
pages 119–138, 2006. Available at http://postquantum.cr.yp.to/. 1

AGM09. Koichiro Akiyama, Yasuhiro Goto, and Hideyuki Miyake. An algebraic surface cryptosystem. In Stanisław Jarecki
and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 425–442. Springer, Heidelberg, 2009. 1

AGO+17a. Koichiro Akiyama, Yasuhiro Goto, Shinya Okumura, Tsuyoshi Takagi, Koji Nuida, Goichiro Hanaoka, Hideo
Shimizu, and Yasuhiko Ikematsu. Giophantus. Technical report, National Institute of Standards and Technology,
2017. available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions. 2, 12

12

https://eprint.iacr.org/2015/1092
http://postquantum.cr.yp.to/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Fig. 2: Summary of Ratio ‖v̄′‖/q

AGO+17b. Koichiro Akiyama, Yasuhiro Goto, Shinya Okumura, Tsuyoshi Takagi, Koji Nuida, Goichiro Hanaoka, Hideo
Shimizu, and Yasuhiko Ikematsu. A public-key encryption scheme based on non-linear indeterminate equations
(Giophantus). Cryptology ePrint Archive, Report 2017/1241, 2017. Available at https://eprint.iacr.org/2017/1241.
2, 12

AGO+18. Koichiro Akiyama, Yasuhiro Goto, Shinya Okumura, Tsuyoshi Takagi, Koji Nuida, and Goichiro Hanaoka. A
public-key encryption scheme based on non-linear indeterminate equations. In SAC 2017 – Proceedings of the
24th Annual Conference on Selected Areas in Cryptography, volume 10719 of Lecture Notes in Computer Science,
pages 199–218. Springer, Heidelberg, 2018. To appear. 1, 2, 3, 4, 5, 9

AGVW17. Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the expected cost of
solving usvp and applications to LWE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 297–322. Springer, 2017. 12

Aki17. Koichiro Akiyama. Private communication, October 2017. 2017-10-04. 9
BDGL15. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching with

applications to lattice sieving. IACR Cryptology ePrint Archive, 2015:1128, 2015. 12
Che13. Yuanmi Chen. Réduction de réseau et sécurité concrète du chi�rement complètement homomorphe. PhD thesis, 2013.

Informatique Paris 7 2013. 12
CS97. Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy, editor, EUROCRYPT ’97, volume

1233 of LNCS, pages 52–61. Springer, Heidelberg, 1997. 6
Gen01. Craig Gentry. Key recovery and message attacks on NTRU-composite. In Birgit P�tzmann, editor, EUROCRYPT

2001, volume 2045 of LNCS, pages 182–194. Springer, Heidelberg, 2001. 1, 7, 11
GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic

constructions. In Cynthia Dwork, editor, STOC 2008, pages 197–206. ACM, 2008. see also https://eprint.iacr.org/
2007/432. 3

Sil01. Joseph H. Silverman. Wraps, gaps, and lattice constants. Technical Report 11, version 2, NTRU Cryptosystems,
2001. 1, 6, 11

13

https://eprint.iacr.org/2017/1241
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432

0

1000

2000

3000

4000

5000

6000

7000

8000

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

n=113

error random

Fig. 3: Histogram of δi (blue lines) and ξi (orange lines). We count q/30

A Implementation

Listing 1.1: ref.sage
Reference Implementation of IEC
Load this file
n = 80; p=3; wx=1; wr=1;
load('ref.sage ')

Parameters ====================
def gen_G(upper_bound , lower_bound):

compare with total deg. if equal , (1,0) < (0,1)
def my_key(a):

return (a[0] + a[1], a[1], a[0])
i for index of x, j for index of y
l = [(i,j) for j in range(upper_bound +1) \

for i in range(upper_bound +1) \
if (lower_bound <= i+j) and (i+j <= upper_bound)]

return sorted(l, key=my_key)

GX = gen_G(wx ,0); Gr = gen_G(wr ,0)
GXr = gen_G(wx+wr ,0); GXp = gen_G(wx ,1)

def bd(n,p):
return len(GXr) * p * (p-1) * (n * (p -1))^(wx+wr)

q = next_prime(bd(n,p))

Rings ====================

14

Zq = Integers(q)
R.<t> = Zq[]
Rq = R.quotient(t^n-1)
F.<x,y> = Rq[]

Random polys ====================
def random_tpoly(p): return R([randint(0,p-1) for _ in range(n)])

def random_template(p,indices):
a = 0
for (i,j) in indices:

a += Rq(random_tpoly(p)) * x^i * y^j
return a

def random_r (): return random_template(q,Gr)
def random_e (): return random_template(p,GXr)

Cryptosystem ====================
def skgen ():

return random_tpoly(p), random_tpoly(p)

def pkgen(ux,uy):
X = random_template(q,GXp)
X -= X(ux,uy)
return X

def encrypt(X,m):
return Rq(m)+ X * random_r () +p * random_e ()

def decrypt(ux,uy,c):
cu = c(ux,uy)
mt = cu.lift (). change_ring(ZZ). change_ring(Integers(p))
output mt in Rq
return mt.change_ring(Integers(q))

Listing 1.2: KRA-PS1.sage
key -recovery attack for PS1

Make the experiment reproducible
(at least on given platform/Sage version)
set_random_seed (0)

n = 80; p=3; wx=1; wr=1; d=int(n/2)

load('ref.sage')

Rings ====================
Rqd = R.quotient(t^d-1)
Fd = F.change_ring(Rqd)

====================
def circulant_matrix(b,n):

Input: b in Zq[t] (not Zq[t]/(t^n-1) !!!)
Output: circlant b
return matrix(ZZ,n,n,lambda i,j: b.monomial_coefficient(t^((j-i) % n)))

def vectorize(b,n):
return circulant_matrix(b,n)[0]

def roundingCVP(v,L):

15

l = v * L.inverse ()
lround = vector(map(lambda x: round(x), l))
w = lround * L
return w

def recover_folded_sk_roundingCVP(folded_X):
Alist = []
for (i,j) in GXp:

a = folded_X.monomial_coefficient(Fd(x^i*y^j))
Alist.append(circulant_matrix(a.lift(),d). transpose ())

A_kr = block_matrix(ZZ ,1,len(GXp),Alist)
Z = block_matrix(ZZ ,[[A_kr], [q * identity_matrix(d*len(GXp))]])
Z = Z.echelon_form(include_zero_rows=false)
L = (q * Z.transpose (). inverse ()). change_ring(ZZ)
L = L.BKZ()

solve CVP by rounding
a00 = folded_X.monomial_coefficient(Fd(1)). lift()
target_vector = vector(Zq,list(vectorize(-a00 ,d)))
Aq = A_kr.change_ring(Zq)
target_t = Aq.solve_right(target_vector). change_ring(ZZ)
w = roundingCVP(target_t ,L)
v = target_t - w
return v, R(list(v[0:d])), R(list(v[d:2*d]))

def recover_sk_from_folded_sk(X,vv):
def f(i,j):

return 1 if int(n/d) * i <= j and j < int(n/d) * (i+1) else 0

Alist = []
for (i,j) in GXp:

a = X.monomial_coefficient(F(x^i*y^j))
Alist.append(circulant_matrix(a.lift(),n). transpose ())

A_kr = block_matrix(ZZ ,1,len(GXp),Alist)

Tp = matrix(ZZ,len(GXp),len(GXp)*int(n/d),lambda i,j: f(i,j))
T = Tp.tensor_product(identity_matrix(d))

A_kr_hint = block_matrix(ZZ ,[[A_kr],[T]])
Z = block_matrix(ZZ ,[[A_kr_hint], [q * identity_matrix(len(GXp)*n)]])
Z = Z.echelon_form(include_zero_rows=false)
L = (q * Z.transpose (). inverse ()). change_ring(ZZ)
L = L.BKZ()

solve CVP by rounding
a00 = X.monomial_coefficient(F(1)). lift()
target_vector = vector(Zq,list(vectorize(-a00 ,n)) + list(vv))
Aq = A_kr_hint.change_ring(Zq)
target_t = Aq.solve_right(target_vector). change_ring(ZZ)
w = roundingCVP(target_t ,L)
v = target_t - w
return v, R(list(v[0:n])), R(list(v[n:2*n]))

def test(pairs=10,debug=true):
succ = 0
tottime = 0.0
for npair in range(pairs):

ux ,uy = skgen()
X = pkgen(ux,uy)
if debug:

16

print "----- Key pair %d -----" % (npair)

tm = cputime(subprocesses=True)
folded_X = X.change_ring(Rqd)
folded_v , folded_ux , folded_uy = recover_folded_sk_roundingCVP(folded_X)
if debug:

print "X", X
print "folded X", folded_X
print "folded v", folded_v
print "folded ux", folded_ux
print "folded uy", folded_uy

v, ux_cand , uy_cand = recover_sk_from_folded_sk(X,folded_v)
tottime += float(cputime(tm))
if debug:

print "v", v
print "ux_cand", ux_cand
print "uy_cand", uy_cand

if ux == ux_cand and uy == uy_cand:
succ += 1

print "===== Results ====="
print "Total time for extraction: %f seconds." % (tottime)
print "Average time for extraction: %f seconds." % (tottime/pairs)
print "Successful recoveries: %d/%d (%f)." % \

(succ ,pairs ,RR(100* succ/pairs))

test (100, false)

17

	Practical Cryptanalysis of a Pulblic-key Encryption Scheme Based on Non-linear Indeterminate Equations at SAC 2017

