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Abstract

The security of almost any real-world distributed system today depends on the participants having some “rea-
sonably accurate” sense of current real time. Indeed, to name one example, the very authenticity of practically any
communication on the Internet today hinges on the ability of the parties to accurately detect revocation of certificates,
or expiration of passwords or shared keys.

However, as recent attacks show, the standard protocols for determining time are subvertible, resulting in wide-
spread security loss. Worse yet, we do not have security notions for network time protocols that (a) can be rigorously
asserted and (b) rigorously guarantee security of applications that require a sense of real time.

We propose such notions, within the universally composable (UC) security framework. That is, we formulate
ideal functionalities that capture a number of prevalent forms of time measurement within existing systems. We
show how they can be realized by real-world protocols, and how they can be used to assert security of time-reliant
applications — specifically, certificates with revocation and expiration times. This allows for relatively clear and
modular treatment of the use of time in security-sensitive systems.

Our modeling and analysis are done within the existing UC framework, in spite of its asynchronous, event-
driven nature. This allows incorporating the use of real time within the existing body of analytical work done in this
framework. In particular it allows for rigorous incorporation of real time within cryptographic tools and primitives.

1 Introduction
Most existing large-scale networks, and in particular the global Internet, are predominantly asynchronous and do not
require the participants to be “synchronized” with other entities in any way or have a global sense of time. In fact, this
non-reliance on a common notion of time can be seen as one of the reasons for the success of the TCP/IP design.

However, as it turns out, several important mechanisms that are central to the usability of networks as a platform
for communication and distributed computation do indeed require parties to have some global, common sense of
real-time. Interestingly, the need for a global sense of time does not arise from the desire to provide synchronous
communication, quality of service, or other “sophisticated” networking primitives. Rather, awareness to real time is
often coupled with the safe use of cryptography to thwart attacks against the network.

One prevalent use of real time is in revoking, and limiting the duration of certificates for public keys. Indeed,
verifying the validity of the public key of one’s peer for communication is a crucial step in setting up authenticated
communication, which in turn is the basis for practically any security-aware interaction on the Internet today. Setting
time limit to the validity of certificates, and furthermore revoking certificates when necessary, is a crucial component
in making Public-Key Infrastructure (PKI) a valid, usable basis for secure communication. Such ability, in turn, hinges
on having good sense of current real time. Furthermore, not only mainframe servers need to have such ability – even
low end clients need it, in fact arguably even more so than servers. Indeed, without a good sense of current time, a
client cannot verify whether a certificate is valid, or whether a given certificate revocation list is the up-to-date one.
∗Supported by National Science Foundation Grant #1414119 for the MACS Frontier project (bu.edu/macs). This is an extended version of [1].
†Member of CPIIS. Supported in addition by ISF grant 1532/14.
‡Work done while at Boston University.
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Other uses of real time to improve security include various forms of timestamping for contracts and timing transactions
in public ledgers.

It may appear that measuring real time is a relatively easy task; indeed, most computing platforms today, even low-
end ones, are equipped with a built-in clock. Still, synchronizing and adjusting these clocks, and in particular reaching
agreement on time in a large, asynchronous network like the Internet turns out to be non-trivial. In particular, NTP,
the current IETF standard protocol for computers on the Internet to determine time [2], is rather complex. It assumes
a hierarchical system of “time servers,” where lower-stratum servers are assumed to have a more accurate notion of
time, and higher-stratum servers determine time by querying several lower-stratum ones and performing some complex
aggregation of the responses. The protocol has mechanisms for protecting from errors introduced by network delays,
but is built on complete trust in the queried time servers, as well as in the authenticity of the communication. Indeed,
NTP has been demonstrated to be easily subvertible, resulting in massive loss of security [3–6].

Several variants of NTP such as sntpd [7], ptpd [8], chronyd [9], OpenNTPd [10], ntimed [11], and Roughtime [12]
have been proposed. These protocols offer varying degree of clock accuracy, correctness, precision and security
guarantees. They have different packet semantics and a different mechanism on how the querying client chooses to
update its local time, if at all, after interacting with one or potentially many time servers.

When coming to assess these proposals, it becomes evident that we don’t currently have a good measure to test
these proposals against. Indeed, while great many analytical works propose ways to model time (either real, global, or
relative) within network protocols, and even within security protocols, we do not have a way to rigorously capture the
security guarantees from a network time protocol that provably suffice for security-sensitive applications that require
an agreed-upon time measurement— for instance for guaranteeing the validity of certificates in a way that, in turn,
will guarantee authenticated and secure communication. (See Section 1.4 for a brief account of related work on the
modeling of time.)

1.1 Our Contributions
We provide a modular, composable formalism of the security requirements from network-time protocols — or, more
generally from protocols that provide a reading of real time with the assistance of other nodes over an asynchronous
network. Specifically, we propose formal abstractions of secure network time, and show that:

• Our abstractions of network-time suffice for securely incorporating expiration times in certificates, as well as
freshness guarantees for public certificate lists, in a way that guarantees PKI-based secure communication even
in face of an adversary who tries to subvert the measurement of time and at the same time corrupts revoked and
expired certificates.

• Our abstractions are realizable by simple protocols that mimic the behavior of authenticated NTP.

We use the Universally Composable (UC) security framework as a basis for our formalism. Indeed, the UC framework
provides a general mechanism for specifying security properties of cryptographic protocols in a way that facilitates
composing protocols together, and in particular guarantees that composition of secure components results in overall
security of the composed protocol. Furthermore, the UC framework is geared towards analyzing the security of
cryptographic protocols, which facilitates incorporating the results in this work with existing analytical results for
cryptographic protocols.

Specifically, we build upon an existing analytical work by Canetti et al. that asserts, within the UC framework, the
security of authentication and key exchange protocols that are based on global public-key infrastructure (PKI) [13].
We incorporate our analysis of timing consensus achieved via network time into the UC analysis of a global PKI. The
combined analysis extends the security guarantees provided by [13] to the case of revocable and expirable certificates.

Our methodology of incorporating network time into existing UC protocols and functionalities is quite generic.
Hence, our work paves the way toward instantiating time consensus and reaping its security benefits within other UC
formalisms in a seamless fashion.

Technical and Conceptual Challenges. A priori it appears that the UC framework might be unsuitable for repre-
senting real time. Indeed, the framework is centered around modeling completely asynchronous, event-driven systems.
Furthermore, in the UC formalism the basic computational elements (Turing machine instances) are activated one by
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one, and the order of execution and activation of components is under total adversarial control. This is done with good
reason, namely in order to provide security even against adversaries that have full control over the network; however,
this structure appears to be incompatible with the modeling of real time that advances “at the same rate” within all
components of a physically spread-out system. (It should be noted that this asynchronous, event-driven formalism that
gives the adversary total control over the scheduling of events is not unique to the UC framework. Indeed, it is the
common methodology for modeling and analyzing cryptographic protocols in general — for the same reason outlined
above.)

Our first contribution is thus to propose a construct that represents global time even within such a system. The
construct is simple: It is a trusted entity (formalized as a global ideal functionality) that keeps a counter. This counter
is incremented adversarially by the environment, but is guaranteed to never decrease. All entities in the system have
access to this counter (or, rather, some perturbed version of it, as described below) — which they treat as Time. Indeed,
this adversarially incremented counter does not in any way approximate the passing of real physical time. Still, we
argue that from the point of view of capturing the validity of mechanisms that use time in order to provide some
security guarantees, this simple gadget is good enough. Said otherwise, any security property that is expressible and
asserted within our formal framework would be preserved even when implemented in a real system that has access to
real physical time.

Another set of challenges has to do with the modeling of the “imperfections” that one encounters when using the
currently available mechanisms for measuring time. We consider two main methods for measuring time, each with its
own imperfections: One method is measuring one’s own local physical clock. This method provides fast response and
relatively accurate measurement of time elapsed between events that occur at the same location; however, the response
may be arbitrarily “shifted” relative to actual real time. The second method is asking one (or more) other entities in the
network (“time servers”) for their current time reading. This method can potentially provide reading of real time, but
is susceptible to measurement errors due to network delays, spoofing attacks, and faulty servers. It may also be slow
in providing a response. Indeed, a good network time protocol is one that combined these two methods in a “secure
way” in order to provide a reliable reading of real time. Our goal is to capture that property.

1.2 Our Formalism in a Nutshell
We provide a brief overview of our formalism. See Figure 1 for the relationships between these primitives.

Fig. 1: Overview of our formalism, from the exact, approximate, and relative time functionalities to ideal certification
with limited-time certificates. Double arrows mean “UC realizes,” and single arrows mean “uses as a subroutine.”
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The GUC framework. Writing a specification within the Global Universal Composability (GUC) framework amounts
to writing a program for an ideal functionality F that captures the expected behavior of the analyzed system π. Here
F captures both the expected functionality and the expected security properties. Formally, system π is said to GUC-
realize F if for any adversary A there exists a simulator S such that no external environment E can tell whether it is
interacting with A and π or with S and F . Here E plays the role of a calling protocol that provides inputs to π (or
F) and obtains the outputs of π (or F), whereas A controls the communication between the parties running π. The
communication between S and F captures the “security imperfections” that F allows.

The main added feature of the GUC framework beyond the original UC framework is that it allows incorporating
in the model of execution “global functionalities” that represent trusted services that exist in the system regardless of
the analyzed protocol. That is, the global functionalities exist both in the ideal model for functionality F and in the
model for executing π. This modeling allows to better capture long-term services such as public-key infrastructure (as
done in [13]), or network time — as done here.

Exact and Approximate Clocks. Our first basic construct is a global ideal functionality GrefClock that provides an
exact clock. Formally, it provides a non-decreasing counter that the environment can increment at will. In a sense, the
clock’s idealistic time serves as a reference or benchmark to which everyone aspires, even though none of the parties
directly interacts with GrefClock itself.

Instead, parties only interact with GrefClock indirectly through a timer functionality and a network clock functionality
that provide approximate relative and absolute notions of time, respectively. The timer functionality Ftimer captures a
cheap but low-latency device that can only provide measurements locally without delay, and the measurements “drift”
significantly.

The network clock Gclock provides information more globally, to all parties in the system; however it may not
respond to queries right away (or ever!).This functionality captures the behavior expected from a single client-server
execution of the network time protocol, since the adversary controls the delays of packets transmitted over the asyn-
chronous network. On the plus side, Gclock guarantees that timing measurements are approximately accurate (up to
some bound) at the moment that they are eventually given.

Realizing Gclock. We provide two network protocols that realize the network clock functionality. The first protocol
πtimeSync involves a single query-response exchange between a clientC with has access to a local timer (i.e., an instance
of Ftimer) and a server S that has access to her own clock. This protocol allows the client to “bootstrap” the server’s
clock into one of her own, as long as the server is honest (i.e., uncorrupted).

We also capture a generalization of Gclock whose accuracy depends on multiple servers in such a way that it is robust
to the corruption of a few servers. This generalization, denoted GmultiClock, allows a client to request time from multiple
servers (each with their own Gclock) and then to select time as a function of all responses obtained before its Ftimer
times out (e.g., by picking the median response). By selecting the time in this way, the client obtains resilience against
network corruptions. Even if many of the sessions are compromised, the client’s timing measurement approximates the
reference time as long as the majority of the servers whose Gclock boxes responded quickly to a query were uncorrupted,
akin to the “sleepy model” of consensus [14, 15].

PKI with Expiration and Revocation. The final piece in our formalism is a time-aware variant of public-key
infrastructure and signature verification. The starting point of our formalism is the certified signature verification
functionality Gcert of [13] that utilizes infinite-duration keys. However, since the guarantee provided by Gcert has no
time limit, it follows that Gcert cannot be realized in a system where signature keys get compromised after some time
has elapsed.

In this work, we extend Gcert by allowing each signer to provide an expiration time t∗; furthermore, the signer can
update this time in order to emulate revocation. Our extended functionality guarantees that if the global time at the
time of verification is larger than t∗ plus some “fudge factor” that accounts for the inaccuracies in time measurement,
then the verification necessarily fails. This “fudge factor” is of crucial importance: it determines the length of time for
which certificate authorities must respond to CRL or OCSP queries about certificates after they expire.
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Functionality Fauth

1. Upon receiving (Send, sid, B,m) from party A, send (Sent, sid, A,B,m) to A.

2. Upon receiving (Send, sid, B′,m′) from the A, do: If A is corrupted then output (Sent, sid, A,m′) to party B′.
Else, output (Sent, sid, A,m) to party B. Halt.

Figure 2: The authenticated communication functionality, Fauth. Reproduced from [16].

1.3 Additional Discussion
Incorporating Time in Existing UC Modeling, a General Paradigm. Our method for incorporating the time
constraints in Gcert and in the protocol that realizes it minimal and general: To obtain time-aware certification, we only
add a simple, self-contained time check to the existing code of to Gcert. Additionally, we observe that the security of
timing-agnostic protocols is unaffected by the presence of time-sensitive protocols.

Putting together these two observations, we obtain a general methodology for adding time-sensitive protocols and
functionalities to the existing UC framework and its corpus of secure functionalities in a seamless way.

Time is Global. We model time as a global construct. That is, the time-related functionalities GrefClock, Gclock, and
GmultiClock are global: they are accessible by anyone in the system. In particular, they always exist both in the “ideal”
and in the “real” system. This modeling simplifies the composition of protocols that use these joint functionalities and
provide a closer modeling of reality. We choose to modelFtimer as a local functionality since it represents a service that
is available only locally to a party. However this functionality too can in principle be modeled as a global functionality.
(Such modeling might indeed be useful for analyzing systems where several protocols that use time have access to the
same local physical clock.)

Implementing Authenticated Communication. Our network time protocols rely upon authenticity of communica-
tion between C and S. When specifying the protocols, we assume the existence of an ideal authenticated communi-
cation functionality Fauth [16] as specified in Fig. 2, and we use the modularity of the framework to remain agnostic
about Fauth’s underlying implementation.

We can instantiate Fauth using a PKI-based authenticated communication, as in, e.g., [13]. But we intend to use
time to bolster the PKI! Ergo, we must avoid circularity in our arguments.

One way to do so is to assume that time servers have certificates that do not expire, or else where revocation is
done out-of-band. Alternatively can instantiate Fauth as NTP does: have the client and server use an out-of-band key
exchange mechanism to perform symmetric key authentication. Specifically, the maintainer of most stratum 1 NTP
servers, NIST, shares keys with its clients over U.S. mail or fax machines [17]. This method completely circumvents
the reliance on PKI for realizing Fauth. Potentially, there are other out-of-band mechanisms for key exchange such as
biometric human identification.

1.4 Related Work
The ability for parties to obtain a notion of time is an integral part of distributed computations [18]. These computations
often require that timing measurements satisfy specific properties depending on the nature of the computation. The
most basic of these is that time be monotonically increasing to allow for a consistent and correct ordering of events
in, e.g., a time stamping protocol [19–21]. However, many protocols such as those of [22] and [23] require stronger
guarantees, namely that time is both synchronized between parties and advances in a relatively uniform and expected
pace.

A number of formalisms have been proposed over the years for incorporating time (both absolute and relative) in
the security analysis of protocols. Some of these formalisms, like ours, are based on the UC framework [23–27]. We
briefly review them.
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UC Analyses of Time. The modeling of time by Kalai et al. [23] is perhaps the closest to the one in this work. There
too, time is modeled as an additional “counter” that is available to all machines, and is incremented by the adversary on
each machine, individually, subject to some global constraints. However, there it is assumed that all parties have ideal
access to the global time (and furthermore that communication delays are within known time bounds.) In fact our work
can be viewed as a more detailed and “faithful” modeling of the propagation of time in real-life networks, in a way
justifying the more abstract modeling of [23]. In other words, if one assumes that a majority of the instances of GP,S,Σclock
used by the parties are uncorrupted, [23] can be used as an additional application for our modeling. Furthermore, the
impossibility result in [23] implies that one cannot realize GP,S,Σclock or GrefClock with appropriate parameters in the plain
model.

Katz et al. [26] and Canetti [27] provide, within the UC framework, ideal functionalities that give abstractions that
mimic synchronous communication among participants. However, these works do not provide ways for realizing these
abstractions from existing mechanisms like network time. Furthermore, these abstractions do not suffice to capture the
prevalent use of limited-time certificates.

Backes et al. [24] provide an alternative formalism of time based on the UC framework that differs from the present
formalism in a number of crucial ways. First, [24] significantly modifies the existing UC framework, thus making its
formalism incompatible with the body of work in the existing framework. Second, the [24] modeling assumes that
machines have specific and fixed relative speeds and where time passage is directly proportional to the number of
computational steps. In contrast, in our modeling time is not necessarily tied to other computational aspects of the
system. Third, [24] analyzes only standard, time-unaware protocols; the modeling of time is used only to bound the
success of attacks on the protocol. In contrast, we model protocols where time is crucially used by the protocol itself.

Vajda [25] provides a number of high-level proposals for general modeling of real-time within the UC framework.
However this work does not address network time protocols or the cryptographic applications treated here.

Security-Aware Network Time Protocols. Several frameworks [5] [28] [29] [30] aim to define and analyze the
security requirements of time synchronization protocols. RFC 7384 [29] provides guidelines for important security
features of PTP and NTP as they relate to possible attacks. Itkin and Wool [30] build on this with new attack vectors
and suggested mitigations for PTP, but they do not provide proofs for their mitigations nor any accuracy guarantees
for the time protocols themselves.

Dowling et al. [28] extend NTP to include lightweight authentication for servers and provide game based proofs
for its accuracy relative to the time at the server. They do not provide any accuracy guarantees relative to a global
notion of time, and thus they fail to provide the global synchronization that is necessary for time sensitive crypto such
as PKI.

Malhotra et al. [5] focus on several security concerns when deploying NTP in practice, at the expense of full
coverage. They study concrete security bounds for NTP against off/on-path attacks in the standalone model. By
contrast, the security guarantee in our work addresses composable security and additionally covers adversaries who
have full control over the network and may use it to drop packets sent by honest parties. Both of these properties are
crucial towards our work in Section 6 of realizing time-sensitive crypto primitives like the PKI.

1.5 Organization
The paper is organized as follows. Section 2 gives an overview of the Network Time Protocol. In Section 3, we
introduce three new ideal functionalities: GrefClock, GP,S,Σclock , and FC,∆C ,ΣC

timer . Section 4 formalizes and proves the
security of a protocol that permits a single server to share its view of time with a single client. Section 5 generalizes
this basic protocol in two ways for improved resilience: a client takes timing measurements from multiple servers, and
the network topology is dispersed to reduce resource and network resource congestion. Finally, Section 6 integrates
our time consensus protocol with time-sensitive applications such as PKI.

2 Preliminaries
This section summarizes (separately!) the universally composable security framework and the network time protocol.
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2.1 Universally Composable Security
We provide a brief overview of the UC framework. See [27] and [31] for more details. (This overview is taken almost
verbatim from [13].)

We focus on the notion of protocol emulation, wherein the objective of a protocol π is to imitate another protocol
φ. In this work, the entities and protocols we consider are polynomial-time bounded Interactive Turing Machines
(ITMs), in the sense detailed in [27].

Systems of ITMs. To capture the mechanics of computation and communication among entities, the UC framework
employs an extension of the ITM model. A computer program (such as for a protocol, or perhaps program of the
adversary) is modeled in the form of an ITM. An execution experiment consists of a system of ITMs which are
instantiated and executed, with multiple instances possibly sharing the same ITM code. A particular executing ITM
instance running in the network is referred to as an ITI. Individual ITIs are parameterized by the program code of the
ITM they instantiate, a party ID (pid) and a session ID (sid). We require that each ITI can be uniquely identified by the
identity pair id = (pid,sid), irrespective of the code it may be running. All ITIs running with the same code and session
ID are said to be a part of the same protocol session, and the party IDs are used to distinguish among the various ITIs
participating in a particular protocol session.

The Basic UC Framework. At a very high level, the intuition behind security in the basic UC framework is
that any adversary A attacking a protocol π should learn no more information than could have been obtained via
the use of a simulator S attacking protocol φ. Furthermore, we would like this guarantee to hold even if φ were to
be used as a subroutine in arbitrary other protocols that may be running concurrently in the networked environment
and after we substitute π for φ in all the instances where it is invoked. This requirement is captured by a challenge to
distinguish between actual attacks on protocol φ and simulated attacks on protocol π. In the model, attacks are executed
by an environment E that also controls the inputs and outputs to the parties running the challenge protocol. The
environment E is constrained to execute only a single instance of the challenge protocol. In addition, the environment E
is allowed to interact freely with the attacker (without knowing whether it isA or S). At the end of the experiment, the
environment S is tasked with distinguishing between adversarial attacks perpetrated byA on the challenge protocol π,
and attack simulations conducted by S with protocol φ acting as the challenge protocol instead. If no environment can
successfully distinguish these two possible scenarios, then protocol π is said to UC-emulate the protocol φ.

Balanced environments. In order to keep the notion of protocol emulation from being unnecessarily restrictive, we
consider only environments where the amount of resources given to the adversary (namely, the length of the adversary’s
input) is at least some fixed polynomial fraction of the amount of resources given to all protocols in the system. From
now on, we only consider environments that are balanced.

Definition 1 (UC-emulation). Let π and φ be multi-party protocols. We say that π UC-emulates φ if for any adver-
sary A there exists an adversary S such that for any (constrained) environment E , we have:

EXECπ,A,E ≈ EXECφ,S,E

Defining protocol execution this way is sufficient to capture the entire range of network activity that is observable
by the challenge protocol but may be under adversarial control.

Furthermore, the UC framework admits a very strong composition theorem, which guarantees that arbitrary in-
stances of φ that may be running in the network can be safely substituted with any protocol π that UC-emulates it.
That is, given protocols ρ, π and φ, such that ρ uses subroutine calls to φ, and protocol π UC-emulates φ, let ρφ→π be
the protocol which is identical to ρ except that each subroutine call to φ is replaced by a subroutine call to π. We then
have:

Theorem 1 (UC-Composition). Let ρ,π and φ be protocols such that ρ makes subroutine calls to φ. If π UC-emulates
φ and both π and φ are subroutine-respecting, then protocol ρφ→π UC-emulates protocol ρ.
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The Generalized UC Framework. As mentioned above, the environment E in the basic UC experiment is unable to
invoke protocols that share state in any way with the challenge protocol. In contrast, in many scenarios we would like
to be able to analyze challenge protocols that share information with other network protocol sessions. For example,
protocols may share information via a global setup such as a public Common Reference String (CRS) or a standard
Public Key Infrastructure (PKI). To overcome this limitation and allow analyzing such protocols in a modular way, [31]
propose the Generalized UC (GUC) framework. The GUC challenge experiment is similar to the basic UC experiment,
only with an unconstrained environment. In particular, now E is allowed to invoke and interact with arbitrary protocols,
and even multiple sessions of the challenge protocol. Some of the protocol sessions invoked by E may even share state
information with challenge protocol sessions, and indeed, those protocol sessions might provide E with information
related to the challenge protocol instances that it would have been unable to obtain otherwise. To distinguish this
from the basic UC experiment, we denote the output of an unconstrained environment E , running with an adversaryA
and a challenge protocol π in the GUC protocol execution experiment, by GEXECπ,A,E . GUC emulation is defined
analogously to the definition of basic UC emulation outlined above:

Definition 2 (GUC-emulation). Let π and φ be multi-party protocols. We say that π GUC-emulates φ if for any
adversary A there exists an adversary S such that for any (unconstrained) environment E , we have:

GEXECπ,A,E ≈ GEXECφ,S,E .

The UC theorem directly extends to the GUC model.

2.2 The Network Time Protocol (NTP)
As the name suggests, NTP permits several computers on a network to share information about the time.

In this work, we focus on NTP’s most popular method of operation: a hierarchical client-server fashion in which a
client queries a server who has (ostensibly) higher fidelity timing information than the client. A client can use multiple
invocations of NTP’s fundamental query-response protocol (either with the same server or with multiple servers) to
gather several timing measurements, which it then uses to set or update its own notion of time.

Query-Response Protocol. We first describe NTP’s two-round timing exchange protocol over IPv4. Four timing
measurements are relevant during the execution of this protocol:

T1 Origin timestamp. Client’s system time at the moment that the client sends the query.

T2 Receive timestamp. Server’s system time at the moment that the server receives the query.

T3 Transmit timestamp. Server’s system time at the moment that the server sends the response.

T4 Destination timestamp. Client’s system time at the moment that the client receives the response.

The client’s query packet includes measurement T1. The server’s response packet repeats T1 and appends T2 and T3.
The client locally computes T4 upon receipt of the response packet.

Setting, or Updating, the Client’s Time. The client makes two assumptions when analyzing the timestamps.

1. Her clock and the server’s clock move in relative synchrony while the NTP session is live (even if they have
different absolute notions of time).

2. The network delay is symmetric. That is, the query packet’s client→ server latency equals the response packet’s
server→ client latency.

Deviations from these assumptions do lead to small but bounded error in the client’s eventual measurement of time;
we will return to this issue later.

If assumption 1 is accurate, then the round-trip network delay δ during the exchange equals:

δ = (T4 − T1)− (T3 − T2) (1)
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If assumption 2 is accurate, then the absolute gap between the server and client clock is T2 − (T1 + δ
2 ) for the client

query, and T3 − (T4 − δ
2 ) for the server response. Averaging these two quantities gives us the absolute offset between

the client and server clocks:
θ = 1

2 ((T2 − T1) + (T3 − T4)) (2)

While talking to multiple servers, the client chooses a single server to which it synchronizes its local clock. This
decision is made adaptively by a set of selection, cluster, combine and clock discipline algorithms. For the purpose
of this paper, we assume that the client will make an update to its clock if median θ is less than a certain threshold.
Client/server packets are not authenticated by default, but a Message Authentication Code (MAC) can optionally be
appended to the packet [2, Sec. 13]. In this work, we restrict our attention to authenticated NTP.

3 Modeling Absolute and Relative Time
In this section, we introduce three ideal functionalities that aid a client C or server S to learn the time. The first
two provide exact and approximate absolute notions of time, whereas the third functionality approximates the relative
passage of time. These functionalities are depicted formally in Figs. 3 through 5. We stress that the functionalities
only respond to the methods explicitly stated in the figures; when given a message that cannot be parsed into one of
the provided forms, they simply hand the execution back to the caller without providing any output.

The functionalities themselves are referred to as Gparamaters
functionality for global functionalities and as Fparamaters

functionality for local
(i.e., non-global) functionalities. Protocols are specified in the format πparamaters

functionality. The protocols and functionalities
may use subroutines, which we indicate in the text and sometimes denote using square brackets.

3.1 The Reference Clock Functionality GrefClock

We begin by introducing a simple global functionality GrefClock that provides a universal reference clock. When queried,
it provides an abstract notion of time represented as an integer G. It is monotonic, and only the environment may
increment it; we stress that the simulator S cannot forge the reference time.

In this work we use subscripts to denote the relative order in which requests are made to the reference clock.
Hence, if x > y then Gx ≥ Gy .

Figure 3 formally codifies GrefClock. It functions similarly to Vadja’s ideal notion of time [25], with one crucial
exception: we do not intend for any honest party to access GrefClock directly. Instead, in this work GrefClock exclusively
functions as a subroutine for the remaining two functionalities.

3.2 Delayed Approximate Clock Functionality GP,S,Σclock

In Figure 4, we construct the global functionality GP,S,Σclock that provides delayed, approximate time. This functionality
has three major distinctions from GrefClock.

First, the clock communicates with a single party P , who we refer to as its owner, and the accuracy of the clock
can be influenced by (potentially but not necessarily different) party S. This degree of freedom allows us to use the

Functionality GrefClock

GrefClock maintains an integer G corresponding to the reference time. When created, the box initializes G = 0.

IncrementTime: Upon receiving an IncrementTime request from E , update G ← G + 1 and send an ok message to
E . Ignore IncrementTime requests sent by any other entity.

GetTime: Upon receiving a GetTime command, return G to the calling entity.

Figure 3: Global Ideal functionality representing reference time GrefClock. It is expected that honest parties do not talk
to this functionality directly.
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Functionality GP,S,Σclock [ GrefClock ]

A clock functionality identified by a session id sidclock = (sid′clock, P, S) that denotes its owner P as well as a (poten-
tially but not necessarily different) party S whose honesty influences the accuracy of the clock. It is also parameterized
by the maximum allowable shift Σ from the reference time. It operates as follows.

Corrupt: Upon receiving a Corrupt message, record that S is now corrupted.

GetTime: Upon receiving input (GetTime, sidclock) from party P ′, ignore this request if P ′ 6= P , otherwise:

1. Send (Sleep, sidclock) to the adversary A. Wait for a response of the form (Wake, sidclock, σ) from A.

2. If σ == ⊥, output (TimeReceived, sidclock,⊥) to P .

3. Else send GetTime to GrefClock to receive G. Next, compute TP = G + σ. Then do the following:

• If |σ| > Σ and no Corrupt record exists, then reset TP = ⊥.

• Output (TimeReceived, sidclock, TP ) to P .

Figure 4: Ideal functionality GP,S,Σclock that provides delayed, approximately accurate time measurements to its owner P .
The functionality doesn’t provide any guarantee on when a timing measurement will be delivered. It only guarantees
that at the instant the measurement is given, its value is approximately correct.

Functionality FC,∆C ,ΣC

timer [ GrefClock ]

A timer functionality identified by a session id sidtimer = (sid′timer, C) that denotes its ownerC. It is also parameterized
by the maximum allowable delay ∆C , and the maximum allowable shift ΣC . It operates as follows.

SetShift: Upon receiving a command (SetShift, sidtimer,M) from E , record M as the code of a Turing machine
(replacing any previously-stored code) and send an (ok, sidtimer) message to E .

Start: Upon receiving input (Start, sidtimer) from a party P : if P 6= C or if a Start command was previously received
then ignore this request. Otherwise:

1. Send GetTime to GrefClock. Denote its response as G’. Record the tuple (G′, sidtimer).

2. Send an (ok, sidtimer) message to C.

TimeElapsed: Upon receiving input TimeElapsed from a party P : if no previous Start command was issued or if
P 6= C then ignore this request. Otherwise:

1. Send GetTime to GrefClock. Denote its response as G. Also, retrieve the previously-recorded G′.

2. Run M(sidtimer,G
′,G) and denote its output as σC . (Also, maintain M ’s state for future calls.)

3. Compute δ = G− G′ + σC . If δ ≤ ∆C , output (δ, sidtimer) to C. Else output (⊥, sidtimer) to C.

Figure 5: Ideal functionality FC,∆C ,ΣC

timer that returns to its owner C the approximate relative time elapsed between
the Start and TimeElapsed commands. While the environment E may influence the timer’s accuracy, it must do so
‘out of band’: once C requests TimeElapsed, it learns the answer instantaneously. Additionally, the adversary doesn’t
directly interact with FC,∆C ,ΣC

timer at all.
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clock functionality in this work as an abstraction of two very different situations: (1) a physical clock that is actually
under the control of its owner, such as an atomic clock owned by a stratum 1 NTP server, and (2) an ideal service akin
to that expected from the Network Time Protocol itself, which permits a client to operate “as if” she owned a clock
herself, modulo the unavoidable imperfections (cf. Theorems 2-3).

Second, the clock is inaccurate, in the sense that its belief about the time T = G + σ is somewhat shifted away
from the reference time. Still, the clock is guaranteed to approximate the reference time up to some maximum shift
value |σ| ≤ Σ.

Third, the clock is not instantaneous. Instead, it only returns a time measurement after some adversarially-
controlled delay δ (which may be infinite). The approximate correctness guarantee from above holds at the moment
that the time is eventually returned.
GP,S,Σclock is used both as a goal, or benchmark, in the sense that everyone strives to attain it (with the best parameters

possible), and at the same time it is used as a service for other protocols in order to achieve other tasks (or even another
instance of GP,S,Σclock but with better parameters or another server S).

3.3 Approximate Timer Functionality FC,∆C ,ΣC

timer

In Figure 5, we construct the FC,∆C ,ΣC

timer functionality. Like local clocks, a timer functionality has a single owner
C and its measurements only guarantee approximate correctness. However, FC,∆C ,ΣC

timer differs from the prior two
functionalities in three ways.

First, it doesn’t provide an absolute notion of time; instead, it provides the relative difference in time between a
starting and ending point.

Second, the timer has a short lifetime: after a maximum delay ∆C , it will “time out” and only output ⊥. This
limitation ensures that FC,∆C ,ΣC

timer cannot be used as a substitute for long-term time measurements of the type provided
by GrefClock and GP,S,Σclock .

Third, it is only used locally within a specific instance of a time synchronization protocol. By contrast, GrefClock

and GP,S,Σclock are Global UC functionalities.

4 Single Server Time Sync
In this section, we formally specify a simplified version of the way that a client C uses the Network Time Protocol
(NTP) to query a single server S for its belief about the time. We show that this protocol π∆C ,ΣC ,ΣS

timeSync allows C to
operate as if she had a delayed approximate clock of her own. Formally, we prove that π∆C ,ΣC ,ΣS

timeSync GUC-realizes a

clock GC,S,Σ
∗
C

clock owned by the client.
As depicted in Fig. 7, π∆C ,ΣC ,ΣS

timeSync internally uses the functionalities specified in Section 3. The server has access
to its own instance of GS,S,ΣS

clock that approximates the reference time, whereas the client can only measure the relative
passage of time via FC,∆C ,ΣC

timer . Additionally, S and C communicate using Fauth.
We fully specify the protocol π∆C ,ΣC ,ΣS

timeSync in Figure 6. The protocol is natural: C sends a time request to S and uses
FC,∆C ,ΣC

timer to measure the time elapsed until the response arrives. S responds with (roughly) the times at which she
receives the client query (T2) and sends the response packet (T3) to allow the client to distinguish network transmission
time from server processing time. The client uses its local timer to determine how long the server took to respond as
well as to calculate the average network delay in an NTP-like manner; however, the client times out if the server
responds after too long a delay (measured on the client’s local timer).

For simplicity of exposition, we chose to “hardwire” the identity of the server in the code of both the ideal func-
tionality and the protocol. However this is not essential: our results continue to hold in an alternative model where the
identity of the server (or servers, in Section 5) is given to the client as a part of the input.

The remainder of this section contains a formal theorem and proof about the accuracy of π∆C ,ΣC ,ΣS

timeSync .

Theorem 2 (Single server UC security). Given any parameters that satisfy Σ∗C ≥ 1
2 ·∆C + ΣC + ΣS , it holds that the

single server approximate time synchronization protocol π∆C ,ΣC ,ΣS

timeSync GUC-realizes GC,S,Σ
∗
C

clock .
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Protocol π∆C ,ΣC ,ΣS

timeSync [ Fauth, FC,∆C ,ΣC

timer , GS,S,ΣS

clock ]

GetTime: Begins when the caller (e.g., E) sends the input (GetTime, sidts) to C, where sidts = (sid′ts, C, S). Ends
when C responds back to the caller with (TimeReceived, sidts, Tc).

E Client C Fauth Server S A
−→ 1: Record the tuple (sidts, sidtimer)

2: Send Start to FC,∆C ,ΣC
timer , receive (ok,sidtimer)

3: Send (query, sidts) to S −→ 4: Record the tuple (sidts, sidclock)

5: Send (GetTime, sidclock) to GS,S,ΣS
clock

←→

6: Get (TimeReceived, sidclock, T2)

7: Append T2 to the record (sidts, sidclock)

8: Send (Sleep, sidts) to A −→
9: Get (Wake, sidts) from A ←−

10: Send (GetTime, sidclock) to GS,S,ΣS
clock again ←→

11: Get (TimeReceived, sidclock, T3)

12: Retrieve (sidts, sidclock, T2)

←− 13: Send (response, sidts, T2, T3) to C

14: Retrieve (sidts, sidtimer), abort if no tuple exists

15: Send TimeElapsed to FC,∆C ,ΣC
timer , receive (δ, sidtimer)

16: If δ == ⊥, then set TC = ⊥
17: Else, set TC = T3 + 1

2
· (δ − T3 + T2)

18: Delete record (sidts, sidtimer)

←− 19: Output (TimeReceived, sidts, TC) to E

Continue: Begins when A sends a Continue message to C, so that C can determine whether an ongoing session of
π∆C ,ΣC ,ΣS

timeSync has timed out. If so, C ends the session.

A Client C

−→ 1: Retrieve (sidts, sidtimer), abort if no tuple exists

2: Send TimeElapsed to FC,∆C ,ΣC
timer , receive (δ, sidtimer) in response

←− 3: If δ == ⊥, then delete record (sidts, sidtimer) and output (TimeReceived, sidts,⊥) to E
←− 4: If δ 6= ⊥, then end activation

Figure 6: Time Synchronization Protocol π∆C ,ΣC ,ΣS

timeSync . The two participants C and S communicate through Fauth, and
they have access to FC,∆C ,ΣC

timer and GS,S,ΣS

clock , respectively. Note that S does not have any inputs or outputs.
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Fig. 7: Interactions between participants and functionalities during an execution of the single server time synchro-
nization protocol π∆C ,ΣC ,ΣS

timeSync .

We emphasize that the shift of the client’s purported time depends on the delay that the client waits for the timing
information. Hence, C’s insistence upon a maximum delay ∆C isn’t merely a matter of convenience: it affects the
accuracy of her notion of time as well.

Our proof has two components. First, in Section 4.1 we design a simulator S that successfully emulates the
execution of any real-world adversary A from the environment E’s point of view. Then, in Section 4.2 we analyze the
time bound that it achieves.

4.1 Designing the Simulator
Fig. 8 depicts the high-level interaction between components in the ideal world. As usual, the simulator S runs
an emulated copy of the real world protocol π∆C ,ΣC ,ΣS

timeSync inside its head while also playing the role of E inside this
simulation.

In more detail, S internally emulates the execution of A, FC,∆C ,ΣC

timer , Fauth and each of the involved parties. In
addition, S externally instantiates the global GS,S,ΣS

clock that’s called by the protocol (unless it already exists). S also
relays the messages sent from the emulated parties to GS,S,ΣS

clock and GrefClock, and from GS,S,ΣS

clock and GrefClock to the
emulated parties.

While conducting this simulation, S monitors the traffic of its emulated A and E , along with any messages that S
directly receives from GC,S,Σ

∗
C

clock . The messages that S views/receives causes it to make changes in the ideal world or
the emulated world.

Simulating GetTime: When GC,S,Σ
∗
C

clock sends a message of the form (Sleep, sidclock), then S instantiates C with the
environmentally-provided message (GetTime, sidts).

Simulating Continue: When S observesA sending a Continue message to the emulated C, it waits to see which of
the two possible outcomes occur at C. If C simply ends its activation, then a timeout event has not yet occurred and S
does nothing. If instead C outputs (TimeReceived, sidclock,⊥) then a timeout event has occurred; in this case, S sends
a (Wake, sidclock, σ) message to GC,S,Σ

∗
C

clock to cause the dummy C to produce the same output in the ideal world.
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Fig. 8: Interactions between participants in the ideal world execution of single server time sync, including the emula-
tion of the real world inside of the simulator.

Relaying messages to E: When the emulated A sends a message to the emulated E , S relays it to the real E .
Conversely, S forwards messages sent by the real E to the emulated A.

Corrupting the server: When A sends a Corrupt message in the emulated world, then S sends a Corrupt message
to GC,S,Σ

∗
C

clock .

Completing the simulation: When the emulated C sends to E its output (TimeReceived, sidts, TC), then S knows
both when and what to send back to GC,S,Σ

∗
C

clock . If TC == ⊥, then S simply sends (Wake, sidclock,⊥) to GC,S,Σ
∗
C

clock .
Otherwise: S send GetTime to GrefClock to retrieve the current reference time T . Then, S computes the shift σSim =

(TC − T ) and sends (Wake, sidclock, σSim) to GC,S,Σ
∗
C

clock .

4.2 Analyzing the Accuracy of the Simulator
It is straightforward to verify that the simulator’s Wake responses perfectly emulate those in the real world: its sim-
ulation of Continue ensures that time-out actions occur identically in the real and ideal worlds, and otherwise its
calculation of σSim within the Wake message agrees with the message sent by A.

Therefore, it only remains to show that the answer S returns can meet the approximate correctness bound required
by GC,S,Σ

∗
C

clock . If S is corrupted or if C times out then there is no bound to meet. Ergo, in the rest of this section we
assume that S is uncorrupted and also that δ < ∆C in response to all queries C makes to FC,∆C ,ΣC

timer so that no timeout
occurs.

In the emulated protocol π∆C ,ΣC ,ΣS

timeSync , the output time TC is computed by the client as TC = T3 + 1
2 (δ− T3 + T2).

T2 and T3 are the times returned from the server and are equal to G2 +σ2 and G3 +σ3 respectively. δ is returned from
FC,∆C ,ΣC

timer to the client and is computed as G4 + σ4 −G1 − σ1. So, for the emulated client, TC = G3 + σ3 + 1
2 (G4 +

σ4 − G1 − σ1 − G3 − σ3 + G2 + σ2).
In the ideal world, the client interacting with GC,S,Σ

∗
C

clock outputs the time G4 + σSim, where the simulator provides
σSim to account for discrepancy between the emulated client’s output and the output of the client interacting with the
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GC,S,Σ
∗
C

clock . Combining the two equations yields:

σSim =
G2 − G1 + G3 − G4

2
+
σ2 − σ1 + σ3 + σ4

2
.

The simulator must be able to correct for the maximum possible value of σSim. It is straightforward that |σSim| is
maximized when the following criteria hold.

1. The server’s clock is maximally shifted: σ3 and σ2 both equal ΣS .

2. The client’s timer shifts to the maximum extent permissible between the Start and TimeElapsed queries: σ4 =
ΣC and σ1 = −ΣC .

3. The network latency is maximally asymmetric: E maximizes (G2−G1 +G3−G4) by incrementing the reference
time a large amount between G1 and G2 and not at all between G3 and G4, or vice versa.

We desire an upper bound on the network asymmetry described in item 3. For the client to avoid timing out, it must
be the case that the total time elapsed obey the constraint that

(G4 + σ4)− (G1 + σ1) ≤ ∆C .

It follows that G4 − G1 ≤ ∆C + 2 · ΣC . Also, since the four times are monotonic, 0 ≤ G4 − G3 ≤ G4 − G1 and
0 ≤ G2 − G1 ≤ G4 − G1. Therefore: |G2 − G1 + G3 − G4| ≤ ∆C + 2 · ΣC .

Combining the three bounds above yields

|σSim| ≤
∆C

2
+ ΣC + ΣS .

Hence, it suffices for the Σ∗C for the GC,S,Σ
∗
C

clock to be 1
2∆C + ΣC larger than the shift in the server-owned clock GS,S,ΣS

clock
in order for the simulator to be able to simulate correctly, proving Theorem 2.

5 More Robust Network Time
In this section, we provide a more robust method to acquire time over the Internet. It is better representative of the
way NTP operates: each client queries multiple servers to increase its resilience to compromise, and different clients
query different servers to remove network and resource bottlenecks.

Section 5.1 considers the case of a single client accessing multiple servers. Then, Section 5.2 considers the multi-
stratum case in which each server in a stratum receives its notion of time not from a local clock, but instead by acting
also as a client and querying several servers in the stratum below. We use the composition theorem to provide modular
and relatively simple analysis of these these rather intricate interactions.

5.1 Multiple Server Time Sync

At a high level, the new π∆C ,ΣC ,ΣS

multiTimeSync protocol involves a client who queries n different servers for the time. Once
all timing measurements have been collected or time-out, then the client outputs the median of all non-⊥ timing
measurements.

The full protocol to aggregate times from multiple servers is shown in Fig. 9. This protocol requires the client to
keep an extra timer per server in order to calculate and remember the freshness of responses.

Producing a real multi-server protocol should involve the composition of π∆C ,ΣC ,ΣS

timeSync protocols with each server.
Thanks to the UC composition theorem, it suffices to analyze a simpler protocol in which the π∆C ,ΣC ,ΣS

timeSync with each

server Si is replaced with its corresponding ideal functionality GC,Si,Σ
∗
C

clock . We make a few remarks about this use of
composition:
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Protocol π∆C ,ΣC ,ΣS

multiTimeSync [ GC,S1,Σ
∗
C

clock , . . . , GC,Sn,Σ
∗
C

clock and 2n instances of FC,∆C ,ΣC

timer ]

GetTime: Begins when the caller sends to C the input (GetTime, sidmts). In response, C provisions a timing mea-
surement array Tsidmts of length n with all values initialized to a special ‘?’ symbol. C also allocates sufficient storage
space to record the session ids of all timers and clocks with which it interacts. Finally, C invokes QueryClock.

QueryClock: Begins when invoked by GetTime or Continue. Invariant: at least one clock has not been invoked.

1. C identifies a previously-unqueried GC,Si,Σ
∗
C

clock .

2. C sends a Start command to the ith timer and waits for an ok response.

3. C sends the command (GetTime, sidclocki) to GC,Si,Σ
∗
C

clock .

ResponseReceived: Begins when C receives a response (TimeReceived, sidclocki, Ti) from a clock GC,Si,Σ
∗
C

clock :

1. C records Tsidmts [i]← Ti.

2. C sends a TimeElapsed message to the ith timer. If it returns ⊥, then C updates Tsidmts [i]← ⊥.

3. If Tsidmts [i] 6= ⊥, then C sends a Start command to the (n+ i)th timer and waits for an ok response.

4. Invoke the Continue routine.

Continue: Begins when A sends to C the Continue command or when ResponseReceived ends.

1. If C has not yet queried each GC,Si,Σ
∗
C

clock , then C begins the QueryClock protocol as stated above.

2. Else, C begins the CheckTimeout protocol as stated below.

CheckTimeout: Begins when invoked by Continue. Invariant: each GC,Si,Σ
∗
C

clock has already received a GetTime query.

1. For all i: C sends a TimeElapsed message to the ith timer if Tsidmts [i] == ? and to the (n+ i)th timer otherwise.
If the timer returns a ⊥ response, then C updates Tsidmts [i]← ⊥.

2. If none of the records in Tsidmts equal ‘?’, then invoke Finalize. Else, end the current activation.

Finalize: Begins when invoked by CheckTimeout. Note that A never gets control during Finalize.

1. For all i such that Tsidmts [i] 6= ⊥, send a TimeElapsed message to the (n + i)th timer and wait for a response of
the form (δ, sidtimern+i).

• If δ == ⊥, then update Tsidmts [i]← ⊥.

• Otherwise, update Tsidmts [i]← Tsidmts [i] + δ.

2. C sets TC to be the median of the non-⊥ values within Tsidmts . If all values equal ⊥, then C sets TC to ⊥.

3. Output (TimeReceived, sidmts, TC) to the caller.

Figure 9: Time Synchronization Protocol π∆C ,ΣC ,ΣS

multiTimeSync in between a client C with access to unused FC,∆C ,ΣC

timer func-

tionalities and a set of n GC,Si,Σ
∗
C

clock functionalities each parameterized by a server Si from the set {S1, ..., Sn}.
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Functionality GP,S,ΣmultiClock [ GrefClock ]

This ideal functionality is identified by a session id sidmclock = (sid′mclock, P, {S1, ..., Sn}) where sid′mclock =
sidclock1 . . . sidclockn that denotes the clock’s owner P as well as a set of parties S = {S1, ..., Sn} whose honesty
influences the accuracy of the clock. It is also parameterized by the maximum allowable shift Σ from the reference
time. It operates as follows.
Corrupt: Upon receiving a message (Corrupt, S), if S ∈ {S1, . . . , Sn} then record Si as corrupted.
GetTime: Upon receiving input (GetTime, sidmclock) from party P ′, ignore this request if P ′ 6= P , otherwise:

1. Send (Sleep, sidmclock) to the adversary. Wait for a response from the adversary, of the form
(Wake, sidmclock, σ, L) where L is the list of servers that are deemed to provide non-⊥ timing measurements.

2. If σ == ⊥, output (TimeReceived, sidclock,⊥) to P .

3. Else send GetTime to GrefClock. Denote its response as T .

(a) If the majority of servers in L are corrupted or |σ| ≤ Σ, output (TimeReceived, sidmclock, T + σ) to P .

(b) Else output (TimeReceived, sidmclock,⊥) to P .

Figure 10: Ideal functionality GP,S,ΣmultiClock that outputs a time influenced by the corruption status of servers in S. Note
that the GP,S,Σclock functionality in Fig. 4 is a special case of this one with a singleton set S = {S}.

• There are implicitly two uses of Gclock here: the server’s clock GS,S,ΣS

clock in the real protocol and the entire ideal
functionality GC,S,Σ

∗
C

clock . We stress the lack of circularity here, as shown in Fig. 1: the first clock is a subroutine
of π∆C ,ΣC ,ΣS

timeSync whereas the second clock is an ideal abstraction of it.

• The protocol π∆C ,ΣC ,ΣS

multiTimeSync contains ΣS as a parameter but its specification in Fig. 9 never mentions ΣS explicitly.
Instead, the only impact of ΣS is its influence over Σ∗C , as shown in Theorem 2.

In comparison to the single-server case, this protocol offers one drawback and one benefit. The extra timer adds
the price of 2 ·ΣC additional shift to the time computed by the client. On the plus side, the multiple server protocol can
guarantee approximate correctness even if some servers are corrupted, due to the following two observations. First,
uncorrupted measurements must be close to the reference time G. Second, if the majority of servers are uncorrupted,
then the median time must be bounded on both sides by uncorrupted samples.

These observations yield an approximate correctness guarantee that is quite robust! We do not require that all or
even most timing measurements reach the client; on the contrary, the adversary might corrupt, drop, or delay almost
all requests. Additionally, the adversary may corrupt parties adaptively and may choose their responses conditioned
upon the timing measurements of the honest parties. We simply require the following constraint: of the servers whose
interactions result in the client receiving a timing measurement (i.e., anything but ⊥), a majority of those servers are
uncorrupted.1

The ideal functionality GP,{S1,...,Sn},Σ′C
multiClock specified in Figure 10 formally captures this accuracy constraint.

Theorem 3 (Multiple server UC security). Given parameters that satisfy Σ′C ≥ 2.5 ·∆C + 3 ·ΣC + ΣS , the multiple
server approximate time synchronization protocol π∆C ,ΣC ,ΣS

multiTimeSync GUC-realizes GP,{S1,...,Sn},Σ′C
multiClock .

Proof. As before, the simulator S internally runs an emulated copy of the real world protocol π∆C ,ΣC ,ΣS

multiTimeSync, where
S plays the role of E inside this simulation. In particular, S internally emulates the execution of adversary A, all
n FC,∆C ,ΣC

timer functionalities, all the instances of Fauth, and each of the involved parties. In addition, S relays the

1This threshold constraint corresponds to the strong “sleepy model of consensus” of Pass and Shi [14] and Micali [15].
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messages sent from the emulated parties to GrefClock and GC,S,Σ
∗
C

clock , and from GrefClock and GC,S,Σ
∗
C

clock to the emulated
parties.

While conducting this simulation, S monitors the traffic of its emulated A and E , along with any messages that
S directly receives from GP,{S1,...,Sn},Σ′C

multiClock . The messages that S views/receives causes it to make changes in the ideal
world or the emulated world.

Simulating GetTime: When GP,{S1,...,Sn},Σ′C
multiClock sends a message of the form (Sleep, sidmclock), then S instantiates C

with the environmentally-provided message (GetTime, sidmts).

Simulating Continue: When S observesA sending a Continue message to the emulatedC, then S sends a Continue
message to C. (Upon receiving this message, the emulated C might invoke QueryClock or CheckTimeout.)

Maintaining Records: Upon receiving a message of the form (TimeReceived, sidclocki, Ti) from GC,Si,Σ
∗
C

clock , if
Ti == ⊥, initialize an empty list L if there does not exist one. Append i to list L. Subsequently, if a CheckTimeout
procedure ever returns a ⊥ when querying the ith timer, then remove i from L.

Relaying messages to E: When the emulated A sends a message m to the emulated E , then S relays m to the real
environment. Conversely, S forwards messages sent by the real E to the emulated A.

Corrupting a server: When A sends a (Corrupt, Si) message in the emulated world, then S sends a (Corrupt, Si)

message to GP,{S1,...,Sn},Σ′C
multiClock .

Completing the simulation: When the emulated C sends to E its output (TimeReceived, sidmts, TC), then S
knows both when and what to send back to GP,{S1,...,Sn},Σ′C

multiClock . If TC == ⊥, then S sends (Wake, sidmclock,⊥,⊥)

to GP,{S1,...,Sn},Σ′C
multiClock . Otherwise: S sends GetTime to GrefClock to retrieve the current reference time T and also retrieves

the list L. Then, S computes the shift σsim = (TC − T ) and sends (Wake, sidmclock, σsim, L) to GP,{S1,...,Sn},Σ′C
multiClock .

In the ideal model (namely in the execution of GP,{S1,...,Sn},Σ′C
multiClock with S), GP,{S1,...,Sn},Σ′C

multiClock receives from S an
offset σ′Sim and a list of the servers whose GP,S,Σclock boxes output ⊥ in the simulated π∆C ,ΣC ,ΣS

multiTimeSync. It is also informed
when a server is corrupted.

From this information GP,{S1,...,Sn},Σ′C
multiClock computes TC as Gx + σ′Sim where, if fewer than half of the servers whose

GS,S,ΣS

clock boxes did not output⊥ are corrupted, σ′Sim ≤ Σ′C , the maximum offset that a GP,{S1,...,Sn},Σ′C
multiClock box will allow.

The value output by π∆C ,ΣC ,ΣS

multiTimeSync is selected as the median of the values returned from its GC,S,Σ
∗
C

clock boxes plus a δ

corresponding to the time passed since the response was received. The value returned from GC,Si,Σ
∗
C

clock is of the form
Ti = Gi + σi where |σi| ≤ Σ∗CSi

the max offset for the GC,S,Σ
∗
C

clock owned by server Si if Si is uncorrupted. The client

in π∆C ,ΣC ,ΣS

multiTimeSync will then add a δ to this corresponding to the elapsed time since receiving the response Ti from the ith

GC,S,Σ
∗
C

clock . The delay δ is computed like before as G2 + σ2 − G1 − σ1 and is at most ∆′C . Finally, it must be the case
that ∆′C > ∆C or else valid responses could timeout while C is waiting for all GC,Si,Σ

∗
C

clock to respond.
In this case G2 = Gx as the FC,∆C ,ΣC

timer is queried for a δ when all the responses are received in the simulation and
there is not a chance for the environment to update the reference time between this point and when it is obtained by
GP,{S1,...,Sn},Σ′C

multiClock . Additionally, G1 = Gi as the timer is started once the response is received. Therefore, Gx − Gi ≤
∆′C + 2 ∗ ΣC where ΣC is, as before, the max allowable shift for a C’s FC,∆C ,ΣC

timer .
The TC output by π∆C ,ΣC ,ΣS

multiTimeSync is Gi + σi + δi so in order to properly simulate S must be able to input a σSim that
will make Gx+σ′Sim equal to Gi+σi+ δ. Gx is at most ∆′C + 2 ·ΣC greater than Gi, σi is at most Σ∗CSi

, and δ ≤ ∆′C .

Finally, recall from Section 4.2 that Σ∗CSi
≤ ∆C

2 + ΣC + ΣSi
.
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Fig. 11: Interactions between participants in the real world execution of multi-server time sync

Fig. 12: Interactions between participants in the ideal world execution of multi-server time sync, including the
emulation of the real world inside of the simulator.
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Combining the above bounds yields

|σ′Sim| ≤ 2.5 ·∆C + 3 · ΣC + ΣS .

Therefore, it suffices for the Σ′C for the GP,{S1,...,Sn},Σ′C
multiClock to be 2(∆′C + ΣC) larger than the Σ∗C for the simulated

GC,S,Σ
∗
C

clock in order for the simulator to be able to simulate correctly, proving Theorem 3.

5.2 Multiple Strata Network Time
In this section, we add another feature of the network time protocol: a hierarchical structure to distribute the network
load required to propagate network time. Participants in NTP are stratified, with stratum-0 servers possessing their
own source of time GS,S,Σ0

clock and all other participants serving as both clients and servers. We restrict our attention to
the case in which NTP servers communicate within the following ‘rigid topology.’

• We insist that each individual machine be statically pegged to a single stratum forever. We impose this restriction
so that we may compose invocations of π∆C ,ΣC ,ΣS

multiTimeSync. In the more realistic scenario where machines can change
strata, the UC composition theorem breaks down since a feedback loop may occur where a client provides an
input into its own time measurement.

• We require that machines in stratum j only take timing measurements from servers located in stratum j − 1 and
thus only provide time to stratum j + 1 clients. We impose this restriction merely to simplify our calculations
in Theorem 4; the UC composition theorem would enable more complicated analyses if so desired.

• We use the following parameters: Stratum 0 servers are within shift Σ0 of GrefClock. All machines in higher strata
have timers with maximum delay ∆∗ and maximum shift Σ∗.

Additionally, we make two observations that generalize the work we have already provided. First π∆C ,ΣC ,ΣS

multiTimeSync contin-
ues to be well-defined if it receives multi-server ideal functionalities GP,S,ΣmultiClock as subroutines rather than single-server
functionalities. Additionally, if all servers within all of the GP,S,ΣmultiClock used by the client have the same ΣS bound, then
the statement and proof of Theorem 3 continue to hold in this setting.

Second, we may further generalize π∆C ,ΣC ,ΣS

multiTimeSync by permitting S to be a set of sets and by modifying the consistency
rule in step 3a to state that the adversary only has free reign to alter the time if the set of servers S is ‘bad,’ as defined
below. Furthermore, Theorem 3 continues to provide bounds on consensus and accuracy in this case as well.

Definition 3. During an execution of π∆C ,ΣC ,ΣS

multiTimeSync, we denote a server as bad if it is corrupted. Additionally, a set of
parties is deemed to be bad if a majority of elements are corrupted. Note that these elements may either be parties or
sets themselves; in the latter case, the notion of corruptedness is defined recursively.

Here, the majority vote is only taken over elements that respond to the client’s request for timing measurements
within its maximum allowable delay ∆ (which we stress that the adversary has the capacity to control). The fact that
non-responsive servers do not factor either positively or negatively into the badness of a set of parties is consistent
with the sleepy model of consensus (cf. footnote 1).

These two observations and the UC composition theorem allow us to bound the worst-case error when timing
measurements percolate down multiple strata.

Theorem 4. Consider several machines who conduct multiple server timing measurements following the network
topology specified above. Then, a client C at stratum j who executes π∆C ,ΣC ,ΣS

multiTimeSync using the set of servers S will
receive a time whose inaccuracy is bounded by Σj ≥ 2.5j ·∆∗ + 3j · Σ∗ + Σ0 as long as the set S is not bad.

Proof. The proof of this theorem is straightforward. First, we apply the UC theorem to replace all instances of the
π∆C ,ΣC ,ΣS

multiTimeSync protocol (for C and for all of the timeservers who get their measurements from lower strata as well) with
instances of the ideal functionality GP,S,ΣmultiClock. We remark that our definition of good and bad timeservers matches
precisely with the (modified) constraint for timing consensus in step 3a of GP,S,ΣmultiClock. Ergo, Theorem 3 upper bounds
the inaccuracy of all good servers at stratum i as Σi ≥ 2.5∆∗ + 3Σ∗ + Σi−1. Summing these inequalities for all
i ∈ {1, 2, . . . , j} yields the desired result.
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We stress that Theorem 4 provides a worst case bound. By contrast, in the remainder of this section we math-
ematically analyze and computationally simulate average case error propagation over multiple strata by timeservers
with accidental rather than adversarial timing inaccuracies. Suppose that these accidental network asymmetries and
server clock imprecisions contribute to delays δ and shifts σ (respectively) that are randomly distributed (e.g., using a
uniform or Gaussian distribution). In this average case setting, the central limit theorem provides much more stringent
bounds on error propagation.

• Within a single stratum, the fact that each client invokes multiple servers means that their individual shift errors
are very likely to interfere destructively. Network jitter effects do cause a noticeable delay, however.

• The effect of network asymmetry at a particular stratum i upon the shift (as found in Theorems 2 and 3) is also
reduced significantly when progressing down the strata.

The net result of the average case analysis is that the expected shift at a high stratum is influenced mostly by the
magnitude of the network asymmetry at that stratum only. Hence, a high stratum timeserver with low latency net-
work connections may actually possess better timing measurements than a low stratum timeserver in a high latency
environment, even if the latter contributes toward the timing measurements of the former.

6 Using Approximate Time in UC Protocols
In this section, we explore the ramifications of injecting approximate time into existing, time-agnostic GUC protocols
and functionalities. Although our principal interest is in the expiration and revocation of PKI certificates, much of our
analysis applies generically to any protocol whose security depends in part on the approximate accuracy of time.

6.1 Adding Time to Existing Protocols & Functionalities
We begin by considering generically the influence of time upon existing UC protocols and functionalities that have
previously been proved secure in the usual untimed, asynchronous setting. The following straightforward theorem
states that UC security continues to hold for all untimed protocols:

Theorem 5. Let π be a protocol that GUC-realizes functionality G in an untimed setting. Then, π continues to GUC-
realize G even in the presence of exact or approximate time functionalities like GrefClock or GP,S,Σclock .

Proof. This theorem follows immediately from the UC security guarantee in the presence of global functionalities.
Since no environment can distinguish π from G, in particular this condition must hold for environments that either
keep track of, or have access to, a time functionality such as G.

More interestingly, we can automatically add a time dependency on top of protocols that previously lacked an
understanding of time. In this section, we focus upon protocols and functionalities of the following type.

Definition 4 (Binary decider). We say that a protocol πbin is a binary decider if the following constraints hold:

• Only one party P receives output. We denote the collection of inputs by ~x and the output as (b, y).

• The value b is a single bit. (By contrast, y and the elements of ~x are strings of arbitrary length.)

Intuitively, binary deciders provide P with a putative output and a verification bit that determines whether P
chooses to accept the answer. Protocols of this form include bit commitments, zero-knowledge proofs, and (of partic-
ular interest to us) signature and certificate verification checks.

Given any binary decider protocol πbin, Fig. 13 constructs a new protocol π̂Σ,t∗

bin that operates identically to πbin
except that it subjects the verification bit to a new constraint that rejects responses when P ’s time is past a threshold t∗.
For simplicity, in this section we assume that P ’s clock GP,P,Σclock is corrupted only if P is, so the only relevant parameter
is the maximum clock shift Σ. Note that t∗ and Σ are explicitly provided to the adversary; π̂Σ,t∗

bin makes no attempt to
hide them.
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Next, we demonstrate a canonical method to transform ideal functionalities analogously. Given any Gbin, Fig. 14
constructs a new ideal functionality ĜΣ,t∗

bin that executes Gbin as a subroutine and also determines the reference time
G. It is more restrained than before: the adversary can only change an otherwise-valid response if G is close to the
threshold t∗.

Next, we show that these two transformations produce identical outcomes. Intuitively, the adversary can control
the output bit of ĜΣ,t∗

bin only when her clock skew capability can be used to affect π̂Σ,t∗

bin ’s output.

Theorem 6. Suppose that the binary decider πbin GUC-realizes Gbin and that πbin’s output party P has access to a
clock GP,P,Σclock . Then, π̂Σ,t∗

bin GUC-realizes ĜΣ,t∗

bin .

Proof. Let Dπ denote the dummy adversary against πbin and SimG denote its corresponding simulator. Additionally,
let Dπ̂ denote the dummy adversary against π̂Σ,t∗

bin . Our objective is to design a simulator SimĜ that connects with
ĜΣ,t∗

bin and produces a view indistinguishable from Dπ̂ .
SimĜ emulates the real world interaction with Dπ̂ in its head, and it behaves as follows during each step of the

execution of ĜΣ,t∗

bin in the ideal world.

1. SimĜ sends (t∗,Σ) to E and relays E’s response to ĜΣ,t∗

bin , just as Dπ̂ does with π̂Σ,t∗

bin .

2. During the execution of Gbin, the simulator SimĜ simply acts as SimG would.

3. SimĜ observes the shift σ that Dπ̂ applies to P ’s clock and then sends b′ = b ∧ [t
?
≤ t∗] to ĜΣ,t∗

bin .

Note that SimĜ has nothing to do during steps 4-5.
The messages sent to the environment during steps 1-2 are clearly identical to those ofDπ̂ . The only other message

received by E is the output (b′, y).
Ergo, to prove simulation, it suffices to show that the output values b′ are identical in π̂Σ,t∗

bin and ĜΣ,t∗

bin . This follows
from the fact that the adversary’s ability to shift P ’s clock is bounded such that:

[t
?
≤ t∗] =


1, if G < t∗ − Σ,
0, if G > t∗ + Σ,
controlled by SimĜ , otherwise.

Hence, SimĜ’s inability to influence b′ in the first two cases of step 4 is irrelevant because π̂Σ,t∗

bin ’s output must equal b
and 0, respectively. In the third case, SimĜ chooses b′ just as π̂Σ,t∗

bin does during step 4, so the simulation is perfect.

6.2 Application to Public Key Infrastructure
In this section, we augment Canetti, Shahaf, and Vald’s GUC analysis of signature-based authentication [13] to enable
revocation and expiration. The goal of [13] is to provide, within the UC framework, modeling and analysis of the
process of (1) generating signing and verification keys for a digital signature scheme, (2) certifying the verification key,
and (3) using these keys to authenticate and verify messages by way of signing them on the sending end and verifying
the verification key and the signature on the receiving end. An important innovation within [13] is to provide adequate
treatment to the fact that the certified verification keys are universally available and may be used to authenticate several
messages within many different protocols. The main components of their modeling are:

• A public bulletin-board Gbb where parties can publicly associate values with their identities. The bulletin board
is globally available and guarantees authenticity (a party can only associate values with her own true ID).

• A certification functionality Gcert that provides its owner with a public key, that it then posts globally using Gbb.
When the owner provides a message m to be signed, Gcert returns an idealized signature string S; later on, when
asked by anyone, Gcert correctly verifies valid message-signature pairs.
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Protocol π̂Σ,t∗

bin [ πbin, GP,P,Σclock ]

When instantiated with inputs ~x where party P ’s input has the form xP = (x′P , t
∗,Σ), do the following:

1. P sends (t∗,Σ) to A and waits for an ok response.

2. The parties execute the subroutine protocol πbin on inputs ~x′, where x′P ′ = xP ′ for all P ′ 6= P . Eventually, P
produces output of the form (b, y).

3. Before submitting this output, P queries her clock (with max shift Σ) for the current time t. This request invokes
A to provide a shift σ.

4. Compute b′ = b ∧ [t
?
≤ t∗].

5. P outputs (b′, y) to the caller.

Figure 13: Time-conditional protocol π̂Σ,t∗

bin . It connects to two subroutines: a binary decider πbin and P ’s clock.

Functionality ĜΣ,t∗

bin [ Gbin, GrefClock ]

When instantiated with inputs ~x where party P ’s input has the form xP = (x′P , t
∗,Σ), do the following:

1. Send (t∗,Σ) to A. Wait for an ok response.

2. Send ~x′ (as defined in Fig. 13) to subroutine Gbin. Eventually, receive a response of the form (b, y).

3. Query the adversary for a value b′.

4. Obtain the reference time G from GrefClock. Update the value of b′ as follows:

• If G < t∗ − Σ, then set b′ = b.

• If G > t∗ + Σ, then set b′ = 0.

• If b = 0, set b′ = 0.

5. Output (b′, y) to P .

Figure 14: The time-conditional ĜΣ,t∗

bin functionality with two subroutines: GrefClock and an untimed binary decider
Gbin. The max shift Σ of P ’s clock affects the behavior of ĜΣ,t∗

bin , even though they never communicate.

Functionality Gtimed-bb

Report: Upon receiving from party P a message of the form (Register, P, serial, v, t), send the message to the adver-
sary and wait for an ok response. If this is the first request involving (P, serial) then record the tuple (P, serial, v, t).
Otherwise, ignore the message.
Retrieve: Upon receiving from some party Pi or the adversary a message (Retrieve, Pj , serial), retrieve the record r
containing (Pj , serial) and return (Retrieve, r). If no such record exists, return (Retrieve,⊥).
ChangeExpiration: Upon receiving from party P a message of the form (ChangeExpiration, P, serial, t′), retrieve
the record of the form (P, serial, v, t). If t′ < t, then replace t with t′ in this record. Otherwise (including if the record
does not exist), do nothing.

Figure 15: A public bulletin board that augments [13, Fig. 3] to incorporate an expiration time.
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• An existentially unforgeable signature scheme Fsig that is used to realize Gcert.

• An authenticated message transmission functionality Fcert-auth that properly models the non-deniability of an
authenticated message, i.e., that it is possible for third parties to verify whether a given message was indeed
sent and signed by the sender. (This stands in contrast with the “standard” authenticated message transmission
functionality in Fig. 2, which only allows the specified receiver to tell whether a message is authentic.)

• A protocol πauth for realizingFcert-auth using Gcert, by way of signing the message by the sender and later verifying
the signature on the receiving end, against Gcert of the sender. An important aspect of this analysis is that
Gbb is global and exists regardless of the specific instance of Gcert. Furthermore, while Gcert is specific for a
single “party” (i.e., long-term entity), it is global in the sense that it exists regardless of any single message-
authentication instance.

We remark that, while the analysis of [13] only considers the setting in which each party registers a single certificate,
one can verify that their modeling and proofs continue to hold when each pid is replaced with a (pid, serial) pair, where
serial denotes a unique identifier of a certificate issued by a particular CA [32, §4.1.2.2]. As a result, the same analysis
applies when participants can request the creation of multiple certificates, which is essential when certificates expire.

Adding time awareness and certificate revocation. To capture expiration and revocation requests, we extend
Canetti et al.’s public bulletin board Gbb into a time-aware bulletin board Gtimed-bb that supports expiration and revo-
cation. Our extension augments the Report method to record the expiration time and adds a new third method called
ChangeExpiration to support revocations. Figure 15 shows the details.

Then, we may apply Theorem 6 to “lift” the certification functionality Gcert and the authentication functionality
Fcert-auth described in [13] to their respective time-dependent versions. In the lifted ĜΣ,t∗

cert , the recipient determines the
appropriate threshold t∗ to use by querying Gtimed-bb with the sender’s credentials. Finally, the timed version of the real
authentication protocol πtime-auth , π̂Σ,t∗

auth GUC-realizes the timed ideal functionality Ftime-cert-auth , F̂Σ,t∗

cert-auth based
upon Theorem 6 and [13, Claim 4.4].

This protocol πtime-auth combines all of the components designed so far to provide time-based non-deniable authen-
tication, as shown in Fig. 1. It requires a clock, which we know how to instantiate from Sections 4-5. Additionally, it
uses Gcert as a subroutine just as its untimed counterpart did.

By imbuing this subroutine with a notion of time itself, ĜΣ,t∗

cert can interface with our timed bulletin board Gtimed-bb
to attest that (1) the signature is valid, just as before and (2) the certificate hasn’t yet expired, using the new expiration
time t contained within the record returned by Gtimed-bb’s Retrieve command. Furthermore, in case of key compromise,
the signer can request that her certificate be revoked.

Impact upon use of the PKI today. An important lesson learned from this modeling is that real-life certificate
revocation lists and online certificate status requests must continue to answer requests about revoked or expired certifi-
cates during the interval [t∗, t∗ + Σ] because clients may not be able to adjudicate them correctly on their own before
this time. Here, Σ denotes the maximum shift expected by Theorems 2 and 3 for all clients on the Internet. After
this interval, the adversary cannot convince any clients of the validity of a revoked or expired certificate via network
manipulation, so the CA may forget about its existence.
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