Bitcoin as a Transaction Ledger:
A Composable Treatment*

Christian Badertscherf!, Ueli Maurer?, Daniel Tschudi*?, and Vassilis Zikas$*

! Input Output, Switzerland, christian.badertscher@iohk.io
2ETH Zurich, maurer@inf .ethz.ch
3 Concordium, dt@concordium. com
4 Purdue University, vzikas@cs.purdue.edu

April 5, 2024

Abstract

Bitcoin is one of the most prominent examples of a distributed cryptographic protocol that
is extensively used in reality. Nonetheless, existing security proofs are property-based, and as
such they do not support composition. In this work we put forth a universally composable
treatment of the Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as an
instance of a parameterizable ledger functionality, and present a UC abstraction of the Bitcoin
blockchain protocol. Our ideal functionality is weaker than the first proposed candidate
by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is
arguably not implementable by the UC Bitcoin protocol, we prove that the one proposed
here is securely UC-realized by the protocol assuming access to a global clock, to model
time-based executions, a random oracle, to model hash functions, and an idealized network,
to model message dissemination. We further show how known property-based approaches
can be cast as special instances of our treatment and how their underlying assumptions can
be cast in UC as part of the setup functionalities and without restricting the environment or
the adversary.

*This version is a minor revision of the article published in the Journal of Cryptology, 2024, https://doi.
org/10.1007/s00145-024-09493-7. An earlier version of this work appeared as an extended abstract in the
proceedings of the 37th International Cryptology Conference (CRYPTO 2017), https://doi.org/10.1007/
978-3-319-63688-7_11.

fLead contributor to this extended article. Earlier version done while the author was at ETH Zurich.

#Work done while the author was at ETH Zurich.

SWork done while the author was at RPI.

mailto:christian.badertscher@iohk.io
mailto:maurer@inf.ethz.ch
mailto:dt@concordium.com
mailto:vzikas@cs.purdue.edu

Contents

1

Introduction

1.1 Bitcoin as a Service for Cryptographic Protocols
1.2 Our Contributions
1.3 Overview of Bitcoin and Related Work

Preliminaries
2.1 Overview of the UC Framework
2.2 Large Deviation Bounds

UC Execution Model for Permissionless PoW Blockchains

3.1 Functionalities with Dynamic Party Sets
3.2 Modeling Network Assumptions
3.3 Modeling Time and Clock-dependent Protocol Execution

3.4 Modeling Hash Queries
3.5 Which Setup Functionalities as Shared Subroutines? . . .
3.6 Assumptions as UC-Functionality Wrappers

The Basic Transaction-Ledger Functionality

4.1 Introduction and Overview
4.2 The General Ledger Functionality
4.3 On the Defining Features

Bitcoin as a UC Protocol

5.1 Basics
5.2 Overview and Modeling Decisions
5.3 The Formal Protocol Description

The Bitcoin Ledger

Security Analysis

71 Overview
7.2 First Proof Stepo
7.3 Modularizing the Ledger-Protocol
74 Second Proof Stepo,
7.5 Improving the Chain-Quality Parameter

Special Cases of our Model and Functionality Wrappers
8.1 Special Cases and Existing Works
8.2 Restrictions and Composition

Modular Constructions based on the Ledger
9.1 A Stronger Ledger with Address Management

Further Details on the Model
A1l Unicast Channels
A.2 On realizing Multicast from Unicast

B Further Details on the Bitcoin Ledger

C The Simulator of the Main Theorem

13
13
14
16
18
19
20

20
20
22
24

27
27
30
31

35

37
37
37
43
47
61

62
63
65

66
66

76
76
76

78

81

1 Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [Nak08], several
early works have focused on analyzing and/or predicting its behavior under different attack
scenarios [BDOZ11, ES18, Eyalb, Zohl5, SZ15, KKKT16, PS17]. However, a core question

remained unanswered for quite a while:
What security goal does Bitcoin achieve under what assumptions?

An intuitive answer to this question was already given in Nakamoto’s original white pa-
per [Nak08§]: Bitcoin aims to achieve some form of consensus on a set of valid transactions. The
core difference of this consensus mechanism with traditional consensus [LSP82, Lam98, Lam02,
Rab83] is that it does not rely on having a known (permissioned) set of participants, but everyone
can join and leave at any point in time. This is often referred to as the permissionless model.
Consensus in this model is achieved by shifting from the traditional assumptions on the fraction
of cheating versus honest participants, to assumptions on the collective computing power of the
cheating participants compared to the total computing power of the parties that support the
consensus mechanism. The core idea is that in order for a party’s action to affect the system’s
behavior, it needs to prove that it is investing sufficient computing resources. In Bitcoin, these
resources are measured by means of solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [Nak08], a formal description of Bitcoin’s goal had not
been proposed or known to be achieved (and under what assumptions) until the first, seminal
works of Garay, Kiayias, and Leonardos [GKL15] and Pass, Seeman, and shelat [PSS17], which
mainly influenced this work. In a nutshell, these works set forth models of computation and, in
these models, an abstraction of Bitcoin as a distributed protocol, and proved that the output
of this protocol satisfies certain security properties, for example the common prefiz [GKL15]
or consistency [PSS17] property. This property confirms—under the assumption that not too
much of the total computing power of the system is invested in breaking it, where the exact
threshold has been the study of recent works [GKR20, DKT120]—a heuristic argument used by
the Bitcoin specification: if some block makes it deep enough into the blockchain of an honest
party, then it will eventually make it into the blockchain of every honest party and will never be
reversed.! In addition to the common prefix property, other quality properties of the output of
the abstracted blockchain protocol were also defined and proved.

1.1 Bitcoin as a Service for Cryptographic Protocols

Evidently, the main use of the Bitcoin protocol is as a decentralized monetary system with
a payment mechanism, which is what it was designed for. And although the exact economic
forces that guide its sustainability are still being researched, and certain rational models predict
it is not a stable solution, it is a fact that Bitcoin has not met any of these pessimistic
predictions for several years and it is not clear it ever will do. And even if it does, the research
community has produced and is testing several alternative decentralized cryptocurrencies,
e.g., [MGGR13, SCGT14, Butl3, CM19, BGK'18, PKF*18, KKK2la, KKK21b], that are
more functional or based on different resource assumptions than Bitcoin, some of which base
their analysis on earlier versions of this article [BMTZ17].

'In the original Bitcoin heuristic “deep enough” is defined as six blocks, whereas in these works it is defined as
linear in an appropriate security parameter.

This leads to the natural questions of how one can use this new reality to improve the
security and/or efficiency of cryptographic protocols. First answers to this question were given
in [ADMM14, ADMM16, BK14, KVV16, KB16, KMB15, KB14, AD15] where it was shown how
Bitcoin can be used as a punishment mechanism to incentivize honest behavior in higher level
cryptographic protocols such as fair lotteries, poker, and general multi-party computation.

But in order to formally define and prove the security of the above constructions in a widely
accepted cryptographic framework for multi-party protocols, one needs to define what it means
for these protocols to be run in a world that gives them access to the Bitcoin network as a
resource to improve their security. In other words, the question now becomes:

What functionality can Bitcoin provide to cryptographic protocols?

To address this question, Bentov and Kumaresan [BK14] introduced a model of computation
in which protocols can use a punishment mechanism to incentivize adversaries to adhere to
their protocol instructions. As a basis, they use the universal composition framework of
Canetti [Can01], but the proposed modifications do not support composition and it is not clear
how standard UC cryptographic protocols can be cast as protocols in that model.

In a different direction, Kiayias, Zhou, and Zikas [KZZ16] connected the above question with
the original question of Bitcoin’s security goal. More concretely, they proposed identifying the
resource that Bitcoin (or other decentralized cryptocurrencies) offers to cryptographic protocols
as its security goal, and expressing it in a standard language compatible with the existing
literature on cryptographic multi-party protocols. More specifically, they modeled the ideal
guarantees as a transaction-ledger functionality in the (global) universal composition framework.

In a nutshell, the ledger proposed by [KZZ16] corresponds to a trusted third party which
keeps a state of blocks of transactions and makes it available, upon request, to any party.
Furthermore, it accepts messages/transactions from any party and records them as long as
they pass an appropriate validation procedure that depends on the above publicly available
state as well as other registered messages. Periodically, this ledger puts the transactions that
were recently registered into a block and adds them into the state. The state is available to
everyone. As proved in [KZZ16], giving multi-party protocols access to such a transaction-ledger
functionality allows for formally capturing the mechanism of leveraging security loss with coins.
The proposed ledger functionality guarantees in an ideal manner all properties that one could
expect from Bitcoin and encompasses the properties in [GKL15, PSS17]. Therefore, it is natural
to postulate that it is a candidate for defining the security goal of Bitcoin (and potentially other
decentralized cryptocurrencies). However, the ledger functionality proposed by [KZZ16] was not
accompanied by a security proof that any of the known cryptocurrencies implements it.

However, as we show, despite being a step in the right direction, the ledger proposed
in [KZZ16] cannot be realized under standard assumptions about the Bitcoin network. On
the positive side, we specify a new transaction ledger functionality which still guarantees all
properties postulated in [GKL15, PSS17], and prove that a reasonable abstraction of the Bitcoin
protocol implements this ledger. In our construction, we describe Bitcoin as a UC protocol
which generalizes both the protocols proposed in [GKL15, PSS17]. We leave it as an interesting
open problem to integrate more recent analyses [GKL17, GKL20, CEM™20, BGK™20] in our
UC model, where the main changes are expected in formulating the setup assumptions and
restrictions along the lines we show in Section 8.1 for the initial models. Still, the main goal
remains to UC-realize our ledger functionality.

1.2 Our Contributions

We put forth the first universally composable (simulation-based) proof of security of Bitcoin. We
design a general ledger functionality whose parameters we subsequently concretely instantiate for
the Bitcoin setting. We observe that the first attempts in defining such a functionality, notably
the ledger proposed by Kiayias et al. [KZZ16], are too strong to be implemented by our UC
abstraction of Bitcoin, the main reason being that the functionality allows too little interference
of the simulator with its state, making it impossible to emulate adversarial attacks that result,
e.g., in the adversary inserting only transactions coming from parties it wants or that result in
parties holding chains of different length. We detail this in Section 4.1. Therefore, we propose
an alternative ledger functionality in Section 4.2 which shares certain design properties with the
proposal in [KZZ16] but which can be provably implemented by a UC abstraction of the Bitcoin
protocol, where our protocol abstraction makes use of hybrid (idealized) functionalities such as
the bounded-delay network, the clock to model (lock-step) synchrony, and the random oracle to
idealize hash queries.

Our ledger is parametrized by a set of parameters, for example by a generic transaction
validation predicate which enables it to capture decentralized blockchain protocols beyond
Bitcoin. Our functionality allows for parties/miners to join and leave the computation and we
support adaptive corruptions.

We formally prove for which choice of parameters the proposed ledger functionality is
implemented by Bitcoin under the assumption that miners which deviate from the Bitcoin
protocol do not control a majority of the total hashing power at any point. The description of
concrete parameters is given in Section 6 and the UC realization proof appears in Section 7.
To this end, we first describe in detail an abstraction of the Bitcoin protocol as a UC protocol
in Section 5. Casting Bitcoin in UC allows to precisely model the protocol assumptions, for
example the knowledge of the network delay and the number of hash-function calls per round.
We model Bitcoin to work over a network which basically consists of bounded-delay channels. We
explain how such a network could be implemented by running the message-diffusion mechanism
of the Bitcoin network (which is run over a lower level network of unicast channels). Intuitively,
this network is built by every miner, upon joining the system, choosing some existing miners of
its choice to use them as relay-nodes. Similar to the protocol in [PSS17], the miners are not
aware of (an upper bound on) the actual delay that the network induces. As we argue, this is a
strictly weaker model assumption than assuming that the network delay is publicly known such
as in [GKL15]. We devote Section 3 to modeling the UC execution with the appropriate setups.

Our security proof proposes a useful modularization of the Bitcoin protocol. Concretely, we
first identify the part of the Bitcoin code which intuitively corresponds to the lottery aspect,
provide an ideal UC functionality that reflects this lottery aspect, and prove that this part of the
Bitcoin code realizes the proposed functionality. We then analyze the remainder of the protocol
in the simpler world where the respective code that implements the lottery aspect is replaced
by invocations of the corresponding functionality. Using the UC composition theorem, we can
then immediately combine the two parts into a proof of the full protocol. Finally, in Section 8,
we show how one can cast the theorem’s assumptions as part of the setup functionalities of the
protocol. We thus obtain a desirable corollary where we do not have to restrict the environment
regarding the distribution of hashing power (but where the restriction is enforced by the setup
functionalities), which improves the way this protocol can be formally composed with other
protocols.

As is the case with the so-called backbone protocol from [GKL15] our above UC protocol

description of Bitcoin relies only on proofs of work and not on digital signatures. As a result, it
implements a somewhat weaker ledger, which does not guarantee that transactions submitted by
honest parties will eventually make it into the blockchain.? As a last result, we show in Section 9
that (similarly to [GKL15]) by incorporating public-key cryptography, i.e., taking signatures
into account in the validation predicate, we can implement a stronger ledger that ensures that
transactions issued by honest users—i.e., users who do not sign contradicting transactions and
who keep their signing keys for themselves—are guaranteed to be eventually included into the
blockchain. The fact that our protocol is described in UC makes this a straight-forward, modular
construction using the proposed transaction ledger as a hybrid. In particular, we do not need to
consider the specifics of the Bitcoin protocol in the proof of this step. This also allows us to
identify the maximum (worst-case) delay a user needs to wait before being guaranteed to see its
transaction on the blockchain and be assured that it will not be inverted.

Future directions. The presented analysis in UC corresponds to the first analysis of a
blockchain protocol and requires a couple of novel modeling concepts to accurately model the
execution of such decentralized protocols whose security are based on rate-limiting resources. For
Bitcoin in particular, a few interesting extensions to this work are conceivable which all relate to
the topic of bringing the model closer to reality. First, it is an interesting open question to what
extent the reliance on a local random oracle can be relaxed while still achieving composition. A
second line of research would be to model a more realistic network functionality, taking into
account limited message omissions or bandwidth constraints. Finally, the full Bitcoin protocol
includes adjusting the difficulty of the PoW puzzles per epoch based on the observed historic
performance. It appears as a very interesting theoretical question whether the Bitcoin protocol
(or possibly a variant of it) can in fact be understood as the modular composition of a component
estimating participation and a ledger component as analyzed in this work.

1.3 Overview of Bitcoin and Related Work

High-level introduction. At a high level, the Bitcoin protocol works as follows: The parties
(also referred to as miners) collect and circulate messages (transactions) from users of the network,
check that they satisfy some commonly agreed validity property, put the valid transactions into
a block, and then try to find appropriate metadata such that the hash of the block-contents
and this metadata is of a specific form—concretely that, parsed as a binary string, it has a
sufficient number of leading zeros. This is often referred to as a solving a mining puzzle and
the intuition behind it is that the best strategy for finding such metadata is supposedly by
trial-and-error. Thus, informally, the probability that some party finds appropriate metadata
increases proportional to the number of times some party attempts a hash computation. And
the more leading zeros we require from a correct puzzle solution the harder it is to find one,
since the solution space of the puzzle is smaller.

Intuitively, a successful solution can be seen as a proof-of-work (POW) that testifies to the
fact that the miner presenting has in fact tried a large number of hash queries. Once a miner
finds such a solution, he puts it into a block and sends it to the other miners. The miners who
receive it check that it satisfies some validity property (see below) and if so create new metadata
using the hash of this (newly minted) block and put this metadata together with transactions
that are still valid into a new block and start working on solving the puzzle induced by this

*We formulate a weakened guarantee, which we then amplify using digital signatures.

block. Since a block is rendered valid by a miner only if it includes a hash-pointer to a previous
valid block in the view of this miner, the view consists of a set of linked lists, namely a sequence
of valid blocks each with a hash-pointer to its predecessor in the list. Each such list is called a
blockchain or simply chain. All lists have a common starting point which is the so-called genesis
block of Bitcoin. Hence, the entire view of a miner could be modeled as a tree, where the root
is the genesis block, the nodes are valid blocks, and the hash-pointers correspond to (directed)
edges.

The works of Garay, Kiayias, and Leonardos [GKL15] and that of Pass, Seeman, and she-
lat [PSS17] contain the first formal specifications and security proofs of the Bitcoin protocol. The
proved security in these works is property-based. They prove that conditioned on the largest part
of the network following the Bitcoin protocol (in fact an abstraction and generalization thereof),
the output of this so-called backbone protocol satisfies three properties with overwhelming
probability. We only informally describe these properties here. We will meet their formalization
when analyzing the Bitcoin protocol in UC. In the following, let ¢; < to be two points in time
during the protocol execution.

o Common prefir: Any two valid chains C;,, C;, adopted by some honest parties at times ¢;
and to, respectively, share a large common prefix. This is typically quantified by specifying
a value k (the common-prefix parameter) and the size of the common prefix is required to
be at least |Ct,| — k.

o Chain growth: For time-intervals [t, t2] of reasonable extent, the increase in number of
blocks —measured as the difference between any two valid chains C;, and C;, adopted by
some honest parties at times ¢1 and to, respectively — is guaranteed to be substantial.
The relationship between time and chain-length is typically referred to as the chain-growth
coeflicient.

e Chain quality: For any honest party and its adopted valid chain C; at time t, it holds that
any consecutive sequence of blocks of reasonable extent in C; is guaranteed to contain
blocks contributed by honest parties. The proportion of honestly mined blocks is typically
refereed to as the chain-quality coefficient.

Chain quality and chain growth are often expressed with respect to the common-prefix
parameter k. That is, as the fraction of honestly mined blocks in a consecutive sequence of k
blocks, and as the time interval within which an increase of k blocks is guaranteed (except with
negligible probability in k).

Network assumptions and random oracle. Both [GKL15] and [PSS17] assume a multicast
network—i.e., a network where a party sends messages to arbitrary other parties®—and abstract
the hash function as a random oracle. Furthermore, they both have an explicit round-based
model of execution where parties proceed in rounds. There are some slight differences between
the two models. For example, in [GKL15] every party makes ¢ hash-queries (i.e., ¢ RO calls) in
each round as opposed to [PSS17] where every party makes one hash-query per round. Second,
in [PSS17], the adversary might choose to delay message delivery but the statements are proved
assuming no message is delayed by more than A rounds — also known as the partial-synchronous

3Unlike [GKL15] where this operation is referred to as broadcast, we choose to call it multicast here to
avoid confusion with the standard broadcast primitive in the Byzantine agreement literature that offers stronger
consistency guarantees.

setting — while the initial model taken by [GKL15] was more synchronous (and was lifted
to the partial synchronous model later). We note that since the number of hash-queries is
fixed in both models, this implies that parties know exactly in which round they are, as they
could simply count the number of queries made to the random oracle (and by definition of
their models no party goes to round r + 1 before all parties have finished round r). Note that
the partial-synchronous protocol execution model in [PSS17] is a strictly weaker setting than a
synchronous execution model with a fixed delay of one round.

Property-based vs simulation-based security. Proving that Bitcoin satisfies the above
properties has been an essential step into the direction of understanding the security goals
of Bitcoin. But as argued above, this does not offer the tool to be able to argue security of
cryptographic protocols that use Bitcoin—e.g., to achieve an improved fairness notion [ADMM14,
ADMMI16, BK14, KVV16, KB16, KMB15, KB14, AD15]—without the need to always look at
the Bitcoin specifics. In other words, such property based security definitions do not support
composition. The standard way to allow for such a generic use of blockchain protocols as a
cryptographic resource, is to prove that it implements an ideal functionality in a composable
framework. Intuitively, in such frameworks, a composition theorem states that we can replace
calls to a functionality with invocation of a protocol implementing it without worrying about
the protocol’s internals.

2 Preliminaries

2.1 Overview of the UC Framework

We use the universal composability (UC) framework introduced by Canetti [Can01, Can20]. We
give a brief introduction into the main notation of this framework.

2.1.1 Basics

The goal of the UC framework is to capture what it means for a protocol to securely carry out
a task. UC first defines the process of executing a protocol in some environment and in the
presence of an adversary, next it defines an ideal process to formalize what securely carrying out
the task means, and finally one has to prove that no (efficient) environment can distinguish the
real process and the ideal process. The core defining element of the ideal process is the ideal
functionality, which can be thought of as an incorruptible party. We briefly describe the main
ingredients first and then describe the real and ideal process.

Protocol and protocol instances. Formally, a protocol 7 is an algorithm for a distributed
system and formalized as an interactive Turing machine. An ITM has several tapes, for
example an identity tape (read-only), an activation tape, or input/output tapes to pass values
to its program and return values back to the caller (e.g., the environment). An ITM also has
communication tapes that model messages sent to and received from the network.

While an ITM is a static object, UC defines the notion of an ITM instance (denoted ITI),
which is defined by the so-called extended identity (eid) of the form (M,id), where M is the
description of an ITM and id = (sid, pid) is an identity string consisting of a session identifier sid
and a party identifier pid. Each instance is associated with a configuration, which is as usual the
contents of all of its tapes and the heads, and the control state of that ITM.

An instance, also called a session, of a protocol 7 (represented as an ITM M) with respect
to a session id sid is defined as a set of ITIs (M, id;) with id; = (pid;, sid).

Network and adversary. The UC model does not give any guarantee for its built-in network.
The network is asynchronous without guaranteed delivery or authenticity of the originator. The
messages are routed and controlled by the adversary unless a stronger network is available (such
as the one we define in this work). The adversary A is also defined as an ITM. Aside of its
capabilities to send and read messages, it can at any time issue special corruption messages
to corrupt protocol ITMs. When an ITM is corrupted, the adversary does not only learn the
contents of all tapes, but it can also act in the name of this ITM, meaning that whenever this
ITM is activated, the adversary gets actually activated and can decide on the next steps. This
corruption dynamics is the standard form of corruption and we call such an adversary active
and adaptive.

2.1.2 Real-world process

The real-world process for a protocol 7 is defined as follows. Let Z be an environment machine
and let A denote the adversary. The execution consists of a sequence of activations, initiated by
Z, where in each activation, either Z, A or some ITI running 7 is activated. We say that Z
invokes a new ITI Z if it activates an ITI for the first time (by passing some inputs) upon which
this new instance gets created (in the default configuration). All ITIs invoked by Z need to have
unique extended identities, and need to have the same session-identifier (which is chosen by Z).

Activations and execution rules. An activated ITI can change its configuration based on
its code. By the UC system model (i.e., by the definition of external-write requests), an ITI loses
its activation when (1) passing an input value to a (subsidiary) ITI (like a hybrid functionality),
or (2) producing an output, i.e., writing to its subroutine output tape, or (3) providing output
to the adversary (e.g., by an ideal functionality). The next activated ITT is the ITI that was
addressed in the external-write request, or the environment if no external-write request is made.

The environment Z can pass inputs to and read outputs from the input/output tape of any
party, respectively. The environment can thereby emulate all outside processes and how they
interact with the (challenge) protocol session. In these inputs, the environment thereby also
specifies a source (extended) identity of the input (to which supposedly some output will be
returned). We call such identities external. It is convenient to parametrize an environment with
a predicate & that restricts the set of allowed external identities to use. One natural standard
predicate to enforce is the one that disallows Z to use as an external identity an extended
identity of any ITI that it provides input to in the system. Other choices of predicates may be
helpful in various scenarios. Clearly, the more relaxed the predicate £, the more general the
security statement. More restrictive predicates in turn lead to more restrictions on the contexts
in which the protocols proved secure with respect to those predicates can be deployed.

The adversary A can access the so-called backdoor tapes of the ITIs and in the plain network
model, thereby deliver messages. Following the external-write rules, if in some activation, the
adversary delivers a message to an ITI, then this ITI is activated next. In addition, the adversary
can corrupt parties as described above. The environment learns the party id pid of any corrupted
ITI via a special corruption-aggregation mechanism.

The UC model also follows some activation rules (specified by the control function). As
already stated, the environment is activated first, and upon completion of its actions (entering a

special waiting state), the adversary is activated as a second entity. The remaining execution
proceeds as described above. As a convention, in addition to the above rules, the UC execution
model requires that if an ITI completes without external-write request (for example not sending
a message), then the environment is activated next.

Output and transcript. The output of the protocol execution is the output of Z and we
assume that this output is a binary value v € {0, 1}. We denote this output by EXEC, 4 z(k, 2,7)
where k is the security parameter, z € {0,1}* is the input to the environment, and randomness r
for the entire experiment. Let EXEC, 4 z(k, z) denote the random variable obtained by choosing
the randomness 7 uniformly at random and evaluating EXEC, 4 z(k,z,7). Let EXECr 4z
denote the ensemble {EXECy 4 z (K, 2) }ren,2c{0,1}+- By slight abuse of notation, we denote by
Texecy .z (K, 2, r) the associated transcript of this execution, which is the concatenation of all
inputs to Z, all outputs from Z, and all messages exchanged via the communication tapes of
the ITIs (also called the joint view). The distribution Txgc, 4 - (K, 2) and ensemble Tixpc, 4 -
are defined analogously to above.

2.1.3 Ideal-world process

Security of protocols is defined via comparing the real-world execution with an ideal-world process
that solves the task in an idealistic way. More formally, the ideal process is formulated with
respect to an ITM F which is called an ideal functionality. In the ideal process, the environment
Z interacts with F, an ideal-world adversary (often called the simulator) S and a set of trivial,
i.e., dummy ITMs representing the protocol machines. The dummy ITMs behave as follows:
whenever activated with a request z, they forward the request z to F and output towards Z
whatever they receive in return. F thereby specify all outputs generated for each party, and
the amount of information the ideal-world adversary learn and what its active influence is via
its interaction with F. By definition of the corruption mechanism in UC, corruption of parties
happens via special corruption messages on the backdoor tape of the ideal functionality (and
the party ids pid of all corrupted (dummy) parties can be learned by the environment). We note
that an ideal functionality itself, represented as an ITI during the protocol execution, cannot be
corrupted by definition.

Based on the above definitions, the ideal-world process proceeds as the real process. It is
essentially the real-world process where the I'TIs running the protocol are replaced by the dummy
ITIs interacting with F (and only one challenge session ever exists). In this interaction, the
same constraints and activation sequence restrictions are enforced by the UC control function.
For further details we refer to [Can20)].

We denote the output of this ideal-world process by EXECr 4 z(k, z,r) where the inputs are as
in the real-world process. Let EXECFr s z(k, z) denote the random variable obtained by choosing
the randomness r uniformly at random and evaluating EXECr s z(k, 2,7). Let EXECr s z denote
the ensemble {EXECF s z(k, 2) }ren,zef0,1}+- The transcript is defined analogously as in the
real-world process and denoted Tixgcy s - (K, 2,7).

2.1.4 Hybrid worlds

To model setup, the UC framework knows so-called hybrid worlds. We discuss two important
cases of hybrid worlds that differ in whether the setup, typically called the hybrid functionality,
is available only to an instance of a protocol session (standard), or to multiple protocol sessions

10

at the same time (shared). Note that a protocol can assume several setup functionalities of both
types.

Standard (local) setup. A standard setup is modeled in UC as an ideal-functionality available
in a real-world protocol execution, i.e., as an incorruptible I'TI F that provides certain ideal
guarantees to this protocol session. We consider here the natural case that standard setups are
available in real-world processes only (note that while the following conventions can be applied
to ideal-world-processes as well, it still seems like an uninteresting case to consider standard
setups in ideal-processes). So, formally, the F-hybrid-world process is identical to the real-world
process with the following additions: The parties can interact with (an a priori unbounded
number of) instances of F by standard interaction (sending messages, passing output to them,
or receiving input from them). Each copy of F, i.e., each such incorruptible ITI, is identified via
a unique session identifier sid chosen by the protocol that passes in put to it (this in particular
implies a unique identity id of this ITI). It is stressed that by this definition, the environment
can only access F via calls to parties or via the adversary.

Since a protocol makes explicit which local functionalities it assumes we omit an explicit
reference in the formal expressions for simplicity. For example, we just write EXECy 4 z or
Tixuc, 4z to denote the output or the transcript distribution ensembles in such cases.

Shared (global) setup. Sometimes we want to model that a certain hybrid functionality, say
G, to be declared as shared (often also denoted to as global setup). This breaks the isolated-
session idea (subroutine respecting property) of standard UC, and allows sessions to share state,
or more generally a functionality, with other sessions, resp. with the environment. While the
exact dynamics of such a global model is beyond the scope of this introduction, the basic idea
how to model such global setup in UC is relatively easy and does not need a separate model
such as the one originally proposed in [CDPWO07]. Instead, we follow the modeling in [BCH™20]:
a generic mapping (or operator akin to the UC composition operator) is defined that takes a
protocol m and the to-be-treated-as-global functionality G (more precisely, the ideal protocol
associated with G as described above), and transforms the protocol (oblivious to the protocol
and the functionality) into a standard UC protocol M[mr, G] This protocol has the property that it
exposes G to the environment, while the behavior of 7 in its interaction with other ITIs and the
environment remains unchanged. We recall that the identity-bound predicate £ is a handy tool
to model which external identities must be assumed to have access to the shared functionality
when proving the challenge protocol secure. Finally, since global setups are always present in
the experiments, the ideal process (that is, the ideal world) can be simply expressed as M[F, G]
i.e., where the ideal protocol for F is considered instead of 7. We point out that global setups
must satisfy a so-called reqularity condition, which can be achieved trivially by having any party
that wants to interact with G to register first with the functionality. All our ideal functionalities
are of this form. If a shared setup G is available in the real-world or ideal-world processes, we
usually make it explicit in the notation such as EXEC% Az OF EXEC% s.z> Where we understand
the normal UC execution with the above transformation.

2.1.5 Secure Realization and Composition

In a nutshell, a protocol securely realizes an ideal functionality F if the real-world process (where
the protocol is executed) is indistinguishable from the ideal-world process (relative to F). If

11

the protocol uses setup, we technically consider the hybrid-world processes instead of the plain
real-world or ideal-world processes. We directly state the definitions.

Definition 2.1. Let us denote by & = { X (k, 2) }rew 2ef0,13+ and V = {Y(k, 2) }ren 2c0,1}+ two
distribution ensembles over {0,1}. We say that X and) are indistinguishable if for any ¢,d € IN
there exists a kg € IN such that |Pr[X(k,z) = 1] — Pr[Y(k,2z) = 1]| < k7€ for all k > k¢ and
all z € U,<pa{0,1}*. We use the shorthand notation X ~) to denote two indistinguishable
ensembles.

Definition 2.2. Let n € N, let F be an ideal functionality and let m be a protocol defined for
the real-world, and which potentially makes use of some local setup functionality H and some
global setup G. We say that 7 securely realizes F (in the presence of these setup functionalities)
if for any (efficient) adversary A there exists an (efficient) ideal-world adversary (the simulator)
S such that for every (efficient) environment Z it holds that EXEC% Az R EXEC% sz

In the literature, the above condition is often referred to as 7 securely realizing functionality
F in the (G, H)-hybrid world, where the type of setup is inferred by the context.

Composition. The notion of secure realization is composable. We do not give a detailed
explanation as it is not important to follow the results in this work. In a nutshell, assume
first that a protocol 7 securely realizes F in the H-hybrid world, where H denotes a standard
(local) setup functionality. Let further ¢ be a protocol that securely realizes F. Then the
protocol 7/, where each call to H is replaced by an invocation of protocol ¢, securely realizes
F. We refer the interested reader to [Can20] for the general formal statement and on the exact
definition of 7/. Along similar lines, a composition theorem can be proven (following from
the standard UC composition theorem) where local hybrid functionalities are replaced by the
protocols securely realizing them, all in the presence of shared setups [BCH"20]. Finally, we only
note in passing that one can also consider replacing shared functionalities (i.e., the global setups)
by suitable protocols. This, however, is a very subtle issue for which we refer the interested
reader to [BHZ21].

2.2 Large Deviation Bounds

We use some known results to derive large deviation bounds in our probabilistic arguments. For
proofs and further discussions we refer to [DPQ9).

Theorem 2.3 (Chernoff bound). Let Xi,..., X7 be independent random variables with E[X;] =
pi and X; € [0,1]. Let X =YL X; and p= .~ p; = E[X]. Then, for all A >0,
A2
PriX > (1 +A)p] < e 248K,

2

Pr[X < (1— Ayl < e 238k

Theorem 2.4 (Azuma’s inequality (Azuma; Hoeffding).). Let Xy,..., X, be a sequence of
real-valued random wvariables so that, for all t, | X1 — X¢| < ¢ for some constant c. If
E[Xi+1| Xo, ..., Xi] < Xy for allt then for every A >0

A2
Pr[X, — Xo > A] <exp (—22> :
ne

12

Alternatively, if E[X1 | Xo, ..., X¢] > Xy for all t then for every A >0

A2
Pr[X, — Xo < —A] <exp (—2 2) .
ne

3 UC Execution Model for Permissionless PoW Blockchains

In this section we describe our UC model of execution for the Bitcoin protocol. We remark that
providing such a formal model of execution forces us to make explicit all the implicit assumptions
from previous works. As we lay down the theoretical framework, we will also discuss these
assumptions along with their strengths and differences.

Bitcoin miners are formally represented as I'TIs which we refer to for notational convenience
by P;, i.e, P, = (m,id;), where id; = (pid;,sid) and where 7 will be the Bitcoin protocol (running
in session sid). We refer to P; as a party for short. The index i is used to distinguish two
identifiers, i.e., P; # P; and otherwise carries no meaning. Parties interact which each other
by exchanging messages over an unauthenticated multicast network with eventual delivery (see
below) and might make queries to a common random oracle. We will assume a central adversary
A who gets to corrupt miners and might use them to attempt to break the protocol’s security.
As is common in UC, the resources available to the parties are described as hybrid functionalities
(some of which are treated as shared or global as we discuss later). Before we provide the formal
specification of such functionalities, we first discuss a delicate issue that relates to the set of
parties (ITIs) that might interact with an ideal functionality.

3.1 Functionalities with Dynamic Party Sets

In many UC functionalities, the set of parties is defined upon initiation of the functionality and
is not subject to change throughout the lifecycle of the execution. Nonetheless, UC does provide
support for a completely dynamic generation of ITIs and thus making the set of parties that
might interact with the functionality dynamic. This feature is important when modeling the
Bitcoin protocol—where miners come and go at will. In this work we make this explicit by means
of the following mechanism: all the functionalities considered here include the instructions below
that allow parties to join or leave the set P that the functionality interacts with, and inform
the adversary about the current set of registered parties. Note that making the set of parties
dynamic means that the adversary needs to be informed about which parties are currently in
the computation so that it can chose how many (and which) parties to corrupt.

« Upon receiving (REGISTER, sid) from some party P* (or from A on behalf of a corrupted
P), the functionality sets P = P U {P} and returns (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid) from some party P € P (or from A on behalf of a
corrupted P € P), the functionality sets P := P \ { P} and returns (DE-REGISTER, sid, P)
to the caller.

o Upon receiving (GET-REGISTERED, sid) from A, the functionality returns the response
(GET-REGISTERED, sid, P) to A.

4Recall that P stands for any ITI, and as such the instruction is also defined for functionalities registering to
e.g., global setups.

13

Finally, our functionalities will only interact with those parties that are effectively registered
to it. This makes any functionality (hybrid or realized) in this work regular which is important
for global UC.

3.2 Modeling Network Assumptions

In many situations, one cannot tolerate a complete asynchronous network such as the standard
UC communication mechanism. For example, we want to argue about liveness properties of
blockchains, which requires communication with eventual delivery guarantees as time goes by
(see below how we model time). We describe such a network based on ideas from from [KMTZ13,
BHMQUO05, CGHZ16]. In particular, we capture such communication by a network functionality
]-'ﬁ v that provides each party or miner Py € P the capability to multicast a message. For
every newly sent message, say m, the network functionality creates a unique identifier mid for
each triple (P}, Pj, m), where P; € P is a potential receiver. This handle is needed to succinctly
refer to a message circulating in the network in a fine-grained manner. The network does not
provide any information to any receiver about who else is using it or where a message originates
from. More precisely, messages are buffered but the information of who is the sender is never
provided to a receiver.

The adversary—who is informed about both the content of the messages and about the
handles—is allowed to delay messages by any finite amount, and allowed to deliver them in
an arbitrary out-of-order manner. To ensure that the adversary cannot arbitrarily delay the
delivery of messages submitted by honest parties, we use the following idea: The network works
in a “fetch message” mode, which means that parties need to actively query for the message (for
example, a party can query for messages once in a round). If the adversary wishes to delay the
delivery of some message with message ID mid, he needs to submit an integer value Tp,jq—the
delay for the message-in-transmission with identifier mid. For example, if mid refers to the triple
(Ps, Pj, m), this will have the effect that only after the next Tiiq fetch attempts by P;, P; will be
able to report the receipt of this particular message m. Importantly, the network does not accept
more than A accumulative delay for any mid. To allow the adversary freedom in scheduling
the delivery of messages, we allow him to input delays more than once, which are added to the
current delay amount. If the adversary wants to deliver the message in the next activation, all
he needs to do is submit a negative delay. Furthermore, we allow the adversary to schedule more
than one messages to be delivered in the same “fetch” command. Finally, to ensure that the
adversary is able to re-order such batches of messages arbitrarily, we allow A to send special
(SWAP, mid, mid") commands that have as an effect to change the order of the corresponding
messages. Last but not least, the adversary is further allowed to do partial and inconsistent
multicasts, i.e., where different messages are sent to different parties. This is the main difference
of such a multicast network from a broadcast network. The description appears in Figure 1.

3.2.1 Multicast from Unicast

The above multicast functionality is an ideal abstraction of a large network, where we idealize
the network delay and network topology. While the network delay is an explicit parameter in
the analysis (and could be estimated from real-world deployed networks), the topology does not
appear in any way. Hence, a natural question is how to get the above multicast network from
simpler channels. Note that in Bitcoin, parties/miners communicate over an incomplete network
and a standard diffusion mechanism is employed: The sender sends the message it wishes to

14

—[Functionality F{_yic }

Initialization:

The functionality initializes the party set P < () and a list (of messages) M « [].

Registrations:

o Upon receiving (REGISTER, sid) from some party P (or from A on behalf of a corrupted P), set P =P U {P}
and return (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid) from some party P € P (or from A on behalf of a corrupted P € P), set
P := P\ {P} and return (DE-REGISTER, sid, P) to the caller.

Network Capabilities:

e Upon receiving (MULTICAST, sid, m) from some Ps € P (or from A on behalf of Ps if corrupted), where

P ={Pi,...,P,} denotes the current party set, do:
1. Choose n new unique message-IDs midy, ..., midy,
2. Initialize 2n new variables D4, := D%d‘?X ...:= Dnjq,, = D%dAX =1,
3. Set M := M||(m, mid1, Dpidy > P1)|| - - - ||(m, mids, Dmia., , Pn),
4. Send (MULTICAST, sid, m, Ps, (P1, mid1), ..., (P,, mid,)) to the adversary.

o Upon receiving (FETCH, sid) from P; € P (or from A on behalf of P if corrupted):
1. For all tuples (m, mid, Dyid, P;) € 1\7[, set Duid := Dmid — 1.
2. Let]\7[§i denote the subvector M including all tuples of the form (m, mid, Dyiq, P;) with Dpig < 0 (in
the same order as they appear in M) Delete all entries in]\Zéj‘ from M.
3. Output Mé)’ to P; (if P; is corrupted, give Mépl to A).

Additional Adversarial Capabilities:

« Upon receiving (MULTICAST, sid, (my , P;,), .. ., (mq,, P;,) from the adversary with {P;,,..., P;,} C P, do:
1. Choose £ new unique message-IDs mid;, , ..., mid;,,
2. initialize £ new variables Dmidi1 = %d‘?f{ =...= Dmidi2 = D%d‘?f =1,
3. set M := M|[(miy, midiy , Drig, > Piy)Il - - - [|(mi,, midi,, Dmia;, > P,),
4. send (MULTICAST, sid, (mg, , P;,, mid;,), ..., (m4,, P;,, mid;,) to the adversary.
o Upon receiving (DELAYS, sid, (Tmidil ,mid;;), ..., (Tmidz'e ,mid;,)) from the adversary do the following for each
pair (Tiig; ,mid;;): If DMAX 4 T4, < A and mid is a message-ID registered in the current M, set
J ij J

Dmig; . *= Dmid;. + Tmia;. and set Drjr\\/iIdAX = D%dAX + Tid, . ; otherwise, ignore this pair.
J J fi ij ij J
« Upon receiving (SWAP, sid, mid, mid’) from the adversary, if mid and mid’ are message-IDs registered in the
current M, then swap the triples (m, mid, Duig,) and (m, mid’, Dyqr,-) in M. Return (SWAP,sid) to the
adversary.

o Upon receiving (GET-REGISTERED, sid) from A, the functionality returns the response (GET-REGISTERED, sid, P)
to A.

Figure 1: The network functionality with eventual delivery guarantees. Note that for a list M
we denote by the symbol || the operation which appends a new element to M.

15

multicast to all its neighbors who check that a message with the same content was not received
before, and if this is the case forward it to their neighbors, who then do the same check, and so
on. In fact, a multicast network can be built from unicast channels. That is, one essentially
assumes for each miner Pr € P a channel functionality f@_’gﬁ — which is parameterized by a
receiver Pg and an upper bound on the delay A — to which any other party P; € P can connect
and input messages to be delivered to Pr. A miner connecting to the unicast channel with
receiver Pr models the real-world process of looking up Pg (e.g., a public node in the network)
and using this party to disseminate future messages. The unicast channel should have some
similar properties as the above network, namely:

o They guarantee (reliable) delivery of messages within a delay parameter but are otherwise
specified to be of asynchronous nature (see below) and hence no protocol can rely on
timings regarding the delivery of messages. The adversary might delay any message sent
through such a channel, but at most by A. In particular, the adversary cannot block
messages. However, he can induce an arbitrary order on the messages sent to some party.

e The receiver gets no information other than the messages themselves. In particular, a
receiver cannot link a message to its sender nor can he observe whether or not two messages
were sent from the same sender.

e The channel offers no privacy guarantees. The adversary is given read access to all messages
sent on the network.

In Appendix A, we provide this channel functionality for completeness and explain how
a simple round-based diffusion mechanism can be used to implement a multicast mechanism
from unicast channels as long as the corresponding network among honest parties stays strongly
connected—where a network graph is called strongly connected if there is a directed path between
any two nodes in the network where the unicast channels are the directed edges from senders to
receivers.

3.3 Modeling Time and Clock-dependent Protocol Execution

Katz et al. [KMTZ13], proposed a methodology for casting synchronous protocols in UC by
assuming they have access to an ideal functionality G ock, the clock, that allows parties to ensure
that they proceed in synchronized rounds. Informally, the idea is that the clock keeps track of
a round variable whose value the parties can request by sending it (CLOCK-READ, sid¢). This
value is updated only once all honest parties sent the clock a (CLOCK-UPDATE, sid¢) command.
We use a variant of their clock as a global setup in this work. The description is given in Figure 2,
where we also make explicit the behavior of the clock-update upon corruption.

Given a clock, the authors of [KNTZ13] describe how synchronous protocols can maintain
their necessary round structure in UC: For every round p each party first executes all its round-p
instructions and then sends the clock a CLOCK-UPDATE command. Subsequently, whenever
activated, it sends the clock a CLOCK-READ command and does not advance to round p + 1
before it sees the clocks variable being updated. This ensures that no honest party will start
round p + 1 before every honest party has completed round p.

Idealized progression of time. We know from [KMTZ13] that if we want to capture the
ideal guarantee of eventual-delivery, or more generally speaking, idealized progression of time,

16

—[Functionality Gciock }

Initialization and state:

The functionality initializes the party set P «— (). It further maintains variables dp for each registered party (see
below), and a variable 74q for each session specified in a registered party.

Registrations:

o Upon receiving (REGISTER, sid¢) from some party P (or from A on behalf of a corrupted P), set P = P U {P},
dp < 0, and if P = (-,sid||) specifies a new sid, then initialize 754 < 0. Return (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid¢) from some party P € P (or from A on behalf of a corrupted P € P), set
P := P\ {P} and return (DE-REGISTER, sid, P) to the caller.

o Upon receiving (GET-REGISTERED, sid¢) from A, the functionality returns the response (GET-REGISTERED, sid, P)
to A.

Synchronization:

o Upon receiving (CLOCK-UPDATE, sid¢) from some party P € P first verify that the dummy party providing the
input encodes P as its PID; otherwise, ignore the request. Set dp < 1, execute Round-Update, and forward
(CLOCK-UPDATE, sid¢, P) to A.

o Upon receiving (CLOCK-READ, sid¢) from any ITI P = (+,sid||), first check that the session identifier sid is a
managed session; ignore the request otherwise. Execute Round-Update and return (CLOCK-READ,sid¢, 7gd) to
the requester

Corruptions:

e Upon receiving (CORRUPT, sid¢, P;) from A corrupting P; € P, mark the party as corrupted and execute
Round-Update. Return (CORRUPT,sid¢c, ;) to A.

Procedure Round-Update: For each managed session sid do: if dp = 1 for all uncorrupted P = (-, sid||-) € P, then set
Tsid ¢ Tsid + 1 and reset dp <« 0 for all identities P = (-,sid||-) € P.

Figure 2: The clock functionality that we use as a global setup.

an ideal functionality needs to keep track of the number of activations that an honest party
gets—so that it knows when to enforce progress in the time-domain. As a general principle, the
functionality would then have to issue a clock-update command in the name of a party, once that
party is done with its round actions (the overall clock ticks for a session once all honest parties
are done with their round actions). We now define a notion in Definition 3.1 that simplifies this
bookkeeping, that is, instead of having the functionality manage time-progression per party, it
can do it on a more coarse-grained, session level and only contact the clock once per round.

To follow the definition recall the mechanics of activations in UC. In a protocol execution,
an ITI gets activated either by receiving an input from the environment, subroutine output
from one of its hybrid-functionalities, or an input on the backdoor tape from the adversary.
Any activation results in the activated ITI performing some computation on its view of the
protocol and its local state and ends with either the party providing output to some of its hybrid
functionalities, to the environment, or to the adversary. In either of these cases (formally dubbed
external-write requests), the ITI loses the activation.®

For any given protocol execution, we define the honest-input sequence fH to consist of all
inputs given to a main ITI by the environment and the corruption messages by the adversary

5In the latter case the activation goes to the environment by default.

17

(listed in the order that they were given). The inputs are annotated with the identity of the
ITI that received the input. For an execution with an environment and adversary, where
the honest parties in session sid have received m inputs in total, fH is a vector of the form
((x1,idy), ..., (Tm,idy)), where ; is the i-th input that was given to machine id;, or a corruption
message with target id;. We further define the extended timed honest-input sequence, denoted as
fg, to be the honest-input sequence augmented with the respective clock time when an input was
given. If the timed honest-input sequence of an execution is f}; = ((x1,4d1,71), ., (T, idpm, Tim)),
this means that for each ¢ € [n], 7; is the time of the global clock when input x; was handed to
id;.

Definition 3.1. A G ock-hybrid protocol II has a predictable synchronization pattern iff there
exist an efficiently computable algorithm predict-timep;(-) such that for any possible execution of
IT in a session sid (i.e., for any adversary and environment, and any choice of random coins) the
following holds: If 7% = ((x1,id1,71), .-, (Tm, idm, Ty)) is the corresponding timed honest-input
sequence for this session, then for any i € [m — 1] :

predict—timeH((:Ul, idy, 7’1), ce (.T}Z', id;, TZ)) = Tit+1-

3.3.1 Using the clock as a global setup/shared subroutine

Treating the clock as a global setup or shared subroutine has the benefit of allowing parties
across protocols to have a common denomination of time, and to be able to specify observable
time-dependent ideal properties. However, modeling a setup as global also comes with complica-
tions [BCH™20]: to complete the specification in UC to what extent the usage to coordinate on
time across protocols is sound, we have to define the (identity bound) predicate that specifies
the applicable context. Recall that this predicate is intended to restrict the set of extended
identities that the environment can claim when contacting protocols.® We define the following
identity bound &gy first suggested in [BCH'20]: The environment is not able to issue any
request to the clock which has as a source ID the ID of a party (i.e., ITI) that already exists in
the system, or to spawn any ITI for which it already claimed an external identity before in an
interaction with the clock. Furthermore, the environment is not allowed to access the corruption
information of the session sid¢ from the clock directly for the sake of a well-defined pid-wise
corruption model [BCH*20].

This identity-bound thus ensures that the clock can be used to model lock-step progression
of protocols, and composition is guaranteed in any context that does not trivially break the
lock-step execution style. Finally, in order to keep the standard PID-wise corruption model
simple, the environment is only allowed to access the actual corruption set through the main
session’s corruption aggregation machine, not through the shared subroutine’s session [BCH™20].

3.4 Modeling Hash Queries

As usual in cryptographic proofs, the queries to the hash function are modeled by assuming
access to a random oracle (functionality) Ff;5. This functionality is specified as follows: upon
receiving a query (EVAL,sid,x) from a registered party, if z has not been queried before, a
value y is chosen uniformly at random from {0,1}" (for security parameter k) and returned

5Note that having no bound in place is not an option: if the environment was allowed to issue an external
write request with the source-ID corresponding to an active party in the session, then the environment would
have the power to simply skip and ignore any party.

18

—[Functionality 7§}, JI

Initialization:

The functionality initializes the party set P < (). It initializes a function table H <+ ((we write H[z] =L to denote
the fact that no assignment has been made).

Registrations:

o Upon receiving (REGISTER, sid) from some party P (or from A on behalf of a corrupted P), set P =P U {P}
and return (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid) from some party P € P (or from A on behalf of a corrupted P € P), set
P := P\ {P} and return (DE-REGISTER, sid, P) to the caller.

e Upon receiving (GET-REGISTERED, sid) from A, the functionality returns the response (GET-REGISTERED, sid, P)
to A.

RO queries:

e Upon receiving (EVAL,sid, z) from some party P € P (or from A on behalf of a corrupted P € P), do the
following;:
1. If H[z] = L then sample a value y uniformly at random from {0,1}" and set H[z] + y.

2. Return (EVAL, sid, z, H[z]) to the requestor.

Figure 3: The random oracle functionality. The functionality makes no changes to the standard
corruption mode.

to the party (and the mapping (x,y) is internally stored). If x has been queried before, the
corresponding y is returned. The description appears in Figure 3.

3.5 Which Setup Functionalities as Shared Subroutines?

The choice which setup functionalities should be treated as local and which one as shared is
an important one and is steered by several considerations. First, from the point of view of an
outsider party, the question is how much of the inner workings of a session are indeed relevant to
observe. Second, modeling a resource as shared comes with complications and must justify the
insights. For example, if the network was modeled as a shared network, then the protocol’s effect
on the network must be replicated in the ideal world (it does not just exist in the simulator’s
head). This complication might be justified when one studies the problem of protocols competing
for bandwidth. Third, to enable simulation, the simulator needs some edge over the real-world
adversary which often comes from the fact that the inner workings of a session are not publicly
verifiable and thus the simulator can be in charge of creating for example a local CRS or program
a random oracle.

In our work, we have three setups: the network, the clock, and the RO, where only the
clock is a shared setup. The network is a local resource to simplify the proofs. Making it
global would only make the ideal world more complex without providing more insights. Finally,
abstracting hash-queries as calls to a global random oracle (GRO) runs into intrinsic problems
in the PoW-setting because of two reasons. First, the model needs a reasonably elegant way to
achieve some closure on the amount of work invested into a PoW blockchain, and thus it seems
natural to say all work invested in Bitcoin are the RO queries made in that session. Second, at
the more technical level, a global random oracle would force the simulator to create blocks that

19

indeed carry sufficient work due to the lack of programmability. Since the simulator needs to
also simulate the hash queries of honest parties, this would only be feasible if it had a much
larger query budget than the real-world adversary (and not having to do this amount of work is
the simulator’s edge since it can program the RO). Clearly, one could consider a global random
oracle that supports programmability [CDGT 18], but such a more complicated model does not
appear to offer more insights than a local RO, as it basically is a shared subroutine that offers a
per-session (and hence a local) advantage to the simulator. Additionally, the programmability
feature comes at the price of a technical condition via which an adversary can always make a
protocol abort, which is unrealistic.

3.6 Assumptions as UC-Functionality Wrappers

In order to prove statements about cryptographic protocols one often makes assumptions about
what the environment (or the adversary) can or cannot do. For example, a standard assumption
in [GKL15, PSS17] is that in each round the adversary cannot do more calls to the random oracle
than what the honest parties (collectively) can do. This can be captured by assuming a restricted
environment and adversary which balances the amount of times that the adversary queries the
random oracle. In a property-based treatment such as [GKL15, PSS17] this assumptions is
typically acceptable. Also in a composable model such restrictions can be formulated. However,
restricting the environment is not compliant with a general composition theorem.

Therefore, instead of restricting the class of environments/adversaries, we present an alterna-
tive approach to capture the fact that the adversary’s access to real-world resource is restricted.
The general methodology is to capture restrictions by means of a functionality wrapper that
wraps the hybrid resources and enforces the restrictions on the adversary by limiting its access
to the resource. Such restrictions can become quite complex and we show concrete examples in
Section 8 to cast the assumptions and derive the equivalent composable statements.

A toy example. To illustrate the general methodology, consider the example of limiting the
rate of RO queries of an adversary over time. We can capture this assumption by means of a
functionality wrapper in a Gerock hybrid world that wraps the RO functionality and enforces a
bound on the adversary, for example by assigning to each corrupted party at most ¢ activations
per clock-tick for some parameter q. For completeness the wrapped random-oracle functionality
WI(Fgo) is given in Figure 4.

4 The Basic Transaction-Ledger Functionality

The purpose of this section is to describe the basic structure of a ledger functionality Gy gpcer.
The presented functionality is very generic in the sense that it is parameterizable by several
elements. The idea is that concrete blockchain protocols yield concrete instances of these
parameters, while the basic structure, as presented here, remains the same and can be seen as
the greatest common divisor of any such blockchain protocol proposal.

4.1 Introduction and Overview

Our ledger is parametrized by certain algorithms/predicates that allow us to capture a more
general version of a ledger which can be instantiated by various cryptocurrencies. Since our
abstraction of the Bitcoin protocol is in the synchronous model of computation (this is consistent

20

—[Wrapped Functionality W?(F5g) }

Initialization:

The functionality manages the variable counter (initially 0) and the set of corrupted parties P’ in the session. For
each party P € P’ it manages variables countp.

Initially, P’ = @ and counter = 0.
General:
e The wrapper does not interact with the adversary as soon as the adversary tries to exceed its budget of ¢
queries per corrupted party. Registration-queries and their replies are simply relayed without modifications.
Relaying inputs to the random oracle:

e Upon receiving (EVAL, sid, z) from A on behalf of a corrupted party P € P’, then first execute Round Reset.
Then, set countp < countp + 1 and only if countp < q forward the request to Fy7, and return to .A whatever
Fho returns.

¢ Any other request from any participant or the adversary is simply relayed to the underlying functionality
without any further action and the output is given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:

o Upon receiving (CORRUPT, sid, P) from the adversary, set P’ < P’ U{P}. If P has already issued ¢ > 0 random
oracle queries in this round, set countp < t. Otherwise set countp <« 0.

Procedure Round-Reset:
Send (CLOCK-READ, sid¢) to Gerock and receive (CLOCK-READ,sidc,7) from Gerock. If |7 — counter| > 0, then set
count p « 0 for each participant P € P’ and set counter < .

Figure 4: The wrapped random oracle.

with known approaches in the cryptographic literature), our ledger is also designed for this
synchronous model. Nonetheless, several of our modeling choices are made with the foresight of
removing or limiting the use of the clock and leaving room for less synchrony.

At a high level, our ledger G, gperr has a similar structure as the ledger proposed in [KZZ16].
Concretely, anyone (whether an honest miner or the adversary) might submit a transaction
which is validated by means of a predicate Validate, and if it is found valid it is added to a
buffer buffer. The adversary A is informed that the transaction was received and is given its
contents.” Informally, this buffer also contains transactions that, although validated, are not
yet deep enough in the blockchain to be considered out-of-reach for an adversary.® Periodically,
Grepaer fetches some of the transactions in the buffer, and using an algorithm Blockify creates a
block including these transactions and adds this block to its permanent state state, which is a
data structure that includes the part of the blockchain the adversary can no longer change. This
corresponds to the common prefiz in [GKL15, PSS17]. Any miner or the adversary is allowed to
request a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that can be implemented
by existing blockchain protocols, we need to relax this functionality by giving the adversary more
power to interfere with it and influence its behavior. Before sketching the necessary relaxations
we discuss the need for a new ledger definition and its potential use as a global setup.

"This is inevitable since we assume non-private communication, where the adversary sees any message as soon
as it is sent, even if the sender and receiver are honest.
8E.g., in [KZZ16] the adversary is allowed to permute the contents of the buffer.

21

Impossibility to realize the ledger of [KZZ16]. The main reasons why the ledger func-
tionality in [KZZ16] is not realizable by known protocols under reasonable assumptions are
as follows: first, their ledger guarantees that parties always obtain the same common state.
Even with strong synchrony assumptions, this is not realizable since an adversary, who just
mined a new block, is not forced to inform each party instantaneously (or at all) and thus could
for example make parties observe different lengths of the same prefix. Second, the adversarial
influence is restricted to permuting the buffer. This is too optimistic, as in reality the adversary
can try to mine a new block and possibly exclude certain transactions. Also, this excludes any
possibility to quantify quality. Third, letting the update rate be fixed does not adequately reflect
the probabilistic nature of Nakamoto-style blockchain protocols.

On the sound usage of a ledger as a global setup. As already pointed out in [BMTZ17],
one has to be extra careful when replacing a global setup by its implementation, e.g., in the case
of Grepeer by the UC Bitcoin protocol. Indeed, such a replacement does not, in general, preserve
a realization proof of some ideal functionality F that is conducted in ledger-hybrid world where
the ledger is treated as a shared subroutine, because the simulator in that proof might rely on
specific capabilities that are not available any more after replacement (as the global setup is also
replaced in the ideal world). A recent follow-up work by Badertscher et al. [BHZ21] explores the
facets of this question and gives conditions when a replacement is sound.

As this work focuses on the realization of ledger functionalities per se, this complication is
not relevant to this work. We know from [BHZ21] that the distinction on whether a functionality
is “global /shared” or “local” is decision of how the functionality is being used by a protocol
(which stands in sharp contrast to prior global UC models that assign it a new type, which can
be problematic [BCH"20]). Therefore, the functionality Gygpeer is a standard UC functionality
in our realization proofs.

4.2 The General Ledger Functionality

We present here the formal description of the ledger functionality. An overview of its parameters
and state variables is given in Figure 5 and a in-depth explanation follows in the next section.

—[Functionality Gieqger

Parameters: Integers windowSize, Delay; Algorithms Validate, ExtendPolicy, Blockify, predict-time (cf. Figure 5).

Clock-time: The functionality maintains a variable 77, that is kept in-sync with clock-time: Upon any activation (and
thus also initialization), the ledger first sends (CLOCK-READ, sid¢) to Gerock to receive the answer (CLOCK-READ, sidg, T)
and sets 77, := 7 and then proceeds with the remaining actions.

Variables and initialization: The functionality initializes state, sep, NxtBC,f}; « ¢, buffer < () as well as party
sets P, H,Pps < 0 (cf. Figure 5).

Party Management:

o Upon receiving (REGISTER, sid) from some party P (or from A on behalf of a corrupted P), set P =P U {P},
initialize ptp < 1, statep < ¢, and Tlrfg < 7. If P is an honest party and if H = () send (REGISTER, sid¢)
to Gerock. If P is honest then update f}; and set H < H U {P} and if additionally 7,® > 0 holds, set
Pps < Pps U{P}. Return (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid) from some party P € P (or from A on behalf of a corrupted P € P), set
P« P\{P}, H <+ H\{P}, and Pps + Pps \ {P}. If H =0, send (DE-REGISTER, sid¢) to Gerock. If P is
honest then update fg Return (DE-REGISTER, sid, P) to the caller.

Ledger Operation:

Upon any other input I received from a party P; € P or from the adversary A the following steps are taken:

22

1. If P, € H or if I is a corruption message from A targeting P; € H, then update f}; «— fIEH(I7 Pi,7p). Ifa
party P; gets corrupted, additionally update H <— H \ {P;} and Pps < Pps \ {P;}.

2. Let P := {P € Pps|75® < 7, —Delay}. Set Ppg :=Ppg \’ﬁ

3. If P; € H then additionally take the following steps:
(a) (N,s') « ExtendPoIicy(fI:_FI, state, NxtBC, buffer; sep). Reset NxtBC — € and store se¢p + s’.

(b) If N # ¢ then parse N = (N1,..., N;) and update state < state||Blockify(N1)|| ... ||Blockify(Ny).
(¢) For each BTX € buffer: if Validate(BTX, state, buffer) = 0 then buffer < buffer \ {BTX}.

(d) If 3P € H\ Pps s.t. ptp & [[state| — windowSize + 1,|state|], then set ptp < [state| for all
P, eH \ Pps.

4. If the input I is a ledger instruction from a party P; € P (or from A on behalf of a corrupted party P; € P),
execute the respective code:

— Submiting a transaction:
If I = (SuBMIT, sid, tx) do the following:
(a) Choose a unique transaction ID txid and set BTX <« (tx, txid, 7, P;)
(b) If Validate(BTX, state, buffer) = 1, then buffer < buffer U {BTX}.
(c) Output (SUBMIT, BTX) to A.

— Reading the state:
If I = (READ,sid) then do the following: if P; € H \ Pps then set state; := state|min{pt,,|state|}-
Return (READ, sid, state;) to the caller.

— Maintaining the ledger state:
If I = (MAINTAIN-LEDGER, sid, minerID) and P; € H and predict—time(fg) > 71 then send
(CLOCK-UPDATE, sid¢) to Gerock. Else send I to A.

5. If the input [is an additional adversarial capability (received on the backdoor tape from A) execute the
respective code:

— The adversary reading the state: .
If I = (READ, sid), then return (state, buffer,7%) to A.

— The adversary proposing the next block:
If I = (NEXT-BLOCK, (txidq,...,txids)), update NxtBC as follows:

(a) Set listOfTxid « €
(b) Fori=1,...,£do: if there exists a BTX = (tx, txid, minerID, 71, P;) € buffer with ID txid = txid,
then set listOfTxid := listOf Txid||txid;.
(¢) Finally, set NxtBC := NxtBC||listOfTxid and output (NEXT-BLOCK, ok) to A.
— The adversary setting state-slackness:
If I = (SET-SLACK, (Piuptil)v ceey (Pie,ptie)), with {P;,,..., P;,} € H then do the following: If for all
P;; € H\ Pps,j € [{]: |state| — };:cij < windowSize and I;Eij > |state;, |, then update pt;, = ﬁ:il for
every j € [£]. Return (SET-SLACK, ok) to A.
— The adversary setting the state for desychronized parties:
If I = (DESYNC-STATE, (P;, , stategl), oo (P, state;e))7 with {P;,,..., P, } C Ppg then set state;; :=
state) for each j € [{] and return (DESYNC-STATE, ok) to A.
J
— The adversary obtaining the set of registered parties:
If I = (GET-REGISTERED, sid), then return (GET-REGISTERED, sid, P) to A.

— The adversary corrupting a party (additional steps to Item 1):
If I = (CORRUPT,sid, P;) and predict-time(Z};) > 71 then send (CLOCK-UPDATE, sid¢) to Gerock. Else
return I to A.

23

4.3 On the Defining Features

We explain several of the features of the ledger functionality and give an overview of the relevant
parameters and state variables in Figure 5.

4.3.1 State-buffer validation

The first relaxation is with respect to the invariant that is enforced by the validation predicate
Validate. Concretely, in [KZZ16] it is assumed that the validation predicate enforces that the
buffer does not include conflicting transactions, i.e., upon receipt of a transaction, Validate checks
that it is not in conflict with the state and the buffer, and if so the transaction is added to the
buffer. However, in reality we do not know how to implement such a strong filter, as different
miners might be working on different, potentially conflicting sets of transactions.® The only time
when it becomes clear which of these conflicting transactions will make it into the state is once
one of them has been inserted into a block which has made it deep enough into the blockchain
(i.e., has become part of state). Hence, given that the buffer includes all transactions that
might end up in the state, it might at some point include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take a different approach.
The validate predicate will be less restrictive as to which transactions make it into the buffer.
Concretely, at the very least, Validate will enforce the invariant that no single transaction in
the buffer contradicts the state state, while different transactions in buffer might contradict
each other. Looking ahead, a stronger version that is achievable by employing digital signatures
(presented in Section 9) could enforce that no submitted transaction contradicts other submitted
transactions. As in [KZZ16], whenever a new transaction tx is submitted to Gigpaer, it is passed
to Validate which takes as input a transaction and the current state and decides if tx should
be added to the buffer. Additionally, as buffer might include conflicts, whenever a new block
is added to the state, the buffer (i.e., every single transaction in buffer) is re-validated using
Validate and invalid transactions in buffer are removed. To allow for this re-validation to be
generic, transactions that are added to the buffer are accompanied by certain metadata, i.e., the
identity of the submitter, a unique transaction ID txid'?, or the time 7 when tx was received.

4.3.2 State update policy and security guarantees

The second relaxation is with respect to the rate and the form and/or origin of transactions that
make it into a block. Concretely, instead of assuming that the state is extended in fixed time
intervals, we allow the adversary to define when this update occurs. This is done by allowing the
adversary, at any point, to propose what we refer to as the next-block candidate NxtBC. This is
a data structure containing the contents of the next block that A wants to have inserted into
the state. Leaving NxtBC empty can be interpreted as the adversary signaling that it does not
want the state to be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into the state state, or
if anything ever does, yields a very weak ledger. Intuitively, this would be a ledger that only
guarantees the common prefix property [GKL15] but no liveness or chain quality. Therefore, to

9This will be the case for transactions submitted by the adversary even when signatures are used to authenticate
transactions.

10T Bitcoin, the value txid would be the hash-pointer corresponding to this transaction. Note that the generic
ledger can capture explicit guarantees on the ability or disability to link transactions, as this crucially depends on
the concrete choice of an ID mechanism.

24

Ledger Parameter

Description

Validate

Decides on the validity of a transaction with respect to the current state.
Used to clean the buffer of transactions.

ExtendPolicy

The (stateful) function that specifies the ledger’s guarantees in extending
the ledger state (e.g., speed, content etc.).

predict-time The function to predict the real-world time advancement.

Blockify The function to format the ledger state output.

windowSize A positive integer that describes the window size (number of blocks) of
the sliding window.

Delay A positive integer that describes a general delay parameter for the time

it takes for a newly joining (after the onset of the computation) miner
to become synchronized.

Ledger Variables

Description

P, H,Pps The party sets and categories: Registered, honest, and honest-but-
desynchronized, respectively.

f};— The timed honest-input sequence.

state The ledger state, i.e., a sequence of blocks containing the content.

buffer The buffer of submitted input values.

Teg
ptp, statep, 7p

The pointer of party P into state state. This prefix is denoted statep
for brevity. The time variable 7,® records the time when party P
registered to the execution most recently.

Sep The state of the extend-policy algorithm.
TIL The current time as reported by the clock.
NxtBC Stores the current adversarial suggestion for extending the ledger state.

Figure 5: Overview of main ledger elements including its parameters and state variables.

enable us to capture also stronger properties of blockchain protocols we parameterize the ledger by
an algorithm ExtendPolicy that, informally, enforces a state-update policy restricting the freedom
of the adversary to choose the next block and implementing an appropriate compliance-enforcing
mechanism in case the adversary does not follow the policy. This enforcing mechanism simply
returns a default policy-complying block using the current contents of the buffer. We point out
that a good simulator for realizing the ledger will avoid triggering this compliance-enforcing
mechanism, as this could result in an uncontrolled update of the state which would yield a
potential distinguishing advantage. In other words, a good simulator, i.e., ideal-world adversary,
always complies with the policy.

In a nutshell, ExtendPolicy is a possibly stateful algorithm that takes the ledger state, the
current contents of the buffer buffer, along with the adversary’s recommendation NxtBC. The
output of ExtendPolicy is a vector including the blocks to be appended to the state (where again,
ExtendPolicy outputting an empty vector is a signal to not extend), together with its update
internal state. To ensure that ExtendPolicy can also enforce properties that depend on who
inserted how many (or which) blocks into the state—e.g. the so-called chain quality property
from [GKL15]—we also pass to it the timed honest-input sequence fIT[(cf. Section 3).

Some examples of how ExtendPolicy allows us to define ways that the protocol might restrict
the adversary’s interference in the state-update include the following properties from [GKL15]:

25

e Liveness corresponds to ExtendPolicy enforcing the following policy: If the state has
not been extended for more that a certain number of rounds and the simulator keeps
recommending an empty NxtBC, ExtendPolicy can choose some of the transactions in the
buffer (e.g., those that have been in the buffer for a long time) and add them to the
next block. Note that a good simulator or ideal-world adversary will never allow for this
automatic update to happen and will make sure that he keeps the state extend rate within
the right amount.

e Chain quality corresponds to ExtendPolicy enforcing the following policy: Every block
proposal made by the simulator is examined as to whether it is maximally filled with
valid transactions. Such blocks must appear frequently. If this is not the case, the ledger
will define and add a default block to the state. We point out that unlike the original
chain-quality property from [GKL15], this policy does not enforce which miner should
receive the reward for honest blocks and it is up to the simulator to do so (via the so-called
coinbase transaction).!!

We note that ExtendPolicy is a general concept capable of formulating various properties of
blockchain protocols. For example, we can capture that honest (and non-conflicting) transactions
eventually make it into the state. Another property could be to formalize that transactions with
higher rewards make it into a block faster than others (which we do not consider in this work).

In Section 6 we provide one possible specification of ExtendPolicy that can be guaranteed for
the UC Bitcoin protocol.

4.3.3 Output Slackness and Sliding Window of State Blocks

The common prefix property guarantees that blocks which are sufficiently deep in the blockchain
of an honest miner will eventually be included in the blockchain of every honest miner. Stated
differently, if an honest miner receives as output from the ledger a state state, every honest
miner will eventually receive state as its output. However, in reality we cannot guarantee that
at any given point in time all honest miners see exactly the same blockchain length; this is
especially the case when network delays are incorporated into the model, but it is also true in
the zero-delay model of [GKL15]. Thus it is unclear how state can be defined so that at any
point all parties have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we make the following
relaxation: We interpret state as the view of the state of the miner with the longest blockchain.
And we allow the adversary to define for every honest miner P, a subchain state; of state
of length [state;| = pt; that corresponds to what P; gets as a response when he reads the
state of the ledger (formally, the adversary can fix a pointer pt;). For convenience, we denote
by state|ps, the subchain of state that finishes in the pt;-th block. Once again, to avoid
over-relaxing the functionality to an unuseful setup, our ledger allows the adversary to only
move the pointers forward and it forbids the adversary to define pointers for honest miners that
are too far apart, i.e., more than windowSize state blocks. The parameter windowSize € N
denotes a core parameter of the ledger. In particular, the parameter windowSize reflects the
similarity of the blockchain to the dynamics of a so-called sliding window, where the window of

"Note that while good blocks are created and circulated in the network by an honest miner, this does not mean
that this miner is still honest when the block makes it into the ledger state unless one considers static corruptions
only (in which case one could more simply argue about the fraction of honest originators in the ledger state). To
make this difference is crucial to explicitly see the impact due to adaptive corruptions.

26

size windowSize contains the possible views of honest miners onto state and where the head
of the window advances with the head of the state. In addition, it is convenient to express
security properties of concrete blockchain protocols, including the properties discussed above, as
assertions that hold within such a sliding window (for any point in time).

4.3.4 Synchrony Aspects and De-Synchronized Parties

In order to keep the ideal execution indistinguishable from the real execution, the progression
of time must be the same. Since the protocol advances the clock as an effect of executing the
protocol, the ledger needs to ensure this in the ideal world (note that we model that the protocol
can make advancement without the adversary being in the loop to capture liveness). To simplify
clock-progression management, recall Definition 3.1, where we introduce predict—time(fg), to
enable a modular view how the clock proceeds of an entire session. Thus, instead of managing
each party individually, the ledger simply registers itself to the clock, records the timed honest-
input sequence fg of its session, and signals the clock when the session is ready to advance to
the next round. Observe that the ledger can infer all protocol-relevant inputs to honest parties
and thus keep track of the honest inputs sequence f}} As the other functions explained above,
we make the function predict-time a parameter of the (general) ledger functionality that needs
to be instantiated when realizing a specific ledger such as the Bitcoin ledger (which is the topic
of Section 6).

A final observation is with respect to guarantees that the protocol (and therefore also the
ledger) can give to recently registered honest parties. We introduce an additional party set, Ppg,
which consist of honest parties for which we are not able to give the full guarantees yet because
they are de-synchronized. The ledger parameter Delay describes the time (in number of clock
ticks) it takes for a newly joining party, that joins later than at the onset of the execution, to
become fully synchronized.

To provide more intuition why we need such a set, consider the following scenario: An honest
party registers as miner in round r and waits to receive from honest parties the transactions to
mine and the current longest blockchain. In Bitcoin, upon joining, the miner sends out a special
request on the network—we denote this here as a special NEW-MINER-message—and as soon as
any party receives it, it responds with the set of transactions and longest blockchain it knows.
Due to the network delay, it can take a full round-trip time before the longest chain arrives to
the newcomer. However, because we do not make any assumption on honest parties knowing A
they start mining as soon as they see network traffic. But now the adversary, in the worst case,
can make these parties mine on any block he wants and have them accept any valid chain he
wants as the current state while they wait for the network’s response (by maximally delaying
everything sent to these parties by other honest parties, and instead immediately deliver what
he wants them to work on). However, after a constant number of rounds, this effect will be
resolved and the parties will be synchronized with the longest chain.

5 Bitcoin as a UC Protocol

5.1 Basics

A blockchain C = Byq,...,B,, is a (finite) sequence of blocks where a block B; = (s;, st;,n;) is a
triple consisting of the pointer s; (identifying the predecessor block via its hash), the state block
st;, and the nonce n;. The head of chain C is the block head(C) := B,, and the length length(C)

27

of the chain is the number of blocks, i.e., length(C) = n. The chain C!* is the (potentially
empty) sequence of the first length(C) — k blocks of C. A special block is the genesis block
G = (L, gen, 1) which contains the genesis state gen := ¢ and, as we will see later, is required
to be the first block in the sequence.

The state st encoded in C is defined as a sequence of the corresponding state blocks, i.e.,
st := sty||...||stn. In other words, one should think of the blockchain C as an encoding of
its underlying state st; such an encoding might, e.g., organize C is an efficient searchable data
structure as is the case in the Bitcoin protocol where a blockchain is a linked list implemented
with hash-pointers. In the protocol, the blockchain is the data structure storing a sequence of
entries, often referred to as transactions. Furthermore, as in [KZZ16], in order to capture a
range of blockchains with syntactically different state encoding, we assume a generic algorithm
blockifyy; to map a vector of transactions into a state block. Thus, each block st € st (except

the genesis state) of the state encoded in the blockchain has the form st = blockifyp (]\7) where

N is a vector of elements that we simply call transactions, although our treatment is generic
and does not fix the type of data the ledger is carrying.

5.1.1 Validity and Longest Valid Chains

The validity of a blockchain C depends on two aspects: chain-level validity, also referred to as
syntactic validity, and a state-level validity also referred to as semantic validity.

Syntactic validity. This is defined with respect to a difficulty parameter D € [2"], where & is
the security parameter, and a given hash function H : {0,1}* — {0,1}"; it requires that, for
each ¢ > 1, the value s; contained in B; satisfies s; = H[B;_1] and that H[B;] < D holds (for
non-genesis blocks), where the output of the hash-function is understood as an integer. Note
that for notational simplicity, we omit the hash-function as an explicit superscript.

~

,{ Algorithm vaIidStruct% (C)

res < true
if (length(C) = 0) or (H|head(C)] > D) then
res < false
else if length(C) =1 then
res + (C = G)
else > In this case, the chain is non-trivial and the most recent block is a valid proof-of-work.
C'+cC
(s’,+,+) + head(C’)
repeat
¢ —cn > Chop off the head of C’.
B := (s,st,n) + head(C’)
if (H[B] # s’) or (length(C’) > 1 and H[head(C)] > D) or (length(C’) =1 and B # G) then
res < false
else
s’ s
until res = false or length(C’') =1

return res

Semantic validity. This is defined on the state st encoded in the blockchain C and specifies
whether this content is valid (which might depend on a particular application). We go with a
generic semantic validity check of the blockchain defined by algorithm isvalidstate; below. We
assume a generic validation predicate for single transactions that we refer to by ValidTxy (and

28

which is an algorithm that takes a state and the transaction that is being validated as inputs
and outputs a bit). For the sake of generality, this validity predicate is completely generic and
looking ahead, our main theorem holds for any choice of this predicate, whenever the ledger
parameter Validate is chosen accordingly as we show in Section 6.

The pseudo-code of the algorithm isvalidstate; which builds upon ValidTxg is provided below.
In a nutshell, the algorithm checks that a given blockchain state can be built in an iterative
manner, such that each contained transaction is considered valid according to ValidTx; upon
insertion. It further ensures that the state starts with the genesis state and that state blocks

contain a special coin-base transaction txﬁ%lr?éll?ﬁge which assigns them to a miner.

,—[Algorithm isvalidstatey (st)

Let st := st1]|...||stn
for each st; do
Extract the transaction sequence tx; < tX;1,- .., t%Xin,; contained in st;
=/ ogs . .
st < gen > Initialize the genesis state

for i =1 ton do
if the first transaction in tx; is not a coin-base transaction return false
N; < tx41
for j = 2 to |tx;| do
st < blockifyp (V;)
if ValidTxp(tx;,5, st'||st) = 0 return false
N; +— NthXi’j
st’ « st'||st;
return true

Definition 5.1. A chain C is valid if it satisfies syntactic and semantic validity, i.e., if, for the
chain and its encoded state st, the following predicate evaluates to true:

isvaIidchain%(C) = vaIidStruct% (C) Aisvalidstatep(st).

Longest valid chain. In the Bitcoin protocol, the notion of the longest valid chain is very
crucial. The reason is that the party defines the ledger state at a certain time as a prefix of the
state encoded in the longest valid chain it knows at that time. We stick to the nomenclature of
[GKL15] and call the function maxvalidy(Cy, .. .,Ck).

,{ Algorithm maxvalid},(Cy, .. ., Ci)

J

Ctemp — €
for i =1 to k do
if isvalidchain%(ci) and (length(C;) > length(Ctemp)) then
Ctemp — Cz
return Ciemp

5.1.2 Extending Chains and Proofs-of-Work

A core step in Bitcoin is to extend a given chain C by a new block B (with certain state content)
to yield a longer chain C||B. As presented in [GKL15] this can be captured by an algorithm
extendchainp(-) that takes a chain C, a state block st and the number of attempts ¢ as inputs.
It tries to find a proof-of-work which allows to extend the C by a block which encodes st.

29

'-‘ Algorithm extendchainp(C, st, q)

Input: Chain C is valid with state st. The state st||st is valid.

Set B < L
s « Hlhead(C)] > Compute the pointer s of the new block
for i € {1,...,q} do

Choose nonce n uniformly at random from {0,1}" and set B + (s, st,n).

if H[B] <D then

break

if B # | then

C+C||B
return C

5.2 Overview and Modeling Decisions

In Bitcoin, each party maintains a local blockchain which initially consists of the genesis block.
The chains of honest parties might differ (but as we will prove, it will have a common prefix
which will define the ledger state). New transactions are added in a ‘mining process’. First, a
party collects valid transactions (according to ValidTxp) and creates a new state block st using
blockify;. Next, the party attempts to mine a new block by solving a puzzle (and hence finding
a proof-of-work) which upon success could then be validly added to their local blockchain. After
each mining attempt parties will multicast their current chain. A party will replace its local
chain if it obtains or receives a longer valid chain. When queried to output the state of the
ledger, a party reports a prefix of the state encoded in its longest valid chain — obtained by
ignoring (or chopping-off) the most recent 7" blocks (a party outputs € if the state has less than
T blocks). This behavior will ensure that all honest parties output a consistent ledger state.
T is a crucial parameter of the Bitcoin protocol and typically, the guarantees of the security
statements depend on 7' (and in addition on the usual security parameter k).

5.2.1 The Round Structure

As already mentioned in the introduction, we model Bitcoin as a lock-step (sometimes dubbed
semi-) synchronous protocol: The protocol can proceed in rounds — enabled by having access
to a global synchronization clock Gepocxk— but is not aware of the actual delay of the network.
In each round, two logical tasks have to be executed: an updating or information-fetching step
(where new messages from the network are processed) and a working or mining-step, where each
party tries to extend its local chain.

To simplify the UC activation handling in the analysis, we divide each logical round into two
sub-rounds (where each sub-round corresponds to a logical task; see below for more details). This
means that each logical round correspond to two actual clock-ticks (also known as mini-rounds
in the MPC literature). We say that a protocol is in round r if the current time of the clock is
T € {2r,2r +1}.

Having two clock-ticks per round is a standard way to model in synchronous UC that
messages (e.g., a block) sent within a round are delivered at the beginning of the next round. In
our case, each round is divided into two mini-rounds, where each mini-round corresponds to a
clock tick. We treat the first mini-round as the updating mini-round (fetch messages from the
network to obtain messages sent previous rounds) and the second mini-round as the working
mini-round (solving the puzzle and multicasting solutions).

30

5.2.2 Handling Interrupts

A protocol command might consists of a sequence of operations. However, certain operations,
such as sending a message to another party, result in the protocol machine losing the activation
token. We briefly describe a standard way to formalize that a party that loses an activation in
the middle of a multi-step command is able to resume and complete the command following
the implicit proposal of [KMTZ13]. Their mechanism can be made explicit by introducing an
anchor a that stores a pointer to the current operation; the protocol associates each anchor with
such a multiple command and an input I, so that when such an input is received it directly
jumps to the stored anchor, executes the next operation(s) and updates (increases) the anchor
before releasing the activation. We refer to such an execution as being I-interruptible.

As an example, consider a protocol that requires that upon receiving input I, the party
should run a command that consists of m steps Step 1, Step 2,..., Step m, but some of these
steps might result in the party losing its activation. Running this command in an I-interruptible
manner means executing the following code: Upon receiving input [if a < m go to Step a and
increase a = a + 1 before executing the first operation that releases the activation; otherwise go
to Step 1 and set a = 2 before executing any operation that releases the activation.

5.3 The Formal Protocol Description

We can now formally define our blockchain protocol Ledger-Protocol,p, ;» (we usually omit
the parameters when clear from the context). The protocol allows an arbitrary number of
parties/miners to communicate by means of a multicast network]:l%_Mc. Note that this means
that the adversary can send different messages to different parties. New miners might dynamically
join or leave the protocol by means of the registration/de-registration commands: when they
join they register with all associated functionalities and when they leave they deregister. The
pseudo-code of this UC blockchain protocol is given in the remainder of this section. For the
general structure of our UC blockchain model, we refer to Figure 6.

The Bitcoin ledger protocol assumes as hybrids a random oracle F3, a network fﬁ_’ﬁfc for

blockchains, a network]-"1@_ It\>1(c for transactions, and clock Gerock. Note that the two networks
are simply (named) instances of .7-"1%_ vc and can be realized from a single network]-"ﬁ_ MC using
different message-IDs. The protocol is parametrized by ¢, D, T" where ¢ is the number of mining
attempts per round, D is the difficulty of the proof-of-work, and T is the number of blocks
chopped off to obtain the ledger state.

5.3.1 Registration, De-Registration and Initialization

Recall from Sections 2.1.4 and 3 that we model explicit registrations to make all our functionalities,
and in particular the ledger functionality, regular. And thus this has to be reflected in the
real-world protocol. However, registration and de-registration can be seen as explicit commands
to start the operation of a protocol machine, and to stop the operation of a protocol machine,
and to have this feature explicitly exposed to the higher-level protocol.

The formal registration process in the protocol works as follows. If a party receives
(REGISTER, sid) from the environment it registers to all hybrid functionalities. Once regis-
tration has succeeded the party returns activation to the environment. Upon the next activation
to maintain the ledger (MAINTAIN-LEDGER), the party initializes its local variables, multicasts a
special NEW-PARTY message over the network, and executes the main maintenance sub-protocol

31

4

Protocol Ledger-Protocol,, p, 7(P)

Variables and Initial Values:

The protocol stores a local (working) chain Cj,. which initially contains the genesis block, i.e., Cjpe + (G).

It additionally manages a separate chain Cexp to store the current chain whose encoded state st is exported as
the ledger state (initially this chain contains the genesis block).

Variable isInit stores the initialization status. Initially this variable is false.
buffer contains the list of transactions obtained from the network. Initially, this buffer is empty.

A flag WELCOME to indicate whether a indication was received that a new party joined the network (initially
WELCOME = 0).

Two variables doneWork and doneUpdate (initialized to false) that indicate whether the respective round actions
have been executed.

The party stores its registration status to the hybrid functionalities internally. We do not introduce an explicit
name for this variable.

Registration/De-Registration:

Upon receiving (REGISTER, sid), this party sends (REGISTER, sid) to f\?i\blz,]:I\é-i\t[XC’ Fios and Gerook and outputs
(REGISTER, sid, P).

Upon receiving (DE—REF}ISTER7 sid), send .FI\A\b[CC, fﬁﬁc, FRo- Set all variables back to their initial values and
return (DE-REGISTER, sid, P).

Ledger-Queries:
Ledger queries are only answered once registered.

Upon receiving (SUBMIT, sid, tx), set buffer < buffer||tx, and send (MULTICAST, sid, tx) to _FNA_’;;‘C.

Upon receiving (READ, sid) send (CLOCK-READ, sid¢) to Gerock, receive as answer (CLOCK-READ, sid¢, 7) and
proceed as follows:

if 7 corresponds to an update mini-round and isInit and —doneUpdate then
Execute sub-protocol FetchInformation and set doneUpdate <« true.
Let st be the encoded state in Cexp

Return (READ,sid, st [T).

Upon receiving (MAINTAIN-LEDGER, sid, minerID) execute in a (MAINTAIN-LEDGER, sid, minerID)-interruptible
manner the following:

1. If isInit = false, then set all variables to their initial values, set isInit < true and output
(MULTICAST, sid, NEW-PARTY) to Fl\%ﬁc-

2. Execute sub-protocol Ledger-Maintenance

Figure 6: The main structure of the UC blockchain protocol.

32

(in an interruptible manner as further explained below). De-registering from the ledger (via
a query (DE-REGISTER, sid)) from the environment) works analogously, upon which the party
erases all its state and becomes idle until its is freshly invoked with a REGISTER-query.

Recall that the notion of de-synchronized parties is strongly connected to these registrations:
if an active honest party is not registered to all hybrids for long enough after joining the protocol
execution at some time 7 > 0, it is considered de-synchronized (and otherwise the party is
synchronized). In particular, honest parties that register at the onset of the protocol execution
are synchronized (until they get corrupted or de-registered).

5.3.2 Ledger-Specific Queries

Ledger specific queries are the specific features that one wishes to implement. Our very basic
ledger supports three operations (after registration):

Submitting a transaction. This one is very simple: when given a transaction a party
multicasts the transaction.

Ledger maintenance. Ledger maintenance refers to activating the main mining procedure of
Bitcoin and is given in Figure 7. Since ledger maintenance consists of several complex steps that
in particular lose activations, the execution proceeds in an interruptible manner as explained
in Section 5.2.2. The main structure of maintenance enforces the mini-round structure: in a
working mini-round, the protocol tries to obtain the solution to a proof-of-work puzzle for a
newly generated state block. The core sub-protocol thereby is:

N

Sub-Protocol ExtendState(st)

Cnew < extendchainp (Cjoc, st, q)
if Cnew # Cioc then
Update the local chain, i.e., Cjpe < Cnew-

Send (MULTICAST, sid, Cjo¢) to fl\?ﬁ% > Multicast current chain

It then enters an idle mode for maintenance queries until the clock advances and enters an
update mini-round where new information is fetched from the network.

Sub-Protocol Fetchinformation

Send (FETCH, sid) to fﬁ’ﬁ%, denote the response from fNA’I\bI% by (FETCH, sid, b).
Extract chains Cq,...,Ck from b.
Clocs Cexp maxvalid% (CZOC7 Cexp,C1, - - - 7Ck)

Send (FETCH, sid) to F2:% : denote the response from 'FNA-i\t;(C by (FETCH, sid, b).

N-MC?
Extract received transactions (txi,...,txy) from b.
Set buffer < buffer||(tx1,...,txg).
If a NEW-PARTY message was received, set WELCOME <— 1. Otherwise, set WELCOME < 0.

el

Remove all transactions from buffer which are invalid with respect to (the state of) C,,

Again the protocol is idle for maintenance queries until the clock advances.

33

r—l Sub-Protocol Ledger-Maintenance

This sub-protocol is executed in a (MAINTAIN-LEDGER, sid, minerID)-interruptible manner

Step 1: Send (CLOCK-READ, sid¢) to Gerock, receive as answer (CLOCK-READ, sid¢, 7), and proceed according to thel
following case distinction.

Step 2: if 7 corresponds to a working mini-round then
if —~doneWork then
Let st be the encoded state in Cjo.
Set buffer’ < buffer

Parse buffer’ as sequence (txi,...,txn)
4 in-bas
Set N« tx hioid
Set st < blockifyy (V)
repeat
Let (tx1,...,txn) be the current list of (remaining) transactions in buffer’

for i =1 ton do
if ValidTx(tx;, st||st) = 1 then
N « Nl|tx;
Remove tx from buffer’
Set st < blockifyp (V)
until N does not increase anymore
Execute ExtendState(st)
If the flag WELCOME = 1, send (MULTICAST, sid, buffer) to]-"NX_MC. Otherwise, give up activation.
Set doneWork < true, doneUpdate < false, and send (CLOCK-UPDATE, sid¢) to Gerock

Step 3: if 7 corresponds to an update mini-round then
if —~doneUpdate then
Execute FetchInformation
Set doneUpdate < true, doneWork < false, and send (CLOCK-UPDATE, sid¢) to Gerocox

Figure 7: The maintenance procedure of the UC Bitcoin protocol.

Reading the state. When asked to report the current ledger state, the protocol outputs the
prefix of the exported state, i.e., a prefix of the state encoded in Cexpp. By the mini-round structure,
the exported state is updated exactly once in every update mini-rounds (after initialization is
complete).

5.3.3 Predictable Synchronization Pattern

We now show that the ledger protocol has a predictable synchronization pattern according
to Definition 3.1.

Lemma 5.2. The protocol Ledger-Protocol, pr satisfies Definition 3.1. More specifically, there
is a predicate predict-timego that predicts the synchronization pattern of the UC Bitcoin protocol
as required by Definition 3.1.

Proof Sketch. This is follows by inspection of our ledger protocol (and all protocols that share
the same structure as we will see later in all the respective hybrid worlds they are executed in).
The predicate predict-time can be implemented as follows: browse through the entire sequence
f}; and determine how many times the clock advances. The clock advances for the first time,
when all miners got sufficient maintain commands to complete their mini-round operation. By
definition of Ledger-Protocol, this implies that each party has sent a clock-update to the clock
and hence the clock advances. By an inductive argument, whenever the clock has ticked, the
check when the clock advances the next time is checked exactly the same way. Overall, this

34

allows to check whether the next activation of an honest party, given the history of activations
will provoke a clock update (and knowing which parties are corrupted).]

6 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Section 4 with appropriate
parameters so that it is implemented by protocol Ledger-Protocol. The proof of this appears in
the next section. To define this Bitcoin ledger QF’EDGER, we give the specific instantiations of the
relevant functions Validate, Blockify, ExtendPolicy, and predict-time.

Synchrony pattern. First, predict-time is defined to be predict-timeg to reflect the synchro-
nization pattern of the UC Bitcoin protocol as described in the proof of Lemma 5.2. This shows
the dependency of the realized ledger from the protocol that achieves it.

State-buffer-validation. Similarly, in case of Validate we use the same predicate as the
protocol uses to validate the states: For a given transaction tx and a given state state, the
predicate decides whether this transaction is valid with respect to state. Given such a validation
predicate, the ledger validation predicate takes a specific simple form which, excludes dependency
on anything other than the transaction tx and the state state, i.e., for any values of txid, 77, B;,
and buffer:

Validate((tx, txid, 77, P;), state, buffer) := ValidTxp(tx, state).

Ledger-output format. As with the above parameters, the function Blockify is defined to
be blockifyy, i.e., the function used in the UC Bitcoin protocol. In principle, any formatting
function can be used and the security proof goes through (as long as the same function is
used in the protocol Ledger-Protocol and functionality QFEDGER). However, as we observe below
in Definition 6.1, a meaningful Blockify should be in certain relation with the ledger’s Validate
predicate. This relation is satisfied by the Bitcoin protocol.

The ledger policy. Finally, we define ExtendPolicy. At a high level, upon receiving a list
of possible candidate blocks which should go into the state of the ledger, ExtendPolicy does
the following: for each block it first verifies that the blocks are valid with respect to the state
they extend. Only valid blocks might be added to the state. In particular, ExtendPolicy is
parameterized by three parameters—two positive integers maxTimeyingow, RinTimeyingoy, and a
positive fraction n»—and ensures the following property:

1. The speed of the ledger is not too slow. This is implemented by defining an upper limit
maxTimeyingoy ON the time (number of clock-ticks) it takes to add windowSize state blocks.
The enforced minimal ledger growth rate is expressed as the fraction -4indouSize

maxTimeyindow

2. The speed of the ledger is not too fast. This is implemented by defining a lower bound
minTimeyingoy ON the time it takes to add windowSize state blocks. The enforced maximal

ledger growth rate is expressed as —windouSize
minTimeyindow

3. The adversary cannot create too many blocks with arbitrary (but valid) contents. This is
formally enforced by defining an upper bound 7 on the ratio these so-called adversarial

35

blocks within any sequence of windowSize (or more) state blocks. This is known as chain
quality. Formally, this is enforced by requiring that a certain fraction of blocks need to
satisfy higher quality standards (to model blocks that are honestly generated).

4. Last but not least, ExtendPolicy guarantees that if a transaction is “old enough”, and still
valid with respect to the actual state, then it is included into the state. This is a weak
form of guaranteeing that a transaction will make it into the state unless it is in conflict.
As we show in Section 9, this guarantee can be amplified by using digital signatures.

In order to enforce these policies, ExtendPolicy first defines alternative blocks which satisfy all of
the above criteria in an ideal way, and whenever it catches the adversary in trying to propose
blocks that do not obey the policies, it punishes the adversary by proposing its own generated
blocks. In particular, if the adversary violates the policy regarding minimal chain-growth, the
ExtendPolicy will directly propose a sequence of complying blocks and hence ensure liveness in a
strong sense. The precise formal description of the extend policy (as pseudo-code) for gFEDGER is
given in Appendix B for completeness.

On the relation between Blockify and Validate. As already discussed above, ExtendPolicy
guarantees that the adversary cannot block the extension of the state indefinitely, and that
occasionally an honest miner will create a block. These are implications of the chain-growth
and chain-quality properties from [GKL15]. However, our generic ExtendPolicy makes explicit
that a priori, we cannot exclude that the chain always extends with blocks that include, for
example, only a coin-base transaction, i.e., any submitted transaction is ignored and never
inserted into a new block. This issue is an orthogonal one to ensuring that honest transactions
are not invalidated by adversarial interaction—which, as argued in [GKL15], is achieved by
adding digital signatures.

To see where this could be problematic in general, consider a blockify that, at a certain
point, creates a block that renders all possible future transactions invalid. Observe that this
does not mean that our protocol is insecure and that this is as well possible for the protocols
of [GKL15, PSS17]; indeed our proof shows that the protocol will give exactly the same guarantees
as an Gy ppepr parametrized with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with Bitcoin. To
capture that this is the case, Validate and Blockify need to be in a certain relation with each
other. Informally, this relation should ensure that the above sketched situation does not occur,
i.e., Blockify should “not affect” the “true validity” of a transaction. A way to ensure this,
which is already implemented by the Bitcoin protocol, is by restricting Blockify to only make an
invertible manipulation of the blocks when they are inserted into the state—e.g., be an encoding
function—and define Validate to depend on the inverse of Blockify. This is captured in the
following definition.

Definition 6.1. A co-design of Blockify and Validate is non-self-disqualifying if there exists an
efficiently computable function Dec mapping outputs of Blockify to vectors N such that there
exists a validate predicate Validate’ for which the following properties hold for any possible state

state = stq]|...||sty, buffer buffer vectors N := (tx1,...,txy), and transaction tx:
1. Validate(tx, state, buffer) = Validate'(tx, Dec(st1)]| ... ||Dec(sty), buffer)
2. Validate(tx, state||Blockify(IN), buffer) = Validate' (tx, Dec(st;)]|. . . ||Dec(sty)|| N, buffer)

36

We remark that the actual validation of Bitcoin does satisfy the above definition, since a
transaction is only rendered invalid with respect to the state if the coins it is trying to spend
have already been spent, and this only depends on the transactions in the state and not the
metadata added by Blockify. Hence, in the following, we assume that ValidTxp and blockifyy
satisfy the relation in Definition 6.1.

7 Security Analysis

7.1 Overview

In this section we prove our main theorem, namely that, under appropriate assumptions, Bitcoin
realizes the instantiation of the ledger functionality from the previous section. We prove our
main theorem which can be described informally as follows:

Theorem (Informal). For the security parameter £ and assuming windowSize = w(log k), then

the protocol Ledger-Protocol securely realizes the concrete ledger functionality QL%DGER defined in
the previous section. The assumptions on network delays and mining power, where mining power
is roughly understood as the ability to find proofs of work via queries to the random oracle (and
will be formally defined later) are as follows:

e In any round of the protocol execution, the collective mining power of the adversary,
contributed by corrupted and temporarily de-synchronized miners, does not exceed the
mining power of honest (and synchronized) parties. The exact relation additionally captures
the (negative) impact of network delays on the coordination of mining power of honest
parties.

o No message can be delayed in the network by more than A = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization of the Bitcoin
protocol (cf. Figure 8). Informally, this modularization distills out from the protocol a reactive
state-extend subprocess which captures the lottery that decides which miner gets to advance
the blockchain next and additionally the process of propagating this state to other miners.
In Lemma 7.2 we show that the state-extend-and-exchange module/subprocess implements an
appropriate reactive UC functionality Fgrx. We can then use the UC composition theorem
which allows us to argue security of Ledger-Protocol in a simpler hybrid world where, instead of
using this subprocess, parties make calls to the functionality Fgrx, which then leads us to our
main analysis in Theorem 7.9.

7.2 First Proof Step

In a first step, we distill out from the protocol Ledger-Protocol a state-extend module/subprocess,
denoted as StateExchange-Protocol, and show, using a “game-hopping” argument, that a modular
description of the Ledger-Protocol in which every party makes invocations of this subprocess,
yields an equivalent protocol. We abstract the service provided by this sub-process by a new
lottery-functionality denoted Fgrx. The modularized protocol, defined for the Fgrx-hybrid
world is denoted by Modular-Ledger-Protocol.

As we prove, the sub-process StateExchange-Protocol UC-realizes Fgrx and hence the
original protocol Ledger-Protocol and the modularized protocol Modular-Ledger-Protocol are

37

(a) In the real world parties have access to the global (b) In the hybrid world parties have access to the
clock Gorock, the random oracle Ffi, and network state-exchange functionality Fsrx (instead of the
Fn-mc. Here, parties execute the Bitcoin protocol random oracle). Here, parties execute the modular-
Ledger-Protocol ized protocol Modular-Ledger-Protocol

gLEDGER

(c) In the ideal world, dummy parties have access to
the global clock Gerock and the ledger Girpeer

Figure 8: Modularization of the Bitcoin protocol.

in fact indistinguishable. This final step is a direct consequence of the universal compo-
sition theorem: Ledger-Protocol UC emulates Modular-Ledger-Protocol where invocations of
StateExchange-Protocol are replaced by invocations of Fgrx (for appropriate parameters as
precisely defined below).

Looking ahead, in the next section, we can hence focus on analyzing the simpler protocol
Modular-Ledger-Protocol in order to show that the UC Bitcoin protocol realizes the Bitcoin
Ledger of Section 6 — again by invoking the composition theorem.

7.2.1 The State-Exchange Functionality

The state-exchange functionality]:SAT’QH P4 allows parties to submit ledger states which are
accepted with a certain probability. Accepted states are then multicast to all parties. Informally,
it can be seen as as lottery on which (valid) states are exchanged among the participants. Note

38

that for simplicity of notation we do not write the parameters when clear from the context.
Parties can use Fgrx to multicast a valid state, but instead of accepting any submitted state
and sending it to all (registered) parties, Fsrx keeps track of all states that it ever saw, and
implements the following mechanism upon submission of a state st and a new block st from any
party: If st was previously accepted by Fsrx and st||st is a valid new state, then Fsrx accepts
st||st with probability py (resp. pa for dishonest parties) and sends it to registered parties.
Fach submission is evaluated independently. The formal specification is found in Figure 9.

7.2.2 Realizing the State-Exchange Functionality

The state-exchange functionality is realized by the protocol given below. It is obtained by
identifying the relevant instructions from the UC-ledger protocol. More precisely, protocol
StateExchange-Protocol UC-realizes the Fgrx functionality in the (F&q, F8c)-hybrid world.
Note that fll\)ISMC is a (named) instance of the .7-'1%_ vc functionality. The protocol is parametrized
by ¢ and D where ¢ is the number of mining attempts per submission attempt and D is the
difficulty of the proof-of-work.

,{ Protocol StateExchange-Protocol, ,(P)

Initialization:
The protocol maintains a tree 7 of all valid chains. Initially it contains the genesis chain (G).

Registration/De-Registration:

« Upon receiving (REGISTER,sid) do the following: send (REGISTER,sid) to JFB¢

(o) e and Ffy and output
REGISTER, sid, P).

o Upon receiving (DE-REGISTER, sid), send (DE-REGISTER, sid) to F2¢. . and F¥ .. Set all variables back to their
N-MC RO
initial values and return (DE-REGISTER, sid, P).

Exchange: Fxchange queries are only answered once registered.

« Upon receiving (SUBMIT-NEW, sid, st, st) do

if isvalidstatep (st|[st) = 1 then > Check if there exists a chain in 7 which contains the state st
if there exists C € T with st then
Cnew < extendchainp(C, st, q) > Try to extend the chain

if Chew # C then
Update the local tree, i.e., add Cpew to T
Output (SUCCESS, sid, 1) to P.

else
Output (SUCCESS, sid, 0) to P.
On response (CONTINUE, sid) send (MULTICAST, sid, Cnew) to F2y . > Broadcast current chain

o Upon receiving (FETCH-NEW, sid) if do the following:
Send (FETCH, sid) to .Flt\’ch and denote the response by (FETCH, sid, b).
Extract all valid chains Cy,...,C from b and add them to 7.
Extract states st1,...,sty from Ci,...,Cj and output them.

Lemma 7.1. Let p := 2%. The protocol StateExchange-Protocol, , UC-realizes functionality

fSAT’f(H’pA in the (F o, FR aic)-hybrid model where pa == p and py :== 1 — (1 — p)?.

Proof. We consider the following simulator:

39

—[Functionality]-“g‘t’){’HvPA }

Initialization:

The functionality initializes the party set P < @) and a buffer M which contains successfully submitted states which
have not yet been delivered to (some) parties in P. It also manages a buffer Nye; of adverbially injected chunk
messages (that might not correspond to valid states).

Registrations:

o Upon receiving (REGISTER, sid) from some party P (or from A on behalf of a corrupted P), set P =P U {P},
and initialize the tree Tp < gen where each rooted path corresponds to a valid state the party has received.
Return (REGISTER, sid, P) to the caller.

o Upon receiving (DE-REGISTER, sid) from some party P € P (or from A on behalf of a corrupted P € P), set
P := P\ {P} and return (DE-REGISTER, sid, P) to the caller.

Submit/receive new states:

— Upon receiving (SUBMIT-NEW, sid, st, st) from some participant Ps € P (or from A on behalf of a corrupted
P), if isvalidstatey(st||st) = 1 and st € Tp do the following:

1. If P is honest, sample B according to a Bernoulli-Distribution with parameter pg. Otherwise, sample
B with parameter p4.

2. If B =1, set stpew + st||st and add Stnew tO Tp, - Else set Stpew — SE.

3. Output (SUCCESS, sid, B) to Ps.

4. On response (CONTINUE,sid) where P = {Pi,...,Pn,} choose m new unique message-
IDs midy,...,mid,, initialize n new variables Dy, := D%&?X = ... = Dpnyg, =
DMAX = 1 set M := M||(stnew,midi, Dmid,, P1)][-.-[|(stnew, Midn, Dmig,, s Pn), and send
(SUBMIT-NEW, sid, stnew, Ps, (P1, mid1), ..., (Pn,mid,)) to the adversary.

— Upon receiving (FETCH-NEW, sid) from a party P € P (or from A on behalf of a corrupted P), do the following:

1. For all tuples (st, mid, Dpig, P) € M, Nnet update the value Dyig := Dpig — 1.

2. Let]\Z{’ denote the subvector of M including all tuples of the form (st, mid, Dyg, P) where Dyig < 0 (in
the same order as they appear in 1\2) For each tuple (st, mid, Dpiq, P) € Mép add st to Tp. Delete all
entries in]\2&3 from M and send]\7153 to P. If P is corrupted, provide additionally Npnet to the adversary.

Further adversarial influence:

— Upon receiving (SEND, sid, st, P’) from A on behalf of some corrupted P € P, if P’ € P and st € Tp, choose a
new unique message-ID mid, initialize D := 1, add (st, mid, Dpig, P’) to M, and return (SEND, sid, st, P/, mid)
to A. If st € Tp, then conduct the same steps except that (st, mid, Dpig, P’) is added to Nyet.

— Upon receiving (SWAP, sid, mid, mid’) from A, if mid and mid’ are message-IDs both registered in the same
message buffers, swap the corresponding tuples in that buffer. Return (swaP,sid) to A.

— Upon receiving (DELAY, sid, T, mid) from A, if T is a valid delay, mid is a message-ID for a tuple (st, mid, Dyig, P)
in the current message buffers and D%d“‘x + T < A, set Dpig := Dmiq + T and set D%dAX = D%dAX +T.

— Upon receiving (GET-REGISTERED, sid) from A, the functionality returns the response (GET-REGISTERED, sid, P)
to A.

Figure 9: The state exchange functionality. Parameters are the delay A and the success
probabilities py and p4 for honest and adversarial submissions.

40

f_{ Simulator Sgix

Initialization:

Set up a tree of valid chains 7 + {(G)} and an empty network buffer M.
Set up an empty random oracle table H and set H[G] to a uniform random value in {0,1}". If the simulator ever
tries to add a colliding entry to H, abort with COLLISION-ERROR.

Simulating the Random Oracle:
» Upon receiving (EVAL, sid, v) for Ffj, from A on behalf of corrupted P € P* do the following.

1. If H[v] is already defined, output (EVAL,sid,v, H[v]).

2. If v is of the form (s, st,n) and there exists® a chain C = By, ..., By, such that H[B,] = s proceed as
follows. If C € T abort with TREE-ERROR. Otherwise continue. Extract the state st from C and extract
the state block st from v. Send (SUBMIT-NEW, sid, st, st) to Fsrx and denote by (SUCCESS, B) the output
of Fsrx. If B =1 set H[v] to a uniform random value in {0, 1}* strictly smaller® than D. Add C||v to T.
Otherwise set H[v] to a uniform random value in {0,1}" larger than D. Output (EVAL,sid, v, H[v]).

3. Otherwise set v to a uniform random value in {0,1}" and output (EVAL, sid, v, H[v]).
Simulating the Network:

« Upon receiving (MULTICAST, sid, (m;,, Py,), ..., (my,, P;,)) for]-‘ngC from A on behalf of corrupted P € P
with {P;,,..., P;,} C Pnet proceed as follows.

1. For each (mij , Pij) where m;; isa chain in 7 extract the state s_{:i] from M, and send (SEND, sid, st, Pij)

to Fgrx. Store the message-ID @ returned by Fgrx with midij. Note that if P has not yet received
that state, it is first fetched by A on behalf of P and if an unknown state is encoded, a random oracle
query is simulated for the input to simulate the chain’s validity and its possible inclusion into 7.

2. For all remaining messages that could not be parsed as states, simply inject them as chunk messages to
Fsrx to obtain their mid.

3. Denote the obtained message-IDs by mid;,, ..., mid;,, initialize £ new variables Dmidil =...= Dmidi[=
1, set M := MH(mll) midil 5 Dmidi1 5 le)H s H(mig: midigrDmidiE 3 PZ)
4. Output (MULTICAST, sid, (my, , P;; , mids,), ..., (m;,, P;,, mid;,) to A.

e Upon receiving (FETCH, sid) for]-'Iﬁ}fl\,lc from A on behalf of corrupted P € Pper proceed as follows.

1. Fetch in the name of party P from Fg;x and compute the list of message identifiers midy, ..., mid, for
which Dpig; < 0.

2. Let]\25 denote the subvector M formed by all tuples (m, mid, Dyid, P) in the same order as they appear
in M, where mid appears in the above list. Delete all entries in]\;['(l)D from M, and send]\25’ to A.
e Upon receiving a message (DELAYS, sid, (Tmidi1 ,mid;,), ..., (Tmidi@ ,mid;,)) do the following for each pair
(Tmid, mid) in this message:
1. If Tphiqg is a valid delay (i.e., it encodes an integer in unary notation) and mid is a message-ID registered
in the current M, set Dpig := max{1, Dnig + Tmid }; otherwise, ignore this tuple.

2. If the simulator knows a corresponding Fgrx-message-1D n:;j for mid send (DELAY,sid, Tpid, r;;i) to
Fsrx-

o Upon receiving a message (SWAP, sid, midi, mid2) from the adversary do the following:

1. If mid; and midy are message-IDs registered in the current M, then swap the tuples in M.

2. If the simulator knows for both mid; and midy Fgrx-message-IDs rﬁd\l and r@ send
(swap, sid, midy, mid2) to Fgrx.
3. Output (SWAP, sid) to A.

Interaction with the State Exchange Functionality :

« Upon receiving (SUBMIT-NEW, sid, st, Ps, (P1, rr/1i\d1), ooy (Pn, n:;in)) from Fgrx where st = stq,...,st; and
{Pi1,..., Pn} := Pret proceed as follows

41

1. If there exist a chain C € 7 with state st generate new unique message-IDs mid1, ..., mid,, initialize

Dy:=---:=Dp =1, set J\ZH(C, mid;1, Dmid;, P1)|| - .- [|(C, midn, Dmid,, » Pn), and store the message-IDs
@ along the message-IDs mid;.
Output (MULTICAST, sid, C, Ps, (P1,mid1), ..., (Pn, midy)) to the adversary.

2. Otherwise find a chain C’ in 7 with state st1,...,stry_1% Choose a random nonce n and set By, =

(H[Bg—1],stg,n) and set H[Bg] to a uniform random value in {0, 1}* strictly smaller than D. Add the
chain C = C'||Bg to T.

Generate new unique message-IDs midy,...,midy, initialize Dy := --- = D, = 1, set
]\7[||(C, mid;1, Dpid, , P1)]| . .- ||(C, midpn, Dmig,, ; Pn), and store the message-IDs mid; along the message-IDs
mid;. Output (MULTICAST, sid, C, Ps, (P1, mid1), ..., (Pn, midy)) to the adversary.

“We do not write explicitly the instruction via which the simulator obtains P from Fgsrx.

This can be checked efficiently using H under the assumption that there are no collisions.

“Can be done efficiently using rejection sampling.

?Such a chain must exist as sti1,...,str_1 is a successfully submitted state in Fsrx in which case the
simulator knows a corresponding chain.

The proof works similar as the one for Lemma 5.1 in [PSS17]. Recall the notation from
Section 2.1 and introduce the shorthand notation Tjea := T eXECstatekxchange-Protocol A, 2 (:2) which is
the (distribution of the) joint view of all parties in the execution of StateExchange-Protocol for
adversary A and environment Z (upon some input z). Denote by Tigeal := TEXECfSrpx, SensZ (K, z)
the joint view of all parties for Fgrx with simulator Sgix. In the following, we treat the arguments
k and z as implicit.

Define a new hybrid world, via the following random experiment: the experiment is de-
fined as the real-world execution except that the random oracle aborts on collisions with
COLLISION-ERROR and that adversarial oracle queries are emulated as in Sgx. We use the
shorthand HYB 4 z to refer to this hybrid world (defined analogously to EXEC.. z). The only
difference is thus that in the hybrid world we may abort with COLLISION-ERROR or TREE-ERROR
as in the ideal execution. Let Ty, be the associated distribution of the joint view.

Let eventl be the event that some parties query two different values v, v’ such that H[v] =
H[v'], i.e. the event that a hash-collision occurs (this event is a condition on the realized
transcript ¢r in the support of Tieal or Thyp, respectively). For any two queries the probability
that they return the same hash value is 27%. By a union bound over all queries we have that
eventl happens with probability at most poly(x) - 27" in both worlds. Note that if eventl does
not happen the hybrid random experiment does not abort with COLLISION-ERROR.

Let event2 be the event that some party makes a query H|(s, -,)] where no v exists such
that H[v] = s, but later some party makes a query v' such that H[v'| = s. The probability that
any query H|(s,-,)] a later query returns s is 27" in both worlds By a union bound over all
queries we have that event2 happens with probability at most poly(x) - 27" in both worlds.

Next, we show that the TREE-ERROR abort does not occur in the hybrid world execution
conditioned under eventl and event2 not happening. Assume for contradiction that HYB 4 =z
aborts with TREE-ERROR with eventl and event2 not happening. Let C = By,...,B, be
the shortest valid chain created in the experiment HYB 4 z such that By,...,B,_1 € 7 but
By,....B, € T. Let B; = (s;,st;,n;). Since C is a valid chain we have H|[(sy, st,n,)] < D.
But at the time B,, was added to H no valid chain existed where the last block has hash value
sp, (otherwise C would be in 7). This implies that no earlier query to H could have returned s,,
since if the query was B,,_1 C would not be the shortest chain with the above property and if
the query was not B,,_; the event eventl must have happened. This implies that event2 must

42

have happened, which is a contradiction.

This implies that conditioned under eventl and event2 not happening, the hybrid-world
execution proceeds the same as the real-world execution and hence the two worlds are statistically
close with respect to efficient environments Z, i.e., EXECstateExchange-Protocol, 4,2 ~ HYB 4 z.

Now we compare HYB 4 z and EXECr, , s..,z- Consider the event where a honest miner
queries a block (s, st,n) and fails, i.e. where H|[(s,st,n)] > D. In the hybrid execution, this
query is stored in the random oracle table while the simulator in the ideal world does not store
the query in the random oracle table. Under the condition that such failed queries are not
repeated, the hybrid-world execution and the ideal-world execution proceed in identical ways
(note that the network simulation in Sy perfectly mimics the real and the hybrid worlds).

Note that the nonce n in a ‘failed’ query (s, st,n) is chosen uniformly at random from {0, 1}"
by honest parties. This implies that with probability poly(x)-2~" it was never queried before. As
honest miner discard ‘failed” queries (and failed queries do not leave the ITI and hence are hidden
from the adversary) it also follows that except with probability poly(k) - 27" the query will not
be queried again (by any honest or corrupted party) unless the nonce of that failed query would
be successfully guessed. By a union bound over all failed queries we have that failed queries are
never queried twice except with probability poly(x) - 27"%. Thus, EXECF, 8.,z ® HYB 4 z.

This concludes the proof. O

7.3 Modularizing the Ledger-Protocol

From the ledger protocol Ledger-Protocol, , - we can derive what we denote Modular-Ledger-Protocol,
which uses the state-exchange functionality to extend and exchange blockchain states. This is
defined in Figure 10, where the only non-trivial modifications (aside of some minor structural
changes) are the replaced implementations of algorithms ExtendState(st) and FetchInformation.
The new implementations are as follows:

4 Sub-Protocol ExtendState(st)

Send (SUBMIT-NEW, sid, stio¢, St) to Fsrx.
Denote the response by (SUCCESS, sid, B) of Fgrx.
if B=1 then
Update the local state, i.e., stioe < Stioc||st.
Send (CONTINUE, sid) to Fgrx > Broadcast current state using Fgrx.

and

—[Sub-Protocol Fetchinformation

Send (FETCH-NEW, sid) to Fgrx.

Denote the response from Fgyx by (FETCH-NEW, sid, (st1,...,stg))-

Set both s?:loc,s_{:exp to the longest state in stjqc, s_‘&exp, sti1,...,sty (to resolve ties the ordering decides).
Send (FETCH, sid) to F§yq; denote the response from F,, by (FETCH, sid, b).

Extract received transactions (txi,...,txy) from b.

Set buffer < buffer||(tx1,...,txg).

If a NEW-PARTY message was received, set WELCOME < 1. Otherwise, set WELCOME < O.
. = [T
Remove all transactions from buffer which are invalid with respect to stl[OC

43

'-‘ Protocol Modular-Ledger-Protocol(P)

Variables and Initial Values:

¢ The same as in the original protocol, cf. Figure 6, except replace:
The protocol stores a local (working) chain Cjoe which initially contains the genesis block, i.e., Cioec (G).
by

The protocol manages the exported ledger state s}exp which initially is the genesis state, i.e. , St < (gen). It
also manages a local (working) state stioe (initially also the genesis state).

Registration/De-Registration:

e As in the original protocol, cf. Figure 6, but where the two local setup functionalities ('Fll\)lfl\lc’]:go) are
subsumed by one local functionality Fgx-

Ledger-Queries:
Ledger queries are only answered once registered.

e As in the original protocol, cf. Figure 6 with different implementations of the subroutines ExtendState(st) and
FetchInformation(st) as defined in Section 7.3.

Figure 10: The modular ledger protocol (differences to original protocol shown).

We prove the soundness of this decomposition in the following lemma, which involves a
sequence of hybrid steps to convert the original protocol into the suitable modular form, and
finally by invoking Lemma 7.1.

Lemma 7.2. The UC Bitcoin protocol Ledger-Protocol, p UC emulates Modular-Ledger-Protocoly

that runs in a hybrid world with access to the functionality .FSAT’QH’“ with pg = 2% and

pa =1—(1—pa)?, and where A denotes the upper bound on the network delay.

Proof. We first provide the sequence of modifications, morphing from the original protocol to
the modularized protocol in a “game-hopping” style: We start with the original Ledger-Protocol
and consider the protocol part below where will alter the protocol step by step.

r—‘ Fragments of Original Protocol Part

Initialization:
The protocol stores a local (working) chain Cj,. which initially contains the genesis block, i.e., Cjpe < (G). [...]

ExtendState(st):

Cnew < extendchainp(Cjoc, st, q)

if Cnew 7£ Cloc then

Update the local chain, i.e., Cjo¢ ¢ Cnew-

Send (MULTICAST, sid, Cjoc) to &% > Multicast current chain

FetchInformation:
> Update the local state

Send (FETCH, sid) to]:1[31?1\10? denote the response from ‘Flt\JIfI\JC by (FETCH, sid, b).

Extract valid chains Cq,...,Ck from b.

Set both Cjo¢, Cexp to the longest valid chain in Cjo¢, Cexp,Ci, - - -, Ck (to resolve ties the ordering decides).

o]

44

Modification 1. The first modification of the protocol (see below) proceeds as Ledger-Protocol
except (a) it stores a history of all valid chains in a tree 7 and (b) in the ExtendState(st)
procedure it checks that st||st is a valid state and that there exists a chain in 7 which encodes
the state st. We observe that the protocol calls ExtendState(st) only with st where st||st
is a valid state. This implies that the first check is always satisfied. Moreover, note that the
current local chain Cj,. which encodes state st is at any time stored in the tree 7. We therefore
call the state encoded in Cj,. by stioc and see that the second check is therefore also always
satisfied. Hence, the modified protocol has the same input/output behavior as Ledger-Protocol.

f_‘ Fragments, Modification 1

Initialization:

The protocol stores a local (working) chain Cj,. which initially contains the genesis block, i.e., Cjpe < (G). [...]
The protocol additionally maintains a tree 7 of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):
if isvalidstatep (stioc||st) = 1 then
if there exists C € 7 which encodes stj,. then

Cnew < extendchainp(Cjoc, st, q)

if Chew # Cloc then
Update the local chain, i.e., Cjpe < Cnew-
Add Cjpe to T

Send (MULTICAST, sid, Cjoc) to]:IE)IfMC > Multicast current chain

FetchInformation:

Send (FETCH, sid) to FES,,; denote the response from F2<, . by (FETCH, sid, b).
Extract all valid chains Cq,...,Cy from b and add them to 7.
Set both Cjoc, Coxp to the longest valid chain in Cjoc, Cexp,Ci, . . .,Ck (to resolve ties the ordering decides).

[..]

Modification 2. In Modification 2 (see below) the local state stj. is stored directly instead
of being encoded in chain Cj,.. The procedures ExtendState(st) and FetchInformation are
modified to accommodate this change. Note that the Cp,. is stored in T as we have seen in the
first modification. This implies that the behavior of ExtendState(st) remains the same as in
the first modification.

Fragments, Modification 2

Initialization:

The protocol manages |...] a local (working) state stjo. (initially also the genesis state).[...]
The protocol additionally maintains a tree 7 of valid chains which initially contains the genesis chain (G).

ExtendState(st):
if isvalidstatep (stioc||st) = 1 then
if there exists C € T which encodes stj,. then

Cnew < extendchainp(C, st, q)

if Chew # C then
Add Cto T
Update the local state, i.e., stioe < stioc||st.

Send (MULTICAST, sid, Cjoc) to]:lngC > Multicast current chain

FetchInformation:
Send (FETCH, sid) to 'FIEI(-:IVIC; denote the response from FngC by (FETCH, sid, b).
Extract all valid chains Cy,...,Cy from b and add them to 7.
Extract all state st1,..., sty from chains Cy,...,Cp.
Set both stige, s_fexp to the longest state in stigc, s_f:exp, sty,...,sty (to resolve ties the ordering decides).

45

Modification 3. In Modification 3 (see below) parts of the procedures ExtendState(st) and
FetchInformation are split off into separate sub-procedures. Otherwise the protocol remains
the same. As there are no changes to the program logic the protocol still has the same behavior
as the original protocol.

f_[Fragments, Modification 3

Initialization:

The protocol manages |...] a local (working) state stjo. (initially also the genesis state).[...]
The protocol additionally maintains a tree 7 of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):
B < SUBMIT-NEW(st10¢, St)
if B=1 then
Update the local state, i.e., stijoc < Stioc||st.
Execute CONTINUE. > Broadcast current chain

Procedure SUBMIT-NEW(st, st):
if isvalidstatey (st||st) = 1 then
if there exists C’ € 7 which encodes st then

Set C « C'. > C is assumed to be a global variable

Cnew < extendchainp(C, st, q)

if Chew # C then
Add Cto T
return 1

return 0

Procedure CONTINUE:
VAST. S b
Send (MULTICAST, sid, C) to FR%

FetchInformation:
(st1,...,stg) < FETCH-NEW
Set both stjge, stexp to the longest state in stioc, Stexp, st1,...,sty (to resolve ties the ordering decides).

o]

Procedure FETCH-NEW:

Send (FETCH, sid) to FES,,; denote the response from FL<, . by (FETCH, sid, b).
Extract all valid chains Cy,...,Cy from b and add them to 7.
Extract states st1,...,sts from C1,...,Cs and output them.

Final Considerations. We identify that Modification 3 above, in particular procedures
SUBMIT-NEW, CONTINUE, and FETCH-NEW, are as defined in StateExchange-Protocol, hence
invocations of this protocol. Consider the part of Modular-Ledger-Protocol below that we observe
is the same as Modification 3 except that the handling of chains (variable 7) and the calls to
sub-procedures SUBMIT-NEW, CONTINUE, and FETCH-NEW are now handled managed by the
functionality Fgrx that is invoked at the respective places:

Modular-Ledger-Protocol (relevant part)

Initialization:
The protocol manages |...] a local (working) state stjo. (initially also the genesis state). [...]

46

ExtendState(st):
Send (SUBMIT-NEW, sid, st1oc, st) to Fgrx.
Denote the response by (SUCCESS, sid, B) of Fgrx.
if B=1 then
Update the local state, i.e., stijoc < Stioc||st.
Send (CONTINUE, sid) to Fgrx > Broadcast current state using Fgrx.

FetchInformation:
Send (FETCH-NEW, sid) to Fgrx.
Denote the > response from Fgrx by (FFICH NEW, sid, (stl, ..., stg)).
Set stioe, stcxp to the longest state in stjoc, stcxp7 sti,.. st;C (to resolve ties the ordering decides).

-]

By Lemma 7.1, we know that StateExchange-Protocol UC-realizes Fg;x, therefore replacing
calls to StateExchange-Protocol by calls to the ideal process Fgrx yields an indistinguishable
protocol to Ledger-Protocol. This concludes the proof of the lemma.]

7.4 Second Proof Step

We now proof that if honest parties have some advantage over the dishonest parties in winning the
lottery, then the UC Bitcoin protocol Modular-Ledger-Protocol - realizes the ledger functionality.
By the composition theorem, we can directly conclude that Ledger-Protocol, p, 1 realizes the
Bitcoin ledger functionality.

7.4.1 Relevant Quantities of the Analysis

The main theorem will require a condition on the power of the adversary and it is useful to
describe here the random variables induced by a pair (£, A).

Recall from Sections 5.2.1 and 5.3.1 that a party is honest-and-synchronized if it either joined
at the onset of the execution or it joined a sufficient number of rounds ago (depending on the
delay). Furthermore, recall that a logical round consists of two clock-ticks. In the following, we
denote the round number by r (which consists of two mini-rounds).

Definition 7.3 (Query Power). We define for the real-world execution of Modular-Ledger-Protocol

with respect to the pair (Z,.4) the sequence of random variables Qg) to measure the number of
distinct honest-and-synchronized parties that are activated in the working mini-round of round
r to submit a query to Fg, A’p ":PA - Analogously, denote by Q 1:) the number of submit-queries

to Fgr ’p HPA from Corrupted parties in round r, and by Q H.DS the number submit-queries by
honest but desynchronized parties in the working mini- round of round 7.

Definition 7.4 (Mining Power.). We define mining power as simple functions of the query-power.
Note that in our analysis, ps and py are constants. We have:

e The total mining power Tgﬁ% = Qg) “pA+ (M4 QH DS)
o The adversarial mining power (") :=p4 - QX) + pg - Qg,)DS

e The honest mining power alM . =1-— (1 —pg)~u (T)

47

It might be useful to recall that from Bernoulli’s inequality we have a(” < pg - Qg). For
small values of py (as usual in Bitcoin) this upper bound is a good approximation of (™).

Note that o, ("), and TS;;)D are random variables (on integer domains). For example. al)
maps the number of honest-and-synchronized submit-queries to the probability that at least one
is a successful query. More formally, conditioned on Qg) = ¢, the random variable o) is the
probability of at least one success among ¢ queries and the expected value of o™ corresponds
to the probability of at least one successful state-extension in round r of the execution. The
reason is that]:SAT’ﬁH PA treats each submit-query independently at random. This is the main

motivation to introduce this intermediate step.

7.4.2 The analysis

In the analysis of Bitcoin, conditions are needed that allow to reasonably lower and upper
bound expected values of the above random variables (and their variances). As we will quickly
recap below, it is shown in [PSS17] that if the involved query power exceeds any limits in the
constant-difficulty case, then no security guarantees can be obtained. We start with the following
definition.

Definition 7.5 (Query and Mining Pattern). We say that the pair (Z,.4), running for R rounds
(referred to by numbers 0, ..., R — 1) obeys the query pattern (h,d,d) if, for any round r, we
have

QY >h, QY <ar, QWps<d

where i = (hoy...,hg—1),d = (ag,...,ar-1), d= (do,...,dr—1) are vectors consisting of positive
integers. Consequently, the pair (Z,.4) obeys the associated mining pattern denoted by (&,),
where vectors @ = (g, ...,ag—1) and 8 = (Bo, ..., Br-1) are defined by the mapping

al” >1 - (1 —pH)hT =: ay
/B(T) <pa-ar+pyg-d.=: /87‘-

Technically, these definitions imply lower and upper bounds on the expectations of the
random variables (") and B(") respectively, which is what will be eventually needed.

Definition 7.6 (Power Limits). The pair (Z,.A) is said to be gii-query-limited if Qg) + QX) +
Qg,)DS < gtot- The pair (Z,.A) is said to be T,,,-mining limited if for all r,
T < Ty

The bounds in the theorem will depend on several worst-case quantities that we introduce
below.

-,

Definition 7.7. For mining patterns (&, 3), we use the shorthand notation

Qmin = min{a, }rejo,r—1] and Qmaz = max {a }rejo,R-1];

Bmin = min {/BT}T'G[O,R—I] and Bpaq = max {BT}T’E[O,R—H‘

48

For a (non-empty) subset S C {0,..., R — 1} of rounds we define the corresponding averages by

ZO"“ and fBg ::|15|'Zf67"

res res

1
g = 757

5]

For T,,,-mining limited pairs (Z,.A), we define the relative-power fractions

o = Amin and pg = Bmin
Tonp T T
We call a subset S of rounds an interval if it consists of consecutive round numbers r,...,r +¢

for some integers r,¢t > 0.

Following [PSS17], the theorem will take into account that the network delay A decreases
the effectiveness of the actual honest mining power:

Definition 7.8 (Discount function.). We define the function v(a, A) := 755 for a, A > 0.

We are now ready to state and prove the main theorem which assures that we can realize
the ledger for a given range of parameters.'?

Theorem 7.9. Let p € (0,1), integer ¢ > 1, pg =1— (1 —p)9, and pa = p. Let A > 1 be the
upper bound on the network delay, let k be the security parameter, and let T = w(log k) be the
main protocol parameter of the ledger protocol. For all pairs (£, A) of PPT environments Z

(w.r.t. identity bound Esyne) and PPT adversaries A running for R rounds which obey the (&,)
mining pattern as of Definition 7.5 and which are Tyy,-limited as of Definition 7.6, the real-world

execution of protocol Modular-Ledger-Protocoly (in the (QCLOCK,}'SAT’%H A FR vic)-hybrid world)

is indistinguishable from the ideal-world execution with ledger functionality QL%DGER (and the
stmulator defined in the proof), if for some A > 1, it holds that for any interval S of rounds of
sizet > 1 and any S C S of size t’ € [max{1,t- (1 — Aamaz)},--.,t] the relation

Qg (1—=2-(A+1)- Tnp) > - By (1)
holds, and if the parameters of QEJDGER fulfill the relations
windowSize =T and Delay = 4A,
(1-9) ., _WwindowSize (149) . _WwindowSize

* Ymin = - and “Topp <
2 maxTimey;ingow
Bma:c

mwn

. .)
minTimeyindow

0= min{(1+) - 2 1y,

where the quantities are defined as in Definition 7.7 and where Ymin = Y(Qmin, A), and 6 > 0
is an arbitrary constant. In particular, the distinguishing advantage is bounded by R - negl(T),
where negl(T) denotes a negligible function in T

2Recall from Section 3.3.1 the formal definition of the identity bound &sync to model an admissible (lock-step)
synchronous execution environment.

49

Remarks. Before proving the theorem, it is instructive to recall the flat model of Bitcoin and
to see how the above quantities appear there. By the above definitions and theorem statement,
we see that we only make statements if the honest mining power is not too small, the dishonest
mining power is not too large (and stands in a certain relation to the honest mining power) and
if the respective mining power values are in a reasonable range to the overall mining power. In
particular, the theorem expresses a condition that the average honest mining power dominates
the average mining power of the adversary, even if the honest average is taken over slightly
smaller intervals (note that in particular, for each singleton set S, we obtain that the familiar
condition that «, should dominate ;).

Note that B is the most restrictive restriction (but not a lower-bound) on the adversary
(similarly, cunee is the best guaranteed lower-bound for honest-and-synchronous mining power).
In general, the adversary (and hence the environment) is free to activate as many ITT’s unless
it would exceed T, if the environment is T,,,-bounded, and no more than what is allowed by
E . This is a more general setting in the fixed-difficulty setting compared to previous works in
the same setting. Furthermore, we show in the next subsection how to get a better bound for
chain-quality.

Looking ahead, for example in [PSS17], the overall number of parties is fixed to be some
number n and there is an upper bound on the number of dishonest parties pn (and de-synchronized
parties are not allowed by definition). Assume for simplicity that pg = pa = p for a very small
value p > 0. We then obtain apmin = (1 —p)-n-p and Bz = pa -n-p. By Tpyp = n-p and since
the mining pattern as defined above is flat in flat models (cf. Section 8.1), the correspondence
pa = p and pp = (1 — p) follows.

Also, as pointed out by [PSS17], for too large values of p in a range that would yield
Top =n-p> % (where A is the network delay), there is an attack against the protocol, even
if one assumes an honest majority. This indicates that the main condition of the theorem
in equation (1) is also necessary up to a constant factor, and recent works have revealed the
exact threshold for security [GKR20, DKT*20].

We now prove our main theorem.

Proof of Theorem 7.9. We start with an overview followed by a sequence of claims.

Overview. We prove the theorem using the formalism of [BCH120] to be able to model shared
functionalities. In more detail, we specify the simulator Sjeqs as pseudo-code in Appendix C
to prove that EXEC%,%‘&%‘}M_Ledger_ProtocolT’Az ~ EXECg;L;ggI:n,Sledg,Z' Recall from Section 2.1.4 that
this means that in the real world, parties are running M[Modular-Ledger-Protocol, Gorock], and
in the ideal world the parties are running M[QFEDGER, Gerock|, where the operator obliviously
transforms the defined protocols into standard UC protocols without changing their behavior,
and the indistinguishability notion is the standard UC-emulation notion.

Let us explain the general structure of the simulator and the proof: the simulator internally
runs the round-based mining procedure of every honest party. Whenever a working mini-round
is over, i.e., whenever the real world parties have issued their queries to Fgrx, then the simulator
will assemble the views of its simulated honest-and-synchronized miners and determine their
common prefix of states, which is the longest state stored or received by each simulated party
when chopping off T' blocks. The adversary will then propose a new block candidate, i.e., a list
of transactions, to the ledger to announce that the common prefix has increased (procedure

20

EXTENDLEDGERSTATE). The ledger will apply the Blockify on this list of transactions and add it
to the state. Note that since Blockify does not depend on time, the current time of the ledger has
no influence on this output. To reflect that not all parties have the same view on this common
prefix, the simulator can adjust the state pointers accordingly (procedure ADJUSTVIEW). The
simulation inside the simulator is perfect and is simply the emulation of real-world processes.
What restricts a perfect simulation is the requirement of a consistent prefix and the restrictions
imposed by ExtendPolicy. In order to show that these restrictions are not forbidding a proper
simulation, we have to justify, why the choice of the parameters in the theorem are sufficient
to guarantee that (except with negligible probability). To this end, we analyze the real-world
execution to bound the corresponding bad events that prevent a perfect simulation.

We basically follow the proof ideas of Pass, Seeman, and shelat [PSS17] to bound the bad
events and adapt their observations to our setting. The analysis is divided into several different
claims about the real-world execution. They include properties such as a lower-bound on the
chain growth, the chain quality, or an upper-bound on the chain growth. These claims prove
that our simulator can simulate the real-world view perfectly, since the restrictions imposed by
the ledger prohibit that only with negligible probability, where the distinguishing advantage is
upper bounded by R -negl(T), where R denotes the number of rounds the protocol is running
and negl(-) denotes a negligible function in the parameter 7.

Recall that each round consists of two time-ticks. Hence, if a statement is expressed with
respect to a certain number ¢ of rounds, it can equivalently be expressed with respect to 2t
clock-ticks. Recall that the ledger parameters have to be given with respect to the clock, since
the clock is the formal reference point of time. However, for the analysis, it is easier to think
in rounds. In the following sections, if we refer to an interval r,... r + ¢, this refers to t full
rounds, i.e., the time window when the clock first switched to the value 7 = 2r up to any point
where the clock value satisfies 7 € {2(r +t),2(r +¢) + 1}.

Chain dissemination. We first state an obvious useful fact about the protocol’s operation.

Lemma 7.10 (State dissemination). Let P; and P; be miners, and let r > 0. Assume P; is
honest in round r, and its adopted state has length £. For any honest miner P; in round r + A
who registered to the network before round r, it holds that its adopted state must have at least
length £.

Proof. By assumption, all messages, and in particular transmitted states of honest miners, are
delayed maximally by A rounds. Thus, if such a miner receives a state of length ¢, then any
other honest miner will receive this state within the next A rounds since the protocol relays its
adopted state. Additionally, if an honest miner successfully extends a ledger-state in round r,
the new state is fetched by other honest miner at latest after A rounds if they were registered
before round r. Hence by then, they will have adopted a chain of length at least /. O

Probably the most useful corollary which is used in the sequel, is to apply the above lemma
to the sub-class of honest-and-synchronized miners. Note that if P; in the above lemma is
honest-and-synchronized at round r + A it must have been registered to the network not later
than at round max{0,r — A} and hence the statement applies.

Analyzing chain growth. We now state the relation between time (measured in number of
rounds) and guaranteed number of new state blocks.

o1

Lemma 7.11 (Chain growth). Consider the real-world execution (under the conditions of the
theorem). Let P; be a miner, and let r > 0. Assume P; is honest-and-synchronized in round r,
and the (longest) state adopted by P; in round r has length £. Then, in round r +t, it holds that
for any 6 > 0, except with probability R - negl(T), the length of the (longest) state adopted of any
honest-and-synchronized miner P; in that round has length at least £ + T if t > (1_5)%
More generally, for an interval of rounds r,...,r +t, we can guarantee a length increase of
v -t with v := -x if for all possible subsets S of rounds of size t' =t(1 —yA) of this interval

we have &g > 7. The guarantee holds except with probability exp(—(ty)).

Proof. We first prove that for any real-world adversary A, there is an adversary A’ that, starting
at the given round r, maximally delays messages and prove that in a real-world execution with
A’ the expected state length of an honest-and-synchronized miner in round r + ¢, where the
expectation is taken over the randomness of the adversarial strategy, is no larger than with
adversary A in round r + t. Given adversary A, the adversary A’ works as follows. It internally
runs A until and including round r without any modifications. After round r, A’ first delays all
current messages in the network to the maximally possible delay. Also, after round r, whenever
an honest-and-synchronized party sends a message containing a state, A’ sets the maximal delay
A for this message. Message delays defined by A for messages that contain valid states of honest
parties are ignored. The adversary further ignores any message sent by A on behalf of corrupted
parties after round r.

We define the following “hybrid world”, which equals the real world execution, but with
fixed randomness as follows: for random strings o, o', we define HYB Ferx(07),A(e),2 O be
defined analogously to EXEC.. z but where the internal coins of A and Fgsrx are fixed to o
and o’ respectively (note that both are poly-bounded by the run-time restrictions of UC). Let
T jy(g)’ Forx (01,2 be the associated distribution of the joint view (induced by the random coins
of Z). Let Len] (T) be the function that maps a transcript 7' (of real-world and hybrid-world
executions) to the length of the (longest) adopted chain by (honest-and-synchronized) miner i in
round 7.

We first give an inductive proof to show that for any r > 0, and all strings o, o’,
en! (TP) > Len| (TP)] = 1.

O'ZER{E{}POI)/(K) A(0),Fsrx(0),2(0z) A'(A(0))Fsrx(07),2(0z)

Base Case(s): We give the base cases t = 0 and = 1 to already include the arguments for the
general case below. We argue for any fixed oz and show that the condition in the event cannot
be violated. Since adversary A and A’ behave identical up to and including round r, the length
of the longest state known or received by any party is the same. The reason is that A’ and
A play exactly the same strategy when the randomness is fixed, since A’ itself does not use
additional random coins and thus case ¢t = 0 follows. Furthermore, when the randomness ¢’ of
Fsrx is fixed, a miner 7 in any round 7’ is successful, if and only if it is successful in round r’
with adversary A’. Thus, the condition for ¢ = 1 would only be violated if player i receives a
longer state in round 7 + 1. However, since A’ maximally delays messages, if any state arrives in
round r + 1 in the real execution with A’, then it arrives no later than r + 1 in the real execution
with A. This concludes the base cases.

Induction Step: t — t + 1: By the induction hypothesis, we have that the condition

r+t .nhyb r—+t .mhyb
Leni ™ (T4(o) Fox(e,2(02) Z Lo0i (Lo u(0), Forx (0,2 (02))

52

holds with probability one. We argue that Len[™" (-) > Len ™" (-) holds as well (on the
above arguments) with probability one. Assume this was not the case, then following the above

reasoning, it can only be due to miner i receiving a state in round r + ¢ 4+ 1 that would increase

r+t+1 hyb r+t+1 hyb
the value of Leni (TA};(.A(U)),]:STX(Ul)7Z(JZ)) but not the value of Leni (TA}EO'),.FST)((O"),Z(UZ))

(since the success of miner i in round r + ¢+ 1 is fixed given ¢’). By the same reasoning as above,
since A’ maximally delays delivery of new states, if any state arrives in round r in the real
execution with A’, then it arrives no later than r in the real execution with A. This concludes
the induction proof.

We note that the hybrid world, if we sample o, ¢’ this yields the distribution Toxec, 4 - (K, 2)
(for any fixed input z to the environment). Let us abbreviate this by Tiea 4/ to save on notation
(and assuming the input z is hard-coded in the environment). Similarly, let us denote Tiea1 4 the
distribution in an execution with A.

By taking the expectation over o,¢’ (and by the law of total probability), we immediately
get from the above arguments that for any positive integer ¢ and any round 7:

PT[Len;+t(Treal,A) < Lenz (Treal,A) + C]
g PI‘[LGH;?—HE (Treal,A/) S Leng (Treal,A/) + C}

where we also used that for ¢ = 0, the length distributions induced by A and A’ are identical.
Hence, chain growth can be analyzed w.r.t. adversary A’ to yield a useful statement for any
adversary A.

Let us use the following terminology: We say a round r’ is uniform if Len] (tr) = Len;/(tr)
holds (where tr is a transcript), for all honest-and-synchronized miners ¢ and j. Recall that
adversary A’ does not broadcast adversarially generated states and any new state is delayed
by exactly A rounds. The slowest progress of the overall maximal state length known to an
honest-and-synchronized party occurs in case uniform rounds are the only successful rounds (if
at all). Otherwise, the honest miner with the longest state could be successful and broadcast
a longer state at round 7/, which would be guaranteed to arrive to any other honest miner
in » + A. Furthermore, by a standard coupling argument, the probability of success of any
honest-and-synchronized party in some round 7/ is minimized by an environment Z that activates
just enough parties to obey the mining pattern «,,. The coupling with any other environment can
be obtained by letting the activation results be the same up to the point where enough parties
have been activated to satisfy the mining pattern. Further activations honest-and-synchronized
participants can only induce more successful state extension than what Z obtained.

We are thus left with analyzing growth w.r.t. a simple adversary and an environment Z with
a fixed activation pattern per round to match the mining pattern.

Obtaining a tail bound depending on number of blocks. Now, fix some round r. If in
round s = r + ¢, the length increase of the overall longest state of an honest-and-synchronized
miner is less than ¢ blocks, then at most ¢- A non-uniform rounds occurred. According to above,
we can associate to each round 7 a random variable X; which is 1 if at least one honest-and-
synchronized miner successfully extended the state by a query to Fgrx. The X;’s are independent
by construction and there must be at least ¢t — ¢ - A uniform rounds. On the other hand, for
any concrete sub-sequence of rounds S C (r,...,r + t) of size t', the Chernoff-Hoeffding bound

93

in Theorem 2.3 implies for our setting (of independent heterogeneous variables) that

Pr|> X;<(1-96)-as-t'| <exp(—Q(as 1)), (2)
€S
where ag 1= tl, > ies -
We conclude that if for the sub-sequence .S of rounds in the interval from r to s, the relations
c=E[Y,cg Xi] =a@s -t and |S| =:t =t — cA hold, we can derive a tail-estimate depending on
the number of blocks. We can define

agt
ST T asA
and assign a corresponding growth coefficient
Qag
(e, FasA

and thus except with exponentially small probability in tvg = cg, the length-increase is at
least cg for this particular interval.

For the first part of the statement, observe that @s > aunin, for all subsets S, and that
the function H-%’ where k is a positive integer and = € (0, 1), is monotone in z. We get
the guaranteed minimal growth by t - i, in any interval of size ¢ rounds for an honest-and-
synchronized party except with negligible probability in ¢ - ~,,;, by taking the union bound
overall all rounds . What remains to prove is that this bound applies also to the growth of the
state if one compares any two honest-and-synchronized miners which we do below (still following
the proof steps of [PSS17]).

For the second part of the statement, we generalize the above observation: if we have a
guaranteed lower bound 7 on the average @g (better than «,,;, as used before) with respect to
any subset of the required size within the given interval r,...,r 4+t (note that indeed we only
have a bound for the size of S in our experiments but no guarantee that a particularly “good”
one is chosen), the second part of the statement follows.

Bound for any honest-and-synchronized party. By Lemma 7.10, we know that if an
honest-and-synchronized miner knows some state, then within A rounds, every other honest
miner will be aware of that state. A similar calculation shows that the lower bound on the time
to have a state increase by T blocks by all honest-and-synchronized parties follows the same law
(and hence the perceived ledger speed is the same). By requiring s = r + ¢ — A above, and thus
considering ¢ :=t — A —c¢- A =t — (¢+ 1)A does not change the asymptotic behavior since
Yot — 1 < vt — vsA < gt for all £ and S since Avg < 1. Hence, this additional additive term
can be compensated by choosing a sufficiently small constant § in equation (2). O

Mining limits. We state some helpful facts about bounds on the mining behavior.

Lemma 7.12. The number of successful state-extensions that happen with fSAT’g(H’pA n any

given interval of t rounds (in the real-world execution under the theorem conditions), where
pa=p and pg =1—(1—p)? for some ¢ > 1 and p € (0,1) is bounded by (14 9) -t - Ty for any
d > 0, except with probability negl(Ty, - t). Consequently, for a number T of state-extensions to
occur, the number of required rounds is less than ﬁ only with negligible probability in T .
Finally, the number of adversarial state extensions in a sub-set S of t rounds is no more than
(1+0)Bg -t except with probability exp(—Q(Bg - t)) (for any & > 0.

54

Proof. Since the state-exchange functionality evaluates each query independently, we can upper
bound the number of successes of these independent Bernoulli-trials. We prove the bound for the
environment Z (and .A) that makes as many queries as allowed per round (as limited by 3, and
Tpmp). As in the previous lemma, a coupling argument shows that any other query-distribution
cannot induce a larger probability exceeding the given bound than Z, for which the query
distribution is fixed. For a round, let X(") = >; Xi model the sum of the involved independent
trials to the state-exchange functionality. Clearly, 5, < E[X(")] < Tmp. Let S be a set of ¢
rounds. By linearity of expectation and invoking Theorem 2.3 we get the tail-estimate

Pr (Y XD > (1468)t Tpp| < exp(—Q(Bg - 1))
ies
< exp(—Q(Trmp - 1)),

where the last step invokes the theorem assumption that Vr : 8. > p,Ty,), for the relative-power
coefficient p,.

Similarly, denote by Y = >; Y; the number of adversarial state-extensions in round r.
Again it is sufficient to consider a maximizing Z which has an expected value of t - B over a
sub-set of rounds of size . Hence, we again can obtain an estimate of the form

Pr Zy(i) > (1+40)-t-Bg| <exp(—Q(Bg - 1)).
ics

As a final conclusion we observe that for any number of state blocks T', the probability that
for any § > 0 it takes less than t = ﬁ rounds to get T state extensions is negligible in T'.
Consequently, for this large time interval, all tail bounds hold except with probability exp(—Q(T")),

where the constant hidden in (-) depend on § and on the relative-power coefficient p,. O

Block withholding. From chain growth and the theorem’s condition, we derive that if an
honest-and-synchronized miner adopts a new state that contains a block the adversary obtained
by Fsrx then either this block has been published by the adversary before, or it was mined
quite recently by a corrupted party.

Lemma 7.13 (Bound on Withholding strategies). In the real-world execution (under the
conditions of the theorem), assume that in round r, an honest-and-synchronized miner adopts a
new longer state state. Assume there is a block st in this new state that was accepted upon
an adversarial query to Fsrx and that is not part of any state adopted by any honest-and-
synchronized party before round r. The probability that such a block st was first accepted by
Fsrx before round r — wt happens only with probability negl(Bg - t), for any constant 0 < w < 1,
where S denotes the interval r — wt, ..., r.

Proof. Let us define st = stol| ... ||stk to be the state adopted by the honest-and-synchronized

™) be the longest prefix of st

miner in round r as assumed in the lemma statement. Let st
such that s_f:(r/) is either the genesis block or a state newly accepted by Fgrx upon a query by
an honest-and-synchronized party in round r’ < r. Hence all the blocks in that prefix are known
to at least one honest-and-synchronized party by round r’. In light of the lemma statement, we

consider the case that » — r’ > wt.

95

Let S denote the set of rounds from 7’ to 7. The number of new states mined by the adversary
does not exceed (1 + ¢') - Bgwt (except with probability negl(Bg - t)) by the previous lemma.

At the same time, equation (1) implies that on any subset S’ of size t' = wt(1 — apazA)
the condition ag (1 — A@g/) > (1 + §)Bg has to hold for some constant § € (0,1). This is
the case since for all z, A > 0, %5 > z(1 — 2A) (and T, > @s) and this implies that

¥ i= % > (1+6)Bg. Lemma 7.11 gives us a chain-growth of |s_f:(T)| - \s?:(r/)\ >(1=4¢") ywt
except with probability negl(Bg - t).
Since all |s_1':(r)|

\s_f:(r)\ < (1+0") - Bgwt. We get a contradiction, since now

- |s_1':(rl)| blocks must have been mined by the adversary we have |s_{:(r)\ -

(1—=0") - qwt < (1+0")- Bg - wt,

which, for sufficiently small ¢’,§” would imply that v < (1 + §)3g. O

Chain-growth upper-bound. Our ledger also restricts the growth over time. This is based
on the following observation.

Lemma 7.14 (Chain-Growth Upperbound). Consider the real-world execution (under the
conditions of the theorem) and let P; be a miner, and let r > 0. Assume P; is honest-and-
synchronized in round r, and the longest state received or stored by P; in round r has length £.
Then, in round r + t, it holds, except with probability R - negl(T), that the length of the longest
state (received or stored) of at least one honest-and-synchronized miner P; in that round has

length at most £+ T if t < ﬁ for any 6 > 0.

Proof. We can combine the previous observations to upper bound the number of accepted
blocks. By Lemma 7.12 the number of rounds to generate T' new extensions of states is at least

t > ﬁ except with probability negl(T') (for any §’ > 0) and thus with overwhelming
T

probability, in ¢’ < {TF9/)T,, » 1O more than T new blocks are mined.

In addition, we can invoke Lemma 7.13 to conclude that a new state that contains a block
that the adversary is withholding since a round prior to r — wt is accepted by an honest-and-
synchronized party only with probability negl(Smint), for any 0 < w < 1 (since Bpin can be
achieved in any round by an adversarial strategy and hence can serve as the lower bound in the
exponent of the tail bound). Analogously to Lemma 7.12, by the definition pg - Tynp = Bmin this
error probability is thus negligible in 7.

Both observations together imply that in ¢/ = ¢(1 + w) < ﬁ rounds, no honest-and-
synchronized party experiences a state increase of more than 7" blocks for any ¢’ except with

negligible probability in 7. This is equivalent to the condition that ¢ < m and we

ﬁ and any given
0 > 0 as required by the statement. The claim follows by taking the union bound over all rounds

as the arguments above hold for any round r. O

can choose ¢’ sufficiently small to obtain the bound with respect to t <

Worst-case chain quality. We give a very coarse bound on the overall chain quality in any
sequence of T blocks as follows:

Lemma 7.15 (Fraction of honest blocks). Let P; be a miner, and let r > 0. Assume P; is
honest-and-synchronized in round r and that the length of the longest state received or stored is

o6

£>T. The fraction of adversarially mined blocks within a sequence of T blocks in the state is at
most min{1, (1 +9) - %} except with probability R - negl(T) for any 6 > 0.

Proof. Let us assume that at round r, the state adopted by miner P; is st,» = stol...||sts.
We show that in any sub-sequence of T state blocks stjt1,...,stjir in st,, the fraction of
adversarially mined blocks is bounded. Without loss of generality, one can assume that the
state st~ = sto|... |[st; as well as the state st/ = stol|...||stj4r41 are mined by
honest-and-synchronized miners (or j + T equals the length of the state). Otherwise, one can
enlarge T' to meet this condition — this can only increase the fraction of adversarial blocks in the
sequence of T" blocks and since any state is finite and starts with the genesis block, the condition
will be fulfilled for some 7. We further assume that st~ is mined at round ’ , and that in round
r’ +t, the state st appears for the first time as the state, or the prefix of a state, of at least
one honest-and-synchronized miner. We conclude that if an adversary successfully extended the
state during some round by a new state block st; s of the above sequence stji1,...,stji7,
then this happens in a round between r’ and ' + t.

We now relate the number ¢ of rounds to the number T' of blocks. Since t is assumed to be
the minimal number of rounds until the first honest-and-synchronized miner adopted a state
containing st;1, we can make use of the minimal chain-growth Lemma 7.11 to conclude that

the probability that the condition ¢ > # occurs in such an execution is at most negl(7).

We hence have t < W with overwhelming probability in 7.

Similar to above, by Lemma 7.12 the time it takes to generate T' blocks is at least ¢ > L

(14+0)Tmp

L no

except with probability negl(7") and thus with overwhelming probability, in ¢t < 0Ty

more than T blocks are mined.

Furthermore, also by Lemma 7.12, we get a worst-case upper bound. Let N denote the
expected value in ¢ rounds, invoking Lemma 7.12 gives us that N4 < (1 + 8)Bnast except with
probability negl(5int) (where we again use the minimum to bound the average of any interval).
Hence, since pq - Trp = Bmin by definition it follows as in previous lemmata that the bound
holds except with probability negl(7T).

Putting things together, we conclude that except with negligible probability in 7', the number
of times the adversary was successful in extending the state by one block is upper bounded by
the quantity

1 max
+6-T-B .

T
NT7 <
4 1= Ymin

Hence, the fraction of adversarial blocks within 7' consecutive blocks cannot be more than
f = min{l, (1 + 5”)%} for any ¢” and sufficiently small constants d,¢" > 0, except with
negligible probability in the length T of the sequence.

Since our arguments hold for any interval, the proof is concluded by taking the union bound
over the number of such sequences (which is in the order of number of rounds). d

Consistency (common prefix). We now state the lemma on the common-prefix property in
our setting.

Lemma 7.16 (Consistent states). Consider the real-world execution under the condition of the
main theorem. Let P; and P; be miners (potentially the same), and let ' > r > 0. Assume P; is
honest-and-synchronized in round r, and Pj is honest-and-synchronized in round r'. Assume that

o7

the length of the longest state received or stored by P; in round r is £ > T'. Then, the £ — T-prefiz
of that longest state of P; in round r is identical to the £ — T-prefix of the state of P; stored or
recetved in round v’ except with probability R - negl(T).

Proof. We again follow the basic line of reasoning in [PSS17] and adapt the appropriate arguments
to our setting. First, since an inconsistency at round r implies an inconsistency at round r’ > r,
if the claim is proven for the case r < r’ < r + 1, then by an inductive argument, the claim holds
for any r’ > r.

The protocol mandates that the honest-and-synchronized miners truncates the 7" newest
blocks from the current respective state. Thus, we need to argue that the block which is T+ 1
far away from the head will be part of any state output by any honest-and-synchronized miner.
Suppose we are at round 7’ in the protocol, then the time it takes to generate the last T blocks
is at least ¢t > m except with negligible probability in T as established in Lemma 7.12 and
any 0 < 4 < 1.

Looking ahead, we will eventually conclude that with overwhelming probability within the
interval of rounds s = r—t,...,r" € {r,r+1} (where r > t), the honest-and-synchronized miners
have an opportunity to agree on a common state and hence at round r’, they will still agree on
a large common prefix of the current state at round 7.

In the interval of rounds, let this set be denoted as usual by S, between round s and
round ' = r, the expected number of rounds, where at lest one honest-and-synchronized
miner is successful, is at least agt. Thus, again by a standard Chernoff bound, the probability
that the number of these successful rounds is smaller than G, := (1 — §’) - @gt is no more
than exp(—Q(tag)) in the real-world UC random experiment. Again, a coupling argument as
in Lemma 7.11 yields that this tail-bound (where the environment activates the least number
of parties possible and hence the random variables that describe the success are independent)
applies to any environment. Finally, the conditions of the theorem in particular assure that
Qs > Bmin and hence this probability can be upper bounded by negl(5int).

Unfortunately, the “race” between the good guys and the bad guys is not yet conclusively
analyzed, since the mere superiority of honestly mined blocks does not imply that the honest
parties will reach agreement. In particular, not all of the expected honestly mined blocks are
equally useful to obtain a so-called convergence opportunity. In particular, we need to know
how many of the honestly mined blocks happen in isolated, sufficiently silent intervals.

Formally, let us introduce the random variable R; that measures the number of elapsed
round between successful round ¢ — 1 and successful round ¢ in the real-world UC execution,
where R; measures the number of elapsed rounds to the first successful round. Based on R;,
the random variable X; is defined as follows: X; = 1 if and only if R; > A and exactly one
honest-and-synchronized miner mines a new state (i.e., successfully appends a new block to the
state) in the ith successful round.

Let Ei be the event that there is at least one successful round in the interval of A rounds
starting after successful round i — 1 (or at the onset of the experiment). Let Ej be the event
that strictly more than one miner is successful in the following successful round 1.

Overall, our goal is to suitably bound the number of blocks that prevent those events of
“success & silence” (i.e., bound the probability of the event X; = 0) in an interval of ¢ rounds. We
call these the undesirable blocks. They have to be infrequent enough such that in combination
with adversarially mined blocks, they do not prevent too many convergence opportunities. We
hence need to suitably bound the occurrence of the above two bad events E; in our experiment.

o8

By a union bound, and invoking that o, < T, we directly have that Pr[X; = 0] =
Pr[E} U E}] < ATy, + Tpyp, hence, on the positive side, Pr[X; = 1] > 1 — Tpp(A + 1),

Let X := > Im» X; and let us define @, := (1 — ") - (1 — Top(A + 1)) * Gmin- Since
by equation (1) the term 1 — 2(A + 1)T,,, must be positive, we have that T,,(A +1) < 3
and, because Fgrx treats each new state-submission independently of previous submission, we
conclude that Pr[X; = 1| Xy,...,X;_1] > 3. Since we do not argue here about any particular
optimal strategy by an environment-adversary pair (Z,.4), we need to invoke Lemma 7.17 from
which we get

PH{X < Gin] < exp (—(0")2Gnin/2) (3)

To express this w.r.t. G, observe that not only «, > £, (and thus amin > Bmin) by
equation (1) but also there is an actual constant 0 < § < 1 such that Tp,,(A +1) < 1—4. This
is true since by the theorem condition we deduce that

(1 - 2(A + 1)Tmp) >)\(/Bmzn/amzn)
e 1= ABoin/min) = 2(A +)Ty > (A + 1) Ty,

And since A > 1, i.e., we get can bound the constant by 0 < 5 < A(Bmin/min) and obtain
(1 - TmP(A + 1)) * Qmin > 3\(1 — (5,) -agt > 5(1 — 5’) . ,Bigt.

And hence conclude by equation (3) that Pr[X < ¢/.,.] < exp(=Q(Bmint)). We thus have a
(high-probability) lower bound on the number of silent patterns.

We are actually interested in the number of times that X; = X;,; = 1. This situation, as
already introduced above, means that we have a situation, in which for A rounds, no miner is
successful, then exactly one honest-and-synchronized miner is successful, and afterwards, we
again have A rounds of silence. This is denoted in [PSS17] as a convergence opportunity. For
example, a convergence opportunity has the desirable property, that at the end of such an
opportunity, if the adversary is unable to provide a longer state to the honest-and-synchronized
miners during this period, all honest-and-synchronized miners will reach an agreement on the
current longest state. Thus, in order to prevent this, an adversary needs to be successful in
mining roughly at the rate of the number of convergence opportunities within ¢ rounds.

We have already seen that with overwhelming probability, there are at least gmin successful
rounds, and among which (Gmin — @),;,) can disturb convergence opportunities. Since a single
disturbing round can at most prevent two convergence opportunities (it violates the condition
for a convergence opportunity with its neighbors in the sequence Xj, ..., Xy), the number of
effective convergence opportunities C' is lower bounded (except with negligible probability) by

C > Gmin — Q(szn - qgnzn) = 2(.?;)%n = Gmin
> (1 —&)ast[l — 2Tpp(A + 1) — 28").

For any constant €, by picking ¢’ and §” sufficiently small, this yields a bound (except with
negligible probability as derived above) of

C>(1—¢€)(l—2Tpp(A+1))ast.

The final argument is a counting argument. Let us denote by S,s the set of maximal states
known to Fgrx at round /' (i.e., any path from the root to some a leaf) of length at least £ + C,

29

where ¢ is the length of the longest state known to at least one honest-and-synchronized miner
at round s. Note that Sffr “ s non-empty: since each convergence opportunity increases the
length by at least one, and before each successful round, there is a period of A rounds where no
honest miner mines a new state, there has to exist at least one state with length at least £ + C
at round 7.

Assume that the number of successful state extensions made by the adversary (to Fsrx)
between round s and 7/ is T4 < C. Then, by the pigeonhole principle, for all st € S,-, it holds
that there is at least one block stj, such that functionality Fg;x is successfully queried by
exactly one honest-and-synchronized miner P in round ¢ to extend the state to length k£ + 1,
but no query by the adversary to extend a state of length k to a state of length k + 1 has been
successful up to and including round 7’. Even more, T4 < C implies that such an i has to exist
that also constitutes a convergence opportunity.

After this convergence opportunity at round 4, all honest-and-synchronized miners have a
state whose first k£ + 1 blocks are st; = stq ..., st;. Unless the adversary provides an alternative
state with a prefix s_"t; of length k + 1, such that stj # st; for at least one index 0 <! <k, no
honest-and-synchronized miner will ever mine on a state whose first k£ + 1 blocks do not agree
with S?ti.

The existence of an alternative prefix s_f:; of length k 4 1 for any such ¢ and for all states
st € Sff ¢ implies T4 > C and therefore contradicts the assumption that T4 < C.

What is left to prove is that for any such interval of size ¢ (from round s to round 7’), the
probability that T4 < C holds in any real-world execution except with negligible probability
in Bnint. Analogously to Lemma 7.12, by the definition pg - Tnp = Bmin (and recalling that we
established a lower bound on ¢ in the beginning) we get that this error probability is negligible
inT.

First, by Lemma 7.13, for any w > 0, the probability that any new state accepted by an
honest-and-synchronized miner during the period of at most ¢+ 1 rounds (from s to ') is actually
a state extension that the adversary withheld since round s —w(t+ 1) (or even before) is at most
negl(Bmint). By Lemma 7.12, the number of adversarial blocks (i.e., successful state extensions
by A) generated within this slightly larger interval S’ of size |S’| = (1 + w)(t + 1) rounds is
(except with probability negl(Bmint)) upper bounded by T4 < (14 8)(1 + w)(t + 1)Bg. Also by
picking constant w sufficiently small, we have that |S| > (1 — neA)|S’| and thus @g dominates
Bg by the theorem assumptions. We hence get T4 < w& +1)ag - (1 —2Tpp- (A+1)) by
equation (1). By picking the constants § and w, and e sufficiently small relative to A, we hence
get Ty < C except with probability negl(Sint). Since our arguments hold for any particular
intervals S, we again apply the union bound over the number of rounds and get the desired
claim. O

We used the following useful lemma in the previous proof to bound the deviation with respect
to an arbitrary environment (inducing a certain sequence of random variables):

Lemma 7.17. Let 7 > % and consider boolean random variables X1, ..., X, for which it holds
that Pr(X; = 1| X1,...,Xi—1] > 7. Then, for any § > 0,

Pr[zn: X; <(1—=0)tn] <exp (—52n/2) .

Proof. We define the random variables Y := Y% | (X; — 7) = (XF_, X;) — k7. First, they
satisfy the sub-martingale condition, i.e., for all k, E[Yj|Y1,...Yx_1] > Yi_1: let Pr[Yy =

60

Yp—1+ (L = 7)|Yeo1 = yp—1] = Pr[Xp = 1| X1,..., Xp1] = p1 > 7 and Pr[Yy = yp1 +
(—=7) | Yie1 = yp—1] = Pr[Xr = 0] X1,..., Xp—1] := po < 1—7. The (conditional) expected value
is pr(yk—1+ (1 =7))+po(Yk—1—7) = Ye—1+p1(1=7) =poT = Yp—1+[7(1 = 7) = (L = 7)7] = yp_1.
Second, we have a bounded difference of |Y; — Y;_1| < max(7,1 — 7) = 7 by the condition
7 > 1/2. Applying the Azuma-Hoeffding bound given by Theorem 2.4 to the variables Y} gives

Pr[Y, < —07n] < exp(—d°n/2).

And by definition Y,, < —dmn <> X,, < nt — nd7, the statement follows. O

Concluding observations. Finally, we conclude the proof by noting that after a delay of A
rounds, all honestly multicast transactions are known to all honest-and-synchronized miners and
would be included into the next honestly minded block if valid. In the simulation, the simulator
also does it in the ideal world and hence will never propose blocks of honest parties that do not
comply with the conditions of the defined ExtendPolicy of QPEDGER. Further, the synchronization
of a party takes at most Delay = 4A clock ticks: if P; joins the network, his knowledge of the
longest chain and the set of valid transactions relative to that state, which is known to at least
one honest and synchronized miner is only reliable after 2A rounds (4A clock ticks) since it
takes at most A rounds to multicast the initial message that the miner has joined the network,
and additional A rounds until the replies are received. During this 2A round the new miner
will also have received all messages sent at or after he joined the network, and in particular all
transactions that are more than A rounds (2A = @) old and potentially valid.

The pointers of honest-and-synchronized parties can also not be too distant, i.e., the slackness
is upper bounded by windowSize > T as otherwise we would have a common-prefix violation in
that execution (assume the prefix of the chain known to a honest-and-synchronized party was
further away than T blocks from the prefix of the actual longest chain, this would yield a fork
with substantial probability). The theorem follows. O

7.5 Improving the Chain-Quality Parameter

As long as amin > Bmaz, We see that among windowSize state blocks, there is at least an honestly
generated block, because then, by equation (1), we also have Yin > Bmae and thus gmﬂ < 1.
Such an assumption is usually taken in existing analyses. However, we can derive morenggneral
bounds for chain-quality (where the above case is one special case) to obtain bounds for more
general scenarios. In light of the chain-growth statement in Lemma 7.11, we introduce the
following useful quantity:

-,

Definition 7.18. Let the mining pattern be (&, 3) for R rounds, let the network delay be A,
and let S be an interval. Define

cga(S) := max{r € (0,1)| VS’ C S with || > max{1,|S|(1 - A-y(r,A))} : ag >7};
and define the fraction

Bs

Jea := SC{0mk-1} 7(cga(S), A)’

Both quantities are well-defined as functions since we assume that Vr : o, > 0. We derive
a more general worst-case guarantee for the fraction of adversarial blocks which in particular
shows that this fraction is less than one under the theorem condition.

61

Lemma 7.19 (Generalization of Lemma 7.15). Consider a real-world execution as in Theorem 7.9.
Let P; be a miner, and let v > 0. Assume P; is honest-and-synchronized in round r and that the
length of the longest state received or stored is £ > T. The fraction of adversarially mined blocks
within a sequence of T blocks in the state is at most min{1, (1 +9) - feq} except with probability
R - negl(T') for any § > 0 and where fcq is defined as in Definition 7.18. Under the condition

of Theorem 7.9, this means that for the ledger QL%DGER, we can guarantee
n > min{(1 +9) - feq, 1},
with feq <1 (and for any 6 > 0).

Proof. The proof proceeds as the one of Lemma 7.15: consider any sub-sequence of T state
blocks stjy1,...,st;jy7 in st,. We again assume that st~ is mined at round 7/ (by an honest-

and-synchronized party), and that in round ' 4 ¢, the state sttt appears for the first time as
the state, or the prefix of a state, of at least one honest-and-synchronized miner. Recall that if
an adversary successfully extended the state during some round by a new state block st of
the above sequence stjy1,..., st i, then this happens in a round between 7" and 7’ +t. Let
us denote this interval by the set S of rounds.

Since t is assumed to be the minimal number of rounds until the first honest miner adopted a
state containing st;,1, we can actually make use of the general part of Lemma 7.11 to conclude

that the probability that the condition ¢ > =9 (cga(S)A) Occurs in such an execution is at

most negl(7") and obtain ¢ < Mw with overwhelming probability in T. On the other

hand, the lower bound on ¢ is as in the proof of Lemma 7.15.

Let again N denote the expected value of adversarial blocks in ¢ rounds, invoking Lemma 7.12
gives us that N4 < (1 + 6)Bgt except with probability negl(8gt).

The number of times the adversary was successful in extending the state by one block can
therefore be upper bounded by the quantity

aosns . 1+6 B
N7 < T S .
A T 1= 7 A(egalS), D)

Since our arguments hold for any interval, the proof is concluded by taking the worst case over
all rounds and the maximal fraction equals f., as claimed.

To establish the last part of the statement, we observe that equation (1) in particular
implies that for any interval S (of sufficient size), we have that any subset S” of rounds of size
(1 — QmaeA)|S] fulfills @/ (1 — TpmpA) > (14 €)Bg for some € > 0. Since a lower bound z for @
over all subsets of size (1 — qunqeA)|S| implies that z is also a lower bound for any larger subset
5" and hence for cga(S). Observing that for x, A > 0, {725 > z(1 — zA) and Ty > cga(S),
we get y(cga(S), A) > Bg as required to conclude that f., < 1. O

8 Special Cases of our Model and Functionality Wrappers

In this section, we first explain how our main theorem relates to the influential initial provable
security analyses of Bitcoin. Afterwards, we show how to use functionality wrappers to enforce
the main theorem’s conditions in order to obtain composable statements (i.e., with respect to all
environments).

62

8.1 Special Cases and Existing Works

We demonstrate how the protocols, assumptions, and results from the two existing works
analyzing security of Bitcoin (in a property based manner) can be cast as special cases of our
construction. We focus on the early analyses of Pass et al. [PSS17] (PSs for short) and the
original analysis of Garay et al. [GKL15] (GKL for short). Both initial models assume a fixed
upper bound n on the number of active participants in the protocol execution. All honest parties
are assumed to be synchronized (e.g., by special initialization messages by the environment).

GKL analysis (fixed difficulty and delay). We start with the result in [GKL15], in
particular with the so-called flat (every party has the same hashing power) and synchronous
model with next-round delivery. The relevant variables are defined as follows:

o Each party is allowed to perform ¢ > 1 hash queries. This translates to a success probability
GKL .

of pg =1 — (1 —p)?and pa = p, and to a total mining power T2 :=p-q-n.

o The adversary gets (at most) ¢ queries per corrupted party with probability p4 = p (there
are no desynchronized parties). If ¢, denotes the number of corrupted parties in round
r, the expected value would be ¢, - ¢ - p and thus we can define the upper bound on the

adversarial mining power 3SKl' = p. ¢ (p-n), where pn is the (assumed) upper bound
on the number of miners contributing to the adversarial mining power (independent of r).
Since the adversary is free to go to the limit in the model, the mining pattern is also flat:
B = (BGKE, ., BOKD).

e FEach honest and synchronized miner gets exactly one activation per round and has
success probability pgy = 1 — (1 — p)? € (0,1), for some integer ¢ > 0 and hence we
get a minimal honest mining power of aGKL = 1 — (1 — p)?(1=P)" (independent of 7).
Note that since n is assumed to be fixed in their model, ¢(1 — p) - n is in fact a lower
bound on the honest and synchronized hashing power. Since the model assumes that this

lower bound could potentially always be allowed, we again define the flat mining pattern

> KL KL
@ = (i - Oin)-
o If instant delivery is assumed, this translates to defining AGKL := 1, i.e., guaranteed

delivery in the next round.

PSs analysis (fixed difficulty). Similarly, we can instantiate the above values with the
assumptions of [PSS17]:

e For each corrupted party, the adversary gets at most one query per round. Each honest
miner makes exactly one query per round. In total, there are n parties among which pn
can be corrupted (in any round).

e In the PSs model, py = pa = p and hence TESDS = p-n. With these values we get
BESs — p. (p-n). Putting things together, we also have aP$3 =1 — (1 — p)(1=P)" where
(1 — p) - n is the lower bound on the honest (and hence also synchronized) parties. As
before, the mining pattern is flat.

o The delay of the network is upper bounded by a constant APS (as usual, unknown to the
participants).

63

The security is established by the following lemma:
Lemma 8.1. For the special settings above, if we impose the assumption that

GKL, PSs GKL, PS GKL, PSs GKL,PS
ST (L2 (ALGKE PSS) Q3PS > . g QKT PSS (4)
then this implies the secure realization of the Bitcoin ledger with the parameters assured
by Theorem 7.9 for the above choices of values, respectively.

Proof Sketch. The statement of course follows from the arguments given in the respective
works [GKL15] and [PSS17] since our execution model in particular allows us to formulate
the above assumptions. However, it is instructive to see how the security follows in view
of Theorem 7.9. In particular, why security follows when replacing the condition in equation (1)
by equation (4). At first sight, the condition is stronger as it implies that the best strategy of the
adversary is dominated by the worst strategy of the honest players. However, the discount factor
(1 —2. (A{GKLPSs} | 7). a;{n?fL’PSS}) is better than (1 — 2 - (A{GKLPSsh 4 1y T PS%). The
key observation why equation (4) subsumes equation (1) in the special cases described above are
the following:

e Since the number n of parties is fixed and exactly divided into honest and adversarial, and
because the worst-case honest strategy still dominates the adversary’s best strategy, we
can use to following argument to justify why equation (4) is actually sufficient. Still, the
best strategy of the adversary is to activate as many corrupted parties, say ¢, as allowed
by the upper bound S,4,. Since the number of parties is fixed, this implies that at most
n — t activations of honest parties remain and by definition oy, = 1 — (1 — p)ln —)
is the matching lower bound. Hence, and in contrast to the more general setting, here
the best strategy for corrupted parties induces a concrete strategy for honest parties.'?
A bit more formally, let x denote the number of queries such that o, =1 — (1 — p)
holds. Assume in some round r, more honest parties are activated, say ¢7;. By definition,
Bmaz > P+ (n —) and we can formally assign the difference (¢j; — z) to the adversary’s
budget (and the condition iy > Bmas is preserved as stated below). First, observe that
for integers x,y > 1,

ar—a=(1=(1=p)™") = (1= (1=p)") = (L —p)" = (1 —p)"""

=(1-p"-0-0-p")<(1-(1-p")<O-(1-y-p)
=y-p,

x

where the last inequality is a consequence of Bernoulli’s inequality. The adversary’s
mining power is thus increased, however not beyond (4, since the identity n — xz =
(n —q}) + (¢f; — x) is guaranteed because n and z are fixed for the analysis.

o Looking at the proof of Theorem 7.9, we see that the quantities @s and B¢ can be identified
by Qmin and Bmaz, respectively, and in addition the relationship unin > Bmaz is implied
by equation (4) (and thus @g > B¢ for any subset S of rounds of any size. With this,
all Lemmata in the proof of Theorem 7.9 simplify and no further condition in addition
to equation (4) is needed.

13Note that in a more general setting, this not need to be the case: even if the bound on the adversary is small,
by activating a huge fraction of honest parties the consensus of honest parties could still be disturbed and hence
our analysis has to consider such “malicious” strategies as well.

64

With this in mind, replacing the condition in equation (1) by equation {4) the proof of Theorem 7.9,
under the conditions imposed by the above models, yields the statement of the lemma. O

8.2 Restrictions and Composition

Note that the theorem statement a-priori holds for any environment (but simply yields a void
statement if the conditions are violated). In order to turn this into a composable statement
without restrictions, we follow the approach proposed in Section 3 and model restrictions in the
setup of the protocol via wrapper functionalities. The general conceptual principle behind this
is the following: For the hybrid world, that consists of a network Fx.mc, a clock Gerocx and a
random oracle Ff;, with output length s (or alternatively the state-exchange functionality Fsrx
instead of the random oracle), define a wrapper functionality W which enforces a given mining
pattern (&, E) (and the upper bounds on the mining power). If the conditions of Theorem 7.9
are met, then we get a UC-realization statement with respect to all (efficient) environments.

A general wrapper. We define such a general wrapper for our setting and denote it by
Avap

W& Fp (]rﬁMc,fﬁO) in Figure 11. Note that this wrapper slightly changes the synchrony
pattern of the real-world execution: since a lower bound on honest mining power is enforced
(otherwise, the clock does not go on), we realize the ledger with a slightly different predicate
predict-timeg. to reflect this assumption. It is easy to see that this is a straightforward extension
to the derivation in Lemma 5.2. We note that this change to the synchronization pattern
just stems from the fact how we implement such restricting assumptions but does not affect
other modeling decisions and the we still realize the ledger (this is actually a major motivation
to abstract the time-dependency of the ledger using such an abstract predicate, such that
minor details have only local effects). For this wrapper we have the following desired corollary
to Theorem 7.9 and Lemma 7.2. This statement is guaranteed to compose according to the UC
composition theorem.

Corollary 8.2. The protocol Ledger-Protocol, v, defined in the (Gerocx, Wégfgp (_F]%_MC, Fro))-
hybrid world, UC-realizes functionality gf;;DGER (for the parameters established by Theorem 7.9
and the extended predicate predict-timegq as described above) if the parameters of the wrapper
(and thus formally enforced by the setup-functionality of the protocol), satisfy equation (1).

Remark. It is straightforward to design different wrappers capturing a range of assumptions
that one might want to make (and which imply the conditions of Theorem 7.9), such as an
explicit restriction on number of active participants etc. An additional interesting observation
is that if Bitcoin did require that block extensions are accompanied by their hash explicitly,
i.e., report y := H[B;] along with a new block B; (and honest parties consequently ignored a
received block that is not paired with the right hash value), then the wrapper could be simplified.
As the adversary would not be able to abuse honest verifications as actual (adversarial) work,
the wrapper would not have to consider the special case of adversarial multicast-messages
in Figure 11 when computing the budget.

As a final remark, we point out that the wrapper enforces that honest and adversarial
attempts at solving PoW-puzzles (modeled via evaluations of the RO) are made in tandem, that
is, the adversary cannot consume the budget of future rounds ahead of time. This also means
that, effectively, the execution starts at the same time for everyone. This is one of two ways
how to render pre-computation attacks ineffective, the other one being to define the start of the

65

execution to be the point when a random genesis block is published—by an additional hybrid
functionality as done for example in [BGK T 18] in the PoS case.

9 Modular Constructions based on the Ledger

The ledger functionality can be enhanced in a modular way in various directions. In this
section, we show a simple extension to strengthen liveness thanks signatures. Informally, the
stronger guarantee ensures that every transaction submitted by an honest participant will
eventually make it into the state. In this section we present this stronger ledger and show how
such an implementation can be captured as a UC protocol which makes black-box use of the
Ledger-Protocol to implement this ledger. The UC composition theorem makes such a proof
immediate, as we do not need to think about the specifics of the invoked ledger protocol, and we

can instead argue security in a hybrid world with access to QFEDGER.

Protection of transactions using addresses. In Bitcoin, a participant creates a unique
address denoted by AddrID by generating a signature key pair and hashing the public key. Any
transaction of this party includes this address, i.e., tx = (AddrID, tx’). An important property
is that a transaction of a certain address cannot be invalidated by a transaction with a different
address ID. Hence, to protect the validity of a transaction, upon submitting tx, party P; has to
sign it, append the signature and verification key to get a transaction ((AddrID, tx'), vk, o). The
validation predicate now additionally has to check that the address is the hash of the public key
and that the signature o is valid with respect to the verification key vk. Roughly, an adversary
can invalidate tx, only by either forging a signature relative to vk, or by possessing key pair
whose hash of the public key collides with the address of the honest party.

The realized ledger abstraction, denoted by QFE‘];GER, is a ledger functionality as the one from
the previous section, but which additionally allows parties to create unique addresses. Upon
receiving a transaction from party F;, QI{SEJ,SGER only accepts a transaction containing the AddrID
that was previously associated to P; and ensures that parties are restricted to issue transactions
using their own addresses. As we explain, this amplifies transaction liveness.

9.1 A Stronger Ledger with Address Management
9.1.1 Overview and Definitions

To achieve stronger guarantees than our original Bitcoin ledger, a party issues transactions
relative to an address. More abstractly speaking, a transaction contains an identifier, AddrID,
which can be seen as the abstract identity that claims ownership of the transaction. More
specifically, we can represent this situation by having transactions tx be pairs (AddrID, tx’) with
the above meaning. Signatures enter the picture at this level: an honest participant will issue
only signed transactions. In order to link verification key to the address, AddrID is the hash of
the verification keys, where we require collision resistance. More concretely, whenever a miner is
supposed to submit a transaction tx, it signs it and appends the signature and its verification
key. The validation consists of three parts. First, it is verified that the public key matches the
address, second, the signature is verified, and third, its validated whether the actual transaction
(AddrID, tx’) is valid, with respect to a separate validation predicate ValidTxp; on states and

66

—[Wrapper from Corollary 8.2 }

The wrapper is assumed to be registered with the global clock Gerock and wraps the network and the random oracle.
The functionality manages the variable counter and is aware of set of registered parties, and the set of corrupted
parties.

Initially, 7’ = @ and counter =0, ¢4 = 0 and gy = 0. Define p := % (where k is the output length of the underlying
random oracle).

General:

¢ The wrapper stops the interaction with the adversary as soon as the adversary tries to exceed its allowed
budget of hashing power.

Relaying inputs to the random oracle:

o Upon receiving (EVAL, sid, z) from A on behalf of a party P which is corrupted or registered but de-synchronized,
then first execute Round Reset. Then do the following:
qa +qa+1; leommten) gy . p
if (ga +qr) - p < Tmp then
if gleounter) < Flcounter] then
Forward the request to Ff;, and return to A whatever FLo returns.

o Upon receiving (EVAL, sid, z) from an uncorrupted, registered and synchronized party P, then first execute
Round Reset. Then do the following:
qu — qu + 1; afeomter) 1 _ (1 — p)an
if (g4 +qu) - p < Tmp then
Forward the request to Fp;, and return to P whatever F¢, returns.
if Qcounter > @[counter| then
Send (CLOCK-UPDATE, sid¢) to Gerock > Release the clock if lower bound is reached.

Relaying inputs to the network:

« Upon receiving (MULTICAST,sid, (m,, P;;), - .., (m;,, P;,) from A for the network then first execute Round
Reset. Then do the following;:
for each mi; do
if m;; can be parsed as sequence of blocks (B1,...,B5) then
Parse m;; as (B1,...,Bn)
for each B; do
if B; has not yet been queried to 75, then
Execute the above instructions on input (EVAL, sid, B;) from a corrupted party.

e Any other request is relayed to the underlying functionality (and recorded by the wrapper) and the corresponding
output is given to the destination specified by the underlying functionality.

Standard UC Corruption Handling:
« Upon receiving (CORRUPT, sid, P) from the adversary, set P’ < P’ U {P}.
Procedure Round-Reset:

Send (CLOCK-READ, sid¢) to Gerock and receive (CLOCK-READ, sid¢, 7) from Gerocx. If |7 — counter| > 0 and the new
time 7 is even (i.e., a new round started), then set counter +— 7 and set g4 < 0 and qg < 0.

Figure 11: The wrapper that restricts the adversarial access to the real-world resources.

67

transactions tx of the above format. Only if all three tests succeed, the transactions is valid. We
make use of an existentially unforgeable digital signature scheme and recall its definition here:

Definition 9.1. A digital signature scheme DSS := (Gen, Sign, Ver) for a message space M,
signature space S, and key space K = SK x PK consists of a (probabilistic) key generation
algorithm Gen that returns a key pair (sk, vk) € K, a (possibly probabilistic) signing algorithm
Sign, that given a message m € M and the signing key sk € SK returns a signature s <
Sign(sk,m), and a (possibly probabilistic, but usually deterministic) verification algorithm Ver,
that given a message m € M, a candidate signature s’ € S, and the verification key vk € PK
returns a bit Ver(vk, m, s’). The bit 1 is interpreted as a successful verification and 0 as a failed
verification. We require correctness, that is, we demand that Ver(vk, m, Sign(sk,m)) = 1 for all
m € M and all pairs (vk, sk) in the support of Gen.

Definition 9.2. A digital signatures scheme is existentially unforgeable under chosen message
attacks if no efficient adversary A can win the following security experiment better than with
negligible probability: the challenger first chooses a key pair (sk, vk) <— Gen. Then it acts as a
signing oracle, receiving messages m € M from the adversary and responding with Sign(sk, m).
At any point, A can undertake a forging attempt by providing a message m’ and a candidate
signature s’ to the challenger. The adversary wins if and only if Ver(vk,m’,s’) = 1 and m’ was
never queried before by A.

9.1.2 The Protocol for Address Management

Hybrid ledger functionality. Let ValidTxy and blockify be as in the previous section
but with the following additional property: each transaction is a pair tx = (AddrID,tx’)
where the first part is bitstring of fixed length and the second part is an arbitrary transaction
payload. In addition we require the following property: for any state state and any transaction
tx it holds that ValidTxp(tx,state) = 1 implies, for any state extension state|[st’, that
ValidTx(tx, state||st’) = 1, if st’ does not contain a transaction with the same identifier AddrID
(this is clearly satisfied for Bitcion for example). Recall that we also assume that Definition 6.1
is satisfied.

Our protocol is defined w.r.t. a Bitcoin ledger functionality with the following validation
predicate, which is defined relative to a hash function H, and a signature scheme DSS.

Algorithm to describe the assumed validation predicate

function Valpgg(BTX, state, buffer)
Let BTX = (tx, txid, 71, p;)
Parse tx as ((AddrID, tx’), vk, o) (Return O in case of a wrong format)
if AddrID = H(vk) and Ver(vk,tx,0) =1 then
return ValidTxp(tx, state)
else
return 0

Protocol. The protocol is straightforward: whenever the protocol is given an input of the
form (AddrID, tx) it first checks that it is the party associated with this address ID. Then, it
receives the newest state from the ledger and checks, whether this input is valid with respect to
the current state. If this is the case, the party signs the input and submits it to the ledger.

68

'-‘ Protocol addrMgmt(P)

General Behavior:

This protocol exports the same interface as Grrpcrr, and only changes the behavior of read or submit-queries to the
ledger. Any other command is simply relayed to Gieperr and the corresponding output is given to the environment.

Address Management:
o The protocol maintains a counter ¢ (initially 0).

o Upon receiving (CREATEADDRESS, sid), execute (sk, vk) < Gen, update i < i + 1 and set AddrID; < H(vk).
Return (CREATEADDRESS, sid, AddrID;)

Ledger Read and Write:

o Upon receiving (READ, sid) send (READ, sid) to Girperr and receive as answer the current state = stq||...||stn.
Then do the following;:
state’ < st1 > Genesis state
for : =2 ton do
From state block st;, extract the contents (tx1, vk1,01)||...||(txn, Vkn,on)
Define new block-content &’ + tx1]|...||txn

state’ <— statel|blockify (')

Return (READ, sid, state’)

« Upon receiving (SUBMIT, sid, tx), check that tx = (AddrID, tx’) for AddrID € {AddrIDq,...AddrID;}. If the
check fails, ignore the input. Otherwise, do the following:

1. Read the state state from Gigpcer as above.

2. If ValidTxp(tx, state) = 1, then sign the input by o < Sign(sk, tx) and send (SUBMIT, sid, (tx, vk, o))

9.1.3 The Enhanced Ledger Functionality

We present an enhanced ledger functionality with a validation predicate that enforces that an
adversarial transaction cannot prevent a transaction by an honest party to eventually make it
into the stable state of the ledger.

_[Functionality Qiﬁger JI

QFEY)GER is identical to QFEDGER except with the following changes:
Difference to standard Ledger:

e Upon receiving (CREATEADDRESS, sid) from party P; (or the adversary on behalf of a party P;), send
(AccouNTREQ, sid, P;) to A and upon receiving a reply (ACCOUNTREQ, sid, P;, AddrID) do the following:

1. If AddrID is not yet associated to any party, store the pair (AddrID, P;) internally and return
(CREATEADDRESS, sid, AddrID) to P;.

2. If AddrID is already associated to a party, then output (CREATEADDRESS, sid, Fail) to P;.
Standard Bitcoin Ledger:

o Identical to QPEDGER with validation predicate Valstrong and with the fixed transaction format described above.
We omit the formal specification here.

The following validation predicate is used within gFE;GER.

69

r—l Algorithm to define the strong validation

function Valstrong (BTX, state, buffer)
Let BTX = (tx, txid, 71, p;)
if tx = (AddrID, tx’) and AddrID is associated to P; then
return ValidTxp(tx, state)
else
return 0

On the better guarantees. The stronger guarantee for honestly submitted transactions
stems from two facts. First, by Decfinition 6.1, the state blocks contain transactions beyond
coin-base transactions. Second, since a transaction of a party is associated with its address,
and cannot be invalidated by another transaction with a different address, this implies that the
transaction remains valid relative to state (unless the honest party itself issues a transaction
that contradicts a previous transaction for one of its addresses, but we neglect this here). As
an example, assume an honest party submits a single transaction for one of its addresses, and
assume this transaction is valid relative to the state state. Then, by the defined enforcing
mechanism of ExtendPolicy, this transaction is guaranteed to enter the state after staying in
the buffer for long enough, because the ledger continuously enforces that a certain fraction of
blocks contain all those unconfirmed (and still valid) transactions that are older than a certain
threshold.

We have the following lemma:

Lemma 9.3. Let DSS be a secure digital signature scheme and let H be a collision resistant hash

function. Then the protocol addrMgmt in the QLBEDGER-hybrid world UC-realizes ledger QLBEEGER,
where the functionalities are instantiated as described above.

Proof Sketch. 1t is straightforward to write a simulator in the ideal-world execution that perfectly
mimics the protocol as long as no hash-collision or signature forgery occurs. This is because
the only non-trivial property that the ledger enforces (in addition to what the assumed ledger
guarantees) is that only the address holder can submit a transaction but no one else. If no
hash-function collision is found, the only possible way is to forge a signature. If both events do
not happen, the real world indeed implements the stronger validation predicate. Assuming a
collision-resistant hash function and a signature scheme that is unforgeable under chosen-message

attacks, this implies the statement.]
References
[AD15] Marcin Andrychowicz and Stefan Dziembowski. Pow-based distributed cryptogra-

phy with no trusted setup. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology — CRYPTO 2015, pages 379-399, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Magzurek. Fair two-party computations via bitcoin deposits. In Rainer Bohme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, Financial Cryptogra-
phy and Data Security, pages 105-121, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

70

[ADMM16]

[BCH*20]

[BDOZ11]

[BGK*18]

[BGK*20]

[BHMQUO5]

[BHZ21]

[BK14]

[BMTZ17]

[But13]

[Can01]

Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. Commun. ACM, 59(4):76-84,
March 2016.

Christian Badertscher, Ran Canetti, Julia Hesse, Bjérn Tackmann, and Vassilis
Zikas. Universal composition with global subroutines: Capturing global setup
within plain uc. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryp-
tography, pages 1-30, Cham, 2020. Springer International Publishing.

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and
red balloons. SIGecom Exch., 10(3):5-9, December 2011.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 913-930. ACM, 2018.

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Consensus redux: Distributed ledgers in the face of adversarial supremacy.
Cryptology ePrint Archive, Paper 2020/1021, 2020. https://eprint.iacr.org/
2020/1021.

Michael Backes, Dennis Hofheinz, Jorn Miiller-Quade, and Dominique Unruh. On
fairness in simulatability-based cryptographic systems. In Proceedings of the 2005
ACM Workshop on Formal Methods in Security Engineering, FMSE 05, pages
13-22, New York, NY, USA, 2005. ACM.

Christian Badertscher, Julia Hesse, and Vassilis Zikas. On the (ir)replaceability
of global setups, or how (not) to use a global ledger. In Kobbi Nissim and Brent
Waters, editors, Theory of Cryptography, pages 626—657, Cham, 2021. Springer
International Publishing.

Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology — CRYPTO
2014, pages 421-439, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology — CRYPTO 2017, pages 324-356, Cham,
2017. Springer International Publishing.

Vitalik Buterin. A next-generation smart contract and decentralized application
platform. White Paper on GitHub, 2013. https://github.com/ethereum/wiki/
wiki/White-Paper.

R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS *01, pages 136—, Washington, DC, USA, 2001. IEEE Computer
Society.

71

https://eprint.iacr.org/2020/1021
https://eprint.iacr.org/2020/1021
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

[Can20]

[CDG+18]

[CDPWO7]

[CEM™*20)

[CGHZ16]

[CM19]

[DKT20]

[DP09)

[ES18]

[Eyal5)

[GKL15]

[GKL17]

Ran Canetti. Universally composable security. Journal of the ACM, Vol. 67, No.
5, 2020.

Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology — EUROCRYPT 2018, pages
280-312, Cham, 2018. Springer International Publishing.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Salil P. Vadhan, editor, Theory of
Cryptography, pages 61-85, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

T-H. Hubert Chan, Naomi Ephraim, Antonio Marcedone, Andrew Morgan, Rafael
Pass, and Elaine Shi. Blockchain with varying number of players. Cryptology
ePrint Archive, Paper 2020/677, 2020. https://eprint.iacr.org/2020/677.

Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round
asynchronous multi-party computation based on one-way functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology — ASIACRYPT 2016,
pages 998-1021, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155—-183, 2019. In memory of Maurice Nivat, a
founding father of Theoretical Computer Science - Part I.

Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS
"20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual FEvent, USA, November 9-13, 2020, pages 859-878. ACM, 2020.

Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, New York, NY,
USA, 1st edition, 2009.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is
vulnerable. Commun. ACM, 61(7):95-102, June 2018.

I. Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,
pages 89-103, May 2015.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology - EUROCRYPT 2015, pages 281-310, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 87th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,

72

https://eprint.iacr.org/2020/677

[GKL20]

[GKR20]

[KB14]

[KB16]

[KKK21a]

[KKK21b]

[KKKT16]

[KMB15]

[KMTZ13]

[KVV16]

Part I, volume 10401 of Lecture Notes in Computer Science, pages 291-323.
Springer, 2017.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. How does nakamoto set his
clock? full analysis of nakamoto consensus in bounded-delay networks. Cryptology
ePrint Archive, Paper 2020/277, 2020. https://eprint.iacr.org/2020/277.

Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency bounds for
bitcoin. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 819-838. ACM, 2020.

Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 30-41, New York, NY, USA, 2014.
ACM.

Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-
ties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 16, pages 418-429, New York, NY, USA, 2016.
ACM.

Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Composition with
knowledge assumptions. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV, volume
12828 of Lecture Notes in Computer Science, pages 364-393. Springer, 2021.

Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. KACHINA - founda-
tions of private smart contracts. In 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pages 1-16. IEEE,
2021.

Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekou-
nis. Blockchain mining games. In Proceedings of the 2016 ACM Conference on
Economics and Computation, EC ’16, pages 365-382, New York, NY, USA, 2016.
ACM.

Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 195-206, New York, NY,
USA, 2015. ACM.

Jonathan Katz, Ueli Maurer, Bjorn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, Theory of Cryptography,
pages 477-498, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to secure computation with penalties. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
406417, New York, NY, USA, 2016. ACM.

73

https://eprint.iacr.org/2020/277

[KZZ16]

[Lam9g]

[Lam02]

[LSP82]

[MGGR13]

[Nak08]

[PKF*18]

[PS17]

[PSS17]

[Rab83]

[SCGT14]

[SZ15]

Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology — FEUROCRYPT 2016, pages 705-734,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133—
169, May 1998.

Leslie Lamport. Paxos made simple, fast, and byzantine. In Procedings of the
6th International Conference on Principles of Distributed Systems. OPODIS 2002,
Reims, France, December 11-13, 2002, page 7-9. Suger, Saint-Denis, rue Catulienne,
France, 2002.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages
397-411, May 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White Paper,
2008. http://bitcoin.org/bitcoin.pdf.

Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joél Alwen, and
Krzysztof Pietrzak. Spacemint: A cryptocurrency based on proofs of space.
In Sarah Meiklejohn and Kazue Sako, editors, Financial Cryptography and Data
Security - 22nd International Conference, FC 2018, Nievwpoort, Curacao, February
26 - March 2, 2018, Revised Selected Papers, volume 10957 of Lecture Notes in
Computer Science, pages 480-499. Springer, 2018.

Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of
the ACM Symposium on Principles of Distributed Computing, PODC ’17, page
315-324, New York, NY, USA, 2017. ACM.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol
in asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology — EUROCRYPT 2017, pages 643—673, Cham,
2017. Springer International Publishing.

M. O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on
Foundations of Computer Science (sfcs 1983), pages 403-409, Nov 1983.

E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sympo-
stum on Security and Privacy, pages 459-474, May 2014.

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. In Rainer Béhme and Tatsuaki Okamoto, editors, Financial Cryptogra-
phy and Data Security, pages 507-527, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

74

http://bitcoin.org/bitcoin.pdf

[Zoh15] Aviv Zohar. Bitcoin: Under the hood. Commun. ACM, 58(9):104-113, August
2015.

75

A Further Details on the Model

This section includes complementary material for Section 3.

A.1 TUnicast Channels

A unicast channel can be defined as follows:

—[Functionality fé_’g% }

The functionality is parametrized with a receiver Pr, and and upper bound A on the delay of any channel. It keeps
track of the set of possible senders P. Any newly registered (resp. deregistered) party is added to (resp. deleted from)

P. The list of messages is stored in M, initially empty.

o Upon receiving (SEND, m) from some Ps € P or from the adversary A, choose a new unique message-ID mid
for m, initialize variables Dp,q := 1 and DrJr\(i[dAX =1, set M := M]||(m, mid, Diq), and send (m, mid, Dp4) to
the adversary.

o Upon receiving (FETCH) from Pg:
1. For all registered mids, set Dpig := Dmiq — 1.
2. Let Mo denote the subvector M including all triples (m, mid, Dyq) with Dpig = 0 (in the same order as
they appear in M) Delete all entries in Mo from M and send MQ to Pg.

o Upon receiving (DELAY, Tpig, mid) from the adversary, if Dr]r\:{dAX

in the current 1\7[, set Dmid := Dmid + Tmid and D%dAX = D%dAX + Tmiq; otherwise, ignore the message.

4+ Thid < A and mid is a message-ID registered

« Upon receiving (SWAP, mid, mid’) from the adversary, if mid and mid’ are message-1Ds registered in the current
M, then swap the triples (m, mid, Diyig) and (m, mid’, Dyig/) in M. Return (swAP-OK) to the adversary.

A.2 On realizing Multicast from Unicast

We briefly sketch how to realize such a multicast network, in particular its synchronized version
along the lines of [KMTZ13], by means of a synchronized message-diffusion protocol over a
network of unicast channels (and implicitly assuming a local clock to obtain the round structure).
The core of this diffusion protocol are the assumed and known (e.g., by a common list of TP
addresses) relay-nodes to which parties thus can connect and which forward in each round all
new messages they received (either from registered parties or other relay nodes) in the previous
round to all the unicast channels they are connected to as senders.!? Let G = (V, E) denote the
(dynamically updatable) directed graph whose vertices V' are the parties and the relay-nodes
which are currently participating in the execution and an edge (p;, p;) is in E iff p; is one of the
senders of the multicast channel with receiver p;. It is straightforward to verify that provided
that G restricted to the honest parties (i.e., when corrupted parties and the edges that use them
are deleted from G) remains strongly connected (i.e., there is a directed path between any two
honest parties, in either direction), then the diffusion mechanism executed over unicast channels
with delay at most A security realizes a multicast network with delay Ad where d is an upper
bound of the diameter of G. Indeed, the simulator, which is given any message submitted to any
unicast channel and enough activations when the dummy parties themselves get activated (note
that it is essentially a synchronous computation among the relay-nodes), needs to simply simulate
when the respective parties would see a message and schedule the corresponding deliveries by

Y11 order to ensure that parties can send some messages twice, a nonce is attached to each input message that
is to be multicasted. The relayers do not add another nonce to the message they relay.

76

using the delays submitted by the adversary. The fact that each channel has at most A delay
means that it will take delay at most AL rounds for it to travel through an honest path of
length L. Last but not least, in order to receive messages from the network established this way,
when a party joins the network, it has to multicast a special message to the relay-nodes that has
to contain its identifier such that the relay-nodes can start sending messages to that party. This
induces at most a delay of A rounds until the party is guaranteed to receive the messages sent
over the network. For simplicity, we ignore this additional delay incurred by the registration
to the network, and omit it in our specification of the multicast functionality in Section 3.2. If
one implements the network using the above sketched method, one would formally obtain the a
multicast functionality as given in Figure 1, but where the party set P contains all parties that
have joined (and not yet left) the network at least A rounds ago, since the sketched solution
does not support instant registration. All remaining guarantees remain unchanged with respect
to this new party set.

7

B Further Details on the Bitcoin Ledger

This section includes complementary material for Section Section 6. We here give the formal
description of the Extend Policy for QI?EDGER. It is easy to observe that the computation performed
by this algorithm is well-defined for any definition of Validate and Blockify.

Compared to previous versions of this work, the presentation is now logically divided into
the step of deriving a default extension and the actual tests whether the adversarial proposal
is admissible. The default extension is taken as the ledger-state extension if and only the
proposal by the adversary does not pass the test specified and implemented by ExtendPolicy.
The derivation of the default extension is given as pseudo-code below. Note also that the policy
makes the initial bootstrapping time of the chain now explicit, where by bootstrapping time we
mean the time it takes for the first state block to be inserted into the ledger state.

Algorithm for Default State Extension

function DEFAULTEXTENSION(Z, state, NxtBC, buffer, scp)
We assume call-by-value and hence the function has no side effects.
The function returns a policy-compliant extension of the ledger state.

Let 71, be current ledger time (computed from f}})
Read Tstate and hf from the passed state sep

Ndf (j g .

Set Ng < txcoin-base of 9 honest miner

minerID
Sort buffer according to time stamps and let tx = (tx1,...,tx,) be the transactions in buffer

Set st <+ blockifyg (No)
repeat
Let tx = (tx1,...,tx,) be the current list of (remaining) transactions
for i =1tondo
if ValidTxp(tx;, state|[st) = 1 then
]\70 — N()Htxi
Remove tx; from tx
Set st + blockifyg (No)

until Ny does not increase anymore
c+0
if |state| < windowSize — 1 then > First extend to windowSize — 1 state blocks.
while |state| + ¢ < windowSize — 1 do
if ¢ > 0 then

Set N + tx;?ii;‘é?ﬁge of an honest miner

Ndf <~ NdeNc

Tstate <— ’F‘stateHTL

c+—c+1
Tstate — Tstate||TL > Check whether more extensions possible.
. t—s+1
hr + MaXs—1,...,|Fstate | —windowSize+1;t=s+windowSize—1,...,| Tstate| Totate [t] — Tstate 5]+ 1
while hr < _uwindowSize .,
minTimeyindow
if ¢ > 0 then
\ coin-base - :
- Set]Yc <__‘txminerID of an honest miner
Nas < Nat||Ne
Tstate < TstateHTL
c+—c+1
. t—s+1
hr < MaXs—1,...,|Fstate| —windowSize+1;t=s+windowSize—1,...,|Fstate| * Fotave[t] — Tatate[S] 1

return Ngs

78

Algorithm ExtendPolicy for G2, ..n - Part 1

function EXTENDPOLICY(f}_}, state, NxtBC, buffer, Tstate)
We assume call-by-value and hence the function has no side effects.
This Function implements the Extend Policy of the Bitcoin Ledger.

Nas + DEFAULTEXTENSION(fZI, state, NxtBC, buffer; sep) > Extension if adversary violates policy.

Let 71, be current ledger time (computed from f};)

Read Titate and hf from state sep- If the state is empty, initialize two empty vectors.

Parse NxtBC as a vector ((hFlag;,NxtBCy),- -, (hFlag,,, NxtBCy))

N ¢ > Initialize Result

if |state| > windowSize then > Determine time of the block which is windowSize blocks behind the state head
Set Tiow — Tstate||state| — windowSize + 1]

else
Set Tiow < 0
for each list NxtBC; of transaction IDs do > Compute the next state block and verify validity
]\77; — €
Use the txid contained in NxtBC; to determine the list of transactions
Let tx = (tx1,..., tX|nxec,|) denote the transactions of NxtBC;
if tx;1 is not a coin-base transaction then
Fasate < Tatate||TL||- . - |71, hf < hf||1]|...]]1 (extended by |Nas| elements) and store the vectors in sep.
return Ny and new state Sep
else

N; + tx1
for j = 2 to |NxtBC;| do
Set st; bIockifyB(ﬁi)
if ValidTxp(tx;, state|[st;) = 0 then

Totate < Tstate||7L||---||7L, hf « h_?|\1|| ...||1 (extended by |1\7df| elements) and store the vectors
in Sep.
return Ny and new state Sep > Ignore the adversarial proposal if invalid.

]\71' —]\71 ‘ |th
Set st; < b|OCkifyB(ﬁi)
hFlag, < 1
for each BTX = (tx, txid, 7/, P;) € buffer of an honest party P; with time 7/ < T1oy — DE;J do
if ValidTxp(tx, statel|st;) = 1 but tx ¢ N; then
hFlag; < 0 > Block is not honestly filled with transactions.
N « N||N;
state + state||st;
Tatate < Tstate||TL, hf « h?||hF1agi and store those vectors in sep.
if |state| > windowSize then
Set Tiow < Tstate[|state| — windowSize + 1]
else
Set Tiow < 0
if 77, < maxTimeyindow A state = ¢ then
return ¢

See Part 2

79

Algorithm ExtendPolicy for G®,, .or - Part 2

> Lowest growth rate, highest growth rate (if applicable), and adversarial rate are within their bounds.
> invalid flag

inv <0
if |state| < windowSize then > Ensure a timely startup with enough honest blocks.
. . windowSize+|{n€[|Tstate|] : <7 n]<i
Ir <= minj—o,...,7/ —maxTineyindonsi=j+maxTineyindoy - 71, : it Hzi;ﬁu state [n] <1}
ar — \{ne[lstéte\]ilﬂf[n]=0}\
inaSiBtze. oo
H Win
if l.r < ZaxTimegpay ¥ @7 > 1 then
nv <—
if |state| > windowSize then > Ensure ledger growth limits and enough honest blocks.
R . t—s+1
Ir < MINg—1, ... |Fstate| —windowSize+1;t=s+windowSize—1,...,| Tstate| * Fovate [t — Tstate 5]+ 1
- - S tes+l
hr MaXs—1,...,|Fstate| —windowSize+1;t=s+windowSize—1,...,| Fstate| * Fovate [t]— Tstate [S]+1
. |{n€]s...t] : hf[n]=0}]
ar <~ MaXg—1 .. |state| —windowSize+1;t=s-+windowSize—1,...,|state| * t_st1
s windowSize windowSize
if ZT" < maxTimeniay v hr > minTinenan ¥ 47 > 1 then
inv<«1
if inv = 0 then
return N and new state sep
else
Tstate < Tstate||TL|| - . ||, hf < hf||1||...]|1 (extended by |Na¢| elements) and store the vectors in sep.

return Ngs and new state sep

80

C The Simulator of the Main Theorem

The simulator interacts with the backdoor tapes of the ideal protocol I\/I[QFEDGER, Gerock| (to give
instructions and receive replies), and since these are two ideal processes, only the backdoor tape
of the functionalities QF’EDGER and Gerock are relevant. Note that technically, communication
to these backdoor tapes is accomplished via the backdoor tape of a special shell sh[QPEDGER],
where by definition this allows direct interaction between the simulator and the backdoor tape
of the ITI running inside the shell (this holds analogously for the real-world protocol and the
real-world adversary).

,{ Simulator Seq,

Initialization:

The simulator manages internally a simulated state-exchange functionality Fgrx, a simulated network Fn.nc. An
honest miner P registered to QFEDGER is simulated as registered in all simulated functionalities. Moreover, the simulator
maintains the local state stp and the buffer of transactions bufferp of such a party. Upon any activation, the
simulator will query the current party set from the ledger (and simulate the corresponding message they send out to
the network in the first maintain-ledger activation after registration), query all activations from honest parties fT,
and read the current clock value to learn the time. In particular, the simulator knows which parties are honest and
synchronized and which parties are de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the interaction between A and the
(emulated) hybrid functionalities. The inputs from A to the clock are relayed (and the replies given back to A).

Messages from the Clock:

e Upon receiving (CLOCK-UPDATE, sid¢, P) from Gerock, first check whether the clock for the challenge session
has advanced from time 7 to 7 4+ 1 due to this clock-update activation. If this is the case then do the following;:

1. If P is the identity of the ledger functionality, then inspect f}; (obtained via a read request) and check
which miner P has issued the last (MAINTAIN-LEDGER, sid, minerID) request. Conclude the final step
of (the interruptible computation of) SIMULATEMINING(Ppinerip, 7) for this party. And in case 7 is a
working mini-round, execute EXTENDLEDGERSTATE before sending the final (CLOCK-UPDATE, sid¢, P) to
the adversary.

2. If P is not the identity of the ledger functionality and 7 is a working mini-round, then execute
EXTENDLEDGERSTATE before outputting (CLOCK-UPDATE, sidc, P) to A.

If no such clock advancement occurs, then do the following:

1. If the identity P corresponds to this ledger functionality, then inspect f}; (obtained via a read request)
and check which miner P has issued the last (MAINTAIN-LEDGER, sid, minerID) request. Conclude the
final step of (the interruptible computation of) SIMULATEMINING(Ppinerip, 7) for this party.

2. If P is not the identity of the ledger functionality, then just output (CLOCK-UPDATE, sid¢, P) to A.
Messages from the Ledger:

e Upon any input from the ledger, the simulator first inspects flq_} (obtained by reading from the ledger
functionality) and obtains the time 7 and if 7 is an update mini-round, it executes, for each party P that had
I = (READ, sid) in this round, the fetch-information step of procedure SIMULATEMINING before proceedings with
the specific actions below.

o Upon receiving (SUBMIT,BTX) from QFEDGER where BTX := (tx, txid, 7, P) forward (MULTICAST, sid, tx) to the
simulated network Fn_jic in the name of P. Output the answer of Fn.\ic to the adversary.

o Upon receiving (MAINTAIN-LEDGER, sid, minerID) from QE‘IDGER, extract from fz} (obtained by reading from the
ledger functionality) the identity P; that issued this query. If P; is already done in this mini-round, then ignore
the request. Otherwise, execute (as an interruptible computation) the procedure SIMULATEMINING (PrinerID; T)
for this party.

Simulation of the State Exchange Functionality:

81

« Upon receiving (SUBMIT-NEW, sid, st,st) from A on behalf of a corrupted P € Psiy, then relay it to the
simulated Fg;x and do the following:
1. If Fgrx returns (SUCCESS, B) give this reply to A
2. If A replies with (CONTINUE, sid), input (CONTINUE, sid) to the simulated Fgrx
3. If the current mini-round is an update mini-round, then execute EXTENDLEDGERSTATE

o Upon receiving (FETCH-NEW, sid) from A (on behalf of a corrupted P) forward the request to the simulated
Fgrx and return whatever is returned to A.

o Upon receiving (SEND, sid, s, P’) from A on behalf some corrupted party P, do the following:

1. Forward the request to the simulated Fgrx.
2. If the current mini-round is an update mini-round, then execute EXTENDLEDGERSTATE
3. Return to A the return value from Fgrx.

o Upon receiving (SWAP, sid, mid, mid’) from A, forward the request to the simulated Fgrx and return whatever
is returned to A.

o Upon receiving (DELAY, sid, T, mid) from A forward the request to the simulated Fg;x and do the following:

1. Query the ledger state state
2. Execute ADJUSTVIEW(state)

3. Return to A the output of Fgrx
Simulation of the Network (over which transactions are sent) :

« Upon receiving (MULTICAST,sid, (m;,, Py,), ..., (ms,, P;,) with list of transactions from A on behalf some
corrupted P € Ppet, then do the following:

1. Submit the transactions to the ledger on behalf of this corrupted party, and receive for each transaction
the transaction id txid

2. Forward the request to the internally simulated Fn.nic, which replies for each message with a message-1D
mid

3. Remember the association between each mid and the corresponding txid

4. Provide A with whatever the network outputs.

o Upon receiving (an ordinary input) (MULTICAST, sid, m) from A on behalf of some corrupted P € Pnpet, then
execute the corresponding steps 1. to 4. as above.

e Upon receiving (FETCH, sid) from A on behalf some corrupted P € Ppet forward the request to the simulated
Fn-Mmc and return whatever is returned to A.

e Upon receiving (DELAYS, sid, (Tmidi1 ,midi,), ..., (Tmidiz ,mid;,)) from A forward the request to the simulated
Fn-Mmc and return whatever is returned to A.

« Upon receiving (SWAP, sid, mid, mid’) from A forward the request to the simulated Fy.nc and return whatever
is returned to A.

Simulation of Corruptions:

¢ Upon corruption of a party P € P, corrupt the party in all hybrid functionalities and the clock, and remember
this party as corrupted. If the corruption leads to a clock advancement, then execute the same steps as above
upon a (CLOCK-UPDATE, sid¢, P) from Georock-

procedure SIMULATEMINING (P, 7)
Simulate the (interruptible) mining procedure of P of the ledger protocol:
if time-tick 7 corresponds to a working mini-round and P is not done yet then
Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set bufferp

82

-Send (SUBMIT-NEW, sid, st p, st) to simulated functionality Ferx
-If successful, store stp||st as the new stp
-If successful, distribute the new state via Fgrx
-If done with all actions, the last action is outputting (CLOCK-UPDATE, sid¢c, P) to A
else if time-tick 7 corresponds to an update sub-round and P is not done yet then
Execute Step 3 of the mining protocol. This means that if the new
information has not been fetched in this round already, then the
following is executed:
-Fetch transactions (txi,...,txy) (on behalf of P) from
simulated Fn.yc and add them to bufferp
-Fetch states st1,...,sts (on behalf of P) from the simulated
Fsrx and update stp to the largest state among stp and st;
-If done with all actions, the last action is outputting (CLOCK-UPDATE, sid¢c, P) to A

procedure EXTENDLEDGERSTATE
Consider all honest and synchronized players P:
- Let st be the longest state among all states stp or states contained
in a receiver buffer Mp with delay 1 (and hence is a potential
output in the next round)

T

Compare st'~ with the current state state of the ledger

if |state| > |st (T\ then
Execute ADJUSTVIIEW(state)
if state is not a prefix of st ™ then
Abort the simulation (due to inconsistency)

Define the difference diff to be the block sequence s.t. state||diff = st T,
Let n « |diff|
for each block diff;, j =1 to n do
Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have an txid, then submit it to the ledger
and receive the corresponding txid from g]il)clsu
Let list; = (txidj 1, ... ,txidj’gj) be the corresponding list for this block.

Output (NEXT-BLOCK, list;) to g]I_?)EDGER (receiving (NEXT-BLOCK, ok) as an immediate answer)
Execute ADJUSTVIEW (state||diff)

procedure ADJUSTVIEW(state)
pointers <— €
for each honest and synchronized party P; do
Using the simulated functionality Fg;x do the following:
- Let st be the longest state among S?tpi and those contained in the
receiver buffer Mpi with delay 1
Determine the pointer pt; s.t. st T — state|pt,
if such a pointer value does not exist then
Abort simulation (due to inconsistency)
if Party P; has not executed step 3 of the mining protocol in this
current mini-round then > As otherwise, the new state is only fetched in the next round
pointers <— pointers||(P;, pt;)
Output (SET-SLACK, pointers) to G/ pair
pointers < ¢
desyncStates < ¢
for each honest but de-synchronized party P; do
Using the simulated functionality Fgrx do the following:
- Let st be the longest state among st p, and those contained in the
receiver buffer M p; with delay 1
if Party P; has not executed step 4 of the mining protocol in this
current mini-round then > As otherwise, the new state is only fetched in the next round
Set the pointer pt; to be |st (T\
pointers <— pointers||(P;, pt;)
desyncStates < desyncState||(P;, st (T)
Output (SET-SLACK, pointers) to QPEDGER

Output (DESYNC-STATE, desyncStates) to g?wcm

83

	Introduction
	Bitcoin as a Service for Cryptographic Protocols
	Our Contributions
	Overview of Bitcoin and Related Work

	Preliminaries
	Overview of the UC Framework
	Large Deviation Bounds

	UC Execution Model for Permissionless PoW Blockchains
	Functionalities with Dynamic Party Sets
	Modeling Network Assumptions
	Modeling Time and Clock-dependent Protocol Execution
	Modeling Hash Queries
	Which Setup Functionalities as Shared Subroutines?
	Assumptions as UC-Functionality Wrappers

	The Basic Transaction-Ledger Functionality
	Introduction and Overview
	The General Ledger Functionality
	On the Defining Features

	Bitcoin as a UC Protocol
	Basics
	Overview and Modeling Decisions
	The Formal Protocol Description

	The Bitcoin Ledger
	Security Analysis
	Overview
	First Proof Step
	Modularizing the Ledger-Protocol
	Second Proof Step
	Improving the Chain-Quality Parameter

	Special Cases of our Model and Functionality Wrappers
	Special Cases and Existing Works
	Restrictions and Composition

	Modular Constructions based on the Ledger
	A Stronger Ledger with Address Management

	Further Details on the Model
	Unicast Channels
	On realizing Multicast from Unicast

	Further Details on the Bitcoin Ledger
	The Simulator of the Main Theorem

