
UFace: Your Universal Password
That No One Can See

Nicholas Hilbert
Missouri University of Science and Technology

Rolla, MO, USA
Email: nsh9b3@mst.edu

Dan Lin
Missouri University of Science and Technology

Rolla, MO, USA
Email: lindan@mst.edu

Christian Storer
Missouri University of Science and Technology

Rolla, MO, USA
Email: cs9yb@mst.edu

Wei Jiang
Missouri University of Science and Technology

Rolla, MO, USA
Email: wjiang@mst.edu

Abstract—With the advantage of not having to memorize
long passwords, people are more interested in adopting face
authentication for use with mobile devices. However, since facial
images are widely shared in social networking sites, it becomes
a challenging task to securely employ face authentication for
web services to prevent attackers from impersonating the legal
users by using the users’ online face photos. Moreover, existing
face authentication protocols either require users to disclose
their unencrypted facial images to the authentication server or
require users to execute computationally expensive secure multi-
party computation protocols. For mobile devices with limited
computational power, this presents a problem that cannot be
overlooked. In this paper, we present a novel privacy preserving
face authentication system, called UFace, which has users take
close-up facial images for authentication to prevent against
impersonation attacks of users’ online facial images. UFace also
guarantees that the facial images are only seen by the users
and not by any other party (e.g., web service providers and
authentication servers). UFace was implemented through two
facets: an Android client application to obtain and encrypt the
feature vector of the user’s facial image, and server code to
securely authenticate a feature vector across multiple servers.
The experimental results demonstrate that UFace not only can
correctly authenticate a user, but also can be done within seconds
which is significantly faster than any existing privacy preserving
authentication protocol.

I. INTRODUCTION

With around 1 billion websites online today [1], statistics
[24] show that each Internet user has an average of 26
different online accounts, with individuals between the age
of 25 to 34 having an average of 40 accounts each. With
so many different accounts that typically need passwords to
access, some passwords are bound to be reused or changed
ever so slightly due to the challenge of memorizing many
different passwords. The surprising fact is that a person uses,
on average, just 5 unique passwords for all their accounts [24].
Using the same password across multiple accounts has opened
the door to attackers and is becoming the main cause of the
dramatic rise in online fraud.

The question this paper aims to solve: Is there a way
that does not require individuals to memorize many different

passwords while still preventing attackers from accessing
confidential information? Face authentication is one potential
solution to this. This tool means users will only need to send an
image of their face (or a feature vector representing their face)
to prove their identities - much easier than trying to remember
the password that correlates with the service being used.
Since face authentication is a relatively new technology, it
still needs to overcome several critical challenges: maintaining
high accuracy of authenticating a user’s face, preventing mas-
querade attacks by using old images, and preserving privacy
of users’ information that have been used for authentication.
The accuracy of authenticating based on facial recognition
is no longer a major concern since certain algorithms can
achieve an accuracy of over 90% [25]. However, the remaining
two challenges have not been well addressed. Specifically,
in existing face authentication systems, it is possible for
attackers to reuse the photos obtained from social networks
and then be authenticated as the photo owners. To prevent such
impersonation, the latest technique is face liveness detection
[16]. Unfortunately, the face liveness detection approach has
recently also been proved to be vulnerable by researchers [27]
who can create realistic 3D facial models with a handful of
pictures from social media to spoof the face liveness detection.

To overcome these security and privacy challenges during
face authentication and enable its wide adoption in web
services, we propose a novel privacy-preserving face authen-
tication system, called UFace, where “U” stands for both
“your” and “universal”. Our main idea is to let users take
close-up images only for authentication purposes using their
own mobile devices. Such close-up images carry the personal
device features, such as the camera’s resolution and optical
distortion caused by the short distance. More importantly,
these close-up images are rarely shared online due to the lack
of beauty (i.e., being distorted). Our experiments also show
that these close-up images cannot be duplicated by attackers
who try to use the same type of device to zoom in to take the
victim’s photo in a distance. Then, the next step is to keep
such close-up images safe with the users so that no one could



Fig. 1. UFace System - Authentication Overview

gain access or reuse them for authentication. To achieve this,
we have designed an efficient, secure, and privacy-preserving
authentication protocol that never discloses the plaintext of
the close-up images (or their respective feature vectors) to
the authentication servers and web service providers during
the entire authentication process. It is worth noting that our
work is unique compared to existing privacy-preserving face
authentication approaches [10] which all require the authenti-
cation server to maintain plaintext facial images. If using the
existing face authentication protocols to authenticate close-up
facial images, an attacker will still be able to obtain the users’
close-up images after compromising the authentication servers
and impersonate the users later on. In our UFace system, even
if the attacker compromises the authentication servers, he/she
will only obtain encrypted facial image feature vectors and
cannot reuse them for authentication (detailed security analysis
will be presented in Section VIII).

As shown in Figure 1, the UFace system involves four
parties: (1) end users, (2) web service providers, (3) UFace
data servers, and (4) UFace key servers. UFace is a third
party that hosts two authentication servers to facilitate privacy-
preserving authentication between web service providers and
end users through mobile devices. An UFace application will
be installed on the user’s Android device. When the user wants
to log into a web service (already registered with UFace),
the user just needs to take a photo while the app take cares
of everything else. The UFace system will then carry out a
secure multi-party computation to authenticate the user with
the web service. Our technical contributions are summarized
as follows:

• UFace is built in a multi-cloud environment and can serve
for multiple web services simultaneously. Its authentica-
tion protocol prevents the disclosure of any users’ plain-
text images or feature vectors to any party participating
in the protocol: (1) web services, (2) UFace data servers,
and (3) UFace key servers.

• UFace has an efficient homomorphic encryption based au-
thentication protocol which allows the two UFace servers

to collaboratively conduct facial image comparison on
encrypted facial images. Due to the complexity of the
facial matching algorithms, designing the collaborative
homomorphic computation was challenging. It required
mapping and integrating various types of encrypted com-
putations to work alongside garble circuit operations.
The overall process needed to be highly efficient so the
response time to users would be comparable to logging
in using common password strings.

• UFace has an Android application that is capable of
efficient photo feature extraction and encryption and
keeps each user’s computational burden to minimum. The
development of the Android application involved multiple
challenges that dealt with the limited memory/computing
power of these mobile devices along with the need to
design a new library for facial feature generation tailored
to work on mobile device.

• UFace has been evaluated both theoretically and exper-
imentally. The security analysis shows that UFace is
robust against various types of attacks. The experimental
results demonstrate that UFace not only can correctly
authenticate a user, but also can be done within seconds
which is significantly faster than any existing privacy
preserving authentication protocol.

The rest of the paper is organized as follows. Section II
discusses the related works on privacy preserving face authen-
tication and face recognition. Section III gives an overview
into the tools UFace utilizes while Section IV provides an
overview UFace’s 2 phases. The threat model and security
goals of UFace are analyzed in Section V. Then, Section VI
presents the UFace Android application at the user side and
Section VII presents the protocols at server side. Section VIII
provides a security analysis of the system and Section IX
reports the performance study. Finally, Section X concludes
the paper.

II. RELATED WORKS

In this section, we first discuss related works on privacy-
preserving biometric authentication and then briefly review the
commonly used face recognition algorithms.

A. Privacy-Preserving Biometric Authentication

Biometric authentication is very convenient for end users
since it reduces the number of passwords to remember to
zero. However, it also raises important privacy concerns since
users’ biometric data may be known by service providers
or authentication servers [6]. One of the earliest attempts
towards privacy preservation during biometric authentication
is by Erkin et al. [10]. In their setup, the server has a set of
photos that it does not want the user to see while the user
has his/her own photo that needs to remain hidden from the
server. They proposed a secure two-party comparison protocol
that allows each user to check if his/her photo matches a
photo in the server’s database using Eigenfaces while keeping
both the user’s and the server’s photos private to themselves.
Later, Sadeghi et al. [20] improved the efficiency of the



above protocol. Following the similar settings, Osadchy et
al. [17] also proposed a privacy-preserving face detection
algorithm - SCiFI - that allows a user to check if his/her
photo is in the server’s database without knowing the server’s
database. Huang et al. [11] proposed a secure protocol for
fingerprint matching while Blanton et al. [5] proposed security
protocols for both fingerprints and iris. Recently, Sedenka et
al. [21] employed a similar idea and implemented the privacy-
preserving face authentication on smartphones. However, their
system needs more than 10 minutes for a single authentication
which is not suitable for real-time applications.

Compared with the aforementioned works, UFace has a
totally different setting. The above works all assume that
the authentication server has non-encrypted information, i.e.,
knows the unencrypted content of the each users biometric
data. Unlike their works, the authentication servers in UFace
only have access to encrypted feature vectors representing
facial images. This setting significantly enhances privacy
preservation and also introduces bigger challenges into the
system design even though some of the same techniques are
being utilized: garbled circuits and Paillier encryption.

Recently, there are several works which have similar secu-
rity goals by having only encrypted data at the server side. One
is by Blanton and Aliasgari who proposed both a single-server
and a multi-server secure protocol to outsource computations
of matching iris biometric data records. However, their single-
server protocol uses predicate encryption scheme [15], [23]
which is not as secure as the additive homomorphic encryp-
tion scheme adopted into UFace. Their multi-server protocol
leverages a secret sharing scheme [22] and requires at least
three independent servers, whereas our UFace system only
needs two independent servers and is much more efficient. In
[19], Pal et al. proposed to watermark each user’s facial image
with fingerprints and then encrypt the watermarked biometric
data to protect its privacy from adversaries. Their security
protocol is conducted directly by the user and a single server,
and hence the user bears a heavy computation workload. In
UFace, the computation at the user side is lightweight, which
helps conserve smart phone batteries. Another recent related
work is by Chun et al. [8] who developed a secure protocol that
allows an organization to outsource encrypted users’ biometric
datasets to the cloud and let the cloud conduct authentication
process on fully encrypted data. However, they mainly focus
on fingerprint matching, the computation of which is much
simpler than that for the face recognition on encrypted data
in our system. Also, their algorithm takes over an hour to
authenticate a user, which is not practical in a real world
application.

In summary, there have been very limited efforts on privacy
preserving face authentication and none of these existing work
achieves the same security goal and efficiency as our proposed
UFace system.

III. AUTHENTICATION TOOLS

To accomplish authentication between the UFace servers, a
few different types of tools are used: facial recognition and

secure multi-party computations (SMCs). This section gives
a brief overview of each of these UFace operations to better
understand the implementation detailed in Section VII.

A. Face Recognition with Local Binary Patterns

Research on facial representation and recognition has been
ongoing for numerous years. Two of the earlier methods for
representing a person’s face were Eigenfaces [26] and Fish-
erfaces [3]. Later, a more advanced approach was proposed
using so-called Local Binary Patterns (LBP) [2] to generate a
feature vector for a photo. Face recognition algorithms using
LBP patterns yield a higher accuracy rate under different
environments (e.g., different lightings).

The original LBP method follows a straightforward algo-
rithm of picking an individual pixel and comparing its intensity
against the 8 surrounding pixels’ intensity (intensity is used
since every image is first converted to gray-scale). If the
surrounding pixels’ intensity was greater than or equal to
the intensity of the center pixel then it would be represented
by a 1, otherwise it was given a 0. From this point, the
8 surrounding pixels are given a bit of information so the
collection of these pixels is a byte of information which is
called a label in LBP terms. This label is generated from
starting at the pixel above and to the left of the center pixel
and then reading each bit in a counter-clockwise pattern.

Fig. 2. An example of computing the LBP for a pixel

An example of the basic LBP operation is shown in Figure
2 where a pixel with an intensity value of 92 was given a label
of 01010000. This process is repeated for every pixel in the
image to generate a histogram.

The value for each bin of the histogram is the number
occurrences of the specific encoding in the facial image. Since
there are 8 bits used to encode a single pixel, there are 28

= 256 possible labels. This means the histogram will be a
vector of length 256; however, this can be reduced by using
something called uniform labels. A label is considered uniform
if there are at most two bitwise transitions in the encoding (ie.
a change from 0 to 1 or vice versa). The label 01010000 would
not be uniform since there are 4 transitions, while 00111000
would be uniform since there are only 2 transitions. All non-
uniform labels can be placed into a single seperate bin. Thus,
since there are 58 uniform values between 0 and 28 and 1 bin
for all non-uniform values, the histogram is reduced to only
needing n = 59 bins.

This current LBP scheme doesn’t maintain spatial relation,
however. This can be fixed by dividing the image into separate
regions and calculating the histogram for each region. This
allows for more efficient label comparison since pixels’ labels
have a smaller domain of other pixels to match with.



For example, if an image is 256 by 256 pixels and is
separated into k = 16 equal sized sections, then each section
of the image will contain 64 × 64 = 4096 pixels. LBP is
then done in each of the 16 sections to obtain 16 different
histograms. These histograms are then concatenated together
in the form {H1H2 . . . Hk} to form the feature vector of the
face which would be 16 × 59 = 944 bins. It should also be
noted that the max value in any bin is equal to the number of
pixels in a section. Since there are 4096 pixels in each section,
the max value in any bin is 4096 which can be respresented
with 13 bits (ie. 212 + 1 = 4096).

To compare two feature vectors of faces, standard histogram
comparison techniques can be used such as Histogram In-
tersection. Given two histograms A and B with n bins, the
intersection is defined as

n∑
i=1

min(Ai, Bi)

This formula can be normalized to

H(A,B) =

∑n
i=1 min(Ai, Bi)∑n

i=1 Bi

where H(A,B) is a percentage showing the closeness of to
histograms. This is easily converted to be used with LBP with
the following modification∑k

j=1

∑n
i=1 min(Aji, Bji)∑k

j=1

∑n
i=1 Bji

where j is the region index. It should be noted that if
histograms are concatenated together, they behave like a single
giant histogram for the purposes of histogram intersection.

B. Paillier Cryptosystem
This type of cryptosystem is known as an additive homo-

morphic public-key encryption scheme. In public-key cryp-
tosystems, a public key is used to encrypt a piece of informa-
tion and a separate private key is used for decryption. In this
setting, an authenticator generates both keys and distributes
the public key while keeping the private key secure. Then,
when a message needs to be sent to the authenticator, it’s first
encrypted using the public key and then decrypted once it
reaches the destination.

There are 2 unique properties of Paillier’s encryption
scheme. The first is that it is an additive homomorphic scheme.
This means that it’s possible to compute the encrypted sum
of encrypted messages (E(m1) ·E(m2) ≡ E(m1 +m2)) and
the encrypted multiplication of encrypted messages (E(m)k ≡
E(k×m)). This property allows for operations to be computed
securely on an already encrypted message without needing
to decrypt the message first. The second property is that it’s
semantically secure which guarantees that a ciphertext will
reveal no information about the plaintext. The reason this is
ensured, is that for every encryption, a random value is intro-
duced into the encryption. This means that the same message
encrypted multiple times will output different ciphertexts. For
more thorough details on Paillier’s encryption scheme, see
[18].

C. Garbled Circuits

The goal of garbled circuits is to provide a secure com-
putation for multiple parties to compute a function in which
no party learns the inputs of any other party. A circuit can be
considered to be a sequence of boolean gates which are able to
compute a specific function. Once the circuit is generated, the
inputs are obfuscated with random keys for each input wire of
the circuit. The garbled circuit is then sent to the second party
where they obtain their inputs to the circuit through oblivious
transfer and can evaluate the circuit securely. Since each wire
is obfuscated, no party can learn anything about the inputs of
any other party. For more thorough details on garbled circuits,
see [28].

IV. SYSTEM OVERVIEW

We designed UFace as a privacy preserving face authentica-
tion framework to prevent web service providers from gaining
access to user’s facial images or their respective feature
vectors. To accomplish this, UFace serves as the middle man
between multiple web service providers and users. As shown
in Figure 1, there are 4 entities involved in the system: (1) end
users, (2) web service providers, (3) UFace data servers, and
(4) UFace key servers. The UFace data servers store users
encrypted authentication information while the UFace key
servers manage the key capable of decrypting this information.
However, the 2 server clouds never collude about each other’s
information and execute a secure multi-party computation to
authenticate users. This design follows the spirit of “separation
of duty” to achieve privacy preservation. For the remainder of
the paper, each UFace server cloud will be considered to be
1 single server for easy illustration of the main ideas. UFace
is comprised of 2 main phases of operation: (1) Registration
and (2) Authentication.

A. Registration

To register with a web service, a user just needs to install
the UFace Android client. The user will select a web service
that is registered with UFace and create a unique UserID for
the web service. To finish registration, the user only needs to
take a close-up photo of their face. In the background, the app
takes the taken photo, executes the LBP algorithm to generate
a feature vector, and encrypts the feature vector before sending
this information off to the UFace data server for authentication.
The UFace data server receives the encrypted data and stores
the information at a specific location - IndexID - for that
user (which is shared with the web service provider). Note, the
UFace data server (or any other party) never has unencrypted
images or feature vectors of the user. All operations are
conducted on encrypted data only.

B. Authentication

To begin authentication for a web service, the user only
needs to select the registered web service and take a close-
up image of the user’s face. While this is occuring, the app
will send the the UserID to the web service so it knows
a specific user is attempting to login. The web service will



then forward the associated IndexID to the UFace data
server so the data server knows what data to authenticate
the user’s information with. Meanwhile, the Android app has
executed the LBP algorithm, generated a feature vector from
the taken photo and encrypted this feature vector. Finally,
once a message is received from the web service stating that
authentication may begin, the app sends the encrypted feature
vector and its IndexID to the UFace data server. The UFace
data and key servers collaboratively conduct a secure protocol
to determine the comparison result between the sent encrypted
feature vector and the one stored on the UFace data server at
the location determined by the IndexID. The secure protocol
ensures that each server’s information remains confidential to
each server, so even though the UFace key server has the key
to decrypt all messages, it never obtains information about
the user’s biometric data. The result is then sent to the web
service which then forwards the response to the user. Figure
1 provides an outline for how authentication works within the
UFace system (numbers show order of information travel).

V. THREAT MODEL AND SECURITY GOALS

In UFace system, we adopt the commonly used semi-
honest security model which assumes that each participating
party will follow the protocol but may try to learn additional
information by exploring the information available to them
[12]. In general, secure protocols under the semi-honest model
are more efficient than those under the malicious adversary
model, and almost all practical SMC protocols proposed in
the literature [4], [7], [12], [14] are secure under the semi-
honest model. In this model, the participating parties will not
collude, and for our case, these parties are the UFace data
and key servers. This can be guaranteed by deploying the two
servers in two different clouds such as Amazon and Microsoft
whereby the two big cloud service providers have no incentive
to collude.

The security goal of our UFace system is to keep users’
authentication information fully private, which includes the
following aspects:

• Users do not need to reveal the actual content of their
facial images to any party during the authentication
process.

• Web service providers can safely outsource the authenti-
cation process to UFace without violating users’ privacy
concerns regarding their biometric data that have been
used for authentication.

• UFace authentication servers perform authentication on
fully encrypted data.

• UFace authentication servers can not connect any en-
crypted information back to any specific user.

In the following sections, we will present the UFace appli-
cation at the client side and the privacy preserving protocols
at the server side respectively.

VI. UFACE ANDROID APPLICATION

The UFace Android application consists of two modules:
Web Service Access and UFacePass Generation. The first

(a) Registration (b) Authentication

Fig. 3. Snapshots of UFace App

refers to the 2 phases of UFace: registration and authenticaiton.
The second module explains how the encrypted feature vector
is generated. Each will be discussed in the following sections.

A. Web Service Access

To start logging into a web service securely, users only need
to register with a web service provider. Upon startup, the app
retrieves a public key (PK) used for encryption and displays
a blank screen with a “+” icon. By clicking on the “+” icon, a
new window will display a list of web services which use the
UFace system for authentication (obtained from UFace data
server automatically). Once the user selects a web service,
the user will see a common login page to create a unique
“UserID” for the web service. The UserID will be sent to
the web service provider to verify the uniqueness (as shown
in Figure 3(a)). If the UserID is good to use, the web service
provider will return a so-called “IndexID” to the user (which
was obtained from the UFace data server). This IndexID
indicates the location where the user’s “UFacePass” (en-
crypted feature vector) will be stored at the data server and
also prevents the data server from knowing the user’s actual
UserID . By creating different IndexIDs, it would be easy to
extend current system to accommodate multiple user devices
registered for the same web service. Finally, the user just needs
to take a close-up facial photo to finish registration. The photo
is used to generate the UFacePass (the algorithm is presented
in Section VI-B) and it’s sent to the UFace data server along
with the IndexID. The UserID, IndexID, and web service
information are stored in the app if registration is successful.

The main page of the app will now show a list of icons
representing registered web services. After selecting a web
service, the user will be required to take a close-up facial
photo (Figure 3(b)) to generate a new UFacePass. The app
will send the UserID to the web service provider while the
IndexID and the UFacePass are sent to the UFace data
server. If access is granted, the user will be directed to the
account for that web service.



B. UFacePass Generation

The most important feature of the UFace app is the
UFacePass generator. This converts the user’s close-up photo
into the encrypted feature vector efficiently. The overall pro-
cess can be seen in Figure 4. However, there are 3 main steps
to creating the UFacePass: (i) feature vector generation, (ii)
feature vector manipulation and (iii) feature vector encryption.

Fig. 4. UPass Generation

1) Feature Vector Generation: When the user is asked to
take a selfie, the selfie needs to be a close-up image that fills
the whole screen of the smartphone as shown in Figure 8(a).
Once the image is captured, the LBP algorithm is executed to
create a feature vector. As introduced in Section III-A, a LBP
photo feature vector can be represented in the form given by
Definition 1.

Definition 1 (Feature Vector): Let p be a photo. Its feature
vector Fp is represented as Fp = 〈−→v1 , . . . ,−→vk〉, where −→vi =
〈b1, . . . , b59〉 (1 ≤ i ≤ k, k = 16).

2) Feature Vector Manipulation: After generating the fea-
ture vector, the next step would be to encrypt it using a public
key obtained from the key server. However, as stated in Section
III-A, for an image (of size 256x256) broken into 16 sections,
the number of bins that need to be encrypted is 944 and the
max number of bits needed to represent each section is 13.
The key size used for Paillier encryption in UFace is 1024
bits, which means that if each bin is encrypted separately,
there would be 1024 - 13 = 1011 bits of wasted information
with every encryption and the total size of the feature vector
would be 944 × 1024 = 966,656 bits or 118 kB.

To improve this, bin values will be concatenated together
into 1 value which is then encrypted. This would mean that
b 102413 c = 78 bins can be used in 1 encryption with 1024 mod
13 = 10 extra bits. Instead of 944 encryptions with 118 KB
of data being sent, there is only d 94478 e = 13 encryptions with
13,312 bits or 1.625 KB. This is roughly a 72.6% speedup
compared to encrypting every bin.

UFace does this efficiently be creating big integer values
from the bits of 78 consecutive bins while padding the first

Fig. 5. Feature vector compaction

10 bits with 0s. The 13 big integers created are then encrypted
to become the UFacePass.

3) Feature Vector Encryption: Now that an efficient feature
vector is obtained, the final step is to actually encrypt the
data. This is done using Paillier encryption (see Section III-B).
This function simply iterates through the 13 big integer values
obtained from the above data manipulation and encrypts each
item. After the encryption of the feature vector is completed,
the encrypted feature vector along with the IndexID is sent
to the UFace data server for registration or authentication.
From this point on, the client is no longer involved in any
computations.

VII. UFACE SERVERS

UFace system utilizes a data server and a key server, which
are located in two different clouds to avoid potential collusion.
The data server is used for storing the encrypted UFacePass
for each user, i.e., the encrypted feature vector. The key server
is used for maintaining the key (PK) that can decrypt users’
UFacePass. In what follows, we present the registration and
authentication phases, respectively.

A. Registration

The registration phase is very fast without much computa-
tion. Figure 6 illustrates the main communication between all
parties during registration - note that all communications are
through secure channels. Before registration begins, the UFace
key server transfers PK to the user. Then the user (i.e., the
UFace app) sends a new UserID to the web service provider.
Once the web service provider verifies the uniqueness of
the UserID it informs the UFace data server to prepare an
IndexID for a new user. The UFace data server will send
the IndexID back to the web service provider which will
forward it to the user. Upon receiving the IndexID, the
user will encrypt the feature vector using PK to generate
a UFacePass and then send the IndexID and UFacePass
to the data server. The data server will store the received user
information at the location provided from the IndexID and
inform the web service of a successful registration which then
informs the user. The data server never sees the user’s real
UserID and the UFacePass is encrypted with the key stored
on the UFace key server so it cannot decrypt the information.

B. Privacy-Preserving Authentication

After registration, an user can log onto the web service
by simply selecting the web service on the Android app and



Fig. 6. Registration Protocol

taking a close-up selfie; this offers a similar user experience
as common website login services. Again, all communication
is conducted through secure channels. The authentication
protocol is outlined in Figure 7.

Fig. 7. Authentication Protocol

First, the user (i.e., UFace app) obtains PK from the
UFace key server. Then the user sends the UserID to the
web service provider who will locate the IndexID of this
user and forward it to the UFace data server to establish an
authentication request. Then, the user will send his IndexID
and the UFacePass to the data server. Upon receiving the
user’s authentication information, the data server will initiate a
privacy-preserving authentication protocol with the UFace key
server to jointly compare the received UFacePass with the
user’s registered UFacePass. Our proposed privacy preserv-
ing authentication protocol is built with garbled circuits, and
ensures that neither the data server nor the key server will see
the plaintext of the user’s biometric information. The details
of the privacy-preserving authentication protocol is presented
in the next section.

At the end of the privacy-preserving authentication protocol,
the data server will return the result to the web service
provider. If the result is a match, then the user’s UFacePass
matches the registered stored information over a specific
threshold. Based on the result, the web service provider will
grant/deny access to the user accordingly.

1) Garbled Circuit Design for Feature Vector Comparison:
We now proceed to describe the privacy-preserving authentica-
tion protocol between the data server and the key server. Our
protocol leverages the garbled circuit techniques [13] because

garbled circuits have been proven to be efficient for small
functionality represented by a boolean circuit and efficiency
is a key requirement to achieve real-time authentication. In
the following discussion, we denote the two encrypted feature
vectors as F1 and F2, whereby F1 refers to the feature vector
that has been stored with the data server at the registration
phase and F2 refers to the feature vector received with the
authentication request.

The design challenge is that garbled circuits can only handle
plain text efficiently, but our feature vectors are all encrypted.
In order to preserve efficiency, we need to feed decrypted data
to the garbled circuits. If we send the encrypted feature vector
directly to the key server for decryption, the key server will
then know the user’s photo information and hence violate the
privacy preservation goal. To prevent this, our approach is to
let the data server add random values R1 and R2 to feature
vectors F1 and F2 using the Paillier encryption’s additive
property, and then send the randomized feature vectors to the
key server. Now the key server can decrypt the randomized
feature vectors without learning about the user’s information.
These decrypted randomized feature vectors are the main input
to the garbled circuit. Based on the homomorphic additive
property of Paillier encryption [18], the comparison results of
the pair of randomized feature vectors would be the same as
the original pair. In other words, we will still be able to know
whether F1 matches F2.

Specifically, the data server sends the following information
to the garbled circuit: R1, R2, Rbit and Th, whereby Rbit is a
single bit used to hide the circuits outcome from the key server,
and Th is an adjustable threshold value for face recognition
accuracy. Then, the key server feeds the decrypted randomized
feature vectors F1R and F2R to the garbled circuits. It is worth
noting that at a high level view there are only these five inputs
total, but in practice, there are multiple. Since each input is
limited to the same bit size as the encryption key, multiple
inputs are needed to represent each feature vector. For ease of
understanding, each feature vector will be considered as one
input in our discussion.

Algorithm 1 GCParser Circuit Code
Require: Data Server: R1, R2, Rbit, and Th; Key Server:

F1R and F2R

1: Subtract R1 from F1R

2: Subtract R2 from F2R

3: Now F1 and F2 are in the circuit
4: Each bin b1i of F1 is isolated
5: Each bin b2i of F2 is isolated
6: for i← 1 to k × n do
7: minx = min(b1i, b2i)
8: end for
9: intersection =

∑k×n
x=1 minx

10: pass = intersection ≥ Th
11: result = pass ⊕Rbit

The main steps of using a garbled circuit to compare two
encrypted feature vectors are outlined in Algorithm 1. At steps



1 and 2, the random values are subtracted from the randomized
feature vectors. To speed up the process, the random values
are inverted when provided to the garbled circuit, instead of
being subtracted. The result will overflow the value to have
the effect of modular division since the overflow bit is lost.
This functions identically to subtraction, but faster. For clarity
however, the random values are stated as being subtracted.

As a result of the first two steps, the circuit will have the
original non-randomized feature vectors F1 and F2. Concep-
tually each feature vector is a matrix. For the garbled circuit,
each feature vector is the individual bins bj,i (where j ∈ {1, 2}
and i ∈ {1, 2, . . . , n × k}) from each −→v concatenated end
to end. The value j represents 1 specific feature vector, k
represents the number of sections an image is separated into
while n is the number of bins for the histogram created in
each section, and −→v is the histogram generated for each
section. Thus, each feature vector has the internal appearance
of bj,1bj,2bj,3 . . . bj,k×n. To further process these individual
bins, the bins have to be separated, which is the main purpose
of this step. Since each bin has a known bit size, the bins
can be separated by linearly traversing the feature vector
and isolating every block of the bit size. Once each bin is
isolated, the intersection calculations begin. As shown in step
3 of the algorithm, by linearly walking through all the bins,
the minimum between the corresponding bins of each feature
vector is calculated.

In the next step, the sum of the minimums from each −→v
are calculated which is done in parallel to improve efficiency.
These minimums are added together to obtain the final sum.
Based on the final sum of the two feature vectors F1 and F2,
we can now determine whether the 2 feature vectors are similar
enough to be considered a match. To determine similarity, the
final sum needs to be compared against a threshold. In our
case, the threshold value is set to 0.885 based on the results
obtained in Section IX, which means the 2 feature vectors
need to be 88.5% similar.

Finally, to prevent the key server from knowing the au-
thentication result, the result is XOR’ed with Rbit. What the
key server will see is a single bit that has a 50% chance of
indicating “match” or “unmatch”. The data server can perform
the XOR operation on the result to receive the actual result.

An overview of the protocol is given in Algorithm 2. When
the protocol begins execution on the server side, it is assumed
that both servers have a copy of the garbled circuit. The
operations of the circuit do not change with each execution,
so the circuit only needs to be constructed upon initial server
setup. When GCParser runs the circuit file, the circuit will
be uniquly garbled. Therefore, with each execution of the
protocol, a different garbled circuit is produced. Should either
server attempt to change the circuit file, GCParser will abort
operations due to these differences.

VIII. SECURITY ANALYSIS

Our UFace system does not leak any user’s biometric
information to the data server, the key server or the web service
provider. This is because our approach follows the security

Algorithm 2 Overall Protocol Between Authentication Servers
Require: Data Server: [F1], [F2] and Th

1: Data Server:
(a) Randomly generate R1 and R2, and encrypt them to

produce [R1] and [R2]
(b) Calculate [F1R] = [F1+R1] = [F1]∗[R1] and [F2R] =

[F2 +R2] = [F2] ∗ [R2]
(c) Generate a random bit Rbit and produce a garbled

circuit input file using R1, R2, Th, and Rbit

(d) Send [F1R] and [F2R] to Key Server
2: Key Server:

(a) Decrypt [F1R] and [F1R] and write the values to a
garbled circuit input file

(b) Start GCParser as server using its input file and the
circuit

3: Data Server:
(a) Use GCParser to connect to the circuit running on

Key Server as a client using its input file
4: Data Server and Key Server:

(a) Using GCParser, collaboratively evaluate the garbled
circuit, and the evaluation result returns to both parties

5: Data Server:
(a) Perform XOR operation with the result and Rbit

(b) Inform the authentication result to the web service: If
the XOR result is a 1, authentication passed, else it
failed

definitions in the literature of Secure Multi-party Computation
(SMC). As a result, our proposed protocol can be easily proved
to be secure under the semi-honest model of SMC by using
the simulation argument [12]. However, due to the space limit,
we do not include the proof here. Instead, we will discuss the
robustness of our UFace system against three common types
of attacks:
Impersonation attack: This is the most concerning attack
in face authentication whereby the attacker tries to use the
user’s photo to gain access to the user’s web accounts [9].
To perform such attacks on our UFace system, the attacker
needs to have the targeted user’s UserID and the user’s
selfie. The user and the web service are the only 2 parties
that know the user’s UserID. We assume that the web service
provider is responsible for its own security since if the attacker
compromises the web service provider, the attacker directly
gains all control of the user’s account and no authentication
is needed. Even so, it is worth noting that the attacker still
would not have the users’ selfies to masquerade as the user
in other web services. We also assume that the user’s phone
has an up-to-date operating system and anti-virus software.
Moreover, to further prevent the attacker from collecting
authentication information on the user’s phone, all the user-
end authentication can be performed in the secure zone on
the phone. Also, the Android app deletes the photo used to
generate the UFacePass after each authentication attempt.



We now discuss the scenarios when the attacker breaks
into the data server or the key server since these two servers
are located in a cloud and may be less protected. The data
server possesses only an IndexID corresponding to the user’s
UFacePass and the key server has nothing with respect to the
UserID. By compromising these two authentication servers,
the attacker still would not be able to guess the user’s UserID
from the IndexID since the IndexID is basically a memory
address in the data server.

Considering a more advanced attack whereby the attacker
obtains the UserID via other means such looking over the
user’s shoulders during use, our UFace system still prevents
the attacker from obtaining the user’s selfies for authentication.
First, no party stores photos of the user or unencrypted feature
vectors of the photos. Second, if the attacker tries to crop the
user’s face photo from photos published in social websites
or takes the user’s photo in a distance without being noticed
by the user, these photos would not match the user’s close-up
image. The reason for this is that the close-up photos taken for
authentication not only carry properties of the user’s camera,
but also use a focal point closer to the user. This means close-
up images are seen as longer while zoomed-in images are seen
as rounded (see Figure 8). Our experiments with 20 users have
proved that the LBP algorithm is capable of distinguishing
these 2 types of images.

(a) Close-up Photo (b) Zoom-In Photo

Fig. 8. Close-up Photos vs. Zoom-In Photos

Man-in-the-middle attack: This is an attack where the at-
tacker acts in-between the user and the authentication servers
trying to fool each party into thinking they are directly com-
municating with each other. Many existing techniques, such
as Public Key Infrastructures, can be adopted to help users
verify the genuine authentication servers when establishing
the secure communication channel. For example, the user
encrypts the session key using the server’s public key. Then,
only the genuine server would be able to decrypt it and
obtain the session key which will be used for the subsequent
communication between the user and the server. Thus, the
man-in-the-middle attack can be prevented.

Malleability attack: An encryption algorithm is malleable if
it is possible for an adversary to transform a ciphertext into
another ciphertext. Our protocol is robust against this because
we adopt the secure communication channel established using
AES encryption which has been proven to not be malleable.

TABLE I
EXPERIMENTAL SETTINGS

Parameters Values
Number of users 20
Number of photos 60
Number of tests 800
Encryption key size 1024 bits
LBP threshold 88.5%
Grid size 1x1, 2x2, 4x4, 8x8
Photo Size 128×128, 256×256, 512×512, 1024×1024

IX. EXPERIMENTAL STUDY

Our UFace system consists of an Android app for the client
side and the security protocols at the server side. The UFace
app was tested on an Android One Plus Three device which
uses the Snapdragon 820 processor (4 cores: 2x2.15 GHz and
2x1.6 GHz) and contains 6 GB RAM. The web services, data
server, and key server were all run on the same virutal machine
that used an Intel Xeon processor (6 cores at 3.5 GHz) and
had 8.5GB of RAM. All photos taken of users were using their
own Android phones and the quality of the camera varied.

The performance of the UFace system is evaluated using
two metrics: (i) accuracy, and (ii) response time. Table I
summarizes the parameters tested. In what follows, we report
the detailed experimental results.

A. Accuracy Analysis

The first round of experiments was aimed to identify the
ideal picture size and grid size to achieve the highest accuracy
rate. This was done by varying the grid size and keeping the
picture size constant and then repeat this test by varying the
picture size instead and keeping the grid size constant. The
analysis was done by testing each of the user’s 20 selfies
against another selfie of the user and a zoomed in image. There
were 2 tests for each user’s data, so for 20 users that comes
to be 2 × 202 or 800 different tests.

For varying the grid size, the general trend was that as the
grid size increased, the similarity between 2 images decreased.
This occurs because in small grid sizes, a pixel’s label may
match with a pixel in the opposite corner of the same section.
As the grid size increases, the number of pixels in each section
decreases so it’s more difficult for the labels to match unless
the images are similar. This maintains spatial information
regarding each user’s face. However, since it’s incredibly
difficult to take nearly identical photos, the grid size needs
to not be extremly large for false negatives to occur.

Varying the picture size had an opposite trend: as picture
size increased so did similarity between 2 images. This occurs
because this increases the number of labels that can be placed
into each bin for LBP. Since there are more labels in general,
the number of labels that overlap will increase and thus
the histogram comparison algorithm will generate a greater
accuracy. However, if the picture size is too large, different
users or zoomed-in images of the user will match correctly.



Fig. 9. Effect of photo size

Fig. 10. Effect of Number of Photo Partitions

B. Time Analysis

The first analysis analyzed the accuracy of each paramter;
however, time also needs to be accounted for to create an ap-
plication that can done in a similar time to common password
authenticaiton methods. It should be noted that the number of
bits used per bin was set to 20 to account for all different
number of pixels that could occur in a section instead of the
ideal value for those settings. This will only slow the time
down and results using the ideal values are faster.

The time taken to encrypt the feature vector on the phone
and execute the garbled circuit are both directly related to grid
size. The reason for this is because if the grid size increases,
then the number of bins also increases. This means that there
will need to be more encryptions to occur and the garbled
circuit will need to grow in size to account for the extra bins
to compare. Picture size does not vary the time since this just
changes the value in each of the bins. The effects of varying
the picture size can be seen in Figure 9.

However, the time taken to execute the LBP algorithm does
vary with picture size. As the pixel count increases, LBP needs
to be executed more often. In fact, the time taken to execute
LBP quadrupled in each consecutive picture size because each
test increased the pixel count by 4. Grid size did not vary the
time since the grid size just changed where each pixel’s label
was stored. Figure 10 shows the effect of paritioning.

TABLE II
FACE RECOGNITION ACCURACY

Comparison Test Pass Count Fail Count
vs Self Close-Up 20/20 0/20

vs Self Zoomed-In 0/20 20/20
vs Others’ Close-Up 0/19 19/19

vs Others’ Zoomed-In 0/19 19/19

C. Ideal Parameters Analysis

The ideal values were determined to be a grid size of 4x4
and a picture size of 256x256 pixels. The final parameter not
mentioned above is the threshold value which was analyzed
with the previous 2 tests. A threshold value of .885 provided
100% user match for 2 close-up images and 100% fail for
all other photos (zoomed-in photos or other users’ close-up or
zoomed-in photos). These values are highlighted in Table I.
These ideal values were then saved and the entire test was run
again using the same 60 photos.

Table II summarizes the authentication results of the 20
users close-up facial images against every other type of image.
Here, “Pass” refers to that the photo passed the authentication,
i.e., the matching score is above the 0.885 threshold; “Fail”
refers to authentication failure, i.e., the access to the user
account would be denied.

Each user’s close-up facial image was tested against another
close-up image and a zoomed-in image of the users face along
with a close-up and zoomed-in image of every other user’s
face. The first 2 rows state that each user’s stored close-up
selfie matched to another close-up selfie of the same user
while not matching to a image of the user’s face that was
zoomed-in. The final 2 rows state that each user’s stored close-
up selfie failed to match against any users’ photos. This means
the UFace system is able to authenticate only the user’s close-
up photo but not any other photos including the same user’s
zoom-in photo and other users’ photos. The reasons are two-
fold. First, the UFace system adopts the LBP algorithm which
has been proven to have very high recognition accuracy (over
95%) already. Second, the close-up photo has differences from
the zoom-in photos caused by the optical distortion due to
the photos having different focal points. Therefore, the LBP
algorithm can distinguish them.

X. CONCLUSION

In this paper, we present a privacy-preserving face authen-
tication system, called UFace, for authenticating web services
on a mobile device. UFace is unique in that it helps users
authenticate with web service providers without disclosing the
actual content of their facial images to any party including
web servers and authentication servers. UFace successfully
prevents the common threat from the impersonation attack by
using users’ online images. The UFace system has been imple-
mented on Android phones for performance evaluation. The
experimental results have demonstrated that the UFace system
is capable of fulfilling the authentication task accurately and
efficiently within seconds.



REFERENCES

[1] Total number of websites.
[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face recognition

with local binary patterns. In Computer vision-eccv 2004, pages 469–
481. Springer, 2004.

[3] Peter N Belhumeur, João P Hespanha, and David J Kriegman. Eigen-
faces vs. fisherfaces: Recognition using class specific linear projection.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
19(7):711–720, 1997.

[4] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp - a
system for secure multi-party computation. In Proceedings of the
ACM Computer and Communications Security Conference (ACM CCS),
October 2008.

[5] Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris
and fingerprint identification. In Computer Security–ESORICS 2011,
pages 190–209. Springer, 2011.

[6] J. Bringer, H. Chabanne, and A. Patey. Privacy-preserving biometric
identification using secure multiparty computation: An overview and
recent trends. Signal Processing Magazine, IEEE, 30(2):42–52, March
2013.

[7] R. Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

[8] Hu Chun, Yousef Elmehdwi, Feng Li, Prabir Bhattacharya, and Wei
Jiang. Outsourceable two-party privacy-preserving biometric authen-
tication. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 401–412. ACM, 2014.

[9] NM Duc and BQ Minh. Your face is not your password. In Black Hat
Conference, volume 1, 2009.

[10] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser,
Inald Lagendijk, and Tomas Toft. Privacy-preserving face recognition.
In Privacy Enhancing Technologies, pages 235–253. Springer, 2009.

[11] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. Efficient
privacy-preserving biometric identification. In Proceedings of the 17th
conference Network and Distributed System Security Symposium, NDSS,
2011.

[12] Oded Goldreich. The Foundations of Cryptography, volume 2, chapter
Encryption Schemes. Cambridge University Press, 2004.

[13] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure
two-party computation using garbled circuits. In The 20th USENIX
Security Symposium, August 2011.

[14] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC
Press, 2007.

[15] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption
supporting disjunctions, polynomial equations, and inner products. In
Advances in Cryptology–EUROCRYPT 2008, pages 146–162. Springer,
2008.

[16] Yan Li, Yingjiu Li, Qiang Yan, Hancong Kong, and Robert H. Deng.
Seeing your face is not enough: An inertial sensor-based liveness
detection for face authentication. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 1558–1569, New York, NY, USA, 2015. ACM.

[17] Margarita Osadchy, Benny Pinkas, Ayman Jarrous, and Boaz Moskovich.
Scifi-a system for secure face identification. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 239–254. IEEE, 2010.

[18] P. Paillier. Public key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology - Eurocrypt ’99 Proceedings,
LNCS 1592, pages 223–238, Prague, Czech Republic, May 2-6 1999.
Springer-Verlag.

[19] Doyel Pal, Praveenkumar Khethavath, Johnson P Thomas, and Tingting
Chen. Secure and privacy preserving biometric authentication using
watermarking technique. In Security in Computing and Communications,
pages 146–156. Springer, 2015.

[20] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Effi-
cient privacy-preserving face recognition. In Information, Security and
Cryptology–ICISC 2009, pages 229–244. Springer, 2010.

[21] Jaroslav Sedenka, Sathya Govindarajan, Paolo Gasti, and Kiran S
Balagani. Secure outsourced biometric authentication with performance
evaluation on smartphones. Information Forensics and Security, IEEE
Transactions on, 10(2):384–396, 2015.

[22] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[23] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in en-
cryption systems. In Theory of Cryptography, pages 457–473. Springer,
2009.

[24] Anurag Tagat. Online fraud: too many accounts, too few passwords.
[25] Xiaoyang Tan and Bill Triggs. Enhanced local texture feature sets for

face recognition under difficult lighting conditions. Image Processing,
IEEE Transactions on, 19(6):1635–1650, 2010.

[26] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal
of cognitive neuroscience, 3(1):71–86, 1991.

[27] Yi Xu, True Price, Jan-Michael Frahm, and Fabian Monrose. Virtual u:
Defeating face liveness detection by building virtual models from your
public photos. In 25th USENIX Security Symposium (USENIX Security
16), pages 497–512, 2016.

[28] Andrew C. Yao. How to generate and exchange secrets. In Proceedings
of the 27th IEEE Symposium on Foundations of Computer Science, pages
162–167. IEEE, 1986.


