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1 Introduction and the Main Idea

Let ag be a primitive root of a prime number p > 2. We know that for every
bo € {1,2,---,p — 1} there exists a unique integer n, modulo p—1 satisfying

ag” = by mod p. (1)

np is called the discrete logarithm or index of by to the base ag modulo
p. In [4] the authors got the Teichmiiller expansion using Hensel lifting of
the discrete logarithm problem (1). This is got by raising both sides to the
power p:

ag?” = b mod p? (2)
which can be written as

(ao + a1p)™ = (b + b1p) mod p°. (3)



The Iwasawa logarithm of a p-adic number x is defined as %1 log 2P~ As
this vanishes for a Teichmiiller character the solution n, could not be found
out, but a formula

(bl - 5np>/b0

= d 4
my = e mod p @)

was obtained where 3, is the carry
ag” = by + Bn,p mod p?. (5)

Kontsevich [7] and Riesel [10] point out that the difficulty arises because the
problem is stated modulo p and the solution is needed modulo p — 1. Hence
we go to the discrete logarithm problem modulo the composite modulus
p(p — 1). In this connection, see Bach [1].

In this paper we consider primes p of the form 2¢ + 1 where ¢ is a prime
number. p is called a safe prime as it is believed that the discrete logarithm
problem is computationally difficult in this case when p is ‘large’.

From (1) we can go to the discrete logarithm problem

ag = by mod pq . (6)

(See Lemma 1.) From the assumptions made in Lemma 1 a¢ generates a
subgroup of order g¢(q) modulo pg. Hensel lifting the problem modulo p?¢?
we get

(a0 + a1pq)™ = (bo + bipg) mod p*q* . (7)

The order of the group generated by ag + a1pg remains as g¢(q) modulo
p2q%. Also
(a0 + a1pg)™? = 1 mod pq®. (8)

(See Lemma 2.) Expanding (7) using the binomial theorem, we get

ag + nag_lalpq = by + b1pg mod p?¢>. (9)
Writing
ag = bo + Bnpg mod p°q?, (10)
will give
b
Bn + na—oal = b; mod pq. (11)
0

Here 3, is the carry of ag modulo p?¢? and note that n and 3, are the two
unknowns in the above linear congruence.

The summary of what we have done so far is that there are three prob-
lems when we try to solve the discrete logarithm problem modulo p:



1. The problem is given modulo p and the solution is needed modulo
p—1.

2. The Iwasawa logarithm of the Teichmiiller expansion modulo p? is 0

3. The binomial theorem on the Teichmiiller expansion modulo p? gives
‘carry’.

We overcome the first problem by going modulo pg. The fact that we
cannot get n arises from two possibilities being blocked as in the modulo p
case. The analogue of the Teichmiiller expansion does not have a non-zero
logarithm (see (8)) and if the binomial theorem is used, a carry occurs as in
the case of mod p, see (11).

However if we can construct a non-canonical lift modulo p?¢® then the
problems dissolve. Thus solving the discrete logarithm problem is equivalent
to the construction of a non-canonical lift.

The non-canonical lifts exist and can be written in the form

(a0 + (a1 + k)pg)™ = (bo + (b1 +1))pg) mod p*q”. (12)

When k = kip for some k1 £ 0 mod ¢, then [ = [1p for some [ymod ¢. In
this case the order of the group is g¢(q). For the other k£ and [ modulo pq
the order of the group will be pg¢(q). On expanding (12) using the binomial
theorem, one gets

(ag +a1pg)™ + n(ag+aipg)" " k pg = (bo +bipg) + 1 pg mod p°q® (13)

and using (7)

l1/bo
n = mod q. 14
Fr Jag q (14)
in the first case and b
0
=1 d pg. 15
"= ey o4 P (15)

in the second case.
If we use the notation dag for k1 and dbg for [; then
_dby/bo

n=
da() / ap

mod q. (16)

and if we use the notation dag for k and dbg for | then




Thus n can be thought of as the logarithmic derivative. The non-canonical
extensions (modulo p?¢?) of the subgroup generated by ag mod pq are labeled
by dag. As p = 2q + 1, once we get n mod ¢, n mod p — 1 would be either
norn-+qgmodp—1.

Note that we can get (16) and (17) by raising (12) to the powers g¢(q)
and pqo(q) respectively. In the second case we get

((ao + (a1 + k)pq)pq¢(Q)> = (b + (b1 + 1)pg)***@D mod p3¢>,  (18)

which on expanding and using the notation in Section 2 will give

Wgﬁ(q))ﬁf) = 1+ (q(bo) + (blb;r D

¢(q))p*q* mod p°q’.

(19)
Using the formula for a; and b; one gets (17). This way of getting n is
analogous to the attack on anomalous elliptic curves by Smart [13], Semaev
[12], Satoh and Araki [11].

We would like to comment that derivatives of numbers have been stud-
ied historically for a long time starting from Kummer [6], [15], A. Weil
(expanded by Kawada) [8] and more recently by A. Buium [2]. Hence the
problem which is standing in isolation studied only by cryptologists gets
connected to mainstream algebra and number theory. This was a complete
surprise to the authors which is why we have written this brief note to bring
it to the attention of experts in these areas.

1+n(q(ap)+

2 Lemmas

We need some definitions and notations before we prove our lemmas. In [9]
Lerch defined the Fermat quotient for a composite modulus. Let x be such
that ged(z,n) = 1. Then g(x) defined by

2% =1+ q(z)n mod n?. (20)

is called the Fermat quotient of x modulo n. We do not use the Euler’s
¢-function but we use Carmichael’s A function. A(n) is defined as follows
[3]. A(2) =1, A(4) =2 and

o(p"), if n=p"
An)= { 272 ifn=2",r>3 (21)

lem(A(PY!), Mpy?), -+ Apt)), i m=pi'py* -y



When n = p?q? where p = 2¢ + 1 q is a prime, ¢(p?’¢®) = 2pg®¢(q) and
Mp?q?) = pgé(q). In other words the order of the group of units modulo
p?q® is ¢(p?q*) whereas the order of the largest cyclic group modulo p?¢? is
A(p?q?). Hence we define ¢(x) by the congruence

2P =1 4 ¢(2)p?¢® mod p°>. (22)

Lemma 1 Let ag be a primitive root of p and q. Let ged(by, q) = 1. Then
the congruence afj = by mod p can be extended to

ag” = by mod pq . (23)
if and only if the Legendre symbols
»)- ()
U 24
)-G 2

Proof. af = by mod pq if and only if

aj = ag” = bpmodp and
al = a,® = bymodgq
This happens if and only if
n = np,mod p—1and (25)
= ngmodg—1. (26)

This is possible if and only if
2 =ged(p— 1,0 — 1)|(np — ng). (27)
by Chinese Remainder theorem. That is
ny = ng mod 2. (28)
In other words by is a quadratic residue or nonresidue modulo p and ¢
simultaneously. That is (%0) = (%0) .

Lemma 2 If aj = by mod pq holds then

(ao + a1pg)™ = (bo + bipg) mod p2q2 ) (29)
where (a0)) (bo))b
qlag))ag db q\00) )00 d )
ay = o) and b; = — 2(0) mod pq (30)



Proof We want a; and b; to satisfy (30). Using the carry notation
all = by + Bnpq mod p?q?, (31)
we get the equation
Bn + nzzal = b1 mod pq. (32)
Taking the power pg¢(q) on both sides of (31)
agpq¢(q) = (bo + Bnpq)???@ mod p*¢? (33)

and using (22) we get

p

bT?dD(q) mod pg . (34)
Comparing (32) and (34) will give the desired values of a; and b;.
Remark 1. Note that a; and b; can be calculated in polynomial time and
the order of (ag + a1pq) is qé(q) modulo p?q>.

Remark 2. Note that the Legendre symbols in (24) can be calculated in

nq(ao) = q(bo) +

polynomial time.
Remark 3. We are given by mod p. If (24) fails for the given by we can
check the same for by + kp for k£ = 1,2,3--- until the condition is satisfied
or we can multiply by by alg for some k and check the condition. In the first
case n, does not change and in the second case n, becomes n, + k£ modulo
p—1or
Remark 4. We can take bg mod pq and consider the new discrete logarithm
problem

al = b3 mod pq, (35)

or
Remark 5. We can even relax the conditions in Lemma 1 as in our earlier
preprint [5] as follows. Let ged(ag,q) = 1 and ged(bo,q) = 1. Let ag be a
primitive root of p and let ag and by satisfy aj = bp mod p. Then

ag¢(q) = bg(q) mod pgq . (36)
In this case the formulae corresponding to (16) and (17) would be
_dby
n= dag mod ¢ . (37)
and 5(a)
dbo/b?
n= % mod pq . (38)
dag/ay
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Conclusion

For the composites p?q? the Euler function ¢(p?¢®) = 2p¢®¢(q) and the
Carmichael function \(p?q?) = pgo(q) are not equal. Also A\(p?q?)|o(p?q?)
and hence many non-canonical lifts exist. Asis well known this would involve
a suitable choice of polynomial for lifting. Recall that the polynomials are
zP~1 — 1 and 2P7%@ — 1 in the cases of Teichmiiller lifting modulo p? and

P’

respectively. This attack can be generalized to elliptic curve discrete

logarithm problem over prime fields where ¢ will be connected to the order
of the group. See [14] for various ways of lifting the elliptic curve discrete
logarithm problem.
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