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Abstract. Passwords bootstrap symmetric and asymmetric cryptogra-
phy, tying keys to an individual user. Biometrics are intended to strengthen
this tie. Unfortunately, biometrics exhibit noise between repeated read-
ings. Fuzzy extractors (Dodis et al., Eurocrypt 2004) derive stable sym-
metric keys from noisy sources.

We ask if it is also possible for noisy sources to directly replace private
keys in asymmetric cryptosystems. We propose a new primitive called
public-key cryptosystems with noisy keys. Such a cryptosystem functions
when the private key varies according to some metric. An intuitive so-
lution is to combine a fuzzy extractor with a public key cryptosystem.
Unfortunately, fuzzy extractors need static helper information to account
for noise. This helper information creates fundamental limitations on the
resulting cryptosytems.

To overcome these limitations, we directly construct public-key encryp-
tion and digital signature algorithms with noisy keys. The core of our
constructions is a computational version of the fuzzy vault (Juels and Su-
dan, Designs, Codes, and Cryptography 2006). Security of our schemes
is based on graded encoding schemes (Garg et al., Eurocrypt 2013, Garg
et al., TCC 2016). Importantly, our public-key encryption algorithm is
based on a weaker model of grading encoding. If functional encryption or
indistinguishable obfuscation exist in this weaker model, they also exist
in the standard model.

In addition, we use the computational fuzzy vault to construct the first
reusable fuzzy extractor (Boyen, CCS 2004) supporting a linear fraction
of errors.

1 Introduction

Cryptography relies on long-term secrets for key derivation, authentication, and
private key storage. Passwords are the traditional mechanism to derive keys to
secure such applications. There is considerable research on the insecurity of pass-
words [4]. Biometrics [12, 47, 6, 16, 37, 39] are an alternative source for long-term
secrets. At its core, the ideal vision of biometrics is simple: to use biometrics in
place of secret keys for modern public/symmetric key cryptosystems. Informally,
we want the following:



– Good reliability − biometrics are noisy (linear error rates), and have a fixed
amount of entropy. Therefore, we need to accept a linear fraction of errors
efficiently while minimizing the cost to security.

– Re-provisionable keys − a user should be able to enroll his/her identity with
multiple authorities.

– Ease of use − a user should be able to use only his/her biometrics to iden-
tify him/herself. A protocol should not require the user to carry around
additional factors of authentication.

This vision has not been achieved, and biometrics are not widely used in
Internet applications [4]. Significant progress has been made via fuzzy extractors,
which derive stable long-term symmetric keys from biometrics [15]. A fuzzy
extractor is a pair of algorithms. Generate or Gen that takes an initial value c
from the biometric and outputs a uniform key r and a template, p. For security, p
should contain little information about the biometric or the derived key (either
information-theoretically [15] or computationally [17]). The second algorithm
reproduce or Rep takes a noisy biometric reading c′ and p to reproduce the key
if the two readings are close enough (according to some metric d).

A strawman construction At first glance, fuzzy extractors should enable the vi-
sion of biometric public key cryptography. Consider the combination of a fuzzy
extractor (Gen′,Rep′) and a public-key encryption scheme, denoted (Gen,Enc,Dec).
The idea is to run Gen′(w) (where w is the measured biometric) to create a stable
key r. This value r is used as the randomness for the encryption key generation al-
gorithm, (pk, sk)← Gen(r). At decryption time, the value r is regenerated (from
w′, a second measurement of the biometric) and used to regenerate (pk, sk).
There are two limitations to this approach.

1. Current efficient3 fuzzy extractors require p to be public, unique to the user,
and constant forever (each user can only have one p over his/her entire
lifetime). Therefore, one of the following two scenarios must be the case:

– The user personally manages p. This is problematic at scale, as average
users will not have the expertise to personally manage keys.

– There is a trusted centralized authority that manages all users’ biomet-
rics for the entire lifetime of its users. This does not scale, creates a
single-point-of-failure, and the authority cannot expire or be revoked, as
its users’ keys cannot expire (or be revoked) during their lifetime.

2. Even if a unique p is acceptable from a scalability perspective it hurts us-
ability as p is required for decryption. Therefore, one of three scenarios is
required:

3 Some recent fuzzy extractor constructions [8, 23] can be provisioned more than once,
known as a reusable fuzzy extractor [5]. However, prior to our work, there were no
known reusable fuzzy extractors for a linear fraction of errors (without assuming
virtual grey box obfuscation for NC1 circuits [3]). Practical biometrics have a linear
fraction of errors so we don’t consider these algorithms here.



– When the user receives a ciphertext, he/she downloads p from a central
authority. This requires a centralized always-on service for anyone to
decrypt. Furthermore, traffic patterns at this service reveal substantial
information about user behavior.

– The user carries p with him/her. This hinders ease of use and requires
users to carry a token for decryption (this is the same usage model as
multi-factor authentication). This p cannot be lost by the user, as re-
provisioning p compromises security.

– p is transmitted alongside the ciphertext. This de-anonymizes the cipher-
text − every ciphertext is now attributable to the user over their entire
lifetime. It would be possible for an adversary to link all ciphertexts over
the life of an individual user.

We propose a new primitive: public-key cryptosystems with noisy secrets that
is a significant step towards realizing the vision for biometrics described at the
beginning of the introduction. We propose a public-key encryption scheme and
a digital signature scheme where a noisy value can be used as a private key.
Informally, key generation takes as input a value sk and creates a public key
such that decryption (resp. signing) is possible from all nearby sk′ (that is,
where d(sk, sk′) ≤ t). This is in contrast to fuzzy IBE where the public key is
noisy [43].
Our encryption scheme rectifies the above problems and accomplishes the fol-
lowing:

1. An embodiment of a public key encryption system, where the biometric
directly replaces the secret key (and there is no helper information).4

2. A user can create multiple public keys corresponding to their noisy biometric.
It is infeasible to determine if public keys correspond to the same private
key.

3. Public keys are anonymous, containing no information about the individual’s
biometric.

4. It is not possible to determine if two ciphertexts correspond to the same pub-
lic key. No public randomness is necessary for decryption, only the ciphertext
and the biometric.

Our approach draws on the fuzzy vault of Juels and Sudan [30] which we
now describe:

Gen A randomly sampled value r is viewed as a polynomial Q(x). A set of
x-values is determined from the input value c. Interpolating points on this
polynomial are published xi, yi. In addition, random values x′i, y

′
i are added

to this set. These random points are known as chaff. The true points together
with chaff points are the public value p.

4 We also construct the first reusable fuzzy extractor that corrects a linear fraction of
errors. We stress that achieving the desired properties requires more than a reusable
fuzzy extractor.



Rep The user inputs p and a nearby value c′. Using w′ the user is able to create
a similar set of xi values. This set xi will contain mostly points that are
on the polynomial Q(x), thus the user can interpolate the polynomial using
these points to recover r.

The security argument is information theoretic − given a high-enough degree
polynomial, the chaff points are information theoretically indistinguishable from
the points interpolating Q(x). This is because for a given set of real and chaff
points, there are (statistically) many false polynomials that happen to have
enough interpolating points. These false polynomials can’t be distinguished from
the real polynomial.

1.1 Overview of our Approach

Our approach is similar to the fuzzy vault but replaces an arbitrary field with
points on a graded encoding scheme [18]. Importantly, our security assumption
is weaker than the hybrid graded encoding scheme assumption of [20]. We show
that our security assumption is unlikely to imply either functional encryption or
indistinguishability obfuscation (Lemma 1).

Graded Encodings Our construction leverages recently development graded en-
coding schemes (GES), first described in [18]. A GES allows addition of values
at the same level `i. Multiplying two values changes the level of the output to
be the sum of the levels. So multiplying values at two encoding levels `i and `j
yields a value at a different encoding level `k. In addition, it is possible to check
whether an encoded value at a distinguished level `∗ is equal to zero (known as
the zero-test). During initialization, we choose which encoding levels must be
multiplied to obtain an `∗ encoding. We denote the “multilinearity level,” the
number of encodings levels that are multiplied to obtain the zero-test level as κ.

Graded encodings have seen extensive application since their introduction.
They can be used to construct indistinguishability obfuscation [19] for NC1

circuits (and all of P assuming the security of learning with errors). Recent
cryptanalytic “zeroizing” attacks have been used to break constructions using
the public zero-test parameter [18, 9, 28, 38].

As a warmup we construct a fuzzy extractor based on graded encodings. That
is, we show how to derive a stable symmetric key using graded encodings. We
will then transform this basic approach to construct our public key algorithms.

A computational fuzzy vault We consider noisy values C taking values in Rm×κ.
In addition, we consider a binary version of this matrix sign(C), that we denote
as O. For simplicity, we refer to the pair (O,C) but O is completely determined
by C. (See Section 2.2 for a discussion of biometric distributions.)

On taking subsequent samples, we observe that for a good biometric, C ′ ≈ C.
If we consider a bit Oi,j = sign(Ci,j) and O′i,j = sign(C ′i,j), then informally, we
know that if |C ′i,j | is large with respect to the expectation of |Ci,j − C ′i,j |, then
it is unlikely that Oi,j 6= O′i,j . Recent studies have shown that this approach is a



Gen

1. Input: 1λ, O ∈ {0, 1}m×κ

2. Sample {pp, sp} = GES.Setup(1λ, κ)
3. For i ∈ [m], j ∈ [κ]

(a) Hi,j = GES.Encode(0, li, sp, pp)
(b) If Oi,j = 0:

Hi,j = GES.SProd(hi,j , U(R), pp)
4. Sample seed.
5. Set K = Ext(O, seed).
6. Set P = {H, pp, seed}
7. Output (K,P ).

Rep

1. Input: C′ ∈ Rm×κ, P .
2. Parse P as {H, pp, seed}.
3. Set C′′j = arg max

i∈[m]

|C′i,j |, j ∈ [κ]

4. prod = GES.Prod({HC′′i ,i
}, pp)

5. If 0 = GES.ZT(prod, pp), return ⊥.
6. For i ∈ [m], j ∈ [κ]:

(a) Set CT = C′′.
(b) Set CTj = i.
(c) prod = GES.Prod({HCTj ,j

}, pp)
(d) If 1 = GES.ZT(prod, pp),

Oi,j = 1.
(e) Else Oi,j = 0.

7. Output K = Ext(O, seed).

Algorithm 1. Pseudocode of the computational fuzzy vault. The algorithms
Setup,Encode, SProd,Prod, and ZT are operations on the graded encoding scheme.

good model for human and silicon biometrics, and has resulted in performance
improvements in fuzzy extractors [23, 25, 46]. We now describe the algorithm:

Gen The Gen algorithm uses O. A 1 in the i-th column of O is translated into
an encoding of 0 at level i. A 0 is converted into a random value in the level
i encoding space. With high probability this value is not an encoding of any
value. This is described pictorially in Figure 2. This creates a matrix of GES
values H that is stored as the public value P . The key K is an appropriate
randomness extractor applied to O [2, 40].

Rep The Rep algorithm uses the matrix C ′ (a noisy version of C). For each
column i, find the row ji that contains the maximum value in C. The val-
ues H[ji, i] are then multiplied. If C ′ was close to C this creates a level `∗

encoding of 0. The zero test of the GES is used to check correctness. If the
zero test succeeds, the remainder of O can be recovered bit by bit. This is
depicted in Figure 3.

Similar to the original fuzzy vault, we use C ′ to select a subset of locations
in the matrix that are likely to be error-free (cf. Section 2). This subset is inter-
spersed with chaff points that are not valid encodings. Including a single invalid
encoding in the chosen subset is enough to prevent extraction. Security relies on
the inability of an adversary to select a valid encoding at each level. Analysis of
this fuzzy vault is formalized in Section A, where it is shown that Algorithm 1 is
the first reusable fuzzy extractor that can correct a constant fraction of errors.
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Fig. 2. Graphical representation of an example of how the Gen algorithm computes H.
A ‘1’ in the i’th column of O is translated to a valid encoding of 0 under li. A ‘0’ is
translated to a uniformly random value in the encoding space.
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Fig. 3. Graphical representation of an example of the first step of Rep, selecting C′′ by
using the maximal confidence information from each column of C′. This vector is used
to compute a valid level-`∗ encoding of 0 using H, which is in turn used to compute
O by swapping entries of of the matrix and re-testing if the product is a valid zero
encoding.

1.2 Public-key encryption with noisy keys

The mathematical flexibility of the graded encoding scheme allows us to create
a public key encryption and a digital signature algorithm directly. As discussed
above, these cryptosystems allow a noisy private key.

The public-key encryption scheme operates as follows. In Gen, the computa-
tional fuzzy vault is executed a large number of times to create a number of Hi.
The Enc algorithm adds a random subset of these Hi to create a matrix H∗. If
the bit to be encrypted is 1, all elements are replaced by random elements in the
encoding space. Decryption uses the Rep algorithm on H∗. If Rep succeeds the
plaintext is 0 otherwise it is 1. Our construction satisfies traditional IND-CPA
security (cf. Section 5).

Unique features This construction achieves the vision described at the beginning
of this section. One powerful advantage of this encryption approach is that bio-
metric templates may be reused. That is, one may construct polynomially many



unique public keys from a single (noisy) biometric template. These public keys,
even when considered together, reveal nothing about the underlying input value
C. Further, an adversary cannot distinguish two public keys derived from the
same private key versus two public keys derived from unique private keys. Ci-
phertexts do not reveal which public key was used to generate them. Finally,
because the private key consists entirely of the biometric template, the individ-
ual is not required to carry any additional storage or memorize any PIN in order
to decrypt the message.

Security assumption We require a strictly weaker assumption than is required
for the construction of indistinguishability obfuscation (iO) from a GES [20]. We
assume a complete break of the system if the adversary is able to find a single
element where the zero-test returns true. We show that if functional encryption
exists for any complexity class in the presence of our GES, then it exists without
the use of the GES (Lemma 1).

1.3 Digital signatures with noisy signing keys

We also construct an existentially unforgeable signature system (cf. Section 6).
However, the proposed biometric signature system requires the full hybrid graded
encoding assumption [20] that implies VBB obfuscation and functional encryp-
tion. The stronger assumption is required in this construction because there is
a public zero-test parameter (in contrast to our encryption scheme). Finally,
the signature system requires the signer to have access to his/her public key at
the time of signing. Thus, we note that such a construction can also exist by
obfuscating a distance check and a signature algorithm. It would be interest-
ing to further explore the possibility of constructing biometric digital signatures
without the above limitations.

We present this scheme for two reasons: 1) to contrast with the weak GES
that is sufficient for encryption 2) the construction uses a zeroization attack as
a part of normal operation. The signature system uses the zeroization attack on
[18] and similar GES constructions. To the best of our knowledge this is the first
time that a zeroization attack has been used in a cryptographic construction.

Our public key encryption and signature systems use graded encoding schemes
in a fundamentally different way. The noisy secret (in this case the biometric
template) can be used to obfuscate encodings of zero − with access to the se-
cret biometric, the individual may access low-level encodings of zero that enable
encoding re-randomization and extraction of encoding plaintexts through ze-
roization. Further, in the encryption algorithm, the secret is required in order to
successfully use the zero-test parameter − weakening the security assumption.

1.4 Organization

Section 2 describes the properties of the biometric distribution required for se-
curity and efficiency of the proposed algorithms. We give background for graded
encoding schemes and present our model in Section 3. We define and provide a



construction for a biometric public key cryptosystem in Section 4. We construct
a biometric public-key encryption in Section 5. We similarly define and construct
a biometric digital signature system in Section 6. Appendix A formally presents
the computational fuzzy vault described here and compares it to state of the art
fuzzy extractors.

2 Requirements on Biometric Source

Cryptographic algorithms using biometrics need two properties of the biometric.
These two properties (informally) are stability and entropy. Stability has been
formalized in previous work as an error rate when modeling the noisy value O as
a stable value with i.i.d. noise [36, 17, 30, 15, 31]. Further, information theoretic
constructions normally require O to have a prescribed amount of min-entropy
[36, 15]. We require a slightly stricter requirement on O than min-entropy, but
significantly looser than i.i.d. (which is used in prior constructions, e.g. [45])

2.1 Formal Requirements on Biometric Distributions

Consider a matrix O ∈ {0, 1}m×κ of bits output by the measurement of a human
biometric or a physical unclonable function [41, 42] (which have similar charac-
teristics).5 Interpret this bitstring as a binary matrix Oi,j ∈ {0, 1} with i ∈ [m],
j ∈ [κ]. Our constructions rely on the presence of a non-binary version of O that
exists in biometrics called confidence information.

That is, we assume the existence of an additional matrix C ∈ Rm×κ that is
used to derive Oi,j = sign(Ci,j). One can either think of sampling C and deriv-
ing O or jointly sampling these values. We consider two different distributions:
{O,C} ←↩ χInter representing a sample of a biometric from a random individual,
and {O′, C ′} ←↩ χIntra representing repeated measurements of a biometric from
a single individual.

Definition 1 (Biometric with Confidence Information). A biometric O ∈
{0, 1}m×κ has confidence information C ∈ Rm×κ if Oi,j = sign(Ci,j), and there
exists a decreasing function f(·) ≥ 0 such that:

Pr(O′i,j 6= Oi,j : |Ci,j | > CThresh) = ε2 ≤ f(CThresh)

where the probability is taken over {O,C}, {O′, C ′} ←↩ χIntra.

A large |Ci,j | corresponds to a bit that has Pr(Oi,j = O′i,j) > 1 − ε2 for
some small failure probability ε2. The asymptotic behavior of f in Definition
1 directly impacts the efficiency of a confidence-based system. Ideally, f =

5 We suggestively use the variable κ, as it will be the same as the multilinearity
level in the final cryptosystems, and will be correlated to the security level of the
cryptosystem. m will be seen to be a parameter for the “level of redundancy,” and
will be correlated to the error correction capability of the cryptosystem.



O(1/Poly(CThresh)), so that one may choose CThresh large enough to suppress
erroneous measurements.

It may not be possible to suppress the failure probability to be negligible in
the security parameter. However, biometric scanning systems are not expected
to have a negligible failure probability so this is acceptable. Their performance
is assumed to degrade with environmental conditions and the behavior of the
user.

However, many fuzzy sources (e.g., ring oscillator PUFs [44]) do exhibit suf-
ficient error suppression with increasing confidence information [23]. Using con-
fidence information, we define the requirements on key stability for protocols
described in this paper. Similar to [23], Definition 2 requires that a bit whose
confidence information is larger than some threshold (CThresh) has a probability
of flipping between measurements less than some ε2.

Definition 2 (Biometric Stability). A biometric O ∈ {0, 1}m×κ with con-
fidence information C ∈ Rm×κ is (ε1, ε2)-stable if there exists a CThresh such
that:
– Pr(O′i,j 6= Oi,j : |Ci,j | > CThresh) ≤ ε2 over {O,C}, {O′, C ′} ←↩ χIntra

– Pr{O,C}←↩χInter
(∃ i ∈ [κ] s.t. |Ci,j | > CThresh) > 1− ε1 for all j ∈ [m]

Definition 2 informally states that a high-confidence bit Oi,j with |Ci,j | >
CThresh has less than ε2 probability of flipping between measurements. Further,
the biometric has enough bits (large enough m) such that at least one stable
bit is found in each group of m bits. Note that m is purely determined by the
size of the biometric, and determines the level of redundancy and therefore will
contribute to the error correction capability of the cryptosystem. We will see
that κ corresponds to security and key size.

The relationship of κ to key size is formalized in Definition 3. This notion of
biometric entropy has a natural physical interpretation which we discuss next.

Definition 3 (Biometric Grouped Entropy). A biometric O ∈ {0, 1}m×κ
has λ-lower bounded m-grouped entropy if:

λ < min
S∈Zκm

H∞({OSi,i} : i ∈ [κ])

Definition 3 requires that the an adversary cannot pick a set of κ bits (one
bit from each of the κ buckets of size m) and be correct with greater than
2−λ probability. Formally, Definition 3 requires that the min-entropy of all sets
containing one bit from each bin is lower-bounded by λ.

Observe that Definition 3 is strictly stronger than a min-entropy requirement,
but is strictly weaker than an i.i.d. assumption. Further, Definition 3 is weaker
than many other intermediate assumptions, such as the assumption in recent
fuzzy extractor constructions [23].

2.2 A Primer on Biometric Distributions

The distributions of human biometric data such as fingerprints, irises, are not
(and likely cannot be) known precisely. Therefore, one cannot prove that the
biometric data obeys any formal Definitions (including Definitions 2 and 3).



Empirical observations to date do not contradict our definitions. The notion
of confidence information improves both performance and security of silicon
and human biometric systems [23, 25, 46]. In particular, empirical studies of the
human iris [13] find high amounts of entropy providing evidence they satisfy
Definition 3.

Definition 3 also has a natural physical interpretation in the context of bio-
metrics. For many biometrics, neighboring bits are more strongly correlated than
bits that are further away. Definition 3 describes a biometric that has κ groups
of m bits. Among the m bits of a single group, there is no requirement on the
distribution (i.e., all m bits in a group could be equal to each other without
impacting security). Physically, this can be interpreted as sampling a set of
neighboring bits. Next, each group of m bits must have a distribution that is
sufficiently independent from each other group. This corresponds to requiring
that the groups of m bits are sufficiently far away from each other.

In fact the output of an iris sensor is a matrix derived from applying imaging
processing at different polar coordinates. This matrix is correlated but entropic
in for a single fixed polar angle with weak correlation across polar angles [22].
This matches the requirements of Definition 3.

3 Multilinear maps and graded encodings

This work will leverage the recent work on instantiating multilinear maps using
noisy graded encodings on ideal lattices [18] as well as the recent approaches to
rectify the discovered vulnerabilities [20]. It will be shown that the constructions
in this paper are at least as secure as those presented in [20], and are qualitatively
more secure.

3.1 Multilinear Maps

A multilinear map is parameterized by the security parameter λ, the multilin-
earity level κ = Poly(λ). The multilinear cryptosystem is written as a graded
encoding scheme (GES) that encodes plaintext values of ring elements at differ-
ent levels denoted by a label l ∈ S for some set S. Notationally, we refer to an
encoding of plaintext a under label l as [a]l. When not confusing, we use the
same font (e.g., x) to denote an encoding where the underlying plaintext and/or
encoding level are unspecified.

There is an additive homomorphism for encodings at the same level, and
scalar multiplication of any encoding may also be computed homomorphically.

The multiplicative homomorphism changes the encoding level. This work will
use a fully asymmetric graded encoding of multilinearity level κ = O(λ). The
zero-test level l∗ will be the product of single encodings from each level:

∏
i∈[κ]

[ai]li =

∏
i∈[κ]

ai


l∗



This work will use exclusively noisy encodings, as they allow multiple unique
encodings of the same plaintext at the same encoding level, which will be crucial
to the algorithm. As a result, all plaintexts and encodings, regardless of encoding
level will live in a single ring R.

The GGH encoding scheme [18] encodes values as elements of the quotient
ring R/〈g〉, where 〈g〉 is prime, and g is a secret short vector in R. A short
vector e is encoded at level 0 as e+g ·r for some short random vector r. Level-0
encodings are analogous to plaintext.

Higher level encodings are obtained through additional secret vectors z drawn
uniformly at random in R. An encoding (using z) is obtained by computing
e+g·r

z .
Encodings have the additive and multiplicative homomorphisms described

above so long as the accumulated noise does not overflow. The public zero-test
parameter is defined as pzt = h · zl∗/g mod q, where h is “somewhat small”.
One computes whether a level-l∗ encoding is zero (i.e., equal to u = g ·r/zl∗ for
small r) if u× pzt is “small.”

One extension of the graded encoding scheme that will be used in this paper
is to use multiple secret vectors zi. Specifically, we will choose uniform zi for
i ∈ [κ], and compute the zero test parameter as pzt = h·zl∗/g with zl∗ =

∏
i∈[κ]

zi.

Mitigating Vulnerabilities The GGH multilinear map construction is still
new, and is not based on a well understood hardness assumption. However, its
widespread potential applications (through the use of indistinguishability obfus-
cation) have inspired a significant cryptologic research effort. A full review of
the recent efforts to break/repair GGH and its variants is beyond the scope of
this paper. Instead, we focus on a single encoding scheme - the original GGH
encoding using ideal lattices, and focus on a recent security argument [20], which
as of the writing of this paper, is unbroken. The construction in this paper uses a
strictly weaker security argument than [20] which does not imply indistinguisha-
bility obfuscation or functional encryption. We will now briefly (and informally)
review the vulnerabilities identified in the GGH multilinear map and the new
security model.

Most vulnerabilities discovered with the GGH multilinear maps construction
(and variants) has been through the zero test parameter pzt. This is not surpris-
ing, as this parameter (informally) removes the obfuscating encoding of the zi
terms. If the zero-test procedure succeeds (results in a short vector), one is left
with a level-0 encoding of some form, which is analogous to plaintext. “Zeroiz-
ing” attacks exploit correlations among these “plaintext” values to compute the
secret parameters of the system [38, 10, 27].

Specifically, if one is able to obtain multiple l∗ encodings of 0 (such that mul-
tiplication by pzt results in a short vector in R), then one may compute (in some
cases) the secret parameter g that generates the principal ideal corresponding
to zero-encodings [38, 10].

A new security model for GGH has been proposed in [20] that captures
this class of vulnerabilities (termed “hybrid graded encoding”). This model is



a stateful oracle model, that we describe further in Section 3.2. Further, [20]
uses this model of GGH to build VBB obfuscation, where l∗ encodings of 0 are
decorrelated, so the above zeroizing attacks don’t apply.

This paper uses an oracle model similar to [20]. The key difference, as detailed
in Section 3.2 is that the adversary wins if it constructs any valid l∗ encoding
of 0 with non-negligible probability in the security parameter.

3.2 Hardness Assumption

The GGH13 graded encoding construction (and other similar constructions) have
been broken and repaired several times in the past few years [18, 9, 27, 28, 10, 11,
38, 21]. This paper follows and extends the security argument in [20]. We assume
that the noisy graded encoding scheme (GES) has the following interface:

Definition 4. A Noisy GES has the following functions

{pp} ←GES.Setup(1λ, κ)

{pzt, sp} ←GES.Gen(pp)

[a]l ←GES.Encode(a, l, sp, pp)

[a + b]l ←GES.Add([a]l, [b]l, pp)[∏ij
k=i1

aik

]
li1+...ij

←GES.Prod({[ai1 ]li1 , [ai2 ]li2 , . . . , [aij ]lij }, pp)

[c · a]l ←GES.SProd([a]l, c, pp)

p′zt ←GES.ZTSProd(c, pp,pzt)

{0, 1} ←GES.ZT([a]l∗ ,pzt, pp)

The noisy GES is correct if GES.ZT returns 1 iff a = 0 with probability
1− neg(λ).6

There are two sets of public parameters. The value pp is a universal public
parameter for security parameter λ and multilinearity κ (e.g., a description of
the ring of encodings). The per use parameters are sampled in GES.Gen, which
also computes the public zero-test parameter pzt.

7

Most GES schemes do not include functionality to multiply the zero test
parameter (GES.ZTSProd). We will use this functionality to randomize the zero
test parameter. This is a trivial operation for most GES instantiations, including
[18]. One simply chooses random, invertible r ∈ R and multiplies the zero-test
parameter by this value. However, for zero test to succeed after this operation
requires changing some handles as well. Importantly, this change does not require
any change to the hybrid security model we introduce next. We return to this
functionality in Section 5.

6 This API defines correctness. We model the information leaked by GES.ZT in Defi-
nitions 5, 6 for security.

7 Other GES models including [20] merge GES.Setup and GES.Gen, and consider pzt

to be a member of pp. This does not affect the security definition.



The primary interest in graded encoding schemes has been to construct func-
tional encryption (FE) and indistinguishability obfuscation (iO). Recent work
has made significant progress in reducing the multilinearity level required of a
graded encoding scheme to construct these primitives [34, 35, 1].

This work weakens the assumption on the graded encoding scheme by ef-
fectively hiding the level-l∗ encodings from an adversary, thereby rendering the
zero-test parameter useless to such an adversary. We show in Lemma 1 and
Corollary 1 that it is very unlikely that our security assumption can be used to
construct either functional encryption or indistinguishability obfuscation.

Further, we observe that the GGH graded encoding with a secret zero-test
is secure under the well-established NTRU assumption [24]. We do not quite
reduce to NTRU since the adversary has access to the zero-test parameter, but
we show that the adversary cannot compute a valid encoding of zero at the
zero-test level.

Our assumption is similar in form to the hybrid graded encoding system
proposed in [20], they model the GGH13 construction using a stateful oracleM
with the following functions:

Initialization M takes the parameters of the hybrid graded encoding system.
It initializes the GGH public/private parameters internally, and initializes
an empty table of handle-encoding pairs and an empty table of handle-ring
element pairs.

Algebraic Operations M takes two handles as parameters, looks up their cor-
responding encodings in its internal handle-encoding table. If either lookup
fails, M fails. It performs the desired algebraic operation on the encodings.
It determines if the new encoding exists in the table and returns its handle
if it exists. Otherwise, it returns a new, random handle that is stored in the
table with the new, computed encoding.

Zero-testing M takes a handle as parameter, looks up its encoding in the
internal table, and fails if the handle is not found. It performs a zero-test on
the encoding. If zero-test fails,M fails. Otherwise,M adds the resulting ring
element to the internal handle-ring element table (if it isn’t already present)
and returns a handle to this element.

Post-zeroizing Computation M is given a bounded-degree polynomial p and
a sequence of ring element handles (i.e., generated by the zero-test algo-
rithm).M fails if any handle is not present in the table. Otherwise, it returns
1 if the p evaluates to 0 and returns 0 otherwise.

Definition 5 (Hybrid Graded Encoding Model). A GES is λ-secure in
the Hybrid Graded Encoding Model if an adversary, given access to the GES
through the oracle M, and the initial set of encodings, cannot generate a call
to the post-zeroizing computation of M to return 1 with probability greater than
neg(λ).

Intuitively, the attack model assumes that (1) encodings are indistinguishable
until they are zero-tested, and (2) only successful zero-tests are useful to an
adversary. We weaken the definition of the oracle, which we call M′:



– The oracle is modified such that the handles live in some ring R′ (the en-
codings live in a ring R) where 1/|R′| = negl(λ).

– Initialization, and zero-testing occur exactly as before (handles for new en-
codings are sampled uniformly at random in R′).

– For algebraic operations, the handle of the new encoding is computed as the
appropriate algebraic operation of the input handles (instead of generating
new random handles each time).8

– For algebraic operations with invalid handles as arguments, the new handle
(computed algebraically) is still returned, but no update to the internal table
is made.

– For post-zeroizing computation, the oracle returns 1 if it is provided any
valid ring-element handle.

We then modify the security definition as follows:

Definition 6 (Hidden Zero-Test Graded Encoding System). A GES is
λ-secure in the Hidden Zero-Test Hybrid Graded Encoding Model if an adversary,
given the oracle M′ and the initial set of encodings, one cannot compute a valid
ring-element handle (i.e., cause the post-zeroizing computation of M′ to accept)
with probability greater than neg(λ).

The attack model does not make any assumption regarding which encodings
are revealed to the adversary at the beginning of the game. The security argu-
ment of the system depends on this choice. The assumption in Definition 6 does
not help one to construct functional encryption.

Lemma 1. If Definition 6 implies functional encryption for any (randomized)
complexity class, then functional encryption exists for that complexity class with-
out assuming Definition 6.

Proof. Consider the following definition of functional encryption (for an arbi-
trary circuit class, arbitrary number of keys, etc.).

{pk,msk} ←FE.Setup(1λ)

skk ←FE.Keygen(msk, k)

ct←FE.Enc(pk, pt)

F (k, pt)←FE.Dec(skk, ct)

Typically one considers F to be a universal circuit and k choosing which circuit
is executed on pt. Definition 6 has secret parameters (e.g., the [18] secret pa-
rameters) that enable the encoding, algebraic operations, and zero testing. We
assume in Definition 6 that any successful use of the zero-test algorithm reveals
all secret parameters, and unsuccessful zero-testing reveals nothing.

Since successful zero-test reveals all secret parameters, it must be the case
that zero-test may only be used in FE.Setup and FE.Keygen, else this represents

8 Observe that this is similar to a “generic group” idealized model.



a security break. Thus, FE.Enc and FE.Dec do not use any zero-test. FE.Setup
and FE.Gen share state with FE.Enc and FE.Dec via pk and skk.

Further, FE.Setup and FE.Keygen cannot reveal any information about a zero-
tested handle to FE.Enc or FE.Dec (or enable them to compute zero-test), since
this would also constitute an immediate break of the cryptosystem by Definition
6.

Without zero-test, the only information that can be obtained about under-
lying encodings shared from FE.Setup, FE.Keygen to FE.Enc, FE.Dec is through
testing direct equivalence of handles, since they are sampled at random for each
encoding that is sampled.9

We observe that if the above functional encryption exists using the oracle in
Definition 6, then functional encryption exists in the hybrid game where FE.Setup
and FE.Keygen calls to the oracle are routed to Oracle 1 (the oracle from Defini-
tion 6), and FE.Enc and FE.Dec calls to the oracle are routed to Oracle 2 defined
below:

Encoding Returns a random handle in R′.
Algebraic Operations Returns the appropriate algebraic operation on the

handle in R′.
Zero-Testing Returns ⊥.

We observe that FE.Enc, FE.Dec cannot statistically distinguish between Oracle
1 and Oracle 2, so the functional encryption scheme must still work in this new
model.

We next observe that Oracle 2 contains no secret information, and its internal
description may be revealed to the adversary. Oracle 1, on the other hand is only
used in FE.Setup and FE.Gen and is not accessible to the adversary. This case is
equivalent to a second hybrid where Oracle 1 is a part of the master secret key
msk. In this second hybrid, internal state and description of Oracle 1 may be
revealed without affecting security, as this description would be a part of msk,
and not accessible to the adversary.

Therefore, by simulating the oracle with random samples and arithmetic,
there are no hidden values behind each encoding and and no private parame-
ters in Oracle 2. Since the adversary can not distinguish these two worlds, the
functional encryption scheme must exist when presented with Oracle 2 and thus
functional encryption exists without the original security assumption.

Corollary 1. If Definition 6 implies indistinguishability obfuscation for NC1,
then LWE implies functional encryption.

Proof. From [19], indistinguishability obfuscation (iO) for NC1 and LWE imply
iO for all circuits. Further, [19] shows that iO for all circuits implies functional
encryption (using public key encryption and NIZK). Corollary immediately fol-
lows from Lemma 1.

9 Recall that handles for arithmetic combinations of sampled encodings are also arith-
metically generated from handles for the sampled encodings. This does not affect
the argument.



Both of the above results seem unlikely. Significant work has been undertaken
to construct both functional encryption and indistinguishability obfuscation for
all circuits with little success under standard assumptions.

Another key limitation of the multilinear graded encoding assumption is that
current embodiments (e.g., [18]) have asymptotic complexity (both computa-
tional and storage) that are high-degree polynomials in the security parameter,
and as a result are impractical for use in modern computing systems (this work
is no exception in this regard). We believe that the hidden zero-test hybrid
graded encoding scheme in Definition 6 may not require the same asymptotic
complexity, as the adversary cannot use zero-test successfully. However, we do
not explore this idea further at this time, as it is outside the scope of this work.

4 Biometric Cryptosystems

We now create a public key encryption and signature scheme using the hybrid
graded encoding scheme. First, we provide formal definitions for these construc-
tions, allowing a noisy private key. We abstract the definitions away from bio-
metrics and refer to the biometric as a “fuzzy source.”

4.1 PKCS with Fuzzy Private Key

Definition 7 (Public Key Encryption with Fuzzy Secret Keys). A Pub-
lic Key Encryption System with Fuzzy Secret Keys (PKE-FSK) is a set of PPT
algorithms:

pp←Setup(1λ)

pk ←Gen(O, pp)

ct←Enc(pt, pk, pp)

pt←Dec(ct, C ′, pp)

{O,C}, {O′, C ′} are samples from a fuzzy source (only O and C ′ are used).
{Gen,Enc,Dec} is IND-CPA secure with security parameter λ. The cryptosystem
is δ-correct if:

Pr(pt = Dec(Enc(pt, pk, pp), C ′, pp) :

pp← Setup(1λ), pk ← Gen(O, pp)) ≥ 1− δ

where the probability is taken over {O,C} ←↩ χIntra and {O′, C ′} ←↩ χIntra.

Definition 7 formalizes the notion of public key encryption with fuzzy secret
keys. The success probability is defined over the distribution of {O,C}, {O′, C ′}
(i.e., the randomness of the fuzzy key source), and the internal randomness of
Gen, Enc, and Dec. The parameter pp is a global constant for security parameter
λ, while pk is the per-user public key.



For our construction an individual user may provision polynomially many
public keys with a single fuzzy key source without compromising security or
privacy (i.e., an adversary cannot detect whether two or more private keys were
provisioned from the same individual or different individuals).

We next formalize the notion of digital signatures with fuzzy secret keys in
Definition 8.

Definition 8 (Digital Signatures with Fuzzy Secret Keys). A Digital
Signature Algorithm with Fuzzy Secret Keys (DSA-FSK) is the following set of
PPT algorithms:

pp←Setup(1λ)

pk ←Gen(O, pp)

sig ←Sign(msg,C ′, pk, pp)

{0, 1} ←Ver(msg, sig, pk, pp)

{O,C}, {O′, C ′} are samples from a fuzzy source. {Gen,Sign,Ver} are existen-
tially unforgeable with security parameter λ. The signature system is δ-correct
if:

Pr(Ver(msg,Sign(msg,C ′, pk, pp), pk, pp) = 1 :

pp← Setup(1λ), pk ← Gen(O, pp)) ≥ 1− δ

where the probability is taken over {O,C} ←↩ χIntra and {O′, C ′} ←↩ χIntra.

Similar to PKE-FSK two samples are taken for a given signature ({O,C}
during Gen, and {O′, C ′} during Sign). The success probability is defined over
these random variables and over the randomness of Gen, Sign, and Ver.

5 Biometric Public Key Encryption

Our public key algorithm uses a simplified version computational fuzzy vault as
a sub-step within the algorithm.

Simplified computational fuzzy vault We present the simplified algorithm in Al-
gorithm 4. There are three key differences between Algorithm 4 and the compu-
tational fuzzy vault in the Introduction.
– FV.Gen′ uses encodings of a instead of encodings of 0.
– FV.Rep′ doesn’t check if the high-confidence indices C ′′i are correct or recover

the other indices.
– We remove the randomness extractor.

10 In this step we are multiplying a valid encoding by a random value. This may seem
pointless, as the encoding is of 0, but by multiplying by large enough value, we
overflow the noise of the GES. This makes the encoding “bad.” We choose this
scalar product approach (as opposed to just replacing the encoding with random
garbage), because it is compatible with our oracle model.



H ← FV.Gen′(O,a, pp, sp)
Input: O ∈ {0, 1}m×κ
Output: H ∈ Rm×κ

1. For i ∈ [m], j ∈ [κ]
(a) Hi,j = GES.Encode(a, li, sp, pp)
(b) If Oi,j = 0

i. Hi,j = GES.SProd(hi,j , U(R), pp)10

2. return H

C′′ ← FV.Rep′(C′)
Input: C′ ∈ Rm×κ
Output: C′′ ∈ Zκm

1. return C′′i = arg max
i∈[m]

|C′i,j | for j ∈ [κ]

Algorithm 4. Modified computational fuzzy vault used as a subroutine in the En-
crypt/Decrypt and Sign/Verify algorithms.

Encryption Scheme We now summarize our public key encryption scheme (the
complete algorithm is described in Algorithm 5). Let R be the ring of encod-
ings. The PKE.Gen procedure runs the computational fuzzy vault log2 |R| times
(FV.Gen′), where |R| is the cardinality of the ring of encodings.

Next, PKE.Enc, encrypts a single bit as follows. If b = 1, it re-randomizes
each of the m × κ elements of H by summing random subset of the log2 |R|
encodings of Hi,j . Observe that re-randomization is possible, as there are log |R|
bits in each encoding, and log2 |R| >> log |R|.

Valid encodings of 0 remain encodings of 0 during this process, while bad
encodings remain bad encodings. If b = 0, the system further transforms all
m× κ encodings into bad encodings by taking arithmetic combinations of these
encodings. It sends this ciphertext alongside a randomized zero-test parameter
− described below.

Finally, PKE.Dec runs FV.Rep on the ciphertext and returns 1 if it succeeds
and 0 if it fails.

Zero-test Randomization An individual is able to successfully decrypt with
his/her biometric is also able to construct a level-l∗ zero and zero-test. Therefore,
by Definition 6, this user may obtain all secret parameters of the GES.

Therefore, a given set of GES parameters must be unique to a single user.
GES.Add, GES.Prod, GES.SProd may all be computed with universally constant
public parameters pp (i.e., a description of R). In GES instances such as [18],
GES.ZT depends on pzt which depends on the underlying secret parameters.
Because pzt is required for decryption, it must be accessible to the decryptor.
However, it is unique per-user, so this results in the same de-anonymization as
the original fuzzy extractor construction.

Therefore, we must randomize the zero-test parameter. To do so we select a
random invertible element r. The zero test parameter is multiplied by r using
GES.ZTSProd. We then multiply all encodings at a single level (called `α) by
r−1 using GES.SProd. The output of GES.ZT is unchanged (as it is a product of
encodings by the zero-test parameter), and the new zero-test parameter p′zt is
uniformly distributed.



pp← PKE.Setup(1λ)

1. return pp← GES.Setup(1λ, κ)

pk ← PKE.Gen(O, pp)
Input: O ∈ {0, 1}m×κ

Output: pk ∈ Rm×κ×log2 |R|

1. {pzt, sp} ← GES.Gen(pp)
2. For i ∈ [log2 |R|]

(a) Hi = FV.Gen′(O, 0, pp, sp)
3. return {pzt, H}

ct← PKE.Enc(pt, pk, pp)
Input: pt ∈ {0, 1}, pk = {pzt, H}, H ∈
Rm×κ×log2 |R|

Output: ct = {u,pzt}, u ∈ Rm×κ

1. Choose uniformly random subsets
S ⊆ [log2 |R|].

2. for i ∈ [m], j ∈ [κ]
(a) ui,j =

∑
k∈S

Hi,j,k

(b) if pt = 0
ui,j = GES.SProd(ui,j , U(R), pp)

3. Choose random r ∈ R, inverse r−1

4. p′zt = GES.ZTSProd(r,pzt, pp).
5. For all i ∈ [m]

(a) ui,α =
GES.SProd(ui,α, r

−1, pp).11

6. ct = (u,p′zt, pp).

pt← PKE.Dec(ct, C′, pp)
Input: ct = {u,pzt}, u ∈ Rm×κ
Output: pt ∈ {0, 1}

1. Run C′′ ← FV.Rep′(C′)
2. prod = GES.Prod({uC′′1 ,1, . . . , uC′′κ ,κ}, pp)
3. if GES.ZT(prod,pzt, pp), return 1
4. return 0

Algorithm 5. Public Key Encryption leveraging the Computational Fuzzy Vault of
Algorithm 4.

We are now ready to provide the correctness and security proofs for the
procedures presented in Algorithm 5.

Lemma 2. Let {O,C} ←↩ χIntra, and {O′, C ′} ←↩ χIntra, where χIntra is ε1, ε2-
stable according to Definition 2.

Algorithm 5 is δ-correct − that is:

Pr(pt = PKE.Dec(PKE.Enc(pt, pk, pp), C ′, pp) :

pp← PKE.Setup(1λ), pk ← PKE.Gen(O, pp)) ≥ 1− δ

with δ = κ(ε1 + ε2) + negl(λ). The randomness is taken over {O,C}, {O′, C ′} ←↩
χIntra and over the randomness of PKE.Gen.

Proof. PKE.Setup, PKE.Gen, and PKE.Enc always succeed, so we consider the
probability of success for PKE.Dec.

11 We select α ∈ [κ] arbitrarily.



First, by Definition 2, each column of C ′ contains a value greater than CThresh

with probability 1 − ε1. Therefore, by the union bound, all columns of C ′ have
an element greater than CThresh (that are then included in C ′′) with probability
> 1− κ · ε1.

Again by Definition 2, the elements of u selected by FV.Rep′ (i.e., C ′′), each
have probability 1 − ε2 of being a valid encoding of 0. Therefore,

∏
i∈[κ] uC′′i ,i

is a valid level-l∗ encoding of 0 with probability 1 − κ · ε2. By the definition of
the GES, the zero test procedure operating on a valid level-l∗ encoding succeeds
with probability 1− negl(λ)

The probability of success of PKE.Dec is therefore 1− κ(ε1 + ε2)− negl(λ)

Theorem 1. Let {O,C} ←↩ χInter, where χInter has λ-lower bounded m-grouped
entropy (Definition 3). Then Algorithm 5 is IND-CPA secure with parameter λ.

Proof. The adversary chooses msg0, msg1, and receives an encryption ctb of
plaintext msgb for random b ∈ {0, 1}.

First, note that ctb = {u,pzt} and u ∈ Rm×κ contains handles, rather than
encodings, in the hybrid graded encoding scheme. Further, handles for uniformly
random elements in R are (by definition) indistinguishable from the handles cor-
responding to “valid” encodings. Therefore, the adversary gains no information
regarding the bits of O from pk or u by itself.

Any valid query to the zero-test function in M must be of the form:∏
j∈[κ]

∑
i∈Sj⊆[m]

ui,j

where i, j index one of the encodings in u, and for some arbitrarily chosen Si. This
is because M implements all of the homomorphisms, and the above expression
represents the most general construction of a level-l∗ encoding.

However, the above expression will fail if any of the ui,j are “invalid” (i.e.,
handles for uniformly random elements in R). (Here we ignore that the proba-
bility that random elements happen to be zero or that a set of random elements
add or multiply to a zero element. This probability is proportional to the inverse
of the size of the encoding field and negligible.)

By Definition 3, the adversary cannot choose such a set with probability
greater than negl(λ). Therefore, the zero-test function will return ⊥ with prob-
ability 1− negl(λ). As a result, A cannot compute a valid level-l∗ encoding from
ctb with better than probability > negl(λ).

By the same argument, no adversary can construct a valid level-l∗ encoding
from pk.

Therefore, the above game using M is computationally indistinguishable
from the game using hybrid M′, whose zero-test function always returns ⊥.

Since the zero-test is unavailable, the above hybrid game is statistically indis-
tinguishable from a second hybrid where pk contains encodings of random values
(still using M′). We choose each encoding in u ∈ ct as a random subset-sum of
log2 |R| encoding, which is much larger than the number of bits per-encoding
(log |R| > λ). Therefore, the second hybrid is statistically indistinguishable from



a third hybrid where u ∈ ct consists of encodings of random values (decorrelated
from pk).

In this third hybrid, a ciphertext for msg = 0 is statistically indistinguishable
from a ciphertext for msg = 1.

Corollary 2. Algorithm 5 remains IND-CPA secure if the adversary obtains
{pp}i, and {pk}i,j, where ppi ← PKE.Setup(1λ) and pki,j ← PKE.Gen(O, ppi).

Proof. Follows immediately from the proof of Theorem 1, since the third hybrid
can be simulated by the adversary, and therefore each pk gives zero knowledge
to the adversary.

5.1 Discussion

Algorithm 5 only requires the hidden zero-test hybrid graded encoding assump-
tion. An adversary cannot construct a valid level-l∗ encoding, and therefore, the
zero-test algorithm will with high probability never succeed.

Theorem 1 holds even without using GES.PZSProd. However, we include it
in Algorithm 5, because using GES.PZSProd results in a ciphertext that cannot
be attributed to any user (observe that u is already random because of the
re-randomization step in PKE.Enc,and pzt is randomized by GES.PZSProd, so
ct = {u,pzt} is also random).

The algorithm trivially extends to multi-bit messages, with each bit cor-
responding to a pair of encodings. This corresponds to κ · m log3 |R| bits per
ciphertext for a graded encoding scheme in ring R. We have not explored CCA
security in this section − the multi-bit encryption scheme is trivially malleable
by bit-swapping.

We note that a decryption error is not detected as ⊥ in the decryption al-
gorithm − the decryption algorithm rather returns pt = 0. This is not optimal,
but is easily overcome, as an error decrypting multi-bit messages would result
in all message bits being locked to 0 − a condition easily detected.

As stated above, the above cryptosystem remains secure even when the user
provisions multiple public keys for a single fuzzy secret. Further, the public
key(s) provisioned by a user cannot be distinguished from uniform random, and
cannot be correlated to an individual user. Finally, the ciphertexts are similarly
indistinguishable from uniform random and are therefore anonymous and cannot
be attributed to an individual user or public key.

6 Biometric Signatures

Next, we present the biometric digital signatures (Algorithm 8) that embod-
ies Definition 8. Similarly to the public key encryption algorithm, the digital
signature algorithm leverages the computational fuzzy vault. Also similarly to
the public key encryption algorithm, the biometric signature algorithm does not
use the recovered O as a key, but instead leverages the structure present in the



l∗

l†

lκl1 . . .l′κl′1 . . .

l‡

Fig. 6. Graph G of the encodings for the tree-GES used by Algorithm 8. The dashed
lines between branches indicate which children encodings are paired to form the parent
encoding. Observe that l′1, . . . , l

′
κ pair to form l†, l1, . . . , lκ pair to form l†, none of l′i, lj

pair to form any valid label for any i, j, and l† and l‡ pair to form l∗, the level at which
the zero-test parameter works.

multilinear system to implement digital signatures without requiring entropy ac-
cumulation of the fuzzy private key or leveraging a secondary cryptosystem or
assumption.

However, unlike biometric encryption, the signature system presented re-
quires a the full hybrid graded encoding assumption (Definition 5). As such,
this construction is already implied by the existence of VBB obfuscation under
Definition 5.

However, we believe that the construction is still interesting − first, it is
significantly more efficient, as it does not require circuit-level obfuscation. Fur-
ther, it seems unlikely that a construction of digital signatures with fuzzy secret
keys (Definition 8) must require such a strong computational assumption. The
digital signature algorithm is instructive in this regard. In particular, Algorithm
8 fundamentally requires the use of the zero-test as a part of the verification
algorithm, which is at odds with the hidden zero-test GES (Definition 6). This
suggests that a substantially different approach would be required, and we leave
this as an open problem.

Finally, this construction demonstrates several novel techniques that are pos-
sible within Definition 6 to construct interesting and unique cryptosystems be-
yond encryption and digital signatures.

6.1 Algorithm Description

This construction will use a tree-GES, accessed through an extension of the
GES API (Definition 4): pp← GES.TreeSetup(1λ, G). This function takes a tree
G (specifically, a description of the tree in Figure 6), and constructs an associated
encoding scheme with encoding labels defined by G.

Further, it requires the use of the “zeroizing attack” discussed in [18]. We
refer to this algorithm as v ← GES.Zeroize({[0]l†}i, [v]l‡ , [1]l‡ , pp), where {[0]l†}i
is a set of > λ zeros encoded at l† (the level l‡ pairs with level l† to form
an encoding at level l∗). GES.Zeroize is shown in Algorithm 7. Observe that



v ← GES.Zeroize({[0]l†}i, [v]l‡ , [1]l‡ , pp)
Input: {[0]l†} ∈ Rα for some α > λ, [v]l‡ , [1]l‡ ∈ R
Output v ∈ R

1. for i ∈ [λ]
(a) Compute ai = GES.ZT(GES.Prod({[0]l†,i, [1]l‡}, pp),pzt, pp)
(b) Compute bi = GES.ZT(GES.Prod({[0]l†,i, [v]l‡}, pp),pzt, pp)

2. return v = PolyGCD({bi})× PolyGCD({ai})−1

Algorithm 7. Plaintext extraction algorithm given access to λ valid encodings of 0 at
level l†.

in the GGH construction [18] this algorithm is simply a polynomial GCD of
zero-tested values. The algorithm is correct because the polynomial GCD of λ
random samples from principal ideal I will be the generator of I with high
probability. Therefore, in the GGH setting, where pzt = h · (

∏
i zi) /g, it is true

that PolyGCD({bi}) = v · PolyGCD({ai}) (where a, b are as in Algorithm 7).
We leave it as an open problem whether a biometric signature scheme may

be constructed using the hidden zero-test hybrid graded encoding assumption
(Definition 6) and without GES.Zeroize.

The biometric digital signature algorithm, similarly extends the modified
computational fuzzy vault (Algorithm 4) with encoding levels l1, . . . , lκ.

Levels l′1, . . . , l
′
κ are used to construct pairs of random encodings: R =

{R0,i, R1,i} for i ∈ [κ]. There is also one additional encoding level l‡ (for a
total multilinearity of κ + 1). It then provides one encoding s of a plaintext
secret v under l‡.12

We now describe the functionality of DSA.Sign and DSA.Ver. We assume
that messages are first passed through a random oracle. This can be achieved
by signing an encoding instead of the message. In both DSA.Sign and DSA.Ver,
msg is mapped to a unique level-l† encoding by computing∏

i∈[κ]

Rmsgi,i

where msgi ∈ {0, 1} indicates the i’th bit of msg. Recall that R ∈ R2×κ are
random encodings, so two messages msg, msg′ are unlikely to result in the same
level-l† encoding.

For this description, denote the level-l† encoding associated with msg as
[w]l† . DSA.Sign computes [w]l† , and using GES.Zeroize, computes the secret
level-0 encoding v from the public level-l‡ encoding s = [v]l‡ , and multiplies
them to compute sig = [w]l† · v = [w · v]l† . Since v is a level-zero encoding (a
“plaintext”), this product does not change the encoding level.

No one except the individual with the correct biometric can access the low-
level zeros, so no one else can compute the secret v. However, they can compute
[w]l† · s, to obtain a level-l∗ encoding [w · v]l∗ .

12 In the GGH13 encoding, v ∈ R/〈g〉



pp← DSA.Setup(1λ)

1. Construct graph G as in Figure 6.
2. return pp← GES.TreeSetup(1λ, G).

{0, 1} ← DSA.Ver(sig,msg, pk, pp)
Input: sig ∈ R, msg ∈ {0, 1}κ, pk =
{H,R, s,y,pzt}

1. u = GES.Prod({Rmsg1,1, . . . ,Rmsgκ,κ,v, }, pp)
2. u′ = GES.Prod({sig,y}, pp)
3. return GES.ZT(u− u′,pzt, pp)

pk ← DSA.Gen(O, pp)
Input: O ∈ {0, 1}m×κ
Output: pk = {H,R, s,y} with H ∈
Rm×κ and R ∈ R2×κ

Note that FV.Gen′ is called with a = 0
and uses l1, . . . , lκ to compute H

1. Run {pzt, sp} ← GES.Gen(pp)
2. Run H = FV.Gen′(O, 0, pp, sp) (Al-

gorithm 4).
3. for i ∈ [κ]

(a) Sample U0,i, U1,i uniformly at ran-
dom from plaintexts (level-0 encod-
ings).

(b) R0,i = GES.Encode(U0,i, l
′
i, sp, pp)

(c) R1,i = GES.Encode(U1,i, l
′
i, sp, pp)

4. Sample v uniformly at random from
plaintexts (level-0 encodings).

5. Set s = GES.Encode(v, l‡, sp, pp)
6. Set y = GES.Encode(1, l‡, sp, pp)
7. return pk = {H,R, s,y,pzt}

sig ← DSA.Sign(msg, pk, C′, pp)
Input: C′ ∈ Rm×κ, msg ∈ {0, 1}κ, pk =
{H,R, s,y}
Output: dig ∈ R

1. Run C′′ ← FV.Rep′(C′) (in Algorithm 4).
2. Reconstruct O by iteratively replacing one

element of C′′ with a different index (< m),
and zero-testing

3. for i ∈ log2 |R|
(a) Randomly choose Ti ∈ Zκ such that
OTi,j ,j = 0 for all j ∈ [κ]

(b) xi = GES.Prod({HTi,1,1, . . . ,HTi,κ,κ}, pp)
4. Set v = GES.Zeroize({xi}, s,y, pp)
5. sig = GES.SProd(GES.Prod({Rmsg1,1, . . . ,
Rmsgκ,κ}, pp),v, pp)

6. Sample random subset S ⊆ [log2 |R|]
7. return sig = sig +

∑
i∈S xi

Algorithm 8. Digital Signatures Leveraging the Computational Fuzzy Vault.

If this signature is valid, this value must match sig · y (recall y = [1]l‡).
DSA.Ver does precisely this.

Finally, we observe that if the DSA.Sign algorithm published sig = [w]l† · v
directly, an adversary can compute the inverse (assuming a GGH13 encoding)
of [w]l† to compute v. Therefore, we must randomize the encoding of sig by
adding a random set of level-l† zeros. This is possible because the biometric in
combination with H gives DSA.Sign access to many level-l† encodings of zero.

The proofs of correctness and security for Algorithm 8 are straightforward
and are included in the appendix for completeness.

6.2 Discussion

This algorithm requires the full hybrid graded encoding assumption (Definition
5). This definition already implies VBB obfuscation, so the existence this signa-
ture system is already implied. However, this construction does not require the
overhead of circuit-level obfuscation.



The full hybrid graded encoding assumption is required because the verifica-
tion algorithm involves the computation of a zero at level l∗. The randomization
of this zero is sufficient such that the results of the zero-test are decorrelated,
which is sufficient for security in the hybrid graded encoding scheme model.

Because neither the computational fuzzy vault nor encryption schemes pre-
sented in this paper require the full assumption, it is interesting to ask whether
signatures do indeed require this stronger assumption. We leave this as an open
problem for now, but we do note that if such a signature scheme were to exist, it
would have to be fundamentally different than the presented algorithm. Namely,
such a signature algorithm must not use the zero-test parameter in the verifica-
tion algorithm. As such, the only mechanism to compare encodings is through
direct equivalence (testing equivalence of handles in the hybrid GES model).

The digital signatures algorithm uses O to identify low-level zeros, which are
used to decode a level-l‡ encoding via zeroization (Algorithm 7). Further, it uses
these secret low-level zeros to re-randomize encodings as seen in the public key
encryption algorithm. This suggests a line of inquiry that may be of independent
interest outside biometric applications − in the past, low-level encodings of zero
have been avoided in constructions leveraging the noisy GES from [18] due to
the resulting zeroization attacks. However, this construction hides the low-level
encodings of zero and leverages zeroization attacks as a part of the security
protocol. This suggests that there may still be useful methods of using low-level
zeros in an obfuscated manner to construct interesting cryptographic primitives.
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A A Fuzzy Extractor from a Graded Encoding

In this appendix, we review fuzzy extractors and compare the construction in Figure 1
to state of the art. The goal of a fuzzy extractor is to provide a stable (symmetric)
key from a noisy source. We consider computational security for an arbitrary family of
distributions as in [17]. The original definition of Dodis et al. [15] considered the family
of distributions with a particular amount of min-entropy.

Definition 9. [17, Definition 4] Let W be a family of probability distributions over
M. A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an
(M,W, `, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ if Gen
and Rep satisfy the following properties:

– The generate procedure Gen on input w ∈M outputs an extracted string r ∈ {0, 1}`
and a helper string p ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈
{0, 1}∗ as inputs. The correctness property guarantees that if d(w,w′) ≤ t and
(r, p)← Gen(w), then Pr[Rep(w′, p) = r] ≥ 1− δ, where the probability is over the
randomness of (Gen,Rep).

– The security property guarantees that for any distribution W ∈ W, the string r is
pseudorandom conditioned on p, that is, the statistical distance δDssec ((R,P ), (U`, P )) ≤
εsec.

Most fuzzy extractors are built by combining a secure sketch which recovers the
original value w and a randomness extractor [40]. This approach was shown to provide
a fuzzy extractor in [15]. We roughly follow this approach in this work. We describe a
weak version of a computational secure sketch. We refer to a measurement of a noisy
value as C and the sign of C as O. A subsequent measurement of the biometric is
referred to C′, O′ respectively. The algorithms in this work only require O, and C′.

Since we do not recover both variables O and C our approach actually uses a
computational version of a fuzzy conductor [32]. The proof showing that a secure
sketch and extractor implies a fuzzy extractor also applies for a fuzzy conductor.

Definition 10 (Computational Fuzzy Conductor). A computational fuzzy con-
ductor is pair of randomized functions (X,H) ← Gen(O, 1λ), X ← Rep(C′,H). The
pair {Gen,Rep} is an efficient δ-correct, λ-secure computational fuzzy conduction for
inter-key distribution χInter and intra-key distribution χIntra if the following are true:

– Gen and Rep both run in probabilistic polynomial time.

– Gen outputs values X,H.

– Pr{O,C},{O′,C′}←↩Intra(Rep(C′,H)) = X) > 1− δ where (X,H)← Gen(O, 1λ).

– For all PPT adversary A there exists a negligible function ε with

Pr{O,C}←↩χInter,(X,H)←↩Gen(O)(A(H, χInter) = X) ≤ ε(λ).

The above definition provides computational unpredictability. Standard random-
ness extractors do not extract from computational unpredictability. However, recon-
structive extractors [2] were shown to extract from unpredictability in [26, Lemma 6].
In the remainder of our discussion we focus on the conductor and assume that there
exists a good method for converting X to a pseudorandom output.



A.1 Construction Using Hybrid Graded Encoding Attack Model

We now formalize the intuition provided in Figure 1. We focus on proving that the con-
struction without the extractor is a good computational fuzzy conductor. We assume
the fuzzy key has the properties in Definitions 2 and 3. As a reminder Definition 2 says
that there exists bits where C is large and for these bits O will be 1 with high prob-
ability. Recall we view the input value O ∈ {0, 1}m×κ, Definition 3 says it is, difficult
to simultaneously predict a bit from each column of O.

We show that the scheme is secure in the hybrid graded encoding scheme presented
in Definition 6. The Hybrid Graded Encoding System described in Section 3.2 repre-
sents a given encoding by a random “handle.” All multilinear operations are performed
by an oracle on these handles. We use the noisy GES model from Definition 4.

Recall that in the computational fuzzy vault 0s are translated to invalid encod-
ings while 1s are translated to encodings of 0 at the appropriate level. The zero-test
parameter is not used to test for “zero” at all. It is used to determine whether the com-
puted encoding is indeed valid. The method was presented in Figure 1. We reiterate
the intuition here:

– (H, pp)← Gen(1λ, O): Constructs a GES with security parameter λ with multilin-
earlity level κ (with κ unique encoding levels li and zero-test level l∗). It publishes
the public parameters of this GES alongside H. An entry of H is an encoding
of 0 if the corresponding element of O is 1. If the corresponding element is 0, a
random value in the encoding space is chosen. The output of Gen is H and the
public parameters of the GES.

– O ← Rep(C′,H, pp): C′ is a real-valued input. Rep chooses the maximally confident
bit C′′j in each column, C′∗,j , and computes the product of these elements in H.
All of these elements are valid encodings of 0 with high probability. Therefore,
this product is a valid level-l∗ encoding of 0, so the zero-test will succeed. This is
shown in Figure 3. To reconstruct O, Rep repeatedly replaces one element of C′′

with a different index (< m), and checks if zero-testing succeeds until all elements
are checked.

We show the correctness and soundness of the proposed algorithm under the hidden
zero-test hybrid graded encoding model (Definition 6), and the biometric assumptions
stated in Section 2.

Lemma 3. Assuming the biometric is ε1, ε2-stable according to Definition 2, Figure 1
outputs O with probability δ = 1− κ(ε1 + ε2)− negl(λ).

Proof. Gen always succeeds and generates {H, pp}. Therefore, the success of the algo-
rithm is determined by the success probability of Rep. By Definition 2, each column
of C′ contains a value greater than CThresh with probability 1− ε1. Therefore, by the
union bound, all elements of C′′ are greater than CThresh with probability > 1− κ · ε1.

Again by Definition 2, the elements of H selected by Rep (i.e., C′′), each have
probability 1 − ε2 of being a valid encoding of 0. Therefore, the

∏
i∈[κ] HC′′i ,i

is a
valid level-l∗ encoding of 0 with probability 1− κε2. By the definition of the GES, the
zero test procedure operating on a valid level-l∗ encoding succeeds with probability
1− negl(λ).

Finally, Rep scans through the remaining elements of H to identify valid encodings.
By similar argument, this scan will detect all of the valid encodings with probability
1 − negl(λ). Therefore, the overall probability of success of the secure sketch is 1 −
κ(ε1 + ε2)− negl(λ).



Lemma 4. Let {O,C} ←↩ χInter, where χInter has λ-lower bounded m-grouped entropy
(Definition 3). All PPT algorithms O ← A(H, pp) reconstruct O with negl(λ) probabil-
ity over the randomness of O and the encoding oracle.

Proof. This follows from the same argument as in Theorem 1.

Theorem 2. Let inter-key distribution χInter and intra-key distribution χIntra obey
Definitions 3 and 2. Then Figure 1 describes an efficient δ-correct, λ-secure computa-
tional fuzzy conductor according to Definition 10 for inter-key distribution χInter and
intra-key distribution χIntra, and for δ = 1− κ(ε1 + ε2)− negl(λ)

Proof. Follows from Lemmas 3 and 4.

Discussion The construction requires the weak hybrid graded encoding assumption
(Definition 6). Further, the conductor only encodes 0s and random values in the encod-
ing space. Therefore, it may be possible to weaken the GES assumption. Lemma 4 can
be strengthened to say that the adversary learns nothing about O with overwhelming
probability. This property is crucial for reusability.

Finally, we recognize that the conductor recovers O. However, this is not the only
“secret” parameter recovered. Namely, access to the biometric enables the computation
of low-level encodings of zero which can be multiplied to obtain a level-l∗ encoding of
0. This additional information may be used instead of the biometric value (to directly
build a fuzzy extractor). We would recommend this mode, we described the algorithm
as reproducing O to be consistent with prior work and to improve exposition.

A.2 Reusability

In this section we show that the construction is “reusable.” A conductor is reusable if
a user can enroll their biometric multiple times without a loss of security. The problem
was introduced by Boyen [5] and we adapt the definition of Canetti et al. [8].

Definition 11 (Reusable Computational Secure Sketch). Let χI be a family
of distributions. Let {Gen,Rep} be an efficient δ-correct, λ-secure computational fuzzy
conductor for all inter-key distribution X ∈ χI (and correct for the corresponding intra-
key distribution). Then let X1, ..., Xρ be ρ correlated random variables such that each
Xi ∈ χI . Let D be an adversary whose size is at most poly(λ). Define the following
game for all j = 1, ..., ρ:

– Sampling For all i = 1, ..., ρ, the challenger samples wi ←W i.

– Generation For all i = 1, ..., ρ, the challenger computes (xi, pi)← Gen(wi).

– Distinguishing The advantage of D is

Pr[D(p1, ..., pρ) = xj ].

(Gen,Rep) is ρ reusable if the advantage is at most negl(λ) for all j.

Lemma 5. Assuming the biometric distribution for subjects A and B obey Definition
3, Figure 1 is a reusable computational secure sketch for any ρ = poly(λ).



Proof. As before our proof is in the hidden zero-test hybrid encoding model. We show
that if there exists a D that succeeds with probability α = 1/poly(λ) in the reusability
game then there exists a D′ that succeeds in breaking the original fuzzy extractor with
probability α− negl(λ).

That is, assume there exists some D of size poly(λ) such that Pr[D(P 1, ..., P ρ) =
Xj ] = α for some 1 ≤ j ≤ ρ. First note that D is presented with ρ independent oracles
and the probability that a handle from one oracle is meaningful to another oracle is
proportional to the inverse of the size of the encoding field. By the same argument in
Theorem 1, D is unlikely to find a value where the zero test succeeds. Thus consider
the following, D′.

– Input p ∈ {0, 1}∗.
– Sample u1, ...., uρ ← {0, 1}κ×m.
– Compute (xi, pi)← Gen(ui) for i = 1, ..., ρ.
– Output D(p1, ..., pj−1, p, pj+1, ..., pρ).

By a hybrid argument, each substitution of a random value is only noticeable with
negligible probability (when an adversary makes a zero-test succeed). Thus, we have

Pr[D′(P j) = W j ] ≥ Pr[D(P 1, ..., P ρ) = W j ]− negl(λ).

This contradicts the underlying security of the computational secure sketch. This com-
pletes the proof.

Notes The above proof also shows an additional property known as unlinkability.
Unlinkability says it is hard to determine if two enrollments are from the same user.
Reusability and unlinkability do not imply one another but our construction satisfies
both properties. Also it is crucial to regenerate the parameters of the encoding in
this construction. This implies that the oracles between different enrollments respond
independently.

Also it might be tempting to set a single set of parameters to construct an IBE-like
scheme with a single master secret key (e.g., if this is constructed using the [18] GES,
this would correspond to using a single g across multiple individuals). However, there is
no security guarantee in this case. Indeed, in the case of [18], knowledge of the biometric
allows for the construction of low-level zeros, which allow for the computation of secret
parameters via zeroization.

A.3 Prior Fuzzy Extractor Constructions

Constructions for extracting cryptographic keys from fuzzy biometric data in gen-
eral falls into the theoretical framework provided by Dodis et al. in [15]. Several
approaches have been proposed in the past. These approaches can be broadly clas-
sified into information-theoretic [31, 30, 15] and computational [17, 23, 8, 29] security.
Approaches are summarized in Table A.3.

In general, information-theoretic techniques provide security for a broad class of
probability distributions. Usually these constructions are secure for all distributions
with a set amount of min-entropy (recent work has improved analysis for certain distri-
butions [14]). However, this generality comes at a cost to security. Information-theoretic
security losses often prevent use in real sources [33].

Delvaux et al. [14] showed that most coding-based secure sketches in the literature
are equivalent. The variety of secure sketch constructions comes from the choice of



Construction Correction Security Conditioned needed for reusability

Fuzzy Vault O(|W |) H∞(W ) XOR of mult. enrollments
[31, 30, 15] leaks nothing

LPN/LWE O(|W |) Hard to decode Each W i derived from linear
[17, 23, 29] code w/ noise W system of i.i.d bits

Digital Lockers o(|W |) Samples of W Security of individual enrollments
[8] have entropy (optimal)

Graded encoding O(|W |) Grouped entropy Security of individual enrollments
This work Def. 3 (optimal)
Table 1. Current approaches to fuzzy extraction. Let W denote the input source.

code (concatenated, repetition, etc.), however these constructions are trying to find
the optimal code for the setting. Thus, to provide some intuition we present the fuzzy
vault construction of Juels and Sudan [30].

Fuzzy Vault The approach proposed in this paper is most reminiscent of the “Fuzzy
Vault” [30]. In the original fuzzy vault, a secret is stored as a polynomial P . Interpolat-
ing points on this polynomial are published, randomly interspersed with “chaff points.”
The biometric allows you to identify which points are truly points on P , and which
are chaff. The security argument for the original fuzzy vault is information theoretic
− given a high-enough degree polynomial, the chaff points are information theoreti-
cally indistinguishable from the points interpolating P . Informally, this is because for
a given set of real and chaff points, there are (statistically) many false polynomials
that happen to have enough interpolating points. These false polynomials can’t be
distinguished from the real polynomial.

Boyen showed that reusability is unlikely to be achievable [5, Theorem 11] for
information-theoretic fuzzy extractors except if the individual enrollments are corre-
lated in specific and unrealistic ways [5, Theorem 9].

Computational Approaches Computational constructions are often tailored to spe-
cific types of distributions. Reusable fuzzy extractors have been constructed for arbi-
trary correlations in the computational model.

The majority of these constructions are based on the hardness of decoding random
linear codes [17, 23, 29]. Their hardness comes from the hardness of learning with errors
(LWE) or the learning parity with noise (LPN) problem. All of these constructions use
the input value O as the noise term for the random code. They are secure if LWE/LPN
is hard for this distribution. The work of Herder et al. [23] does not explicitly mention
reusability but they show they construction is secure if Gen is called multiple times.
Their definition implies security for multiple enrollment values. Their approach does
require that each individual enrollment is derived from a linear system of independent
and identically distributed bits.

The work of Canetti et al. [8] uses digital lockers [7]. These are obfuscated functions
that output a multi-bit string when provided a specified input value and nothing oth-
erwise. It is reusable for an arbitrary correlation between repeated readings. However,
their approach only supports a subconstant fraction of errors.



B Proofs of Biometric Signature Correctness and
Security

The proofs of correctness and security for the digital signature algorithm with fuzzy
keys follows the same approach as the public key encryption and secure sketch algo-
rithms. We begin with a proof of correctness.

Lemma 6. Let {O,C} ←↩ χIntra, and {O′, C′} ←↩ χIntra, where χIntra is ε1, ε2-stable
according to Definition 2.

Algorithm 8 is δ-correct − that is:

Pr(1 = DSA.Ver(DSA.Sign(msg, pk, C′),msg, pk)) ≥ 1− δ

with δ = κ(ε1 + ε2) + negl(λ), pk ← DSA.Gen(O, pp), and pp ← DSA.Setup(1λ, G).
The probability is taken over {O,C}, {O′, C′} ←↩ χIntra and over the randomness of
DSA.Gen and DSA.Setup.

Proof. By similar techniques as Lemmas 2 and 3, DSA.Sign’s subroutine FV.Rep returns
O with probability greater or equal to 1− κ(ε1 + ε2).

Observe that GES.Zeroize succeeds, as log2 |R| > λ, as required by Algorithm 7.

Next, observe that if FV.Rep returns valid encodings, then the zero test will succeed
with high probability due to the properties of the GES, as the two encodings computed
by DSA.Ver are of the same value.

Lemma 7. Let {O,C} ←↩ χInter, where χInter has λ-lower bounded m-grouped entropy
(Definition 3).

There does not exist a PPT Algorithm that can win the game in Definition 5 with
non-negligible probability in λ given pk ← DSA.Gen(O, pp) and pp← DSA.Setup(1λ, G),
and access to an oracle that computes sig ← DSA.Sign(msg, pk, C′), where msg is
randomly chosen.

Proof. Note that we require msg to be randomly chosen, simulating the result of a
known message passed through a random oracle.

We assume the underlying encoding behind the oracle is the [18] graded encoding
scheme, so we may define the encoding of a at level-i as

a + g · r
zi

where each element is a member of the appropriate cyclotomic field of degree n mod
prime q, and g, r, zi are all chosen according to [18].

Recall that in the hybrid graded encoding model of [20] (Definition 5) an adversary
wins if it is able to compute a zero ring element (i.e., an encoding of the form g · r for
sufficiently short r). That is, after the adversary successfully runs zero-test to compute
a set S of ring elements, it must compute a polynomial P on this set that returns a
zero ring element.

By the same argument as in Lemma 1, the adversary cannot compute a valid l†

encoding from H. Further, since elements of R are chosen at random, any level-l†

encoding computed from elements of R are also random.13 Due to the randomness of

13 Further, observe that elements of R may not be paired with elements of H.



these encodings at level l†, they will not give the adversary any advantage in computing
a level-l∗ encoding of zero.

Each valid {msg, sig} reveals one level l∗ zero (recall that verification computes
zero-test on Equation 1 and succeeds iff the expression is indeed an l∗ encoding of
zero):

sig · y − s ·
∏
i∈[κ]

Rmsgi,i (1)

We can write out the encoding using the following secret GGH parameters:

g Principal ideal generator zero encodings (drawn from discrete Gaussian distribution)

zli Encoding polynomial for li
zl‡ Encoding polynomial for l‡

rs, ry, r
′′
i,j Randomness for encoding of s, y, Rj,i respectively (drawn from discrete

Gaussian distribution).

Each encoding may then be written:

s =
v + g · rs

zl‡

y =
1 + g · ry

zl‡

Rj,i =
r′
i,j + g · r′′

i,j

zli

where rrerand is uniquely random for each signature due to the re-randomization
process in DSA.Sign. This variable is also short and distributed according to a discrete
Gaussian.

The GGH encoding of Equation 1 may be written:v ·
∏
i∈[κ]

Rmsgi,i

+
g · rrerand

zl†

 · 1 + g · ry

zl‡
−

v + g · rs

zl‡
·
∏
i∈[κ]

Rmsgi,i (2)

The simplified, zero-tested value is then:

h ·

(
rrerand + (v · ry − rs) ·

∏
i

r′
msgi,i + g · . . .

)
(3)

Observe that rrerand is the randomness computed by the re-randomization proce-
dure executed in DSA.Sign, and is therefore unique and highly random per-signature.14

In the GGH13 [18] model, g · rrerand/zl† can be written as∑
i∈S

xi

14 In order to guarantee randomness, we observe that there must be significantly more
than log |R| encodings of zero, so we choose log2 |R|.



where S is selected uniformly at random, and xi are l† encodings of zero computed
from H given with knowledge of {O′, C′} as in Algorithm 8.15

By the same argument as the original re-randomization process in [18], rrerand has
high entropy and cannot be estimated by an adversary. Therefore, by the Schwartz-
Zippel Lemma, an adversary has negligible probability of guessing a polynomial whose
arguments are of the form in Equation 3.

Finally, recall that signatures can be added − this results (with high probability)
in an invalid signature, but it is a valid encoding, so it might help an adversary to
construct zero ring elements. However, note that group signatures under addition is
isomorphic to groups of ring elements under addition, so without loss of generality, we
consider only the ring elements generated by running DSA.Ver on individual signatures,
not sums of signatures.

Since we have shown that an adversary cannot break the Hybrid GES scheme in
Definition 5, we are now ready to show the unforgeability of signatures generated by
Algorithm 8.

Theorem 3. Let {O,C} ←↩ χInter, where χInter has λ-lower bounded m-grouped en-
tropy (Definition 3).

Algorithm 8 is existentially unforgeable by PPT adversaries − all PPT adversaries
have advantage at most negl(λ).

Proof. Recall in DSA.Setup, pk = {H,R, s,y,pzt}. The adversary may obtain poly-
nomially many signatures for (adaptively chosen) messages msgj . The adversary wins
if it computes {msg′, sig′} for msg′ 6∈ {msgj}.

First note that since the message goes through a random oracle prior to being used
in Algorithm 8, any adversary’s strategy for choosing messages yields uniform random
input (regardless if it is adaptive or not).

Next, note that by the same argument as in Lemmas 4 and 1, no adversary can
construct a valid level-l† encoding of 0 from H (since level l′1, . . . , l

′
κ encodings are ran-

dom, and all other encodings are given at level l‡). Further, no adversary can construct
a valid level l† encoding of 0 from R, as all encodings in R are uniformly random.

Therefore, following a similar argument to Lemma 1, the hybrid graded encod-
ing scheme oracle M is computationally indistinguishable from M′ whose zero-test
function always returns ⊥. This hybrid game is statistically indistinguishable from a
second hybrid where the encodings in H are chosen uniformly at random. Finally, an
adversary with access only to {{msg, sig}l,R,y, s can simulate accesses to H.

Due to the Hybrid GES model, the only way to combine signatures with each
other or with the other public parameters is through multiplication/addition/scalar
multiplication. Because msg is random when input to Algorithm 8, any arithmetic
combinations of signatures with each other or other public parameters are invalid with
high probability.

15 Observe that the same log |R| encodings of zero at level l† may be computed de-
terministically during DSA.Sign once O is recovered. Further, if O does not contain
sufficient bits to construct log |R| encodings of 0, O may be augmented with random
bits that are never chosen in FV.Rep′ may then be used to construct more encodings
of 0.


