
A Masked White-box Cryptographic
Implementation for Protecting against

Differential Computation Analysis

Seungkwang Lee

Information Security Research Division, ETRI
skwang@etri.re.kr

Abstract. Recently, gray-box attacks on white-box cryptographic im-
plementations have succeeded. These attacks are more efficient than
white-box attacks because they can be performed without detailed knowl-
edge of the target implementation. The success of the gray-box attack is
reportedly due to the unbalanced encodings used to generate the white-
box lookup table. In this paper, we propose a method to protect the
gray-box attack against white-box implementations. The basic idea is to
apply the masking technique before encoding intermediate values dur-
ing the white-box lookup table generation. Because we do not require
any random source in runtime, it is possible to perform efficient encryp-
tion and decryption using our method. The security and performance
analysis shows that the proposed method can be a reliable and efficient
countermeasure.

Keywords: White-box cryptography, power analysis, differential computation
analysis, countermeasure.

1 Introduction

As personal devices become more diverse, the amount of data that needs to be
protected has also increased. To protect this broad category of personal infor-
mation, we use various encryption algorithms which are publicly known. For this
reason, we should securely protect the secret key. The attack models that mali-
cious attackers use to recover the secret key can be divided into three layers: the
black-box, the gray-box, and the white-box models. As the color of the layer be-
comes brighter, the amount of information that the attacker can access increases.
Attackers in the black-box model are given the in- and output for cryptographic
primitives, but in the gray-box model they also utilize additional information
leakage, i.e., side-channel information, such as timing or power consumption. As
a representative example, Kocher et al. presented Differential Power Analysis
(DPA) [18], a statistical analysis of power traces acquired during the execution
of a target cryptographic primitive. In addition to all of these, attackers in the
white-box model can access and modify all resources in the execution environ-
ment. Therefore, if the secret key used for the cryptographic primitive resides in
memory without any protection, it may leak directly to the white-box attacker.

2

The white-box cryptographic implementation is intended to counter this
white-box attack: the key idea behind is to embed the secret key in the im-
plementation using precomputed lookup tables and apply linear and non-linear
encodings so that it becomes difficult for a white-box attacker to extract the
secret key [11] [12]. Although it is a strong point to hide the key in the software
implementation, there are three main disadvantages that have been known so
far. Since the table itself acts as a secret key, taking the table has the same mean-
ing as taking the secret key. It is often called a code-lifting attack [38]. In this
regard, many researchers have attempted to mitigate the code-lifting attack by
significantly increasing the size of the lookup table [4] [6]. The serious problem
is that spending up to 20-50GB of storage to cope with code-lifting attacks is
too costly and at the same time impractical. Second, the use of lookup tables in-
creases the memory requirement and slows down the execution speed compared
to a non-white-box implementation of the same algorithm. Moreover, the size of
the lookup table has increased considerably with the aforementioned anti-code-
lifting technique. Finally, many white-box implementations have been practi-
cally broken by various attacks including key extraction, table-decomposition,
and fault injection attacks [35]. The first two white-box implementations for
DES [12] and AES [11] were shown to be vulnerable to differential cryptanal-
ysis [15] [39] as well as algebraic cryptanalytic attacks [3] [23] [27]. Although
several further variants of white-box implementations for DES and AES have
been proposed [10] [40] [17] [21], many of them were broken [31] [32]. In addition
to standard ciphers, research has also been conducted on various non-standard
ciphers, commonly named dedicated white-box ciphers [4] [6] [28]. It is worth
noting that these attacks have been performed in the white-box model requiring
the details of the target implementation.

However, the white-box cryptography currently faces the most serious prob-
lem: the gray-box model attack on white-box implementations has succeeded.
In other words, it is possible to reveal the secret key embedded in a white-box
implementation using side-channel information without any detailed knowledge
about it. In general, side-channel analysis, more specifically power analysis, is
successful if the key hypothesis of the attacker is correct, since the intermediate
value calculated from the correct hypothesis correlates to the power consumption
value at a particular point in the power trace. The authors of [7] have developed
plugins for dynamic binary instrumentation (DBI) tools including Pin [24] and
Valgrind [33] to obtain software execution traces that contain information about
the memory addresses being accessed. Their aptly named Differential Computa-
tion Analysis (DCA) is more effective because there is no measurement noise in
software traces unlike power traces obtained using the oscilloscope in classical
DPA. The main reason behind the success of DCA is due to the imbalances
in linear and non-linear encodings used in the white-box implementation [36].
The authors of [7] have suggested several methods to counteract DCA including
variable encodings [30], threshold implementations [34], splitting the input in
multiple shares to different affine equivalence, and a masking scheme using the
input data as a random source. Since DCA uses the memory address accesses

3

available in the software traces, some obfuscation techniques including control
flow obfuscation and table location randomization have been discussed.

Our contribution. After producing the software traces based on accessed ad-
dresses and data, DCA uses them to perform statistical analysis like DPA. There-
fore, DCA protection is in line with defense against power analysis. This study
is to present a masked white-box implementation for protecting against DCA
as well as power analysis. Particularly, Boolean masking is applied during the
lookup table generation unlike the existing masking techniques that are applied
in runtime. In other words, we do not need any random source at runtime. As a
result, the runtime overhead does not increase significantly. We begin by going
over the initial white-box AES (WB-AES) [11] to demonstrate its vulnerability
to DCA. We apply a masking technique to this vulnerable implementation, and
present three variants of the implementation according to the level of security
requirements. To evaluate the security of our proposed method, we perform DCA
on the masked WB-AES implementation with 128-bit key, and use the Walsh
transforms to analyze its security in more detail. The experimental results show
that our proposed method effectively defends the attacks. Compared to the ex-
isting WB-AES implementation, the lookup table size increases approximately
1.56 to 9.59 times depending on the choice of the implementation variants and
the number of lookups increases approximately 1.6 times.

Organization of the paper. The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of white-box cryptography and its vulner-
abilities to the gray-box attack. We propose a white-box implementation for
protecting against DCA in Section 3. We introduce a masked WB-AES im-
plementation and analyze its performance including the lookup table size. In
Section 4, we demonstrate the security of our proposed method through DCA
and the Walsh transforms. Section 5 concludes this paper.

2 Preliminaries

In this section, we introduce the basic concept of white-box cryptography and
provide experimental results about its vulnerability to gray-box attacks.

2.1 Overview of White-box Cryptography

In most cases, a white-box implementation is simply a series of encoded lookup
tables which replace individual computational steps of a cryptographic algo-
rithm. Let us give a simple example. For a computational step y = Ek(p), where
y, p, k ∈ GF(28) and k is a small portion of the secret key, let Ek be an 8×8
lookup table to map p to y. The secret and invertible encodings are then applied
to E in order to prevent a white-box attacker from recovering the secret key
using the input and output values. Let us denote the encodings by G and F , for

4

p∈ GF(28) q∈ GF(28)

E1 E2K1 K2

L

N1

L

N2

XOR

lookup table

input

key

p, q

K

cryptographic functionE

linear encoding

non-linear encoding

L

N

N1-1 N2-1

N3

Fig. 1: Basic principle of existing white-box cryptographic implementations.

example. Then we have: Ek = G ◦ Ek ◦ F−1. It is important to remember that
each encoding consists of linear and non-linear encodings.

Figure 1 shows a basic principle of existing white-box implementations for
a simple cryptographic operation, E1(p,K1) ⊕ E2(q,K2). With the same lin-
ear encoding applied, the XOR lookup table can be simply generated without
decoding the linear encoding. This is because the distributive property of mul-
tiplication over addition is satisfied if the same linear encoding is applied to the
two lookup values.

2.2 Gray-box Attacks on White-box Cryptography

For a gray-box attacker, suppose the followings:

– The underlying cryptographic algorithm is known, for example AES.
– The details about the type of the implementation and its structure are un-

known.
– There is no external encoding in the target implementation; the crypto-

graphic operation seen by the attacker is standard AES encryption (or de-
cryption).

– The attacker can collect power traces (software traces in the case of DCA)
while it is operated.

We examine DCA on 20 instances of an unprotected WB-AES-128 implemen-
tation [11] under this gray-box attack model. To collect the software execution
traces we have followed the approach presented in [7]. We have used Valgrind,
a DBI framework, to trace each execution of the target implementation with a
random plaintext and recorded all accessed addresses and data over time. Then,
those values have been serialized into vectors of ones and zeros for a classi-
cal representation of power traces. For each target instance, we have collected
200 software traces with random plaintexts and performed mono-bit Correlation
Power Analysis (CPA) [9] attacks, which is known to be more effective than

5

DPA, on the SubBytes output in the first round using Daredevil [8]. The result
reports two top 10 lists:

– the sum of the correlation coefficients for 8 mono-bit CPA attacks for each
subkey candidate

– the highest correlation coefficient among the mono-bit CPA results for all
subkey candidates

If the subkey is ranked in the top at least one of the two lists, we assumed that
it is revealed.

Table 1 shows one of the best cases for the attacker where all the subkeys are
revealed, but this is not always happening. For DCA attacks with only 200 soft-
ware traces on each of 20 instances of the unprotected WB-AES implementation,
DCA recovered an average of 14.3 out of 16 subkeys and the standard deviation
(S.D) was 2.17. Recovering the small number of missing subkeys is trivial using
brute-force attacks. The attack success rate was about 89% (286/320), and the
highest value average of the mono-bit CPA correlation coefficient for the correct
subkey was 0.557 (S.D = 0.173). In the presence of such correlation to the key,
both attack success rate and correlation coefficients can become higher if the
number of traces provided to DCA is more than 200.

CPA attacks with the Hamming Weight (HW) model are based on the fact
that the power consumption of the target device at any given point in time is
proportional or inversely proportional to the HW of the intermediate value. But
as shown in Table 1, even in this best case, nearly half of the target bits for each
subkey do not show a correlation. For this reason, CPA with the HW model is
not used to attack the white-box cryptographic implementation. The multi-bit
based CPA also depends on the value of a particular bit set to predict the power
consumption, and thus is hardly successful for the same reason. The mono-bit
DPA divides the traces based on the target intermediate bit and calculates the
difference between the two sets. If the two sets are divided based on the correct
hypothetical key, a noticeable spike appears at the target operation point in the
differential trace. In the same way, multi-bit DPA divides the two sets based on
the HW of the target intermediate value. The important point over here is that
there is no fixed set of intermediate bits that always shows the correlation to the
key due to the linear and non-linear encodings of the white-box implementation.
For this reason, the white-box implementation is being attacked by mono-bit
analysis.

For an in-depth understanding where and how key leaks occur, we conducted
additional experiments using SCARF [37] [20] [22]. Instead of collecting power
traces using an osilloscope, we also collected 200 software traces which serialize
the target intermediate value into vectors of ones and zeros, and mounted mono-
bit CPA using the SubBytes output in the first round. The highest peak in the
correlation plot shown in Figure 2 was found at the point where the SubBytes
output multiplied by 01 was looked up. As will be discussed later, this white-
box implementation contains table lookups for MixColumns, where the SubBytes
outputs multiplied by 01 are frequently looked up. Those are the point of interest
for this attack.

6

Table 1: DCA ranking for the target WB-AES implementation [11] when con-
ducting mono-bit CPA on the SubBytes output in the first round with 200
software traces.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 183 219 1 1 213 1 1 1 213 186 229 1 81 1 1
2 1 1 1 1 87 1 1 1 209 1 1 1 1 1 1 1
3 17 66 83 46 41 146 151 172 159 34 203 1 1 252 242 205
4 1 1 99 225 1 1 249 131 1 1 118 193 1 199 174 223
5 141 1 1 174 106 1 1 144 205 1 1 68 171 1 1 25
6 256 9 177 194 140 1 182 13 201 1 222 54 155 1 69 150
7 83 212 1 184 78 246 25 181 60 195 196 117 63 65 134 155
8 1 232 204 1 1 249 183 27 1 211 103 95 1 176 230 17

sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

highest 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

000 10005000

Point

0.5

0

C
or

re
la

tio
n

Fig. 2: A peak in the CPA result when attacking the SubBytes output in the
first round. Blue line: correct key hypothesis, gray line: wrong key hypothesis.

Sasdrich et al. [36] have indicated that the main reason behind successful
DCA and CPA attacks is largely due to the high imbalance in encoding used to
generate white-box lookup tables. Based on their definitions below, we demon-
strate the imbalance in the encoding used for the same lookup table that was
attacked above.

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ m, it is called a balanced mth order

7

correlation immune function or an m-resilient function.

By Definition 1, the larger the absolute value of Wf (ω) is, the stronger the
correlation between f(x) and x · ω is. Let us denote the output of SubBytes by
x, and the combination with MixColumns, linear and non-linear encodings by 32
Boolean functions fi∈{1,...,32}(x): {0, 1}8 → {0, 1}. Here we expect that f(x) will
have the greatest correlation when x is derived from the correct key candidate.
For all key candidates k∗ and for all ω we calculated the Walsh transforms Wfi

and summed up all the imbalances for each key candidate as follows:

∆f
k∈{0,1}8 =

∑
∀ω∈{0,1}8

∑
i=1,...,32

|Wfi(ω)|; k∗ = k.

Then this gives us as shown in Figure 3 that ∆f
k of the correct key candidate

(0x88, 136) is obviously distinguishable from that of other key candidates. This
indicates that fi(x) and x · ω are best correlated with the correct key 0x88. In
this way the Walsh transforms can be used to calculate the correlation between
key-dependent lookup values and hypothetical values.

3 Proposed Method

As aforementioned, the vulnerability to DCA of the previous white-box imple-
mentation is due to the imbalanced encoding. Our goal is to reduce the correla-
tion to the key at the intermediate values before encoding them in the process of
generating the white-box lookup table. To achieve this, we apply masking with
a balanced distribution at the key-sensitive intermediate value. Originally, the
masking techniques [1] [5] [13] [26] have been used to force the power consump-
tion signals to be uncorrelated with the secret key and the input and output.
We apply this technique, in particular Boolean masking, during the lookup table
generation. Before going into more depth, we provide a key idea.

0

30000

60000

90000

120000

0 50 100 150 200 250
k

∆
!

Fig. 3: Sum of all imbalances ∆f
k for all key candidates of the previous WB-AES

implementation.

8

3.1 Key Idea Behind

Figure 4 shows an example of the proposed method applied to E1(p,K1) ⊕
E2(q,K2). The key idea behind is to apply masking before encoding the out-
puts of E1 and E2 while generating lookup tables. Let us denote the lookup
tables for E1 and E2 by E1 and E2, respectively. An example of E1-generating
code might look like this:

for p = 0 to 255 do
pick random m ∈ {0, 1}8
y ← E1(p, K1) ⊕ m
E1[0][p] ← N1(L(m))
E1[1][p] ← N2(L(y)),

where the input p is not assumed to be encoded. The most important point over
here is that the mask should be selected uniformly at random, so 256 different
masks are used to generate E1 (or E2). Encoding the used masks, in particular
with the same linear transformation, not only protects them but also makes it
easy to unmask through the XOR operations by the distributive property of
multiplication over addition. The lookup values for an input p (resp. q) to E1
(resp. E2) are the following two values: an encoded key-sensitive intermediate
value which is masked, and an encoded mask. To cancel out the masks, they
are XORed by the following XOR lookup tables as shown in Figure 4. The
order of the XOR table lookups has to be kept for the complete unmasking. We
implement a WB-AES implementation with 128-bit key using this principle.

3.2 White-box AES Implementation

Since we protect a particular part of the implementation presented in [11] [29] we
focus on the protected part and briefly describe the rest. With AES-128 written
below, AddRoundKey, SubBytes, and part of MixColumns are combined into a
series of lookup tables. In the following, we use kr for the 4×4 round key matrix
at round r, lowering indices i,j for the current byte position in the round key
matrix, and use kr

i,j to indicate that the ShiftRows is applied to kri,j , where i
denotes the row index and j the column index.

state ← plaintext
for r = 1 to 9 do

ShiftRows(state)
AddRoundKey(state, kr−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)
AddRoundKey (state, k9)
SubBytes(state)
AddRoundKey(state, k10)

9

XOR

N6-1 N4-1

N7

XOR

N1-1 N5-1

N6

p∈ GF(28) q∈ GF(28)

E1 E2K1 K2

⊕ ⊕α[p] ∈R GF(28) β[q] ∈R GF(28)

L
N2

L
N3

L
N1

L
N4

XOR
maskα, β

lookup table

input

key

p, q

K

cryptographic functionE

linear encoding

non-linear encoding

L

NN2-1 N3-1

N5

Fig. 4: Basic principle of the proposed white-box cryptographic implementation.

ciphertext ← state

At first, T-boxes which is a set of 160 8×8 lookup tables combines AddRoundKey
and SubBytes as follows:

T r
i,j(p) = S(p⊕ kr−1

i,j), for 0 ≤ i, j ≤ 3, and 1 ≤ r ≤ 9,

T 10
i,j(p) = S(p⊕ k9

i,j)⊕ k10
i,j , for 0 ≤ i, j ≤ 3.

Let us denote (x0, x1, x2, x3) a column of four bytes to be multiplied with the
MixColumns matrix. That multiplication is then decomposed as follows:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3

 =

x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02

 .

For the right-hand side (say y0, y1, y2, y3), the commonly named Tyi tables are
defined as follows:

Ty0(x) = x · [02 01 01 03]T

Ty1(x) = x · [03 02 01 01]T

Ty2(x) = x · [01 03 02 01]T

Ty3(x) = x · [01 01 03 02]T .

10

N(in) N(in)

8 × 8
L

!",$%

!&"

N(out) N(out)…

32 × 32
L

4

4

(a) TypeII

N(in) N(in)

32 ×	8
L

N(out) N(out)…

4

4

(b) TypeIII

N(in)

XOR

N(in)

N(out)

4

4

(c) TypeIV

N(in) N(in)

8 × 8
L

��,�
��

4

4

(d) TypeV

Fig. 5: TypeII, III, IV and TypeV tables in the unprotected WB-AES implemen-
tation [11]. In/outputs at the same level have the same length.

The 32-bit result of y0 ⊕ y1 ⊕ y2 ⊕ y3 can be computed via the XOR table
lookups. An XOR lookup table takes two 4-bit inputs and maps them to their
XORed value, so the XOR operation of two 32-bit values is performed using 8
copies of XOR lookup tables. Because the MixColumns result requires twelve
32-bit XORs for each round, the previous WB-AES implementation includes 96
copies of the XOR lookup tables per round, a total of 864 copies.

Figure 5 simply illustrates the commonly named TypeII, TypeIII, TypeIV and
TypeV tables. TypeII is generated from the composition of T-boxes and Tyi, and
TypeIII cancels the effect of linear transformation applied to TypeII outputs and
takes care of the inversion of linear transformation applied to TypeII inputs of
the next round. To avoid the huge size of TypeIII tables, the 32×32 decoding
matrix for the inversion is divided into four submatrices. In addition, TypeIV
which is a set of the XOR lookup tables is looked up to combine intermediate
values of TypeII and TypeIII. The tables for combining the lookup values of
TypeII and TypeIII are named TypeIV II and TypeIV III, respectively [11].
Finally, the lookup table for the final round, say TypeV, is generated from T 10

without Tyi because MixColumns is not included in the final round (TypeI which
is related to external encoding is not discussed in this paper).

11

3.3 Masked White-box AES Implementation

In the proposed method, we mainly protect three key-dependent values. First,
the MixColumns output must be protected because it can not be secured solely
by the problematic encodings. As demonstrated previously, each subkey can
be easily revealed by performing DCA with 28 guesses. Second, the last round
input, that is each subbyte input to the last round, can be a target intermediate
value if an attacker knows k9

i,j and k10i,j , which require 216 guesses, because the
inverse S-box is known. Third, each subbyte of the second round input can
also be a target intermediate value if an attacker is able to guess 232 subkey
candidates. Therefore, we basically apply random masks to the MixColumns
outputs before encoding them, and replace the 4-bit random bijections used in
the non-linear encodings with the 8-bit random bijections for the second and
the final round inputs, depending on the security requirement. We note that
the non-linear encodings for each subbyte of the round output in the previous
unprotected white-box implementation consist of two concatenated 4-bit random
bijections, but they could not hide the correlation to the key. This is because
when a non-linear encoding is performed on a given subbyte, the upper 4-bit
bijections can not influence the lower 4-bit bijections at all. In other words, if
one of the upper 4 bits is changed but the lower 4 bits are the same, the lower
4 bits after the two concatenated 4-bit bijections are not affected by the upper
4 bits. Because of this fact, the two concatenated 4-bit random bijections could
not be 8-bit random bijections. Therefore, it is decided to perform non-linear
encodings by 8-bit random bijections at the attack point although the size of
the XOR lookup table increases. This gives us the following three cases of the
proposed implementations depending on the security requirements.

– CASE 1: Applying the masking technique to the intermediate values before
encoding them

– CASE 2: And applying the non-linear encoding of the 8-bit random bijections
at the 9th round output

– CASE 3: And applying the non-linear encoding of the 8-bit random bijections
at the 1st round output.

CASE 1. In CASE 1 [25], we mainly protect the output of Tyi; recall that the
linear and non-linear encodings were directly applied to it. Let (z0, z1, z2, z3)
denote the four-byte output of Tyi. Each byte of them is to be masked using
M defined in Algorithm 1. The used masks are also encoded and stored in our
protected lookup table named TypeII-M (Masked) as illustrated in Figure 6. As
pointed out earlier, the linear encoding applied to (ẑ0, ẑ1, ẑ2, ẑ3) and the masks
has to be the same, so that the unmasking can be performed by the XOR table
lookups. We generate TypeIV IIA and TypeIV IIB tables to perform the XOR
operations on the masked values and unmask them, respectively, as shown in
Figure 7. To be specific, TypeIV IIA consists of 864 (=9×96) copies of TypeIV,
but TypeIV IIB contains 1152 (=9×128) copies.
As we know that

T 10
i,j (p) = S(p⊕ k9

i,j)⊕ k10i,j , for 0 ≤ i, j ≤ 3,

12

Algorithm 1 Masking function M

1: procedure M(z) . Choose a random mask and apply it to z
2: m ∈R {0, 1}8
3: ẑ ← z ⊕m
4: return (ẑ,m) . masked z and the mask used

N(in) N(in)

8 × 8
L

!",$%

!&"

N(out) N(out)…

32 × 32
L

4

N(out) N(out)…

32 × 32
L

M
M

M
M

z0

'̂0

8

Four masks usedz1 z2 z3

'̂1 '̂2 '̂3

4

Fig. 6: TypeII-M tables in our WB-AES implementation.

each subbyte of the 9th round output can be attacked if an attacker can guess two
subkeys (k9

i,j and k10i,j) of the final round. This is because there is no MixColumns
in the final round, and is not impossible due to the fact that the encoding to
protect the round output is imbalanced. Let S−1 be the inverse S-box. Then we
know

S−1(T 10
i,j (p)⊕ k10i,j)⊕ k9

i,j = p, for 0 ≤ i, j ≤ 3.

There are two points to keep in mind. First, the T 10
i,j (p) output is not encoded

because we assumed that there is no external encoding, and thus this becomes a
subbyte of the ciphertext. Second, p of T 10

i,j (p) is equal to a decoded subbyte of

the 9th round output, which is a decoded input to TypeV. The crucial observa-
tion over here is that there will be a correlation between p and the corresponding
subbyte of the 9th round output owing to the encoding imbalance. To demon-
strate an attack based on this fact, we did a simple experiment using the Walsh
transform. Suppose that k9

0,0 is known and we want to see if the sum of all im-
balances for k100,0 will produce a noticeable peak like in the case of Figure 3. So
given T 10

0,0(p), the first subbyte of the ciphertext, we define ∆g
k in a similar way

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII-M TypeII-M

TypeIV_IIA

TypeIV_IIB

8

32

32

TypeII-M TypeII-M

Fig. 7: TypeII-M and TypeIV II tables (ShiftRows omitted).

to Section 2.2:

∆g
k∈{0,1}8 =

∑
∀ω∈{0,1}8

∑
i=1,...,8

|Wgi(ω)|,

where 8 Boolean functions gi∈{1,...,8}(p): {0, 1}8 → {0, 1} provide each bit of the

first subbyte of the 9th round output (TypeV input). In other words, g(p) is the
encoded p to the last round lookup table, TypeV. As a result, Figure 8 shows
∆g

k that distinguishes the correct subkey (k100,0 = 0x36, 54) from other candidates.

CASE 2 & CASE 3. To increase the security level in relation to this vulner-
ability, the CASE 2 and CASE 3 implementations require that the non-linear
encoding be 8-bit random bijections, instead of 4-bit bijections, at the boundary
between the 9th and the final rounds. By doing so, there will be the similar effect
as if masking is applied to each subbyte of the 9th round output. TypeIV IIC
is defined for this purpose and shown in Figure 9a. This taskes two bytes as in-
put: one comes from TypeIV IIB and the other comes from TypeII-M as shown
in Figure 10. In a nutshell, TypeIV IIA combines the masked Tyi intermediate

0

10000

20000

30000

0 50 100 150 200 250

k

∆
!

Fig. 8: Sum of all imbalances ∆g
k at the TypeV input for all key candidates.

14

values, and TypeIV IIB combines the TypeIV IIA lookup value and the masks.
Then, TypeIV IIC combines the TypeIV IIB lookup value and the remaining
mask, and its lookup values are protected particularly by using the 8-bit ran-
dom bijections. Thus, TypeIII in the 9th round, named TypeIII-N (8-bit Non-
linear encoding) shown in Figure 9b must be generated with the corresponding
8-bit bijections for the input decoding. While TypeIV IIIA is the same type
with TypeIV, TypeIV IIIB is generated with the 8-bit random bijections for the
round output like in the case of TypeIV IIC. TypeIII-N and TypeIV III are il-
lustrated in Figure 11. Since the 8-bit bijections are applied to each subbyte of
the 9th round output, the decoding for this must also be 8-bit bijections. The
lookup table for the final round in the CASE 2 and CASE 3 implementations is
then defined as TypeV-N (8-bit Non-linear encoding) as illustrated in Figure 9c.

N(in)

XOR

N(in)

N(out)

4

8

N(in) N(in)

4

(a) TypeIV IIC &
IV IIIB

N(in)

32 × 8
L

N(out) N(out)…

8

4 4

(b) TypeIII-N

N(in)

8 × 8
L

!",$%&

8

8

(c) TypeV-N

Fig. 9: Added tables in the CASE 2 and CASE 3 implementations.

CASE 3. The last vulnerability we want to deal with is that the CPA attack
on the second round input using the 32-bit key hypothesis is computationally
expensive but theoretically feasible because the proposed masking method does
not provide protection at this point. To solve this problem, the first round in
CASE 3 is also implemented like in the case of the protected 9th round. Therefore,
the decoding of the input to the 2nd round lookup table has to use the 8-bit
bijections. This second round lookup table is named TypeII-MN (Masked and
8-bit Non-linear encoding) and illustrated in Figure 12. Table 2 summarizes
the bijection length for each table added in our implementation and Figure 13
provides table lookup sequences for each case.

3.4 Size and Performance

Lookup table size. We now have a masked white-box implementation of AES-
128. With the external encoding excluded, the total table size of the unprotected
implementation [11] is computed as follows:

– TypeII : 9×4×4×256×4 = 147,456 bytes.

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII-M TypeII-M

TypeIV_IIA

TypeIV_IIB

8

32

32

TypeII-M TypeII-M

TypeIV_IIC

32

Fig. 10: TypeII-M and TypeIV II tables in the 9th round of the CASE 2 and
CASE 3 implementations.

TypeIV_IIIB

TypeIII-N TypeIII-N

8

32

TypeIII-N TypeIII-N

TypeIV_IIC

32

888

TypeIV_IIIA

32

88 8 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 11: TypeIII-N and TypeIV III in the 9th round of the CASE 2 and CASE 3
implementations.

16

N(in)

8 × 8
L

!",$%

!&"

N(out) N(out)…

32 × 32
L

8

N(out) N(out)…

32 × 32
L

M
M

M
M

z0

'̂0

8

Four masks usedz1 z2 z3

'̂1 '̂2 '̂3

4

Fig. 12: TypeII-MN in the second round of the CASE 3 implementation.

– TypeIV II : 9×4×4×3×2×128 = 110,592 bytes.
– TypeIII : 147,456 bytes.
– TypeIV III : 110,592 bytes.
– TypeV : 4×4×256 = 4,096 bytes.

Thus their total size is 520,192 bytes.
In CASE 1, TypeIII, TypeIV III, TypeV are the same with the unprotected im-
plementation, but the sizes of TypeII-M and TypeIV II (TypeIV IIA + TypeIV IIB)
are

– TypeII-M : 9×4×4×256×2×4 = 294,912 bytes.
– TypeIV II : 9×4×4×(3×2×128 + 4×2×128) = 258,048 bytes.

Then, the total size of the lookup tables is 815,104 bytes. In comparison, the
lookup table size increases 1.56 times.
In CASE 2, the main differences to CASE 1 are the TypeIV II and TypeIV III
structures in the 9th round. Specifically, the sizes of TypeIV IIA and TypeIV IIB
in the 9th round are 12,288 (=4×4×3×2×128) bytes, while the size of Type IIC
is 1,048,576 bytes (=4×4×65536, 1MB). In addition, the TypeIV IIIA size in
the 9th round becomes 8,192 (=4×4×2×2×128) bytes, and the TypeIV IIIB
size becomes 1MB. It is important to notice that the TypeV-N size is the same
as TypeV. Then the total size is 2,904,064 bytes and increases by 5.58 times
compared to the unprotected implementation as follows.

17

Table 2: Added tables in our implementation.

Type
Bijection length (bit)

CASE
Input decoding Output encoding

TypeII-M 4 4 1,2,3
TypeII-MN 8 4 3

TypeIV IIA & B 4 4 1,2,3
TypeIV IIC 4 8 2,3
TypeIII-N 8 4 2,3

TypeIV IIIA 4 4 2,3
TypeIV IIIB 4 8 2,3

TypeV-N 8 · 2,3

– TypeII-M : 9×4×4×256×2×4 = 294,912 bytes.
– TypeIV II : 8×4×4×(3×2×128 + 4×2×128) + 4×4×(2×3×2×128 + 256×256)

= 1,302,528 bytes.
– TypeIII + TypeIII-N : 147,456 bytes.
– TypeIV III : 8×4×4×3×2×128 + 1,056,768 = 1,155,072 bytes.
– TypeV-N : 4×4×256 = 4,096 bytes.

In CASE 3, the protection technique with the 8-bit random bijections used at
the boundary of the 9th and the final round of CASE 2 is also applied in the
first round. This gives us the following, and the total size is 4,993,024 bytes that
is 9.59 times larger than the unprotected implementation.

– TypeII-M + TypeII-MN : 9×4×4×256×2×4 = 294,912 bytes.
– TypeIV II : 7×4×4×(3×2×128 + 4×2×128) + 2×(4×4×(2×3×2×128 +

256×256)) = 2,347,008 bytes.
– TypeIII + TypeIII-N : 147,456 bytes.
– TypeIV III : 7×4×4×3×2×128 + 2,113,536 = 2,199,552 bytes.
– TypeV-N : 4×4×256 = 4,096 bytes.

The number of lookups. Since most of operations are table lookups except
for ShiftRows, we compare the number of lookups. During each execution, the
lookups for each table in the unprotected WB-AES implementation are counted
as follows.

– TypeII : 9×4×4 = 144.
– TypeIV II : 9×4×4×3×2 = 864.
– TypeIII : 9×4×4 = 144.
– TypeIV III : 9×4×4×3×2 = 864.
– TypeV : 4×4 = 16.

Then, there are 2,032 lookups in total. Compared to this, the only differences in
CASE 1 are

– TypeII-M : 9×4×4×2 = 288.
– TypeIV II : 9×4×4×(3×2 + 4×2) = 2016.

18

TypeII-M TypeIV_IIA TypeIV_IIB Type III TypeIV_III

Round 1 - 9

TypeV

Round 10

(a) CASE 1

TypeII-M TypeIV_IIA TypeIV_IIB TypeIII TypeIV_III

Round 1 - 8

TypeV-N

Round 10

TypeII-M TypeIV_IIA TypeIV_IIB TypeIV_IIC TypeIII-N TypeIV_IIIA TypeIV_IIIB

Round 9

(b) CASE 2

TypeII-MN TypeIV_IIA TypeIV_IIB TypeIII TypeIV_III

Round 2

TypeV-N

Round 10

TypeII-M TypeIV_IIA TypeIV_IIB TypeIV_IIC TypeIII-N TypeIV_IIIA TypeIV_IIIB

Round 9

TypeII-M TypeIV_IIA TypeIV_IIB TypeIV_IIC TypeIII-N TypeIV_IIIA TypeIV_IIIB

Round 1

TypeII-M TypeIV_IIA TypeIV_IIB TypeIII TypeIV_III

Round 3 - 8

(c) CASE 3

Fig. 13: Table lookup sequences in the CASE 1-3 implementations.

Then 3,328 lookups are performed during each execution of our masked WB-
AES implementation, and thus the number of table lookups increases by 1.63
times compared to the unprotected one. The numbers of lookups in CASE 2
and CASE 3 are 3,296 and 3,264, respectively. These are 1.62 and 1.6 times,
respectively, compared to the unprotected implementation. We can find that
the number of table lookups decrease as the protection is enhanced because the
number of the 8-bit unit XOR table lookup increases. Therefore, it is necessary
to make a careful choice according to the security requirement level and available
resources in the device to which this countermeasure is applied.

Figure 14 shows the memory accesses performed by our CASE 1 implementation
on the stack. One can see repeated memory access patterns from round 1 to round
9. In the final round, memory access is relatively small due to the absence of
MixColumns.

19

Fig. 14: Visualization of a software execution trace of our WB-AES implemen-
tation. Green: addresses of memory locations being read, Red: being written.

4 Security Analysis and Experimental Results

In this section, we begin with the problematic encoding, which is composed of
invertible linear transformations and two concatenated 4-bit random bijections.
Let us denote that encoding by λ, and let δ = Pr[yi = λ(y)j], given i, j in the
range of 0 to 7, and for all y ∈ GF(28), where λ(y): {0, 1}8 → {0, 1}8 and yi
means the ith bit of y. Based on the fact that DCA and power analysis on the
previous white-box implementations are possible due to the imbalance in λ, we
can conclude that δ is noticeably greater (or less) than 1/2 enough to cause
the correlation between yi and λ(y)j . If δ = 0 as an extreme example, then yi
and λ(y)j are negatively correlated to each other. To make yi uncorrelated to a
particular bit of the λ output, our proposed method applies random masks for
each value of y ∈ GF(28). If the mask is picked uniformly at random, then 256
masks are applied. What is important over here is that if the mask m is random,
(m ⊕ y) and its jth bit are also random. This gives us the following observation
that

δ̂ = Pr[yi = λ(y ⊕m)j] = 1/2,

where m is random for each y. Consequently, yi and λ(y ⊕m)j will be uncorre-
lated to each other, and we can conclude that mono-bit CPA attacks are hardly
to succeed.

20

In terms of the Walsh transforms of Definition 1, by randomly masking the
key-intermediate values before encoding them, we have

Wfi(ω) = Σx∈{0,1}8(−1)fi(x⊕m∈R{0,1}8)⊕x·ω

⇔ Σx∈{0,1}8(−1)fi(m
′∈R{0,1}8)⊕x·ω,

and this gives us

∆f
CorrectSubKey ≈ ∆

f
WrongSubKey,

because m is picked uniformly at random for each x and thus f(m′ ∈R {0, 1}8)

will not correlate to x · ω. Figure 15 shows the sum of imbalances ∆f
k at the

TypeII-M lookup values and now we can see there is no distinguishable peak for
the correct subkey.

103000

103500

104000

104500

105000

105500

0 50 100 150 200 250

k

Correct subkey

∆
�

Fig. 15: Sum of all imbalances ∆f
k at the TypeII-M output in the CASE 1 im-

plementation.

In the CASE 2 and CASE 3 implementations, the non-linear encoding for each
subbyte of the 1st and 9th round outputs is performed with the 8-bit random bi-
jections. Thus, g(p) now involves non-linear encodings by 8-bit random bijections
instead of two concatenated 4-bit ones. To show that

∆g
CorrectSubKey ≈ ∆

g
WrongSubKey,

we calculated ∆g
k for the TypeV-N input and Figure 16 shows that there is no

spike at the correct subkey. This is because 8-bit random bijections are used to
eliminate correlation before and after non-linear encodings.

One might choose random masks with the HW of 4, but in this case the number
of masks is reduced compared to using a full range of masks. There are mainly
two reasons why a CPA attack based on a model other than the mono-bit model
is unlikely to be achieved on our proposed implementation. As aforementioned,
the randomly chosen encoding randomly changes the HW and the bit-to-bit

21

25200

25600

26000

26400

26800

0 50 100 150 200 250

k

Correct subkey
∆
�

Fig. 16: Sum of all imbalances ∆g
k at the TypeV-N input in the CASE 2 and

CASE 3 implementations.

correlation before and after the encoding also varies from case to case. Further-
more, masking before the encoding makes the HW of the encoded output more
unpredictable. Then we have:

δ̂ = Pr[HW(y) = HW(λ(y ⊕m))] = 1/9,

which makes CPA based on the HW-model unsuccessful. For this reason, we
focus on mono-bit CPA in the following experiments.

DCA and Results. We have generated 20 target instances of our CASE 1 im-
plementation to be attacked by DCA. For more accurate attacks, 10,000 software
traces were generated with random plaintexts for each target instance. DCA was
performed with mono-bit CPA attacks on the SubBytes output in the first round.
The entire first round was observed in order to check whether the key is leaked
in the masked values or in the process of unmasking them. We note that the
expected number of successful guessing subkeys is 1.25 (= 320/256), and the
probability of the successful attack is 0.39%. Let’s call our 20 attacks ATK #1,
. . . , ATK #20. Consequently, 4 out of 320 correct subkeys were ranked at the
top in at least one list (sum or highest) as shown in Table 3. (All DCA rank-
ing tables can be found in [19].) However, the following analysis shows that the
revealed subkeys were accidentally found. The main reasons for this conclusion
are that two key leakages occurred at the points where the SubBytes outputs
multiplied by 02 were looked up, and the other two occurred at the points where
the encoded masks were looked up.
We provide the full DCA rankings of ATK #12, ATK #14, ATK #17, and
ATK #18 in Table 4, 5, 6 and 7, respectively, in order to find out which target
bit of the hypothetical value correlates to the key. It is important to notice
again that the mono-bit CPA ranking itself does not determine the subkey, but
is determined based on the sum of the correlation coefficients for each target bit
or the highest correlation coefficient. We determined ω based on the correlated
target bits for the leaked subkeys, and calculated their Walsh transforms.
For ATK #12 and ATK #17, let’s see Table 4, Figure 17a and Table 6, Fig-
ure 17b, respectively. In case of ATK #12, we can know that the 2nd-bit-based
CPA revealed the 15th subkey, and its leak point was f24(·). To understand how

22

Table 3: Sum/Highest DCA ranking of the correct subkey. If the correct one is
not in the top 10, we leave it blank.

XXXXXXXXXATK #
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2 2/5

3

4

5

6 8/4

7

8 3/ /6

9 5/3 /6 7/

10 9/ /3

11 /4

12 5/3 5/ 1/1 /2

13 9/ 3/ 6/

14 /1 /4

15 /6

16 /7

17 1/9

18 1/2

19

20 3/

23

−40

0

40

0 10 20 30
i

W
fi

(a) On the 15th subkey in ATK #12 with ω = 2

−60

−30

0

30

60

0 10 20 30
i

W
fi

(b) On the 15th subkey in ATK #17 with ω = 64.

Fig. 17: Walsh transforms for fi∈{1,...,32}(·) of ATK #12 and ATK #17. Black
line: correct key, gray line: wrong key candidates.

24

−40

0

40

0 10 20 30
i

W
fi

(a) On the 9th subkey in ATK #14 with ω = 128.

−30

0

30

60

0 10 20 30
i

W
fi

(b) On the 9th subkey in ATK #18 with ω = 16.

Fig. 18: Walsh transforms for fi∈{1,...,32}(·) of ATK #14 and ATK #18. Black
line: correct key, gray line: wrong key candidates.

25

Table 4: DCA ranking of ATK #12.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 20 19 156 151 228 101 158 89 78 232 199 110 141 210 58 64
2 169 1 41 30 188 189 24 149 196 162 101 237 103 38 1 118
3 218 113 51 138 166 63 97 2 237 53 227 138 163 227 55 2
4 190 53 33 65 55 212 146 177 2 152 225 119 9 230 30 253
5 138 142 62 3 16 4 184 121 107 170 23 253 97 143 151 160
6 137 99 206 184 165 44 111 73 27 148 119 247 52 152 29 71
7 61 137 43 108 223 197 172 223 199 71 70 131 84 84 149 240
8 106 202 102 4 200 58 254 156 65 51 84 178 138 238 14 83

Table 5: DCA ranking of ATK #14.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 161 95 150 236 231 231 104 198 197 249 150 33 212 68 196 135
2 18 66 108 57 124 79 47 78 142 11 252 240 122 70 212 187
3 213 198 95 107 159 85 99 98 149 201 172 92 160 144 63 193
4 237 249 221 10 45 157 10 168 107 1 209 194 242 17 177 249
5 129 218 167 91 176 124 113 168 83 59 228 52 183 43 9 204
6 46 232 85 205 244 212 18 9 37 221 250 131 237 66 76 1
7 227 249 212 94 237 45 227 129 194 208 103 131 46 165 145 228
8 46 193 137 249 124 250 111 21 1 97 31 128 247 106 115 215

to interpret f24(·) related to the 15th subkey in the first round, recall Section 3.2
that the 15th subkey is involved into x of Ty2(x), where

Ty2(x) = x · [01 03 02 01]T ,

and x is the SubBytes output. Then this gives us f24(·) is the LSB of the encoded
byte of (x · 02) ⊕ m ∈R {0, 1}8, where (x · 02) is implemented as a 1-bit left
shift followed by a conditional (⊕ 0x1B) if the MSB of x was 1. Therefore, this
key leak is considered accidental since this has nothing to do with the 2nd bit of
the target hypothetical SubBytes output. An explanation of the accidental key
leak in ATK #17 can be given in the same way. When performing CPA with the
7th bit of the hypothetical SubBytes output, f19(·) is shown to be not first-order
correlation immune, where f19(·) is the 6th of the encoded byte of (x · 02) ⊕ m
∈R {0, 1}8. They are irrelevant to each other.
In ATK #14 and ATK #18, we can not see any distinguishable imbalance that
is likely to reveal the subkey as shown in Figure 18. Interestingly, we found that
key leakages occurred at the unexpected points: during the lookup of the encoded
masks as shown in Figure 19, where f̄i∈{1,...,32}(x) denotes 32 Boolean functions
for the encoded masks and x is the SubBytes output. In other words, f̄(x) means
the encoded random masks used to protect the 4-byte intermediate value of the

26

Table 6: DCA ranking of ATK #17.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 54 242 59 27 127 171 9 174 249 72 135 151 31 28 12 256
2 23 33 64 195 85 104 154 216 226 31 222 137 173 225 132 113
3 151 145 221 80 126 238 11 134 236 181 224 250 154 30 12 203
4 255 237 62 63 20 217 160 218 225 101 197 125 207 134 16 211
5 209 93 107 204 11 194 92 254 220 18 110 223 106 154 38 224
6 197 132 211 252 151 173 7 50 71 49 39 29 212 20 3 177
7 138 161 220 246 16 60 251 46 223 199 35 158 196 129 1 209
8 159 192 204 13 120 237 231 253 202 71 72 45 142 251 10 238

Table 7: DCA ranking of ATK #18.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 174 52 230 105 91 122 229 39 84 194 213 221 118 38 158 32
2 158 176 107 84 22 190 56 61 33 228 197 123 44 125 97 16
3 202 30 239 254 181 142 201 23 21 190 147 117 22 242 185 248
4 8 132 252 126 232 29 95 20 41 126 12 254 72 155 166 91
5 134 62 79 110 163 5 6 88 1 256 24 88 137 196 174 122
6 243 147 88 27 68 184 72 212 133 246 196 83 176 145 18 239
7 193 222 162 168 45 26 225 234 242 73 144 92 181 6 34 167
8 252 192 67 39 141 31 21 129 119 147 14 215 151 158 154 160

27

MixColumns. Since the randomly generated mask is not key sensitive, these can
not be the key leakages. Therefore, it can be concluded that there was no key
leakage in the correct sense.

−40

0

40

80

0 10 20 30
i

W
fi

(a) On the 9th byte of the state matrix in ATK #14 with ω = 128

−40

0

40

0 10 20 30
i

W
fi

(b) On the 9th byte of the state matrix in ATK #18 with ω = 16.

Fig. 19: Walsh transforms for f̄i∈{1,...,32}(·) of ATK #14 and ATK #18. Black
line: correct key, gray line: wrong key candidates.

The histogram and normal distribution of the 2560 (=20×16×8) mono-bit CPA
rankings are shown in Figure 20. The average ranking of the mono-bit CPA
attacks for the correct subkey is 128.98 (S.D = 74.61). The highest value average
of the mono-bit CPA correlation coefficient for the correct subkey was just 0.206
(S.D = 0.022). It is much lower than 0.557, that of the unprotected white-
box implementation attacked with only 200 software traces. In conclusion, the
correlation to the key is drastically reduced through Boolean masking applied
before encoding, and our method can be used as an efficient countermeasure
against DCA and power analysis by significantly mitigating key leakage caused
by the encoding imbalance.

5 Conclusion and Discussion

In this paper, we proposed a masked white-box cryptographic implementation
to protect DCA attacks. First, we generated 20 target instances according to

28

280

290

300

310

320

330

340

0

0.001

0.002

0.003

0.004

0.005

0.006

32 64 96 128 160 192 224 256

Ranking interval

Frequency

Normal Distribution

Fig. 20: CPA ranking histogram and normal distribution.

the unprotected WB-AES implementation and performed DCA on the SubBytes
output in the first round with 200 software traces. As a result, an average of 14.3
subkeys were leaked and the average of the highest CPA correlation coefficient
for the correct subkey was 0.557. In order to testify the problematic encoding
imbalance we provided the sum of all imbalances that distinguishes the correct
key from other key candidates.

To solve this problem, we applied masking to the intermediate value before ap-
plying the encoding during the white-box table generation. Based on this basic
idea, a design method of the masked WB-AES implementation was suggested.
To demonstrate its security, DCA was performed with 10,000 software traces for
each of 20 instances. Although 4 out of the 320 subkeys were leaked as a result,
we showed that they can not be seen as key leakages because a correlation has
occurred at a point where the target intermediate value has nothing to do with
the key value. The highest CPA correlation coefficient of the correct subkey was
0.206 in average. Collectively, we can conclude that our proposed method can
practically defend DCA and power analysis on white-box cryptographic imple-
mentations.

We presented three variants based on the security requirement level for DCA and
power analysis attacks. Compared to the unprotected WB-AES implementation,
the lookup table size increased by approximately 1.56 to 9.59 times, and the
number of lookups by about 1.6 times. Thus a careful choice has to be made
where and how to apply this countermeasure. An additional attractive point is
that there is no need for a random source at runtime. Of course, the storage
requirements of our proposed method might be not suitable for low-cost and
resource-constrained devices like IC cards, but are likely to be available to other
smart devices.

While there are a variety of problems and limitations, white-box cryptographic
implementations certainly have advantages in environments where hardware
cryptographic equipment is not available. In addition, it is easy to update the key
or the cryptographic logic compared to the hardware device. Another interesting

29

point is that the white-box cryptographic implementation for the symmetric key
algorithm can be applied to asymmetric key applications because the encryption
and the decryption lookup tables are different from each other. Currently, vari-
ous companies [14] [2] [16] are trying to commercialize white-box cryptography,
and more and more white-box solutions will be provided in the future. In the
case of software-based cryptographic implementations, the secret keys that re-
side in memory are likely to leak if they do not have any protection. Therefore,
the level of protection should also be chosen appropriately, taking into account
the value of the protected information.

Directions for future work include developing various designs of other block
ciphers and combining additional techniques to provide resistance to white-box
attacks. Also, applying other kinds of masking techniques can be taken into
account.

Acknowledgment

This work was supported by Institute for Information & communications Tech-
nology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-
0-00364, Development of training-based template attack software for security
verification of secret data leakage of embedded secure element [the T&HO project]),
and (No.2016-0-00399, Study on secure key hiding technology for IoT devices [the
KeyHAS project]).

References

1. Akkar, M., Giraud, C.: An Implementation of DES and AES, Secure against Some
Attacks. In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings. pp. 309–318.
No. Generators (2001), http://dx.doi.org/10.1007/3-540-44709-1_26

2. Axsan white-box cryptographic solution.: https://www.arxan.com/technology/

white-box-cryptography/

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White Box AES Imple-
mentation. In: Selected Areas in Cryptography, 11th International Workshop, SAC
2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers. pp. 227–240
(2004), http://dx.doi.org/10.1007/978-3-540-30564-4_16

4. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic Schemes Based
on the ASASA Structure: Black-Box, White-Box, and Public-Key (Extended Ab-
stract). In: Advances in Cryptology - ASIACRYPT 2014 - 20th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I. pp. 63–84
(2014), http://dx.doi.org/10.1007/978-3-662-45611-8_4

5. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In:
Selected Areas in Cryptography, 11th International Workshop, SAC 2004, Wa-
terloo, Canada, August 9-10, 2004, Revised Selected Papers. pp. 69–83 (2004),
http://dx.doi.org/10.1007/978-3-540-30564-4_5

30

6. Bogdanov, A., Isobe, T.: White-Box Cryptography Revisited: Space-Hard Ciphers.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-6, 2015. pp. 1058–1069 (2015),
http://doi.acm.org/10.1145/2810103.2813699

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential Computation Anal-
ysis: Hiding your White-Box Designs is Not Enough. vol. 2015, p. 753 (2015),
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#BosHMT15

8. Bottinelli, P., Bos, J.W.: Computational Aspects of Correlation Power Analysis
(2015), https://eprint.iacr.org/2015/260

9. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Cryptographic Hardware and Embedded Systems - CHES 2004: 6th
International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings.
Lecture Notes in Computer Science, vol. 3156, pp. 16–29. Springer (2004)

10. Bringer, J., Chabanne, H., Dottax, E.: White Box Cryptography: Another At-
tempt. IACR Cryptology ePrint Archive 2006, 468 (2006), http://eprint.iacr.
org/2006/468

11. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.V.: White-Box Cryptography and
an AES Implementation. In: Proceedings of the Ninth Workshop on Selected Areas
in Cryptography (SAC 2002). pp. 250–270. Springer-Verlag (2002)

12. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A White-Box DES Im-
plementation for DRM Applications. In: Security and Privacy in Digital Rights
Management, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, Novem-
ber 18, 2002, Revised Papers. pp. 1–15 (2002), http://dx.doi.org/10.1007/

978-3-540-44993-5_1

13. Coron, J., Goubin, L.: On Boolean and Arithmetic Masking against Differential
Power Analysis. In: Cryptographic Hardware and Embedded Systems - CHES 2000,
Second International Workshop, Worcester, MA, USA, August 17-18, 2000, Pro-
ceedings. pp. 231–237 (2000), http://dx.doi.org/10.1007/3-540-44499-8_18

14. Gemalto white-box cryptographic solution.: https://sentinel.gemalto.com/

software-monetization/white-box-cryptography/

15. Goubin, L., Masereel, J., Quisquater, M.: Cryptanalysis of White Box DES Im-
plementations. In: Selected Areas in Cryptography, 14th International Workshop,
SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected Papers. pp.
278–295 (2007), http://dx.doi.org/10.1007/978-3-540-77360-3_18

16. InsideSecure white-box cryptographic solution.: https://www.insidesecure.com/
Products/Application-Protection/Software-Protection/WhiteBox

17. Karroumi, M.: Protecting White-Box AES with Dual Ciphers. In: Information
Security and Cryptology - ICISC 2010 - 13th International Conference, Seoul,
Korea, December 1-3, 2010, Revised Selected Papers. pp. 278–291 (2010), http:
//dx.doi.org/10.1007/978-3-642-24209-0_19

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. pp. 388–397 (1999),
http://dx.doi.org/10.1007/3-540-48405-1_25

19. Lee, S.: A Masked White-box Cryptographic Implementation for Protecting against
Differential Computation Analysis. Cryptology ePrint Archive, Report 2017/267
(2017), http://eprint.iacr.org/2017/267

20. Lee, S., Choi, D., Choi, Y.J.: Improved Shamirś CRT-RSA Algorithm: Revisit with
the Modulus Chaining Method. ETRI Journal 3(3) (Apr 2014)

31

21. Lee, S., Choi, D., Choi, Y.J.: Conditional Re-encoding Method for Cryptanalysis-
Resistant White-Box AES. ETRI Journal 5(5) (Oct 2015), http://dx.doi.org/
10.4218/etrij.15.0114.0025

22. Lee, S., Jho, N.: One-Bit to Four-Bit Dual Conversion for Security Enhancement
against Power Analysis. IEICE Transactions 99-A(10), 1833–1842 (2016), http:
//search.ieice.org/bin/summary.php?id=e99-a_10_1833

23. Lepoint, T., Rivain, M., Mulder, Y.D., Roelse, P., Preneel, B.: Two Attacks
on a White-Box AES Implementation. In: Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers. pp. 265–285 (2013), http://dx.doi.org/10.1007/
978-3-662-43414-7_14

24. Luk, C., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S.,
Reddi, V.J., Hazelwood, K.M.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: Proceedings of the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation, Chicago, IL, USA,
June 12-15, 2005. pp. 190–200 (2005), http://doi.acm.org/10.1145/1065010.

1065034
25. Masked WB-AES CASE1 sample binary.: https://github.com/

SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1
26. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:

Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY,
USA, April 10-12, 2000, Proceedings. pp. 150–164 (2000), http://dx.doi.org/10.
1007/3-540-44706-7_11

27. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a Generic Class
of White-Box Implementations. In: Selected Areas in Cryptography, 15th Inter-
national Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-
15, Revised Selected Papers. pp. 414–428 (2008), http://dx.doi.org/10.1007/

978-3-642-04159-4_27
28. Minaud, B., Derbez, P., Fouque, P., Karpman, P.: Key-recovery attacks on ASASA.

In: Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II. pp. 3–27
(2015), http://dx.doi.org/10.1007/978-3-662-48800-3_1

29. Muir, J.A.: A Tutorial on White-box AES. IACR Cryptology ePrint Archive 2013,
104 (2013), http://eprint.iacr.org/2013/104

30. de Mulder, Y.: White-Box Cryptography: Analysis of White-Box AES Implemen-
tations. In: Ph.D thesis, KU (2002)

31. Mulder, Y.D., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao - Lai White-Box
AES Implementation. In: Selected Areas in Cryptography, 19th International Con-
ference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected
Papers. pp. 34–49 (2012), http://dx.doi.org/10.1007/978-3-642-35999-6_3

32. Mulder, Y.D., Wyseur, B., Preneel, B.: Cryptanalysis of a Perturbated White-
Box AES Implementation. In: Progress in Cryptology - INDOCRYPT 2010 -
11th International Conference on Cryptology in India, Hyderabad, India, Decem-
ber 12-15, 2010. Proceedings. pp. 292–310 (2010), http://dx.doi.org/10.1007/
978-3-642-17401-8_21

33. Nethercote, N., Seward, J.: Valgrind: a Framework for Heavyweight Dynamic
Binary Instrumentation. In: Proceedings of the ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation, San Diego, Cali-
fornia, USA, June 10-13, 2007. pp. 89–100 (2007), http://doi.acm.org/10.1145/
1250734.1250746

32

Table 8: DCA ranking of ATK #1. If the correct key is not in the top 10, we
leave it blank.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 53 62 138 179 245 167 214 146 85 57 223 244 32 38 169 152
2 36 12 70 17 160 241 244 19 148 184 113 119 68 195 96 20
3 190 238 226 76 80 250 183 58 10 4 193 113 49 252 232 85
4 52 168 234 153 235 92 20 177 70 19 232 84 213 245 193 187
5 223 113 193 239 44 253 241 69 134 34 93 123 158 163 151 165
6 42 75 168 256 199 39 120 181 57 122 43 194 205 176 170 89
7 179 170 236 215 230 98 152 82 52 250 124 122 206 79 88 234
8 198 111 149 158 79 97 81 55 107 153 87 96 219 240 166 18

sum

highest

34. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Information and Communications Security, 8th
International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7, 2006,
Proceedings. pp. 529–545 (2006), http://dx.doi.org/10.1007/11935308_38

35. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the White-Box: Practical Attacks
against Obfuscated Ciphers. In: Presented at BlackHat Europe 2015 (2015), https:
//www.blackhat.com/eu-15/briefings.html

36. Sasdrich, P., Moradi, A., Güneysu, T.: White-Box Cryptography in the Gray Box
- - A Hardware Implementation and its Side Channels -. In: Fast Software Encryp-
tion - 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers. pp. 185–203 (2016), http://dx.doi.org/10.1007/
978-3-662-52993-5_10

37. SCARF homepage: http://www.k-scarf.or.kr/

38. Wyseur, B.: White-Box Cryptography. In: Encyclopedia of Cryptography
and Security, 2nd Ed. pp. 1386–1387 (2011), http://dx.doi.org/10.1007/

978-1-4419-5906-5_627

39. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box
DES Implementations with Arbitrary External Encodings. In: Selected Areas in
Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada, August
16-17, 2007, Revised Selected Papers. pp. 264–277 (2007), http://dx.doi.org/

10.1007/978-3-540-77360-3_17

40. Xiao, Y., Lai, X.: A Secure Implementation of White-box AES. In: The Second
Internationial Conference on Computer Science and Its Applications - CSA 2009.
vol. 2009, pp. 1–6 (2009)

A DCA Ranking Tables

The following tables represent the DCA results for ATK #1 - ATK #20, ex-
cept for ATK #12, ATK #14, ATK #17 and ATK #18 that were provided in
Section 4. If the correct key is not in the top 10, we leave it blank.

33

Table 9: DCA ranking of ATK #2.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 44 229 36 54 233 67 37 74 23 47 71 160 203 195 208 87
2 15 223 161 247 229 211 76 165 205 188 78 179 45 188 61 169
3 171 219 117 156 171 82 176 127 113 90 41 64 138 125 108 129
4 81 184 62 202 56 50 211 108 198 53 217 71 76 41 155 115
5 186 31 161 19 76 61 206 32 202 71 33 102 123 131 15 177
6 256 238 49 80 16 232 185 34 73 236 130 110 178 242 2 32
7 87 64 4 59 157 76 225 30 106 171 253 99 34 27 254 29
8 186 148 164 29 166 98 18 2 7 113 202 45 115 63 118 54

sum 2

highest 5

Table 10: DCA ranking of ATK #3.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 252 90 243 76 164 242 174 236 251 179 171 2 55 225 128 210
2 154 114 193 230 57 77 119 231 185 155 125 2 46 167 77 248
3 21 242 235 206 127 55 247 256 77 38 199 52 174 247 121 99
4 80 52 73 208 35 211 178 50 79 86 230 147 18 135 31 61
5 220 7 108 110 7 80 24 208 255 99 4 157 237 225 213 45
6 229 189 140 60 8 30 222 33 113 46 37 255 189 115 204 35
7 189 13 52 128 205 193 129 175 96 39 24 123 171 133 82 127
8 70 200 122 204 213 166 235 6 13 240 27 110 37 50 23 203

sum

highest

34

Table 11: DCA ranking of ATK #4.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 230 44 114 119 100 13 4 130 140 185 84 213 32 78 51 139
2 15 229 171 220 248 131 225 127 223 69 200 178 104 33 131 170
3 93 16 254 254 180 36 249 208 12 188 217 191 194 252 158 140
4 236 162 250 37 215 50 240 140 25 190 31 78 192 84 191 3
5 22 121 217 239 181 24 199 12 249 213 225 15 248 219 41 152
6 187 163 51 148 185 18 123 218 181 63 204 13 223 144 89 114
7 190 183 128 59 39 189 4 219 65 125 48 59 254 214 26 234
8 220 76 110 143 250 208 168 212 64 25 15 85 182 141 41 135

sum

highest

Table 12: DCA ranking of ATK #5.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 256 31 195 189 210 39 18 192 147 35 150 246 239 190 75 72
2 183 238 88 185 212 105 91 64 210 244 45 95 129 253 196 74
3 110 41 68 116 133 67 119 203 203 188 204 181 106 165 85 219
4 169 171 18 20 25 91 124 252 91 184 111 175 95 143 93 179
5 41 220 155 35 147 30 115 73 16 106 58 142 136 146 32 161
6 57 231 174 103 21 235 227 94 180 61 44 190 31 127 240 199
7 40 179 174 74 139 129 59 24 67 1 24 134 65 94 204 213
8 227 222 81 201 164 72 96 116 199 151 238 36 14 179 113 46

sum

highest

Table 13: DCA ranking of ATK #6.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 114 102 69 21 109 115 107 53 191 36 183 31 147 137 155 142
2 113 253 168 36 160 244 19 242 171 224 20 235 231 47 15 98
3 249 74 138 13 19 35 169 62 249 189 214 94 95 247 106 197
4 63 12 84 210 200 77 160 24 244 229 104 215 128 59 21 72
5 65 235 66 1 173 189 192 191 63 71 104 156 101 113 156 46
6 27 244 188 211 97 212 215 159 22 106 230 127 54 163 196 209
7 5 212 73 117 170 46 174 127 249 60 158 37 10 250 219 95
8 78 66 117 252 123 130 75 203 5 22 164 97 147 136 138 28

sum 8

highest 4

35

Table 14: DCA ranking of ATK #7.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 215 221 253 175 255 255 177 238 175 43 111 131 247 174 86 79
2 73 30 242 15 28 84 64 73 86 215 148 240 155 46 38 95
3 116 115 217 47 207 20 7 106 76 167 2 192 67 245 148 218
4 94 32 230 106 242 77 139 78 256 22 125 23 164 41 214 55
5 174 110 145 246 105 15 85 34 154 57 31 151 61 48 118 12
6 252 109 155 95 187 144 249 85 164 82 236 41 221 191 181 142
7 134 241 71 166 256 237 184 26 72 241 171 205 144 164 190 50
8 199 87 86 238 40 132 152 77 33 73 157 19 223 143 155 208

sum

highest

Table 15: DCA ranking of ATK #8.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 27 214 75 143 120 75 210 5 71 241 62 92 109 108 54 16
2 140 80 18 219 232 147 18 17 214 52 58 169 61 14 196 12
3 157 208 153 91 28 204 138 25 77 212 51 100 98 221 220 235
4 190 189 185 27 236 143 125 166 7 240 223 249 106 15 161 12
5 146 111 46 28 213 70 102 217 91 35 2 75 30 114 54 114
6 145 230 48 195 151 136 225 206 15 50 219 3 9 56 129 104
7 8 43 60 229 80 57 187 15 213 199 245 10 216 176 147 201
8 130 224 249 155 159 44 167 30 125 121 77 109 54 176 146 44

sum 3

highest 6

Table 16: DCA ranking of ATK #9.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 187 224 96 237 34 254 86 246 74 107 175 80 40 117 227 159
2 74 164 132 181 232 112 71 7 122 54 31 150 7 231 71 241
3 118 77 41 122 112 135 2 97 151 210 34 221 27 20 44 147
4 149 227 134 91 27 244 139 30 228 106 123 2 154 106 24 87
5 170 154 229 186 23 37 68 93 7 73 220 171 139 130 4 151
6 252 171 31 168 234 160 212 197 38 93 226 36 223 168 140 120
7 10 26 200 211 116 193 237 227 175 194 256 83 97 256 28 87
8 205 179 217 47 1 240 249 51 184 126 41 167 4 140 167 46

sum 5 7

highest 3 6

36

Table 17: DCA ranking of ATK #10.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 18 109 75 207 123 197 124 249 95 3 101 169 206 146 122 19
2 180 179 95 223 12 110 217 113 179 201 183 106 206 64 49 166
3 170 173 204 49 24 245 72 153 115 121 84 122 162 96 158 163
4 25 205 140 237 183 102 227 111 82 208 86 212 169 175 105 7
5 225 155 131 227 18 217 116 191 168 110 49 16 123 138 227 57
6 138 29 52 242 180 27 206 151 100 87 15 236 2 202 213 214
7 115 177 173 171 211 51 166 211 211 202 26 211 132 139 138 91
8 68 150 50 49 158 62 218 27 239 240 34 143 6 57 25 19

sum 9

highest 3

Table 18: DCA ranking of ATK #11.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 38 94 170 176 215 90 50 27 231 249 13 108 64 14 134 12
2 237 49 159 51 54 183 119 123 187 20 177 217 133 253 23 207
3 169 34 253 113 129 25 38 225 111 187 144 58 131 220 88 71
4 197 80 68 45 212 97 139 218 89 211 78 242 81 176 107 57
5 238 82 94 41 107 200 242 25 129 63 14 2 165 146 85 167
6 173 150 221 243 215 179 197 122 110 86 225 112 113 59 166 100
7 206 156 112 70 97 23 178 242 91 170 107 176 63 134 233 220
8 243 125 248 111 18 207 126 121 233 83 69 67 137 209 72 36

sum

highest 4

Table 19: DCA ranking of ATK #13.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 64 98 151 39 157 200 9 125 108 104 88 97 28 1 85
2 23 178 51 190 47 152 72 172 216 217 227 237 154 4 217 104
3 186 29 21 135 207 147 131 22 52 50 190 134 210 68 160 146
4 171 77 116 234 70 80 60 15 89 230 218 231 58 132 116 147
5 119 211 249 157 98 72 18 56 124 255 203 6 68 23 211 15
6 57 167 44 109 76 88 209 164 72 8 152 109 138 94 188 178
7 243 72 70 23 254 213 73 67 165 228 74 149 129 137 225 250
8 154 148 2 246 127 146 179 33 229 114 169 88 250 135 152 16

sum 9 3 6

highest

37

Table 20: DCA ranking of ATK #15.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 212 109 141 19 99 141 19 141 240 99 227 56 43 194 135 54
2 189 233 193 146 95 81 166 136 135 123 88 214 97 86 43 167
3 226 103 232 250 254 160 61 128 35 194 89 228 172 192 86 150
4 161 195 3 255 109 254 96 53 199 47 18 111 139 236 120 2
5 198 197 46 242 124 255 141 113 165 81 250 243 255 251 192 114
6 121 202 246 208 256 179 35 176 71 1 229 222 47 49 10 182
7 35 107 136 123 42 49 126 199 72 198 9 191 140 253 106 174
8 191 85 34 240 14 27 38 130 33 66 37 63 216 62 32 38

sum

highest 6

Table 21: DCA ranking of ATK #16.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 249 211 108 234 8 193 122 61 184 168 145 42 223 252 53 124
2 35 243 32 170 155 176 116 147 37 256 70 72 22 189 253 214
3 248 202 140 63 154 162 221 128 73 123 235 101 196 103 33 70
4 232 113 92 92 103 110 18 28 197 87 137 231 84 186 47 129
5 40 200 163 185 165 6 159 3 24 38 66 125 233 156 127 145
6 105 136 28 130 8 123 180 175 86 126 34 210 22 65 192 99
7 106 141 52 102 139 152 67 108 147 83 21 42 243 193 38 80
8 128 123 216 11 90 58 114 125 146 208 141 52 101 50 17 99

sum

highest 7

Table 22: DCA ranking of ATK #19.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 96 105 114 66 156 117 3 147 249 12 42 173 31 150 56 224
2 95 215 13 72 225 161 25 136 135 66 206 153 45 6 69 143
3 151 97 136 229 91 217 100 26 120 56 106 145 110 83 171 75
4 59 22 173 31 125 5 47 15 181 66 153 197 7 240 20 200
5 105 153 124 102 51 90 249 238 137 79 219 99 207 83 184 249
6 256 36 56 45 66 122 211 243 13 219 61 167 207 255 186 88
7 28 143 135 148 187 51 190 207 188 237 19 219 209 124 108 233
8 193 122 197 185 3 160 191 76 134 161 231 251 139 46 167 51

sum

highest

38

Table 23: DCA ranking of ATK #20.

XXXXXXXXXTargetBit
KeyByte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 210 127 7 125 111 66 88 202 105 80 18 250 164 46 203 59
2 217 151 52 237 218 70 112 143 106 125 180 143 45 79 8 10
3 172 75 111 77 32 44 146 225 138 107 42 155 77 7 149 176
4 38 53 7 234 159 240 150 39 188 98 155 116 143 217 220 177
5 147 220 154 69 134 158 106 13 200 178 191 101 159 146 217 14
6 41 135 3 49 96 197 227 186 136 247 246 55 88 186 94 215
7 247 184 29 214 151 73 226 191 184 106 37 34 78 17 232 73
8 62 152 233 157 185 130 256 216 154 192 232 109 95 39 157 216

sum 3

highest

