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Abstract. We present a new approach to construct several leakage-resilient cryptographic primitives,
including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE)
protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive
called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce a generic security
model for LR-NIKE protocols, which can be instantiated in both the bounded and continuous-memory
leakage ((B/C)-ML) settings. We then show a secure construction of LR-NIKE protocol in the bounded-
memory leakage (BML) setting, that achieves an optimal leakage rate, i.e., 1− o(1). Finally, we show
how to construct the aforementioned leakage-resilient primitives from such a LR-NIKE protocol as
summarized below. All the primitives also achieve the same (optimal) leakage rate as the underlying
LR-NIKE protocol.

• We show how to construct a leakage-resilient IND-CCA-2-secure PKE scheme in the BML model
generically from a LR-NIKE protocol. Our construction differs from the state-of-the-art constructions
of leakage-resilient IND-CCA-2-secure PKE schemes, which use hash proof techniques to achieve
leakage-resilience. Moreover, our transformation preserves the leakage-rate of the underlying LR-
NIKE and admits more efficient construction than previous such PKE constructions.

• We introduce a new leakage model for AKE protocols, in the BML setting. We show how to construct
a leakage-resilient AKE protocol starting from LR-NIKE protocol.

• We introduce the first-ever leakage model for LLKE protocols in the BML setting, and the first
construction of such a leakage-resilient LLKE from LR-NIKE protocol.

Keywords: leakage-resilient cryptography, bounded-leakage, non-interactive key exchange, key exchange
protocols, low-latency key exchange.



1 Introduction and Related Works

Traditional cryptographic primitives are provably analyzed in a black-box model, where the adversary has
access to the primitive via restrictive and well-defined interfaces (oracles). However, this does not truly reflect
the real-world scenario, where the adversary may obtain lots of unintended side-channel information about
the cryptosystem from its implementation. This extra leakage of information is not accounted for in its
analysis in the aforementioned black-box model of security. Leakage-resilient cryptography emerged as a
theoretical foundation to address the issue of side-channel attacks. Here it is assumed that the adversary has
access to side-channel information, which is modeled by allowing the adversary to specify arbitrary leakage
functions (subject to some restrictions) and obtain leakage from the secret key of the system, as dictated by
these functions. Note that, some restrictions must be imposed on the class of allowable leakage functions,
as otherwise an adversary can simply read off the entire secret key from memory. Depending upon these
restrictions, many theoretical models of leakage have emerged in the recent literature [2,6,8, 11,13,28]. In
this work, we focus mainly on the bounded-memory leakage model [2, 6]. In this model, the adversary chooses
arbitrary polynomial-time computable leakage functions f and receives returns f(sk), where sk is the secret
key. The only restriction is that the sum of output length of all these leakage functions that the adversary
can ever obtain is bounded by some parameter λ, which is smaller than the size of sk. Other notable models
of leakage include the Only Computation Leaks Information (OCLI) model, continual memory leakage model,
auxiliary input leakage model etc. We briefly survey these models in Appendix B.

Ever since the ground-breaking work of Diffie and Hellman (DH) [10], authenticated key exchange (AKE)
protocols arose as an important cryptographic primitive. The DH key exchange protocol can actually be
viewed as a non-interactive key exchange (NIKE) protocol, where the parties can establish a shared key
among themselves without any interaction, provided the public-keys of all the parties are pre-distributed
and they agree on some (common) global public parameters. NIKE is very useful in any band-width-critical,
power-critical, resource-critical systems such as embedded devices, wireless and sensor networks, where the
communication must be at its minimum. Despite its real-world applications, NIKE has mostly been overlooked
until recently [16]. Freire et al. [16] proposed formal security models for NIKE and efficient constructions of
NIKE in these models. Although the NIKE constructions of [16] is secure in the traditional (non-leakage)
setting, the security of them may completely break down in the presence of leakage. In fact, we demonstrate
that the pairing-based construction of NIKE shown in [16] is insecure, even if the adversary could obtain only
a single bit of leakage from the secret key of a party. Therefore, it is really important to thoroughly study
on the leakage resiliency of NIKE. We note that much research has been carried out on analyzing leakage
resiliency of interactive key exchange protocols [3–5,9], but the leakage resiliency of NIKE remains largely
unstudied.

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct
leakage-resilient IND-CCA-2-secure PKE scheme generically from LR-NIKE (in the bounded-memory leakage
setting). All the previous constructions of practical leakage-resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE
schemes relies solely on hash proof techniques to achieve leakage resiliency. However, the generic approach
of constructing leakage-resilient CCA secure PKE scheme solely using hash proof system (HPS) systems is
inherently limited to leakage rate below 1/2, as pointed out by Dodis et al. [12]. The leakage rate of the
state-of the art constructions of LR-IND-CCA-2-secure PKE scheme was later improved in the subsequent
works of Qin et al. [30, 31], which achieved leakage rates of 1/2− o(1) and 1− o(1) respectively. They could
achieve the leakage rate of 1/2 − o(1) by using HPS and one-time lossy filters (OTLF)3, and the optimal
rate of 1− o(1) by cleverly instantiating the underlying primitives, namely HPS and OTLF. However, the
complexity assumption they make for their construction is rather non-standard, namely refined subgroup
indistinguishability (RSI) assumption over composite order groups. The parameters of their construction are
also large due to use of composite-order groups.

We deviate significantly from this HPS-based approach of constructing LR-IND-CCA-2-secure PKE
schemes, and show that this connection is not inherent. To this end, we develop a new primitive called
leakage-resilient non-interactive key exchange (NIKE). Our construction of leakage-resilient NIKE relies
solely on leakage-resilient chameleon hash function (which in turn relies only on strong collision-resistant

3 Note that this circumvents the impossibility result of Dodis et al. [12], since the analysis of [12] considered the fact
that the LR-IND-CCA-secure PKE was constructed solely from HPS; whereas in [30, 31] they do not solely use
HPS and instead relies on both HPS and OTLF for their construction.
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hash function) and only a constant number (to be precise only 3) of pairing operations. We then show a
very simple and generic construction of LR-IND-CCA-2-secure PKE schemes achieving the optimal leakage
rate of 1 − o(1), based solely on the assumption that the leakage-resilient NIKE exists. Our construction
significantly improves the efficiency of LR-IND-CCA-2 secure PKE schemes compared to their state-of-the-art
constructions (which use the HPS-based approach) (please refer to Table 1 for details), at the same time
achieving the optimal leakage rate of 1− o(1).

We also show the applicability of leakage-resilient NIKE to construct leakage-resilient authenticated
key exchange (AKE) protocols and leakage-resilient low-latency key exchange (LLKE) protocols (in the
bounded-memory leakage setting). All the previous constructions of leakage-resilient AKE protocols [4, 5, 9]
either implicitly rely on HPS (by using leakage-resilient PKE as their building block) or explicitly by using
the properties of HPS. Our generic construction of leakage-resilient AKE gives an alternate way to construct
AKE protocols, different from the previous constructions of leakage-resilient AKE protocols, achieving the
optimal leakage rate of 1−o(1). Low-latency key exchange (LLKE) are one of the most practical key exchange
protocols that permits the transmission of cryptographically protected data, without prior key exchange,
while providing perfect forward secrecy (PFS). This concept was discussed in the Google’s QUIC 4 protocol.
Further, a low-latency mode is currently under discussion for inclusion in TLS 1.3 version. Although, the first
formal model of LLKE was studied by Hale et al. [21], leakage resiliency of LLKE remains unstudied until
present. Being a candidate for TLS 1.3, it is important to explore the leakage resiliency of LLKE protocols,
as side-channel attacks widely exist.

Technical Contributions. The main contributions are abridged as follows:

Leakage-resilient NIKE. As our first major contribution, we study the leakage resiliency of NIKE protocols.
We present a leakage security model for NIKE protocols, defining the notion of leakage-resilient non-interactive
key exchange. Our model is generic and can be instantiated in both the bounded-memory leakage model as
well as in continuous-memory leakage model. We then show how to construct secure a NIKE protocol in the
bounded-memory leakage model.

Our Model: Our model of leakage-resilient NIKE generalizes the CKS-heavy model of NIKE proposed
by Freire et al. [16], in the setting of leakage. Our model is a very strong model allowing the adversary to
register arbitrary public keys into the system, corrupt honest parties to obtain their secret keys, issue extract
queries to obtain shared keys between two honest parties and also between one honest party and another
corrupt party. Besides this, we also allow the adversary to obtain additional leakage from both the parties
involved in the Test/challenge query. We also introduce the notion of validity of a test query reminiscent
of the notion of freshness of a test session for (interactive) key exchange protocols. Finally, in the (valid)
test query between two honest parties, the adversary has to distinguish the shared key from a random key.
In the bounded leakage instantiation of our model, the adversary can obtain bounded leakages from the
secret keys of all parties, including those involved in the test query also. Differently, in the continuous leakage
instantiation of our model the secret key is refreshed periodically. The adversary can obtain unbounded and
arbitrary leakage from the secret keys of the parties, provided the leakage from the secret key per invocation
(between two successive refreshes) is bounded.

Our Construction: The starting point of our construction is the NIKE scheme of Freire et al. [16]. However,
we show that the above scheme is insecure in the setting of leakage, even if a single bit of the secret key is
allowed to leak. The main step where the construction breaks down is related to the exponentiation operation.
In other words, if exponentiation is performed normally as in the original protocol, it may be completely
insecure in the presence of leakage. A common countermeasure against this uses masking technique, where the
secret key of the system is secret-shared using a multiplicative secret sharing scheme and the exponentiation is
done step-wise using each of these shares. However, these masking schemes do not achieve the optimal 1− o(1)
leakage-rate, and also require additional restrictions (assumptions) on the class of allowable leakage functions
for arguing security. In particular, all these masking schemes are proven secure in the Only Computation
leaks Information (OCLI) axiom of Micali and Reyzin [28] or under the split-state assumption [19, 22, 25].

4 https://www.chromium.org/quic
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The OCLI axiom postulates that the leakage only happens from the memory parts that are touched during
the actual computation(s), and the rest of the memory portions not touched by computation are not prone
to leakage. In split-state leakage model, it is assumed that the secret key is split into several disjoint parts
and the adversary is allowed to obtain leakage independently from each of these parts. However, both these
models do not address leakage from the entire memory, which is the case for bounded memory leakage model.

So, a major challenge in our construction is to come up with a leakage-resilient exponentiation operation
achieving leakage rate of 1−o(1) in the global memory leakage model. Our first idea was to use the techniques
of [1, 6, 29] to perform leakage-resilient exponentiation. In particular let G be a group of prime order p and
let g1, · · · , .gn be random elements of the group. Then the vector x = (x1, · · · , xn) ∈ (Z∗p)n is said to be a
discrete log representation of some element y ∈ G with respect to g1, · · · , .gn, if y =

∏n
i=1 g

xi
i . To incorporate

this in our construction of NIKE, the elements g1, · · · , .gn can be included in the public parameters params,
the public key of a party can be set to y and the secret key can be the discrete log representation x of y.
In the works of [1, 6, 29], it is also shown that, as long as the leakage on each representation is bounded by
(1− 2/n) · |x|, the adversary cannot come up with another discrete log representation x′ of y. So this achieves
the leakage rate of 1− o(1). However, it turns out that it becomes surprisingly difficult to incorporate this
change in the construction of Freire et al. [16]. The main difficulty stems from the use of multiple generators
and also the special structure of the public key.

To this end, we use the ideas of twisted-pair PRF trick [17], but carefully adopted to deal with leakage.
The main idea behind the twisted-pair PRF trick is that, it involves two PRFs F and F ′ with reversing keys.
The output of the twisting function is simply the output of the two PRFs that are combined together in
special way. The guarantee is that output of the twisting function looks computationally indistinguishable
from a uniform value over the same range. For our construction of leakage-resilient twisted-pair PRF trick, we
add strong randomness extractors as pre-processors to this original twisting technique [17]. The guarantee is
that the output of our leakage-resilient twisted-pair PRF function is computationally indistinguishable from
a uniform value over the same range, even if the adversary knows the key of one PRF in full and obtains
bounded leakage from the key of the other PRF. For our construction of NIKE in the bounded leakage model,
the strong randomness extractor (when appropriately parameterized) takes care of the (bounded) leakage,
and then we can extract randomness from the secret key of the NIKE and use the extracted key as the key in
one of the PRF. The output of the leakage-resilient twisting function is then used to do secure exponentiation
in the presence of leakage. By appropriately parameterizing the extractor we can obtain a leakage rate of
1− o(1). Combined with a bounded leakage-resilient CHF tolerating leakage rate of 1− o(1), we can achieve
a leakage-resilient NIKE in the bounded-memory leakage model with overall leakage rate of 1− o(1).

However, a drawback of our leakage-resilient NIKE construction is that it requires a leak-free hardware
component to store the seed of the extractor. This is required because the view of the adversary in our
construction should be independent of the seed, since otherwise the adversary may leak from the extracted
value and the uniformity guarantee of the extractor does not hold in this case. Hence, we cannot include the
seed in the public key. On the other hand, to compute the shared key, each party needs to have access to
the random seed. Hence, we require that the seed be stored in a leak-free hardware component. Note that,
the use of leak-free hardware component assumption was also used in many prior works in leakage-resilient
cryptography [15,20,23]. In particular, in [23], it is assumed that the leak-free component can produce random
encryptions of fixed messages. In [20], it is assumed that there are linear number of such leak-free components
and each component is capable of sampling from a fixed polynomial time computable distribution. In [15], it
is assumed that the leak-free component can sample two vectors from the underlying field, such that their
inner product is zero. In contrast, in our construction, we only require our leak-free component to store the
seed of the extractor, which is typically a short random bit-string, just short enough to guarantee that the
output of the extractor is statistically close to uniform. Hence the use of the leak-free hardware is done in a
minimal way in our protocol.

Leakage-resilient CCA-2-secure PKE. As one of the central applications of leakage-resilient NIKE
(LR-NIKE), we show how to construct leakage-resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE generically
from LR-NIKE in the bounded-memory leakage model. This yields a new approach to construct LR-IND-
CCA-2-secure PKE schemes, departing completely from the hash-proof frameworks used in prior works. Our
construction is practical and also achieves the optimal leakage rate of 1− o(1).
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Our Construction: Our generic transformation from LR-NIKE to LR-IND-CCA-2-secure PKE scheme
essentially follows and adapts the ideas of Freire et al. [16] in the setting of leakage. The main idea behind
the transformation is as follows: the public-secret key pair of the LR-IND-CCA-2-secure PKE scheme is same
as the public-secret key pair of the underlying LR-NIKE protocol. While encrypting, another public-secret
key pair of the NIKE is sampled independently and the shared key generation algorithm of the NIKE is run
among the two key pairs yielding a shared key. This key is used as the encapsulation key of the underlying
IND-CCA-2-secure key encapsulation mechanism (KEM) and the ciphertext is set to be the new sampled
public key. Decryption is straightforward and the decryptor can recover the same shared key by running the
shared key generation algorithm with the original secret key and the new sampled public key. Now from the
IND-CCA-2-KEM one can easily get a full fledged IND-CCA-2-secure PKE using standard hybrid encryption
techniques. Our transformation preserves the leakage rate, in the sense that if the starting point of our
construction is a LR-NIKE with leakage rate of 1− o(1), then the LR-CCA-2-secure PKE constructed from it
also enjoys the same leakage rate.

In Table 1, we show the comparison of our scheme with the state-of-the-art constructions of LR-IND-CCA
secure PKE schemes in terms of both computational and communication complexity. We obtain these
complexity figures by instantiating all of the compared schemes with the state-of-the-art constructions of
the required underlying primitives. As we can see, the number of group elements involved in our ciphertext
is much lesser than the number of group elements involved in the ciphertexts of the other schemes. With
regard to the number of exponentiations and multiplication operations also, our scheme is much more efficient
compared to others, hence improving the computational complexity of the state-of-the-art LR-IND-CCA
secure PKE schemes by a significant margin. However, note that we do require a constant number of pairing
operations (to be precise only 3) in the encryption side and also in the decryption side. In the table, n ∈ N,
and is usually the number of generators required for the construction. Also [31] works over composite order
groups of the form G = Gτ1 ×Gτ2 . Here Tc denotes the tag space in the encryption scheme of [31], and {0, 1}s
denote the seed space of a strong randomness extractor.

Scheme
#Exponentiations #Multiplications #Pairings.

Size of ciphertext C Leakage rate. Complexity Assumptions
KeyGen Enc. Dec. KeyGen Enc. Dec. KeyGen Enc. Dec.

Qin and Liu [30] n2 (n2 + n+ 2) (n2 + 2n) (n2 + n) 2n2 (2n2 + n) NA NA NA G2 × Znq × {0, 1}m × G̃n
2×n2 1

2
− o(1) DDH

Qin and Liu [31] (n2 + n+ 1) (3n+ 2) (3n+ 1) n 2n 2n NA NA NA Gτ1 × {0, 1}m ×Gn+1 × Tc 1− o(1) RSI over composite order groups

Ours (n+ 5) (2n+ 8) (n+ 3) (n+ 3) (2n+ 6) (n+ 3) NA 3 3 G2 × Zn+1
q × {0, 1}s 1− o(1) DBDH-2

Table 1. Comparison among the LR-IND-CCA PKE schemes

Leakage-resilient AKE. We show how to obtain a generic construction of a leakage-resilient authenticated
key exchange (LR-AKE) protocol, starting from a leakage-resilient NIKE protocol. We formulate a new security
model for LR-AKE protocols, which we call Bounded-memory Before-the-Fact Leakage eCK (BBFL-eCK)
model. We then show a generic construction of BBFL-eCK-secure AKE protocol using a LR-NIKE in the
bounded-memory leakage setting.

Our Model: Our security model for LR-AKE is a strong security model which addresses (bounded) leakage
from the entire memory, which is stronger than the Only computation leaks information axiom [28]. We
present an eCK-style [26] security model, suitably adjusted to the leakage setting.

Our Construction: We give the generic construction of leakage-resilient AKE from leakage-resilient NIKE
in the bounded-memory leakage model. We adapt the construction of Bergsma et al. [7] to the setting of leakage.
In particular Bergsma et al. [7] showed a construction of AKE protocols from a standard NIKE protocol and
an existentially unforgeable signature scheme. We replace the standard NIKE with our leakage-resilient NIKE
and the existentially unforgeable signature scheme with a signature scheme that is existentially unforgeable
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under chosen message and leakage attacks [24]. We then show that the constructed AKE protocol is secure in
our BBFL-eCK security model. The leakage rate of our construction is 1− o(1), under appropriate choice of
parameters.

Leakage-resilient LLKE. We show an extremely important practical application of leakage-resilient NIKE
protocols. We study the leakage resiliency of low-latency key exchange (LLKE) protocols. In this paper
we give a suitable leakage security model for LLKE protocols which we call the Bounded-memory leakage
LLKE-ma (BL-LLKE-ma) model where “ma” stands for mutual authentication. We then present a generic
construction of leakage-resilient LLKE (LR-LLKE) construction based on our LR-NIKE protocol in the
bounded-memory leakage setting.

Our Model: The security of (standard) LLKE protocols has been recently analyzed by Hale et al. [21],
under mutual authentication of the client well as the server. We give a leakage analogue of their security
model. Our model allows the adversary to activate arbitrary protocol sessions between the clients and servers.
Besides, the adversary can obtain the temporary or the main keys of a session of both the clients as well as the
server, obtain the long-term secret key of clients and servers and also obtain bounded leakage from both the
client and the server involved in the Test query. Finally in the test query (satisfying some freshness/validity
conditions) the adversary has to guess the requested key from a random key.

Our Construction: Adopting the construction of Hale et al. [21] we show a generic construction of
leakage-resilient LLKE protocol from a leakage-resilient NIKE protocol. In particular, we require a LR-NIKE
scheme and a UF-CMLA secure signature scheme. Plugging them appropriately in our context we obtain the
construction of leakage-resilient LLKE protocol. Moreover, the leakage rate enjoyed by our LLKE protocol is
also optimal, i.e., 1− o(1).

2 Preliminaries

Notations. For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N, we let [a] = {1, 2, · · · , a}. If x is a

string , we denote |x| as the length of x. When x is chosen randomly from a set X , we write x
$←− X . When A

is an algorithm, we write y
$←− A(x) to denote a run of A on input x and output y; if A is randomized, then y

is a random variable and A(x; r) denotes a run of A on input x and randomness r. We denote the security
parameter throughout by κ. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗; the computation of A(x; r) terminates in at most poly(|x|) steps. Let G
be a group of prime order p such that log2(p) ≥ κ. Let g be a generator of G, then for a (column/row)
vector C = (C1, · · · , Cn) ∈ Znp , we denote by gC the vector C = (gC1 , · · · , gCn). Furthermore, for a vector

D = (D1, · · · , Dn) ∈ Znp , we denote by CD the group element X =
∏n
i=1 g

CiDi = g
∑n
i=1 CiDi . We say two

random variables X and Y are ε-close statistically, if the statistical distance between them is at most ε, and is
denoted by X ≈ε Y . On the other hand, if X and Y are computationally indistinguishable, we write X ≈c Y

We refer to Appendix A.1 for the definitions of min-entropy, average conditional min-entropy, randomness
extractors and basic results related to them.

2.1 Underlying Primitives for our Constructions.

For our construction of NIKE in the bounded-memory leakage setting we require a bounded leakage-resilient
chameleon hash function (BLR-CHF). Leakage-resilient chameleon hash functions (LR-CHF) postulate that it
is hard to find collisions, even when the adversary learns bounded leakage from the secret key/trapdoor. We
refer the reader to Appendix A.2 for the formal definition of LR-CHF. We also need standard pseudo-random
function (PRF) for this construction (please refer to Appendix A.3). A function F is a (εprf , sprf , qprf)-secure
PRF, if no adversary of size sprf can distinguish F (instantiated with a random key) from a uniformly random
function, except with negligible probability εprf .

For our construction of leakage-resilient AKE and leakage-resilient LLKE protocols we also need an
existentially unforgeable signature secure against chosen message and leakage attacks (UF-CMLA). We refer
the reader to Appendix A.4 for the formal definition. In all these definitions, the leakage functions can be
arbitrarily and adaptively chosen by the adversary, with the only restriction that the output size of those
functions are bounded by some leakage parameter.
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3 Assumptions in Bilinear Group

In this paper we consider Type-2 pairings over appropriate elliptic curve groups. Let G2 be a type 2
pairing parameter generation algorithm. It takes as input the security parameter 1κ and outputs gk =
(G1,G2,GT , g1, g2, p, e, ψ) such that p is a prime, (G1,G2,GT ) are description of multiplicative cyclic groups
of same order p, g1, g2 are generators of G1 and G2 respectively, e : G1 × G2 → GT is a non-degenerate
efficiently computable bilinear map, and ψ is an efficiently computable isomorphism ψ : G2 → G1, and that
g1 = ψ(g2).

The Decisional Bilinear Assumption over Type-2 Pairings (DBDH-2). Let gk = (G1,G2,GT , g1, g2, p, e, ψ)
be the output of the parameter generation algorithm G2 as above. We consider the following version of the
DBDH-2 problem introduced by Galindo [18] and also used in [16]. Formally, we say that the DBDH-2
assumption holds for type-2 pairings if the advantage of the adversary ADBDH-2 denoted by Advdbdh-2ADBDH-2,G2(κ)
is negligible, where

Advdbdh-2ADBDH-2,G2(κ) = |Pr[A(g2, g
a
2 , g

b
2, g

c
1, e(g1, g2)abc) = 1]−

Pr[A(g2, g
a
2 , g

b
2, g

c
1, e(g1, g2)z) = 1]|.

where the probability is taken over the random choices of the algorithm G2 and the internal coin tosses of the
algorithm A.

4 Leakage-resilient Non-interactive Key Exchange

In this section, we present our definition of leakage-resilient non-interactive key exchange (LR-NIKE). We
assume that the adversary is not allowed to register the same public key more than once. In practice, this
can easily be ensured by requiring the Certification Authority (CA) to check for consistency whenever an
individual attempts to register a public key in the system. So, w.lo.g, when we write pki for the i-th public
key, we mean that pki is associated with the user with identifier IDi ∈ IDS, where IDS denotes the identity
space. In the leakage-free scenario, this setting was also considered in the work of Freire et al. [16], which
they called the Simplified(S)-NIKE. Also, we denote by PK, SK and SHK the space of public keys, secret
keys and shared keys respectively. Formally, a LR-NIKE scheme, LR-NIKE, consists of a tuple of algorithms
(NIKEcommon setup, NIKEgen, NIKEkey) with the functionalities specified below:

1. NIKEcommon setup(1κ, λ(κ)): The setup algorithm takes as input the security parameter κ and the
leakage bound λ(κ) that can be tolerated by the NIKE scheme, and outputs a set of global parameters
params of the system. We sometimes drop κ, and write λ instead of λ(κ), when κ is clear from context.

2. NIKEgen(1κ, params): The key generation algorithm is probabilistic and can be executed independently
by all the users. It takes as input the security parameter κ and params and outputs a public/secret key
pair (pk, sk) ∈ PK × SK.

3. NIKEkey(pki, skj): The shared key generation algorithm takes the public key of user IDi, namely pki and
the secret key of user IDj , namely skj , and outputs a shared key shkij ∈ SHK for the two keys or a
failure symbol ⊥ if i = j, i.e., if skj is the secret key corresponding to pki.

The correctness requirement states that for any two pairs (pki, ski) and (pkj , skj), the shared keys computed
by them should be identical.

4.1 The Generic Leakage-resilient Non-interactive Key Exchange ((·)LR-CKS-heavy)
Security Model

In this section, we present the formal security model for leakage-resilient non-interactive key exchange
(LR-NIKE). Our security model of LR-NIKE can be seen as generalization of the CKS-heavy security
model introduced in Freire et al. [16] to appropriately model key leakage attacks. Our generic LR-NIKE
((·)LR-CKS-heavy) security model can be instantiated in two different ways which leads to two different
security models, namely- bounded LR-CKS-heavy (BLR-CKS-heavy) model and continuous LR-CKS-heavy
(CLR-CKS-heavy) model.

Our model allows the adversary to register arbitrary public keys into the system, provided they are distinct
from each other and from the public keys of the honestly registered parties. The adversary can also issue
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Extract queries to learn the private keys corresponding to the honestly generated public keys. The adversary
can also learn the shared key between two honestly generated parties (via HonestReveal query) as long as
both of them are not involved in the challenge/Test query. We also allow the adversary to learn the shared
key between an honest party and a corrupt party (via CorruptReveal query). Apart from the above queries,
the BLR-CKS-heavy model allows the adversary to obtain a bounded amount of leakage of the secret/private
keys of the parties. Differently, the CLR-CKS-heavy model model allows the adversary to continuously obtain
arbitrarily large amount of leakage from the secret keys of the parties, enforcing the restriction that the
amount of leakage per observation is bounded. Finally, in the Test query, the adversary has to distinguish the
real shared key between two honest parties from a random shared key. To prevent trivial wins, we enforce
some natural restrictions on the Test query which we call the validity conditions. We also note that once the
test query is asked by the adversary, he is not allowed to make further leakage queries on the corresponding
parties involved in the test query (modeling before-the-fact leakage).

Remark 1. (Extract query vs. Leakage queries). By issuing Extract query, the adversary can learn the secret
key of a party entirely. Separately, by issuing leakage queries the adversary gets bounded/continuous amount
of leakage from the secret key. It may seem paradoxical to consider both Extract as well as Leakage queries at
the same time. However, there are good reasons to consider both.

A non-leakage version of the (·)LR-CKS-heavy model allow the adversary to corrupt the honest parties
to obtain the corresponding secret keys. However, it disallows the adversary to corrupt any of the parties
involved in the Test query. This is a natural restriction, since corrupting any of the parties involved in the
test session will also allow the adversary to reconstruct the shared key of the test session and hence win the
security game with certainty. But note that, in our (·)LR-CKS-heavy model the adversary can also obtain
(bounded/continuous) leakage from the secret keys of the parties involved in the test session in addition to
corrupting other (non-test) honest parties in the system.

Hence, the (·)LR-CKS-heavy model allows the adversary to obtain more information than a non-leakage
version of (·)LR-CKS-heavy model, namely CKS-heavy model [16] and hence is necessarily stronger than the
CKS-heavy model.

Adversarial Powers. The (·)LR-CKS-heavy security model is stated in terms of a security game between
a challenger C and an adversary A. The adversary A is modeled as a probabilistic polynomial time (PPT)
algorithm. We denote by ΠU,V the protocol run between principal U , with intended principal V . Initially,
the challenger C runs the NIKEcommon setup algorithm to output the set of public parameters params, and
gives params to A. The challenger C also chooses a random bit b in the beginning of the security game and
answers all the legitimate queries of A until A outputs a bit b′. A is allowed to ask the following queries:

1. RegisterHonest queries(1κ, params): This query allows the adversary to register honest parties in the
system. The challenger runs the NIKEgen algorithm to generate a key pair (pkU , skU ) and records the
tuple (honest, pkU , skU ). It then returns the public key pkU to A. We refer to the parties registered via
this query as honest parties.

2. RegisterCorrupt queries(pkU ): This query allows the adversary to register arbitrary corrupt parties in
the system. Here, A supplies a public key pkU . The challenger records the tuple (corrupt, pkU ,⊥). We
demand that all the public keys involved in this query are distinct from one another and from the honestly
generated public keys from above. The parties registered via this query are referred to as corrupt.

3. Extract queries(pkU ): In this query, the adversary A supplies the public key pkU of a honest party. The
challenger looks up the corresponding tuple (honest, pkU , skU ) and returns the secret key skU to A.

4. Reveal queries(pkU , pkV ): This query can be categorized into two types– HonestReveal and CorruptReveal
queries. Here the adversary supplies a pair of public keys pkU and pkV . In the HonestReveal query,
both pkU and pkV are honestly registered, i.e., both of them correspond to honest parties; whereas
in CorruptReveal query, one of the public key is registered as honest while the other is registered as
corrupt. The challenger runs the NIKEkey algorithm using the secret key of the honest party (in case of
HonestReveal query using the secret key of any one of the parties) and the public key of the other party,
and returns the result to A.

5. Test (pkU , pkV ): Here A supplies two distinct public keys pkU and pkV , that were both registered as
honest. If pkU = pkV , the challenger aborts and returns ⊥. Otherwise, it uses the bit b to answer the
query. If b = 0, the challenger runs the NIKEkey algorithm using the public key of one party say pkU , and
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the private key of the other party skV and returns the result to A. If b = 1, the challenger samples a
random shared key from SHK, and returns that to A.

6. Leakage queries: The leakage queries can be categorized into two types based upon the particular
instantiation of our generic (·)LR-CKS-heavy model.

(a) Bounded leakage queries: In the BLR-CKS-heavy security model the total amount of leakage from
the secret key of the underlying cryptographic primitives is bounded by leakage parameter λ = λ(κ).
Here the adversary A supplies the description of an arbitrary polynomial time computable functions
fi and a public key pk. The challenger computes fi(sk), where sk is the secret key corresponding
to pk, and returns the output to A. The adversary A can specify multiple such leakage functions as
long as the leakage bound is not violated, i.e,

∑
i |fi(sk)| ≤ λ(κ). Note that A can obtain λ bits of

information/leakage from the secret key from each of the honest parties, including those involved in
the Test queries.

(b) Continuous leakage queries: In the CLR-CKS-heavy model the adversary can obtain unbounded
leakage of the secret key of honest parties, with the only restriction that the amount of leakage per
occurrence is bounded by leakage parameter. If the leakage bound of the secret keys of the parties
per occurrence is λ(κ) and the leakage function fi outputs leakage bits of the ith secret key, then for
leakage resilience of the ith secret key we need that |fi(ski)| ≤ λ(κ).

A’s queries may be made adaptively and are arbitrary in number. However, to prevent trivial wins the
adversary should not be allowed to make certain queries to the parties involved in the Test query. We model
this by requiring the Test query to be valid. We next give the definition of validity in our (·)LR-CKS-heavy
model (see Def. 1). Our condition of validity of the Test query is split into two parts depending on the
particular instantiation of our (·)LR-CKS-heavy model.

Definition 1 (λ-BLR-CKS-heavy validity). We say that the Test query ΠU,V between two parties U
and V with public-secret key pairs (pkU , skU ) and (pkV , skV ) respectively is valid in the BLR-CKS-heavy
model, if the following conditions hold:

1. The adversary A is not allowed to ask Extract(pkU ) or Extract(pkV ) queries.

2. The adversary A should not be allowed to ask HonestReveal(pkU , pkV ) or HonestReveal(pkV , pkU ) queries.

3. The total output length of all the Bounded Leakage queries queried by A to each party involved in the
Test query, i.e., U and V is at most λ(κ), i.e.,

∑
i |fi(skU )| ≤ λ(κ) and

∑
i |fi(skV )| ≤ λ(κ).

4. After the Test query ΠU,V is activated, the leakage functions fi(skU ) and fi(skV ) may not be asked by
the adversary.

Definition 2 (λ-CLR-CKS-heavy validity). We say that the Test query is valid in the CLR-CKS-heavy
model if: Conditions (1)-(2) of Def. 1 hold, and

3. The output length of the Continuous Leakage queries made by A per occurrence to each party involved in
the Test query is at most λ(κ), i.e., |fi(skU )| ≤ λ(κ) and |fi(skV )| ≤ λ(κ).

4. After the Test query ΠU,V is activated, the leakage functions fi(skU ) and fi(skV ) may not be asked by
the adversary.

Remark 2. Note that in our validity conditions defined above (Defs. 1 and 2) we do not allow the adversary to
make leakage queries to either of the parties involved in the Test query after the Test query is activated. This
is because if the adversary is allowed to leak from the secret key after the Test query he can simply encode
the specification of the shared key derivation function and other public keys into the leakage function. This
reveals some information about the shared key allowing the adversary to successfully answer the challenge
(distinguishing real from random). Such an impossibility result is also shown in the context of public-key
encryption [29] and (interactive) key exchange protocols [4].
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Security Game and Security Definition.

Definition 3 ((·)LR-CKS-heavy security game). Security of a NIKE protocol in the generic ((·)LR-
CKS-heavy model is defined using the following security game, which is played by a PPT adversary A against
the protocol challenger C.

• Stage 1: The challenger C runs LR-NIKEcommon setup algorithm to output the global parameters params
and return it to A.

• Stage 2: A may ask any number of RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptReveal,
and Leakage queries adaptively.

• Stage 3: At any point of the game A may ask a Test query that is λ-(·)LR-CKS-heavy valid. The
challenger chooses a random bit b to respond to this queries. If b = 0, the actual shared key between
the respective pairs of parties involved in the corresponding test query is returned to A. If b = 1, the
challenger samples a random shared key from SHK, records it for later and returns that to A.

• Stage 4: A may continue asking RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptReveal,
and Leakage queries adaptively, provided the Test query remains valid.

• Stage 5: At some point A outputs the bit b′ ← {0, 1}, which is its guess of the value b. A wins if b′ = b.

Let SuccA denote the event that A wins the above security game (Definition 3).

Definition 4 ((·)LR-CKS-heavy-security). Let qH , qC , qE, qHR, and qCR denote the number of RegisterHonest,
RegisterCorrupt,Extract,HonestReveal, and CorruptReveal queries respectively. A NIKE protocol Π is said to
be (·)LR-CKS-heavy-secure if there is no PPT algorithm A that can win the above (·)LR-CKS-heavy security
game with non-negligible advantage. The advantage of an adversary A is defined as:

Adv
(·)LR-CKS-heavy
Π,A (κ, qH , qC , qE , qHR, qCR) = |2 Pr(SuccA)− 1|.

4.2 Constructions of Leakage-resilient Non-interactive key exchange

In this section, we show our construction of leakage-resilient NIKE in the bounded-memory leakage model.
We show that the pairing -based NIKE protocol of Friere et al. [16] (in the standard model) which is secure
in the non-leakage setting is in fact insecure in the bounded memory leakage model, even if the adversary
obtains a single bit of leakage on the secret key of the parties. This is illustrated in Appendix C.

Protocol BLR-NIKE: Construction of NIKE in the bounded-memory leakage model. Table 2 shows
our construction of NIKE in the bounded-memory leakage model. The starting point of our construction
is the NIKE protocol of [16]. Let G2 be a type 2 pairing parameter generation algorithm, i.e., it outputs
gk = (G1,G2,GT , g1, g2, p, e, ψ), ChamHhk : {0, 1}∗×Rcham → Zp be a (bounded) leakage-resilient chameleon
hash function tolerating leakage bound up to λ(κ) (denoted as λ-LR-CHF) indexed with the evaluation/hashing
key hk and Rcham denotes the randomness space of the hash function. Also let F : {0, 1}`(κ) × Zp → Zp,
F ′ : Zp×{0, 1}κ → Zp be (εprf , sprf , qprf) and (ε′prf , s

′
prf , q

′
prf) secure PRF families Ext : Zp×{0, 1}s → {0, 1}`(κ)

be an average-case (v, ε)-extractor, with v << log p. Namely, it has log p bits of input, s bit seed, and `(κ)-bit
outputs, and for a random seed and input with v bits of min-entropy, the output is ε-away from a uniform
`(κ)-bit string.

On Leak-free hardware assumption: As already stated in Section 1, we consider an additional assumption
that each party involved in our LR-NIKE protocol has access to a leak-free secure hardware component.
However, the role of this component in our protocol is only to store a short random seed of an extractor,
which is enough to guarantee that the output of the extractor is statistically close to uniform. Hence, the
usage of the leak-free hardware in our context is minimal. The above assumption seems to be necessary for
our protocol, since otherwise the adversary could leak from the extracted value itself by knowing the seed.
Removing this leak-free assumption is a desirable and important problem that we leave open.

Theorem 1. Let ChamHhk be a family of bounded leakage-resilient chameleon hash function (BLR-CHF), F
and F ′ be (εprf , sprf , qprf) and (ε′prf , s

′
prf , q

′
prf) secure PRFs and Ext be a (v, ε)-strong average case randomness

extractor where p is the order of the underlying groups G1, G2 and GT . Then the above NIKE protocol
BLR-NIKE is BLR-CKS-heavy-secure assuming the intractability of the DBDH-2 assumption with respect to
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Party IDA Party IDB

NIKEcommon setup(1κ)

gk
$←− G2(1κ)

where gk = (G1,G2,GT , g1, g2, p, e, ψ)

α, β, γ, δ
$←− G∗1

(hk, ck)← Cham.KeyGen(1κ, λ)
params := (gk, α, β, γ, δ, hk)

Return params

NIKEgen(1κ, params)

xA, rA
$←− Zp; r′A

$←− Rcham; xB , rB
$←− Zp; r′B

$←− Rcham;

Sample sA
$←− {0, 1}s, and Sample sB

$←− {0, 1}s, and
store sA in leak-free component ; store sB in leak-free component ;

x̂A ← Ext(xA, sA); x̂B ← Ext(xB , sB);

x′A ← Fx̂A(rA) + F ′rA(1κ); x′B ← Fx̂B (rB) + F ′rB (1κ);

ZA ← g
x′A
2 ; ZB ← g

x′B
2 ;

tA ← ChamHhk(ZA||IDA; r′A); tB ← ChamHhk(ZB ||IDB ; r′B);

YA ← αβtAγtA
2

; XA ← Y
x′A
A YB ← αβtBγtB

2

; XB ← Y
x′B
B

pkA ← (XA, ZA, r
′
A, rA); skA ← xA pkB ← (XB , ZB , r

′
B , rB); skB ← xB

NIKEkey(pkB , skA) NIKEkey(pkA, skB)

If pkA = pkB , return ⊥ If pkB = pkA, return ⊥
Parse pkB as (XB , ZB , r

′
B , rB); Parse pkA as (XA, ZA, r

′
A, rA);

tB ← ChamHhk(ZB ||IDB ; r′B); tA ← ChamHhk(ZA||IDA; r′A)

If e(XB , g2) 6= e(αβtBγtB
2

, ZB), If e(XA, g2) 6= e(αβtAγtA
2

, ZA),

then shkA,B ←⊥ then shkA,B ←⊥
x′A ← Fx̂A(rA) + F ′rA(1κ); x′B ← Fx̂B (rB) + F ′rB (1κ);

shkAB ← e(δx
′
A , ZB) shkAB ← e(δx

′
B , ZA)

Table 2. LR-NIKE Protocol in the Bounded Leakage model(BLR-NIKE)

the parameter generator G2. In particular, let A be an adversary against the NIKE protocol BLR-NIKE in
the BLR-CKS-heavy security model making qH number of RegisterHonest user queries. Then using it we can
construct an adversary ADBDH-2 against the DBDH-2 problem such that:

AdvBLR-CKS-heavy
BLR-NIKE,A (κ) ≤ q2H

(
2ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ)

)
.

Proof. The proof of this theorem will proceed via the game hopping technique [33]: define a sequence of games
and relate the adversary’s advantage of distinguishing each game from the previous game to the advantage
of breaking one of the underlying cryptographic primitive. Let AdvGameδ(A) denote the advantage of the
adversary A in Game δ.

Game 0: This is the original security game with adversary ADBDH-2. When the Test query is asked, the

Game 0 challenger chooses a random bit b
$←− {0, 1}. If b = 0, the real shared key is given to A, otherwise a

random value chosen from the shared key space is given.

AdvGame0(A) = AdvBLR-CKS-heavy
BLR-NIKE,A (κ).

Game 1: Initially ADBDH-2 chooses two identities IDA, IDB ∈ [qH ], where qH denotes the number of
RegisterHonest queries made by ANIKE. Effectively ADBDH-2 is guessing that IDA and IDB to be honestly
registered by ANIKE will be involved in the Test query later. When ANIKE makes its Test query on a pair of
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identities {IDI , IDJ}, ADBDH-2 checks if {IDI , IDJ} = {IDA, IDB}. If so, it continues with the simulation
and gives the result to ANIKE; else it aborts the simulation.

AdvGame1(A) ≥ AdvGame0(A)/q2H .

Game 2: This game is identical to the previous game, except that the challenger changes the way how
the output of the extractor is computed. In particular, instead of computing x̂A ← Ext(xA, sA) and x̂B ←
Ext(xB , sB), the challenger chooses a uniformly random x̂A, x̂B ← {0, 1}`(κ). Game 0 and Game 1 are
indistinguishable by the property of the strong average case randomness extractor. Suppose that the adversary
obtains at most λ = λ(κ) bits of leakage from the secret keys xA and xB of parties A and B respectively.
Since Ext can work with inputs that have min-entropy v << log p, even given the bounded leakage of λ bits,
we have that

(
xA, sA,Ext(xA, sA)

)
≈ε

(
xA, sA, U`(κ)

)
and

(
xB , sB ,Ext(xB , sB)

)
≈ε

(
xB , sB , U`(κ)

)
, where

U`(κ) denotes the uniform distribution over {0, 1}`(κ). Recall that, in our construction the seeds sA and sB
are stored in the leak-free hardware component, and hence are outside the view of the adversary. Thus, it is
possible to replace the output the extractor with a uniformly random value in this game. This is the only
place where we require the leak-free assumption in our proof.∣∣AdvGame2(A)−AdvGame1(A)

∣∣ ≤ 2ε.

Game 3: This game is identical to the previous game, except that the challenger changes the way how the PRFs
are computed. In particular, instead of computing x′A ← Fx̂A(rA) + F ′rA(1κ) and x′B ← Fx̂B (rB) + F ′rB (1κ),
the challenger computes x′A ← RF (rA)+F ′rA(1κ) and x′B ← RF (rB)+F ′rB (1κ), where RF is random function
with the same range as F . If A can distinguish the difference between Game 2 and Game 3, then A can be
used as a subroutine to construct a distinguisher D between the PRF F : {0, 1}`(κ) × Zp → Zp and and a
random function RF .

|AdvGame3(A)−AdvGame2(A)| ≤ εprf + ε′prf .

Game 4: This game is identical to the previous game, except that the challenger nows samples x′A and x′B
randomly. In particular, instead of computing x′A ← Fx̂A(rA) + F ′rA(1κ) and x′B ← Fx̂B (rB) + F ′rB (1κ), the

challenge samples x′A, x
′
B

$←− Zp. Note that x′A and x′B are identically distributed in both Game 3 and Game
4, and hence both these games are identical from the view of an adversary.

AdvGame4(A) = AdvGame3(A).

Game 5: In this game the challenger changes the way in which it answers RegisterCorrupt queries. In
particular let, IDA and IDB be identities of two honest parties involved in the Test query with public
keys (XA, ZA, r

′
A, rA, sA) and (XB , ZB , r

′
B , rB , sB) respectively. Let IDD be the identity of the party with

public key (XD, ZD, r
′
D, rD) that is subject to a RegisterCorrupt query. If tD = ChamHhk(ZA||IDA; r′A) or

tD = ChamHhk(ZB ||IDB ; r′B), the challenger aborts. Note that if the above happens, then the challenger has
successfully found a collision of the chameleon hash function. By the difference lemma [32] we have:∣∣AdvGame5(A)−AdvGame4(A)

∣∣ ≤ AdvcollA,ChamH(κ).

Game 6: In this game the DBDH-2 adversary ADBDH-2 receives as input (g2, g
a
2 , g

b
2,

gc1, T ) as input, and its objective is to determine if T = e(g1, g2)sbc or a random element from GT , where g1
and g2 are generators of the group G1 and G2 respectively and a, b, c are random elements from Zp. We now
describe how ADBDH-2 sets up the environment for ANIKE and simulates all its queries properly.

ADBDH-2 runs Cham.KeyGen(1κ, λ) to obtain a key pair for a chameleon hash function, (hk, ck). It then chooses
two messages m1,m2 ← {0, 1}∗ and r1, r2 ← Rcham, where Rcham is the randomness space of the chameleon
hash function. ADBDH-2 then computes the values tA = Cham.Eval(m1; r1) and tB = Cham.Eval(m2; r2).

Let us define a polynomial of degree 2 p(t) = p0 + p1t+ p2t
2 over Zp such that tA and tB are the roots of

p(t), i.e., p(tA) = 0 and p(tB) = 0. Also, let q(t) = q0 + q1t+ q2t
2 be a random polynomial of degree 2 over

Zp. ADBDH-2 then sets α = (gc1)p0 · gq01 , β = (gc1)p1 · gq11 , γ = (gc1)p2 · gq21 and δ = gc1 (gc1 was obtained as input
of the hard problem instance). Note that, since pi, qi ← Zp are randomly chosen, the values of α, β and γ

are also random. Also note that αβtγt
2

= (g1)p1(t)g
q(t)
1 . In particular YA = g

q(tA)
1 and YB = g

q(tB)
1 (since

p(tA) = p(tB) = 0). ADBDH-2 then simulates all the queries of ANIKE as follows:

• RegisterHonest: When ADBDH-2 receives as input a RegisterHonest user query from ANIKE for a party with
identity ID, it fist checks whether ID ∈ {IDA, IDB}. Depending upon the result it does the following:
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– If ID /∈ {IDA, IDB}, ADBDH-2 runs NIKE.gen to generate a pair of keys (pk, sk), and makes returns
pk to ANIKE.

– If ID ∈ {IDA, IDB}, ADBDH-2 does the following. Without loss of generality let ID = IDA.
Now, ADBDH-2 uses the trapdoor ck of the chameleon hash to produce r′A ∈ Rcham such that
Cham.Eval(ga2 ||IDA; r′A) =
Cham.Eval(m1; r1). Note that, by the random trapdoor collision property of the chameleon hash
function, r′A is uniformly distributed over Rcham and also independent of r1. Similarly when
ID = IDB ,ADBDH-2 uses the trapdoor ck to produce r′B ∈ Rcham such that Cham.Eval(gb2||IDB ; r′B) =
Cham.Eval(m2; r2). The value r′B is also uniformly distributed over Rcham and also independent of
r2. ADBDH-2 then sets:

pkA = (ψ(ga2 )q(tA), ga2 , r
′
A, rA) and pkB = (ψ(gb2)q(tB), gB2 , r

′
B , rB).

where rA, rB ← Zp. Note that these are correct public keys since p(tA) = p(tB) = 0.

• RegisterCorrupt: Here ADBDH-2 receives as input a public key pk and an identity string ID from ANIKE. If
ID ∈ {IDA, IDB}, ADBDH-2 aborts as in the original attack game.
• HonestReveal: When ANIKE supplies identities of two honest parties, ID and ID′ say, ADBDH-2 checks if
{ID, ID′} = {IDA, IDB}. If this happens, ADBDH-2 aborts. Else, if {ID, ID′} ∩ {IDA, IDB} ≤ 1, there
are three cases:

– ID ∩ {IDA, IDB} 6= φ and ID′ ∩ {IDA, IDB} = φ. In this case, the challenger ADBDH-2 runs
NIKE.key(pkID, skID′) to produce the shared key shkID,ID′ . Note that ADBDH-2 can do this since it
knows the secret key skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to ANIKE.

– ID ∩ {IDA, IDB} = φ and ID′ ∩ {IDA, IDB} 6= φ. In this case, the challenger ADBDH-2 runs
NIKE.key(pkID′ , skID) to produce the shared key shkID,ID′ . Note that ADBDH-2 can do this since it
knows the secret key skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to ANIKE.

– {ID, ID′} ∩ {IDA, IDB} = φ. In this case, the challenger ADBDH-2 runs NIKE.key(pkID′ , skID) (it
can use skID′ also) to produce the shared key shkID,ID′ . ADBDH-2 then gives shkID,ID′ to ANIKE.

• CorruptReveal: When ANIKE supplies two identities ID and ID′ where ID was registered as corrupt and
ID′ was registered as honest, ADBDH-2 checks if ID′ ∈ {IDA, IDB}. If ID′ /∈ {IDA, IDB}, ADBDH-2

runs NIKE.key(pkID, skID′) to obtain shkID,ID′ and returns it to ANIKE. However, if ID′ ∈ {IDA, IDB},
ADBDH-2 checks whether the public key pkID = (XID, ZID, r

′
ID, rID) by checking the pairing. This makes

sure that pkID is of the form (Y dID, g
d
2 , r
′
D, rD) for some d ∈ Zp, where YD = (gc1)p(tID)g

q(tID)
1 , rD ← Zp

and r′D ← Rcham. This means that XID = (gcd1 )p(tID)g
dq(tID)
1 . From this the value gcd1 can be computed

as: gcd1 = (XID/ψ(ZID)q(tID))1/p(tID) mod p.
Note that the value 1/p(tID) is well defined since p(tID) 6= 0 mod p. Also note that tID 6= tA, tB , since
we have already eliminated the hash collisions.
Assume w.l.o.g. that ID′ = IDA. So writing the public key of IDA as (YA, ZA, r

′
A, rA), the shared key

between IDA and ID is given by shkIDA,ID = e(gcd1 , ZA).
• Leakage queries: The adversary ANIKE may specify arbitrary polynomial time computable function(s) fi

to leak from the secret keys xA and xB . The challenger ADBDH-2 forwards the functions fi to its leakage
oracle and forwards the answers to ANIKE.
• Test query: Here, ADBDH-2 returns T .

This completes the description of simulation by ADBDH-2. If ANIKE can distinguish between real and random
key in Game 4, then it is equivalent to solving the DBDH-2 problem. To see this, note that for user IDA

we have ZA = ga2 and XA = ψ(ZA)q(tA), and for user IDB we have ZB = gb2 and XB = ψ(ZB)q(tB). Hence,
shkIDA,IDB = e((gc1)b, ZA) = e((gc1)a, ZB) = e(g1, g2)abc.

Since the simulation done by ADBDH-2 is perfect, we have:

AdvGame6(A) = AdvGame5(A)

Game 7. In this game the challenger ADBDH-2 chooses T randomly from the target group GT . Since T is
now completely independent of the challenge bit, we have Pr(SuccGame6) = 1/2. Game 5 and Game 6 are
identical unless adversary ADBDH-2 can distinguish e(g1, g2)abc from a random element. So, we have,

|AdvGame7(A)−AdvGame6(A)| ≤ Advdbdh-2ADBDH-2,G2(κ).
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By combining all the above expression from Game 0 - Game 7 we have the following. We use Gi to denote
Gamei.

AdvBLR-CKS-heavy
BLR-NIKE,ANIKE

(κ) = AdvG0(A)

≤ q2H · (AdvG1
(A))

≤ q2H · (AdvG2
(A) + 2ε)

≤ q2H · (AdvG3(A) + 2ε+ εprf + ε′prf)

= q2H · (AdvG4(A) + 2ε+ εprf + ε′prf)

≤ q2H · (AdvG5
(A) + 2ε+ εprf + ε′prf + AdvcollA,ChamH(κ))

= q2H · (AdvG6(A) + 2ε+ εprf + ε′prf + AdvcollA,ChamH(κ))

≤ q2H · (AdvG7
(A) + 2ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ))

≤ q2H · (2ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ))
Thus we have,

AdvBLR-CKS-heavy
BLR-NIKE,ANIKE

(κ) ≤ q2H ·
(

2ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ)
)
ut

Leakage Tolerance of Protocol BLR-NIKE. The order of the groups G1, G2 and GT are p. Note that,
although the secret key in our protocol BLR-NIKE may appear to be a single field element, but in the actual
instantiation of the protocol the secret key is a tuple of n+ 1 field elements. This is because the secret key of
the concrete instantiation of the BLR-CHF of Wang and Tanaka [34] consists of n field elements which also
corresponds to the number of generators in the construction of [34]. The leakage tolerance of the BLR-CHF
is λ′ = ((n− 1) log(p)− ω(log κ)) as shown in [34]. The size of the secret key of the BLR-CHF is L = n log p.
So, for sufficiently large n, the leakage rate η = λ′/L of the BLR-CHF approaches 1− o(1). We also consider
a very good randomness extractor that can work with inputs that have min-entropy v << log p and produces
outputs whose distance from uniform `(κ)-bit strings is ε < 2−`(κ). The size of the secret key xA (respectively
xB) of our NIKE construction is log p (apart from the size of the secret key of λ′-LR-CHF, i.e, n log p).
So the leakage tolerated from xA (respectively xB) is at least log p− v ≈ log p. Hence, the overall leakage
tolerated by our construction is λ ≈ ((n− 1) log(p)− ω(log κ)) + log p ≈ n log(p)− ω(log κ). The overall size
of the secret key of our construction is L′ = (n+ 1) log p. So the overall leakage rate of our construction is
η′ = λ/L′ = 1− o(1), for sufficiently large n.

5 Constructions of various cryptographic primitives from leakage-resilient
NIKE

Now, we show many potential applications of leakage-resilient NIKE.

5.1 Leakage-resilient Adaptive Chosen Ciphertext secure PKE

We now present our construction of LR-IND-CCA-2-secure PKE scheme from a BLR-CKS-heavy-secure
LR-NIKE scheme. Actually, we show how to construct a LR-IND-CCA-2-secure key encapsulation mechanism
(KEM) given such a NIKE. Before proceeding with the construction, we give the LR-IND-CCA-2 security
model for KEMs.

Leakage-resilient Chosen-Ciphertext security for KEM. We say that a KEM Γ = (KEM.Setup,

KEM.Gen, KEM.Encap, KEM.Decap) satisfies correctness if for all pub
$←− Setup(1κ), (pkKEM, skKEM)

$←−
Gen(1κ, pub), and (C,K)← Encap(pkKEM), it holds that Pr [Decap(skKEM, C) = K] = 1 (where the random-
ness is taken over the internal coin tosses of algorithm KEM.Gen and KEM.Encap).

LR-IND-CCA-2 security. We now turn to defining indistinguishability under adaptive chosen-ciphertext
and leakage attacks in the bounded-memory leakage setting (BLR-IND-CCA-2).

Definition 5 (BLR-IND-CCA-2 security). Let κ ∈ N and λ = λ(κ) be parameters. We say that KEM
Γ = (Setup, Gen, Encap, Decap) is λ-BLR-CCA-2-secure if for all PPT adversaries A there exists a negligible
ν(κ) such that ∣∣∣Pr[ExpBLR-IND-CCA-2

Γ,A (κ, λ) = 1]
∣∣∣ ≤ ν(κ).

where the experiment ExpBLR-IND-CCA-2
Γ,A (κ, λ) is defined in Table 3.
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Experiment ExpBLR-IND-CCA-2
Γ,A (κ, λ) Oracle Decap∗(C)

pub
$←− Setup(1κ); If C = C∗, abort

(pk, sk)
$←− Gen(1κ, pub), L← ∅, b

$←− {0, 1}; Return Decap(sk, C)

(C∗,K∗1 )← Encap(pk); K∗0
$←− K;

b′ ← ADecap∗,Oλsk(·)(pk, C∗,K∗b ); Oracle Oλsk(f)

If b′ = b, then return 1, else return 0 If L+ |f(sk)| ≤ λ(κ)
Return f(sk)

Table 3. Experiment defining LR-CCA-2 security of KEM

Generic Construction of leakage-resilient KEM. We now show the construction of leakage-resilient
CCA-2-secure KEM Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap) from a leakage-resilient NIKE
(see Figure 1).

Let LR-NIKE = (NIKEcommon setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy NIKE with leakage rate
1− o(1).

1. KEM.Setup(1κ) : This algorithm runs the NIKEcommon setup(1κ) algorithm to obtain the system
parameters params. It then sets the public parameters of the KEM pub as params.

2. KEM.Gen(1κ, pub) : This algorithm runs the algorithm NIKEgen(1κ, pub) to obtain a pair of public-
private key (pk, sk). It then sets pkKEM = pk and skKEM = sk.

3. KEM.Encap(pkKEM) : This algorithm parses pkKEM as pk, samples another key pair (pk′, sk′) ←
NIKEgen(1κ, pub). Then it runs NIKEkey(pk, sk′) to produce the shared key shk. It then sets the
encapsulated key K = shk and the ciphertext C = pk′.

4. KEM.Decap(skKEM, C) : This algorithm parses the ciphertext C as pk′ and the secret key skKEM as
sk. It then runs NIKEkey(pk′, sk) and obtains the result.

Figure 1. Construction of LR-CCA-2 secure KEM Γ

Theorem 2. Suppose the leakage-resilient NIKE scheme LR-NIKE is BLR-CKS-heavy-secure with leakage
rate 1− o(1). Then the KEM scheme Γ is BLR-IND-CCA-2-secure KEM. More formally, let AKEM be an
adversary against Γ making qD number of decapsulation queries and qL number of leakage queries. Then
using AKEM, we can construct another adversary ANIKE in the BLR-CKS-heavy security model who makes
two RegisterHonest queries, qD number of RegisterCorrupt queries, qD number of CorruptReveal queries, and
qL number of Leakage queries and the running time of ANIKE is roughly same as that AKEM. Moreover the
leakage rate of Γ is 1− o(1).

Proof. Let AKEM be an adversary against the BLR-IND-CCA-2-secure KEM Γ . We now show how to use
AKEM to construct another adversary ANIKE against LR-NIKE, thereby contradicting its BLR-CKS-heavy
security. ANIKE simulates the environment to AKEM in the following way:

– KEM.Setup: On input the public parameters params, ANIKE sets the public parameters pub of the KEM
scheme as params.

– KEM.Gen: ANIKE makes two RegisterHonest queries, receiving as input two honestly registered public
keys pk1 and pk2. It then sets pkKEM = pk1 and skKEM =⊥.

– KEM.Encap(pk): To simulate the challenge phase, ANIKE makes a Test(pk1, pk2) query. It receives as reply
a shared key K which is either the real key, i.e., K = NIKE.key(pk1, sk2), or a random shared K ← SHK.
It then sets the encapsulated key K∗ = K and C∗ = pk2.

– Leakage queries: When AKEM queries with leakage functions f , the challenger ANIKE forwards f to the
leakage oracle Oλsk1(·), and receives as response f(sk1). It then returns f(sk1) to AKEM.
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– Decapsulation queries: AKEM makes decapsulation queries to ANIKE with ciphertexts C. ANIKE parses C
as pk′, and since we have C 6= C∗, we have pk′ 6= pk2. If pk′ = pk1, ANIKE outputs ⊥. This is consistent
with the rejection rule of the KEM Γ and also LR-NIKE. Else, ANIKE makes a RegisterCorrupt query on
pk′. Here we assume that all of AKEM’s decapsulation queries are distinct without loss of generality and
hence all of the RegisterHonest queries are distinct. ANIKE then makes a CorruptReveal(pk1, pk

′) query to
get a shared key K ∈ SHK or a symbol ⊥. It then returns K to AKEM.

This completes the description of ANIKE’s simulation. From the description it is clear than the above simulation
is perfect. Note that, if K∗ is the real shared key, i.e., it is the output of NIKE.key algorithm, then it is
properly simulating the Encap algorithm in the ExpBLR-IND-CCA-2

Γ,A (κ, λ) security experiment; else if K∗ is
chosen randomly it also properly simulates the fact that it is chosen randomly in the experiment. Finally,
when AKEM outputs a bit b′ as its guess for b in the experiment, ANIKE also outputs the same bit b′. So
the advantage of ANIKE in breaking the BLR-CKS-heavy security of LR-NIKE is exactly the same as the
advantage of AKEM in breaking the BLR-IND-CCA-2 security of the KEM scheme Γ . Also note that the
number of RegisterCorrupt and CorruptReveal queries made by ANIKE is same as the number of decapsulation
queries asked by AKEM. This completes the proof of the above theorem. ut

5.2 Leakage-Resilient Authenticated Key Exchange

The work of Bergsma et al. [7] shows a generic construction of eCK-secure AKE protocol, using an UF-
CMA-secure signature scheme, CKS-light-secure NIKE scheme and a pseudo-random function as underlying
primitives.

In this paper, we present a construction of a leakage-resilient NIKE protocol, which is secure in the
CKS-heavy model, under bounded-memory leakage, i.e. BLR-CKS-heavy-secure NIKE protocol (Table 2).
Since the CKS-heavy-security implies the CKS-light-security, our leakage-resilient NIKE protocol can work
as a bounded-memory-leakage-resilient CKS-light-secure NIKE protocol. Further, in the literature we can
find UF-CMLA-secure signature schemes [24], which are UF-CMA-secure signature schemes under the
bounded-memory leakage model. Thus, we have the necessary primitives to transform our leakage-resilient
NIKE to a leakage-resilient AKE, following the NIKE to AKE transformation of Bergsma et al [7], in the
bounded-memory leakage model.

There are numerous leakage versions of the eCK model, under OCLI axiom [3–5], and the memory leakage
model [9]. Further, they address after-the-fact leakage. With our new BLR-CKS-heavy-secure NIKE protocol,
following the Bergsma et al. [7] transformation, we can achieve leakage-resilient AKE in an eCK-style model,

- under the memory leakage (stronger than the OCLI axiom),
- addressing before-the-fact leakage (weaker than the after-the-fact leakage).

Bounded-memory Before-the-fact Leakage eCK Model. We present a suitable security model to
analyze the leakage resiliency of AKE protocols, considering the aforementioned points, i.e. in an eCK-style
security model [26] addressing before-the-fact, bounded-memory leakage.

Let κ be the security parameter. Let U = {U1, ..., Un} be a set of n parties. We use the term principal to
identify a party involved in a protocol instance. Each party Ui where i ∈ [1, NP ] has a pair of long-term
public and secret-keys, (pkUi , skUi). The term session is used to identify a protocol instance at a principal.
Each principal may have multiple sessions and they may run concurrently. The oracle Πs

U,V represents the

sth session at the owner principal U , with intended partner principal V . The principal which sends the first
protocol message of a session is the initiator of the session, and the principal which responds to the first
protocol message is the responder of the session.

Partner sessions in BBFL-eCK model. Two oracles Πs
U,V and Πs′

U ′,V ′ are said to be partners, if all of the
following conditions hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;
5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner oracles compute identical session keys.
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Modelling Leakage. We consider the bounded-memory leakage setting for modelling the leakage As before,
the adversary is allowed to issue arbitrary efficiently computable leakage functions fi and obtain the leakage
fi(sk) of the secret key sk, before the session key is established. As mentioned above the constraint is∑
i=1 |fi(sk)| ≤ λ, where λ is the leakage parameter.

Adversarial Powers.

– Send(U, V, s,m) query: The oracle Πs
U,V , computes the next protocol message according to the protocol

specification and sends it to the adversary. A can also use this query to activate a new protocol instance
with blank m.

– SessionKeyReveal(U, V, s) query: A is given the session key of the oracle Πs
U,V .

– EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session randomness) of the oracle
Πs
U,V .

– Corrupt(U) query: A is given the long-term secrets of the principal U .

– Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b
$←− {0, 1} and

if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the same
session key space is returned to A.

– Leakage(U, fi) query: The leakage fi(skU ) is computed and returns to the adversary if and only if∑
i=1 |fi(skU )| ≤ λ.

λ-BBFL-eCK-freshness. Let λ be the leakage parameter. An oracle Πs
U,V is said to be λ-BBFL-eCK -fresh

if and only if the conditions (1)-(3) of Alawatugoda et al. [4, Def.4] hold, and

4. Before Πs
U,V is activated, for all Leakage(U, fi) queries,

∑
i=1 |fi(skU )| ≤ λ, and for all Leakage(V, fi)

queries,
∑
i=1 |fi(skV )| ≤ λ.

5. After Πs
U,V is activated no leakage allowed from U and V .

The BBFL-eCK security game. The adversary A interacts with the challenger by issuing any combination
of Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries at will. At some point
the adversary chooses a λ-BBFL-eCK-fresh oracle and issues a Test() query. Then, the adversary may
continue asking the Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries while
preserving the freshness of the test session, and finally outputs answer bit b′ for the challenge. A wins if
b′ = b. Let SuccA is the event that the adversary A wins the above security game.

Definition 6 (BBFL-eCK-security). A protocol π is said to be BBFL-eCK-secure if there is no PPT
adversary A that can win the BBFL-eCK security game with non-negligible advantage. The advantage of an
adversary A is defined as AdvBBFL-eCK

π,A (κ) = |2 Pr(SuccA)− 1|.

Constructing BBFL-eCK-secure Key Exchange Protocols. In Table 4, we show the generic leakage-
resilient variant of the Bergsma et al. [7] AKE protocol. We replace the CKS-light-secure NIKE with a
BLR-CKS-heavy-secure NIKE, and the UF-CMA-secure signature scheme with a UF-CMLA-secure signature
scheme in the bounded-memory leakage model, to come up with the generic BBFL-eCK-secure AKE protocol.
In this protocol, the final shared key is obtained by xor-ing the intermediate keys. Since the adversary learns
the leakage only from the long-term secret parameters, it is not necessary to use leakage-resilient PRFs for
the construction of LR-AKE, following NIKE to AKE transformation of Bergsma et al.

Let LR-NIKE = (NIKEcommon setup,NIKEgen,NIKEkey) be the underlying BLR-CKS-heavy-secure NIKE
protocol, LR-SIG = (SIGkg,SIGsign,SIGvfy) be the underlying UF-CMLA-secure signature scheme and PRF
be a secure pseudo-random function. Since, the generic construction of the AKE protocol remains unchanged
with respect to the Bergsma et al. [7], except the replacement of the leakage-resilient advancements of the
underlying primitives, in the bounded-memory leakage setting, the security of the resulting AKE still preserves
the eCK-style with the advancements of leakage resiliency in the bounded-memory leakage setting. Therefore,
the security theorem and the flow of the security proof is similar to Theorem 1 and its proof in [7, Appendix
A].
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A (Initiator) B (Responder)(
(sknikeA ,sksigA ),(pknikeA ,pksigA )

) (
(sknikeB ,sksigB ),(pknikeB ,pksigB )

)
rA

$←− {0.1}κ rB
$←− {0.1}κ

(sktmp
A , pktmp

A )← NIKEgen(1κ, rA) (sktmp
B , pktmp

B )← NIKEgen(1κ, rB)

σA ← SIGsign(sksigA , pktmp
A )

(pk
tmp
A

,σA)
−−−−−−−→ σB ← SIGsign(sksigB , pktmp

B )

If: SIGvfy(pksigB , pktmp
B , σB) = 1;

(pk
tmp
B

,σB)
←−−−−−−− If: SIGvfy(pksigA , pktmp

A , σA) = 1;

T := sort(pktmp
A , pktmp

B ) T := sort(pktmp
A , pktmp

B )

knike,nike = PRF(NIKEkey(sknikeA , pknikeB ), T ) knike,nike = PRF(NIKEkey(sknikeB , pknikeA ), T )

knike,tmp = PRF(NIKEkey(sknikeA , pktmp
B ), T ) knike,tmp = PRF(NIKEkey(sknikeB , pktmp

A ), T )

ktmp,nike = PRF(NIKEkey(sktmp
A , pknikeB ), T ) ktmp,nike = PRF(NIKEkey(sktmp

B , pknikeA ), T )

ktmp,tmp = PRF(NIKEkey(sktmp
A , pktmp

B )) ktmp,tmp = PRF(NIKEkey(sktmp
B , pktmp

A ))

kA,B := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp kB,A := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

Table 4. Leakage-resilient AKE Protocol LR-AKE

Theorem 3. If the underlying NIKE protocol, LR-NIKE, is BLR-CKS-heavy-secure, the signature scheme,
LR-SIG, is UF-CMLA-secure in the bounded-memory leakage model, and the pseudo-random property holds
for the PRF, then the LR-AKE protocol is BBFL-eCK-secure.
Let d be the number of parties. Each party Ui owns at most ` number of protocol sessions. Let A be an

adversary against the above protocol LR-AKE. We construct attackers Bsig,B(1)nike,B
(0)
nike and Bprf against the

underlying leakage-resilient signature scheme, leakage-resilient NIKE protocol (matching session exists and no
matching session exists respectively), and the pseudo-random function s.t.,

AdvBBFL-eCK
LR-AKE,A (κ) ≤ 4 · d2`2 ·

(
AdvBLR-CKS-heavy

LR-NIKE,B(1)
nike

(
κ
)

+ AdvprfPRF,Bprf

(
κ
))

+4 · AdvBLR-CKS-heavy

LR-NIKE,B(0)
nike

(
κ
)

+ 4 · d · AdvUF-CMLA
LR-SIG,Bsig

(
κ
)
.

Proof Sketch. To prove the Theorem 3, we need to consider four types of attackers.

– A1-type attacker never asks EphemeralKeyReveal query for the test session. If there exists a partner to
the test session it will also never asks EphemeralKeyReveal query for the partner session.

– A2-type attacker never asks EphemeralKeyReveal query for the test session. If there exists a partner to
the test session it also never asks Corrupt query for the owner of the partner session.

– A3-type attacker never asks Corrupt query to the owner of the test session. If there exists a partner to
the test session it also never asks the EphemeralKeyReveal query to the partner session.

– A4-type attacker never asks Corrupt query to the owner of the test session. If there exists a partner to
the test session it also never asks the Corrupt query to the owner of the partner session.

Each legitimate attacker according to the freshness definition falls into at least on of these categories.

In the LR-AKE protocol the session key is computed as k := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp. The
main intuition behind this construction is that we need to reduce the indistinguishability of the shared key of
LR-AKE to the indistinguishability of LR-NIKE. In this simulation we can easily simulate the leakage, by giving
the adversary A the leakage obtained from the underlying leakage-resilient NIKE-challenger and the signature
scheme challenger. In the security experiment against the leakage-resilient NIKE, the NIKE-adversary gets
two challenge public-keys from the leakage-resilient NIKE-challenger. In the reduction, we need to embed
them into the view of the adversary A, in a way that we can embed the leakage-resilient NIKE-challenge key
into k while successfully answering all the legitimate Corrupt and EphemeralKeyReveal queries.

A1-type attacker never asks EphemeralKeyReveal queries to the test session and the partner to the test
session. Thus, it is possible to embed the public keys from the leakage-resilient NIKE-challenger, as the
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ephemeral public keys of the test session. Then, use the challenge key from the leakage-resilient NIKE
challenger as ktmp,tmp.

For the case of A2-type attacker, embed the public keys from the leakage-resilient NIKE-challenger, one
as the ephemeral public key and the other one as the long-term public-key of the test session. Then, use the
challenge key as ktmp,nike. Since this embedding involves a long-term secret of one party of the test session,
we need to use an additional PRF, and this long-term secret is used in many protocol executions involving the
corresponding party. Similarly, A3 and A4-type attackers can be handled by embedding the leakage-resilient
NIKE-challenger’s public and challenge keys accordingly.

Thus, the four attackers correspond to all possible combinations of Corrupt and EphemeralKeyReveal
queries, that are allowed in our BBFL-eCK security model. ut

Leakage Tolerance of the Generic LR-AKE Protocol. This generic protocol can tolerate the leakage
according to the leakage tolerance of the underlying leakage-resilient NIKE and the leakage-resilient signature
scheme. Our LR−NIKE can tolerate 1− o(1) leakage and the UF-CMLA signature scheme of Katz et al. [24]
can tolerate n−nε leakage, for n bit key and 1 > ε > 0, which approaches 1− o(1) leakage rate for sufficiently
large n and small enough ε. Thus, the corresponding instantiation can tolerate an overall leakage rate of
1− o(1).

5.3 Leakage-resilient Low-latency Key Exchange

Low-latency key exchange (LLKE) can be considered as one of the important practical usages of NIKE
protocols, which permits the transmission of cryptographically protected data, without prior key exchange,
while providing perfect forward secrecy (PFS). Leakage resiliency of LLKE remains unstudied.

Bounded-memory Leakage LLKE-ma Model. We refer the security model under mutual authentication
of Hale et al. [21, Section 5] as LLKE-ma model. In this work, we introduce bounded-memory leakage model
on top of LLKE-ma model (We use the notation BL-LLKE-ma to identify our model whenever necessary).
Let d be the number of clients and ` be the number of servers. Each client is represented by a collection of
n oracles Ci,1, . . . ,Ci,n and each server is represented by a collection of k oracles Sj,1, . . . ,Sj,k. Each oracle
represents an instance of the protocol. Each principal has a long-term key pair (ski, pki). Let κ be the security
parameter and λ be the leakage parameter. Each oracle Ci,s ∈ [d] × [n] (or Sj,t ∈ [`] × [k], respectively),
maintains:

1. two variables ktmp
i and kmain

i to store the temporary and main keys of a session,
2. a variable Partneri contains the identity of the intended communication partner, and
3. variables Min

i,s and Mout
i,s containing messages sent and received by the oracle.

Adversarial Powers:

– Send(Ci,s/Sj,t,m): The adversary sends the message m to the requested oracle, the oracle processes m
according to the protocol specification, and the response is returned to the adversary.

– Reveal(Ci,s/Sj,t, tmp/main): This query returns the key of the given stage if it has been already computed,
or ⊥ otherwise.

– Corrupt(i/j): This query returns the long-term secret key of the server or the client accordingly. If
Corrupt(j/i) is the τ -th query issued by the adversary, we say a party is τ -corrupted. For the parties that
are not corrupted we define τ :=∞.

– Test(Ci,s/Sj,t, tmp/main): This query is used to test a key. If the variable for the requested key is not

empty, the challenger chooses b
$←− {0, 1}, and if b = 0 then the requested key is returned, else a random

key is returned. Otherwise, ⊥ is returned.
– Leakage(i/j,fi): The leakage fi(ski/j) is computed and returns to the adversary if and only if

∑
i=1 |fi(ski/j)| ≤

λ.

BL-LLKE-ma security game: The adversary interacts with the challenger by issuing any combination of
Send(),Corrupt(),Reveal(), Leak() queries. At some point the adversary issues a Test() query, to an oracle that
holds the conditions in Def. 7. Then, the adversary may continue asking the Send(),Corrupt(),Reveal(), Leak()
queries, without violating the conditions of the Def. 7, and finally outputs answer bit b′ for the challenge. A
wins if b′ = b. Let SuccA is the event that the adversary A wins the above security game.
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Definition 7 (Leakage-Resilient Key-security (under Mutual Authentication)). A protocol π is
said to be BL-LLKE-ma-secure if there is no PPT adversary A that can win the BL-LLKE-ma security game
with non-negligible advantage, while holding the following conditions:

– All the conditions [21, Def. 8].

– Before activation of the test session on Ci, ∀ Leakage(i, fi) queries,
∑
i=1 |fi(ski)| ≤ λ, and before

activation of the test session on Sj ∀ Leakage(j, fi) queries,
∑
i=1 |fi(skj)| ≤ λ.

– After activation of the Test session on Ci no leakage allowed from ski (same as to the case of Sj).

The advantage of A is defined as AdvBL-LLKE-ma
π,A (κ) = |2 Pr(SuccA)− 1|.

Generic Construction of BL-LLKE-ma-secure LLKE from NIKE. In the work of Hale et al., they
have used a CKS-light-secure NIKE scheme NIKE and UF-CMA-secure signature scheme SIG. We simply
replace those primitives with their respective leakage-resilient versions.

Let LR-NIKE = (NIKEcommon setup,NIKEgen,NIKEkey) be a BLR-CKS-heavy-secure NIKE scheme,
LR-SIG = (SIGkg,SIGsign,SIGvfy) be an UF-CMLA-secure signature scheme. Then we construct a LLKE
protocol LR-LLKE=(Gen,KEclient

init , KEclient
refresh, KEserver

refresh) same as the description in Hale et al. [21, Section 6.1].

Since, the generic construction of the LLKE protocol remains unchanged with respect to the Hale
et al., except the replacement of the leakage-resilient advancements of the underlying primitives (in the
bounded-memory leakage model), the security of the resulting AKE still preserves the LLKE-ma-style with the
advancements of leakage resiliency in the bounded-memory leakage model. Therefore, the security theorem and
the flow of the security proof is similar to the theorem and proof of the Theorem 2 of Hale et al. [21, Appendix
6.2].

Theorem 4. If the underlying NIKE protocol, LR-NIKE, is BLR-CKS-heavy-secure, the signature scheme,
LR-SIG, is UF-CMLA-secure in the bounded-memory leakage model, then the LR-LLKE protocol is BK-LLKE-
ma-secure.

Let d be the number of clients and ` be the number of servers. Each client and each server is represented
by a collection of n and k oracles respectively. Let A be an adversary against the above protocol LR-LLKE.
We construct attackers Bsig and Bnike against the underlying leakage-resilient signature scheme and the
leakage-resilient NIKE protocol such that,

AdvBK-LLKE-ma
LR-LLKE,A (κ) ≤ d`n ·

(
AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+d`n ·
(
k · AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+2kd`n ·
(
AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+ 4 · AdvBLR-CKS-heavy
LR-NIKE,Bnike

(κ) .

Proof Sketch. We distinguish between four different attackers:

– A1-type attacker asks Test query to a client oracle and the temporary key.

– A2-type attacker asks Test query to a client oracle and the main key.

– A3-type attacker asks Test query to a server oracle and the temporary key.

– A4-type attacker asks Test query to a client oracle and the main key.

The four different attackers correspond to all possible combinations of queries, that are allowed in our
BK-LLKE-ma security model. The four distinct lines of the equation in Theorem 4 corresponds to each of
above cases respectively. We can easily simulate the leakage, by giving the adversary A the leakage obtained
from the underlying leakage-resilient NIKE-challenger and the signature scheme challenger. Apart from that,
the simulation is same as to the Hale et al [21]. ut

Leakage Tolerance of the Generic LR-LLKE Protocol. This generic protocol can tolerate the leakage
according to the leakage tolerance of the underlying leakage-resilient NIKE and the leakage-resilient signature
scheme. Our LR-NIKE can tolerate 1− o(1) leakage and the UF-CMLA signature scheme of Katz et al. [24]
can tolerate n−nε leakage, for n bit key and 1 > ε > 0, which approaches 1− o(1) leakage rate for sufficiently
large n and small enough ε. Thus, the corresponding instantiation can tolerate an overall leakage rate of
1− o(1).
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6 Conclusion and Future Works

In this paper, we present a new approach to construct several leakage-resilient cryptographic primitives,
such as leakage-resilient PKE schemes, AKE protocols and LLKE protocols, based on leakage-resilient NIKE
protocols as the main building block. Our construction of LR-NIKE in the bounded leakage setting achieves
an optimal leakage rate, i.e., 1− o(1), and the resulting leakage-resilient constructions from that also preserve
the same leakage-rate, upon the appropriate choice of parameters. Our work opens up leakage-resilient LLKE
protocols, and we hope there is much work to be done on this. We leave open the following main problems:

• Efficient construction of leakage-resilient NIKE in the 1− o(1)-bounded-memory leakage model, without
leak-free hardware assumption.

• Leakage-resilient NIKE in the 1− o(1)-continuous-memory leakage model.
• Leakage-resilient NIKE in after-the-fact leakage model.
• On leakage-resilient LLKE, as this paper opens up that direction, we hope there is much work to be done

in future.
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Appendix

A Additional Preliminaries

A.1 Basics of Information Theory.

Definition 8. (Min-Entropy). The min-entropy of a random variable X, denoted as H∞(X) is defined

as H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography, since it

measures the worst-case predictability of X.

Definition 9. (Average Conditional Min-Entropy). The average-conditional min-entropy of a random

variable X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z) is defined as
H̃∞(X|Z) = - log

(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2−H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a correlated variable Z.

The following bound on average min-entropy was proved in Dodis et al. [14].

Lemma 1. [14] For any random variable X, Y and Z, if Y takes on values in {0, 1}`, then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y ) ≥ H̃∞(X)− `.
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A.2 Leakage-resilient (LR) Chameleon Hash Functions

In this section we give the definition of LR chameleon hash functions (CHF) in the bounded memory leakage
model following [34].

LR-CHF in bounded leakage model: Informally, a chameleon hash function (CHF) is a collision-resistant
hash function, the only difference being that it is easy to find collision given a trapdoor. Without knowing the
trapdoor it is hard to find any collision. Leakage-resilient chameleon hash functions (LR-CHF) postulate that
it is hard to find collisions, even when the adversary learns bounded leakage/information about the secret
key. Formally, an λ-LR-CHF ChamH : D×Rcham → I, where D is the domain, Rcham the randomness space
and I the range, consists of the algorithms (Cham.KeyGen, Cham.Eval, Cham.TCF).

1. Cham.KeyGen(1κ, λ): The key generation algorithm takes as input 1κ and the leakage bound λ as
parameters and output an evaluation key along with a trapdoor (hk, ck). The public key hk defines a
chameleon hash function, denoted ChamHhk(., .).

2. Cham.Eval(hk,m, r): The hash function evaluation algorithm that takes as input hk, a message m ∈ D,
and a randomizer r ∈ Rcham and outputs a hash value h = ChamHhk(m, r).

3. Cham.TCF(ck, (m, r),m′): The trapdoor collision finder algorithm takes as the trapdoor ck, a message-
randomizer pair (m, r), an additional messagem′, and outputs a value r′ ∈ Rcham such that ChamHhk(m, r) =
ChamHhk(m′, r′).

A λ-LR-CHF must satisfy the following three properties:

• Reversibility: The reversibility property is satisfied if r′ = Cham.TCF(ck, (m, r),m′) is equivalent to
r = Cham.TCF(ck, (m′, r′),m).

• Random Trapdoor Collisions: The random trapdoor collision property is satisfied if for a trapdoor
ck, an arbitrary message pair (m,m′), and a randomizer r, r′ = Cham.TCF(ck, (m, r),m′) has uniform
probability distribution on the randomness space Rcham.

• LR-collision resistance: The LR collision-resistance property is satisfied if for any PPT adversary A,
we have that the following advantage in negligible:

AdvcollA,ChamH(κ) = |Pr[(hk, ck)← Cham.KeyGen(1κ, `); (m, r), (m′, r′)← AO
κ,λ
ck (hk) :

(m, r) 6= (m′, r′) ∧ ChamHhk(m, r) = ChamHhk(m′, r′)]|

where Oκ,λck is the leakage oracle to which A can adaptively query to learn at most λ bits of information
about the trapdoor ck.

A.3 Pseudo-random Functions

F : Σk ×Σm → Σn is a (εprf , sprf , qprf) secure pseudo-random function (PRF) if no adversary of size sprf can
distinguish F (instantiated with a random key) from a uniformly random function, i.e., for any A of size sprf

making qprf oracle queries we have:

| Pr
K

$←−ΣK
[AF (K,.) → 1]− Pr

Rm,n
[ARm,n()̇ → 1] | ≤ εprf ,

where R(m,n) is the set of all functions from Σm → Σn.

A.4 UF-CMLA-Secure Signature Schemes

We review the definition of UF-CMLA security according to Katz et al. [24]. The leakage function fi is an
adversary chosen efficiently computable adaptive leakage function, which leaks fi(sk) from a secret key sk.

Definition 10 (Unforgeability Against Chosen Message Leakage Attacks (UF-CMLA)). Let κ
be the security parameter and λ be the leakage parameter. Let LR-SIG = (SIGkg,SIGsign,SIGvfy) be a signature
scheme, we define AdvUF-CMLA

LR-SIG,Bsig

(
κ) as the advantage of any PPT adversary Bsig, winning the following game:
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1. (sksig, pksig)
$←− SIGkg(1κ)

2. (m∗, σ∗)← AO(·,·)(pksig)

3. If SIGvfy(pksig,m∗, σ∗) = “true” and m∗ is not
been previously signed, then Bsig wins.

Oracle O(m, fi)

• σ $←− SIGsign(sksig,m)
• γi ← fi(sk

sig)
• If

∑
i=1 |γi| ≤ λ

– γ ← γi
– γ ← ⊥

• Return (σ, γ)

We say the signature scheme LR-SIG is UF-CMLA-secure, if AdvUF-CMLA
LR-SIG,Bsig

(
κ) is negligible.

Katz et al. [24] constructed an UFCMLA-secure signature scheme in bounded leakage model in which
n = 1. It contains signing and verification operations based on NIZK proofs, where signature can be generated
with cost of 2 Exponentiations, and verified with cost of 4 Exponentiations (with a simple NIZK proof).

B Leakage-resilient Cryptography and Leakage Models

During the past two decades side-channel attacks have arisen as a popular method of attacking cryptographic
systems. In order to abstractly model the side-channel attacks and analyze the security of cryptographic prim-
itives against them, cryptographers have proposed the notions of leakage-resilient cryptography, introducing
various leakage models. [2, 6, 27,28], introducing various leakage models.

In the work of Micali and Reyzin [28], a general framework was introduced to model the leakage, that occurs
during computation with secret parameters, which is widely known as Only computation leaks information
(OCLI) axiom. They mentioned that the leakage only occurs from the secret memory portions which are
actively involved in computations. The leakage amount is bounded per computation, though the adversary is
allowed to obtain the leakage from many computations. Therefore, the overall leakage amount is unbounded.
Since, this assumption enforces that the leakage is only occurred due to computations, this does not cover
the attacks that happen due to the leakage from the memory such as malware attacks, cold-boot attacks etc.

Inspired by the cold-boot attacks, Akavia et al. [2] constructed a general framework to model bounded
leakage attacks, which is widely known as bounded-memory leakage model. The adversary chooses an arbitrary
polynomial time leakage function, f and sends it to the leakage oracle. The leakage oracle returns f(sk) to
the adversary, where sk is the secret key. The only restriction here is that the sum of output length of all the
leakage functions that an adversary can obtain is bounded by some parameter λ, which is smaller than the
size of sk. This leakage model does not address the continuous leakage from the memory, which can often
happen due to attacks such as malware attacks.

Previous works of Zvika et al. [8] and Dodis et al. [11] presented a continual-memory leakage model, in
which it is assumed that the leakage happens from the entire secret memory. The other characteristics of this
model is same as the OCLI model. This leakage model is stronger than the OCLI model, because here the
adversary can obtain the leakage from the entire memory regardless of computations.

Differently, Dodis et al. [13] introduced a leakage model, where the adversary is allowed to obtain the
leakage as any computationally uninvertible function of the secret key as auxiliary input. That model
eliminates the concept of leakage parameter, but enforcing the hardness parameter instead.

C Vulnerability of the NIKE protocol of [16] in the bounded-leakage setting.

In this section we show that the NIKE protocol of Freire et al. [16] from pairings in the standard model is
completely insecure, even if the adversary is given only a single bit of leakage on the secret key. The attack
exploits the fact that the adversary can ask any arbitrary leakage function as long as the output of the
function is length shrinking in its input size. In particular, the secret key of a party in the NIKE protocol
in Freire et al. [16] is a field element, i.e., x ∈ Zp, and one of the components of the public key is Z = gx.
The shared key between two parties IDi and IDj has the structure e(Sxi , Zj), where S is a public element,
Zj = gxj and xi and xj are the secret keys of parties IDi and IDj respectively.
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Now, given the public-key, the adversary can encode the function that leaks the hardcore bit of the discrete
logarithm of Z. In other words, he can specify the leakage function in such a way such that it leaks exactly
the most significant bit (MSB) of x. Note that the MSB of x is actually the hardcore bit of the discrete
logarithm function. So, with a single bit of leakage the adversary can recover x completely and hence he can
distinguish the shared secret key from a random key with probability 1 and win the indistinguishability game.
In fact here with only a single bit of leakage the adversary can perform key recovery attack, which is stronger
than the attack on the indistinguishability game.
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