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Abstract. Linear regression with 2-norm regularization (i.e., ridge regression) is an important statistical
technique that models the relationship between some explanatory values and an outcome value using a
linear function. In many applications (e.g., predictive modeling in personalized health-care), these values
represent sensitive data owned by several different parties who are unwilling to share them. In this setting,
training a linear regression model becomes challenging and needs specific cryptographic solutions. This
problem was elegantly addressed by Nikolaenko et al. in S&P (Oakland) 2013. They suggested a two-server
system that uses linearly-homomorphic encryption (LHE) and Yao’s two-party protocol (garbled circuits).
In this work, we propose a novel system that can train a ridge linear regression model using only LHE (i.e.,
without using Yao’s protocol). This greatly improves the overall performance (both in computation and
communication) as Yao’s protocol was the main bottleneck in the previous solution. The efficiency of the
proposed system is validated both on synthetically-generated and real-world datasets.
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1 Introduction

Linear regression is an important statistical tool that models the relationship between
some explanatory values (features) and an outcome value using a linear function. Despite
its simple definition, a linear regression model is very useful. Indeed, it can be used to
quantitatively relate the features and the outcome (e.g., identify which features influence
more directly the outcome) and for future prediction (e.g., if a new vector of features with
no known outcome is given, the model can be used to make a prediction about it). Ridge
regression is one of the most widely-used forms of regression. It lessens the over-fitting
of ordinary least squares regression without adding computational cost. In practice, this
is achieved giving preference to models with small Euclidean norm. Ridge regression is
extremely popular (see the survey in [27]) and has found applications in several different
fields, from biology [33] and medicine [29, 38] to economics and finance [24]. To enhance
the efficacy of the learned model, prior experience in model training suggests using
training data from a large and diverse set. Indeed, it is known that having more data (more
relevant features and/or more data points) typically improves the ability to learn a reliable
model. A simple way to obtain such training dataset is to merge data contained in “data
silos” collected by different entities. However, in many applications (e.g., personalized
medicine [38]) the data points encode sensitive information and are collected by possibly
mutually distrustful entities. Often, these entities will not (or cannot) share the private data
contained in their silos, making collaborative analysis on joint data impossible.



Consider the following example: We would like to use a given linear regression
method in order to predict the weight of a baby at birth on the basis of some ultrasound
measurements made during the last month of pregnancy (e.g., head circumference, femur
length, . . . ). On one hand, in order to avoid computing a biased model, we would like
to run the selected learning algorithm on data points collected in different hospitals in
various locations. On the other hand, each hospital legally cannot share (in the clear)
patients’ sensitive data (the measurements) with other hospitals or with a third party (e.g.,
a cloud-computing server). This real-life case exemplifies the challenge on which we focus
on: training a linear regression model on joint data that must be kept confidential and/or are owned
by multiple parties. Moreover, we want to run such collaborative analysis without exposing
an entity’s sensitive data to any other party in the system (i.e., no entity in the system is
trusted to handle the data in the clear).

Our paper takes up the above challenge and proposes an efficient solution in the
two-server model [20], commonly used by previous works on privacy-preserving machine
learning (e.g., see [30, 15, 28]), where no party needs to be trusted to handle the data in the
clear. In this setting, the computation of the model from the merged data is outsourced to
two non-colluding (but not necessarily trusted) third-parties. After a first phase of collecting
private data in encrypted form from possibly many data-owners, the two third parties then
engage in a second phase for the computation of the model itself. The system is designed in
such a way that no extra information (beside that released by the model itself)3is revealed to
these two parties if they do not collude (condition that can, for example, be enforced by law).
Our solution is based only on a simple cryptographic primitive that can be implemented
via efficient constructions. Indeed, our system is designed using just a linearly-homomorphic
encryption (LHE) scheme, that is, an encryption scheme that enables computing the sum
of encrypted messages. Previous solutions to the problem considered here are based on
multi-party computation protocols (e.g., secret-sharing based protocols like BGW [6] or the
2-party protocol by Yao [39, 26]) or on somewhat-homomorphic encryption (i.e., encryption
schemes that support a limited number of arithmetic operations on encrypted messages). A
hybrid approach that uses both homomorphic encryption and Yao’s scheme was presented
in [30]. In this work, we present the first approach to privacy-preserving ridge regression that uses
only linearly-homomorphic encryption. We believe that this result is interesting both from
the theoretical and the practical points of view. Indeed our system can be seen as a new
black-box application of LHE and shows that this basic crypto-primitive can be used alone
to handle involved tasks (i.e., ridge regression over distributed data). Furthermore, our
system achieves practical performances when implemented using a standard encryption
scheme like Paillier’s cipher [31]. We show this via an evaluation of our system that uses
synthetically-generated and real-world data. Overall, our experiments demonstrate that, for
many real scenarios, LHE is all you need to privately yet efficiently train a ridge regression
model on distributed data. As an illustrative example, consider the following existing

3 Another line of research focuses on studying and preventing the privacy threats that arise from releasing a model
trained using private data. This is known as the differential privacy paradigm [13]. Our approach is orthogonal to
differential privacy since we consider a different threat model.

2



medical scenario: the Warfarin dosing model. Warfarin is a popular anticoagulant for which
the International Warfarin Pharmacogenetics Consortium proposed an accurate dosing
model trained using linear regression on a medical database that was the merge of the
data silos collected by 21 research groups. Using a commodity machine, our system can
compute the same model in less than 3 minutes with the guarantee of confidentiality for
the data silos of each research group involved(details can be found in Appendix A.4).

Related work. The question of privacy-preserving machine learning was introduced in
2000 by two pioneering works [25, 1]. Later on, privacy-preserving linear regression was
considered in a number of different works (e.g., [21, 12, 35, 22, 23, 18, 9, 2]). In 2013,
Nikolaenko et al. [30] introduced the scenario we consider in this paper: privacy-preserving
linear regression protocol in the two-server model. The solution in [30] considers ridge
regression on a horizontally-partitioned dataset in which each party has some of the data
points that form the training set (e.g., two or more hospitals, each of which collects the
same medical data on different sets of patients). Their solution is based on LHE and Yao’s
protocol. The latter is a two-party protocol that allows the evaluation of a circuit C on a
pair of inputs (a , b) such that one party knows only a and the other party knows only b. At
the end of the protocol, the value C(a , b) is revealed but no party learns extra information
beyond what is revealed by this value. In [30], the ridge regression model is computed
using Yao’s protocol to compute the solution of a linear system of the form Aw � b where
the entries of matrix A and vector b are encrypted (and must be kept private). The solution
w∗ is the model. The circuit C is the one that solves a linear system computing the Cholesky
decomposition of the coefficient matrix. Recently, in [15], the system presented in [30] was
extended to vertically-partitioned datasets in which the features in the training dataset are
distributed among different parties (e.g., two or more hospitals, each of which collects
different medical data on the same set of patients). Gascón et al. [15] achieve this result
using multiparty-computation techniques to allow the data-owners to distribute shares of
the merged datasets to the two parties active in the second phase. Moreover, Gascón et
al. also improve the running time of the second phase of the protocol presented in [30]
by designing a new conjugate gradient descent algorithm that is used as circuit C in the
place of Cholesky decomposition. This approach was subsequently further improved by
Mohassel and Zhang [28] using mini-batch stochastic gradient descent, and extended to
logistic regression and neural networks on arbitrarily partitioned datasets.

Our contribution. Our paper follows this line of work and presents a novel system for
ridge regression in the two-server model. For the first phase, we extend the approach used
by Nikolaenko et al. to datasets that are arbitrarily partitioned using the techniques of
labeled-homomorphic encryption [4] to support multiplications among pairs of ciphertexts
encrypted via an LHE scheme. In this way we show that a solution based only on LHE
can handle scenarios more complicated than the horizontally-partitioned case. For the
second phase, we avoid Yao’s protocol by designing an ad-hoc two-party protocol that
solves Aw � b using only the linear homomorphic property of the underlying encryption
scheme. This allows to boost the overall performance and, in particular, to considerably

3



reduce the communication overhead.4 As a highlight, if we horizontally partition (into ten
equal-sized parts) a dataset of 10 millions instances and 20 features, our privacy-preserving
regression method runs in under 2 minutes5 and produces a communication overhead of
1.3 MB. The system presented in [30] needs more than 50 minutes and 270 MB exchanged
data to perform a similar computation.6 Finally, we notice that gradient descent based
solutions (e.g., [15, 28]) use iterative algorithms and present the problem of estimating
the number of iterations t. Either t is fixed to a high value that ensures finding a good
approximation of the model, which incurs higher complexity for the protocol; either t is
chosen adaptively based on the dataset, which can be infeasible in the privacy-preserving
setting. Our solution for solving Aw � b does not present this problem.

2 Background

Linear regression. A linear regression learning algorithm is a procedure that on input
n points {(x1, y1), . . . , (xn , yn)} (where x i ∈ Rd and yi ∈ R) outputs a vector w∗ ∈ Rd

such that w∗ᵀ x i ≈ yi for all i � 1, . . . , n. One common way to compute such a model
w∗ is to use the squared-loss function and the associated empirical error function (mean
squared error): fX,y(w) � ‖Xw − y‖22 . Here X ∈ Rn×d is the matrix with the vector xᵀ

i
as ith row and y ∈ Rn is the vector with the value yi as ith component. We assume
that X is always full-rank (i.e., rk(X) � d). Specifically, w∗ is computed by minimizing a
linear combination of the aforementioned error function and a regularization term, that
is, w∗ ∈ argminw∈Rd fX,y(w) + λR(w) where λ ≥ 0 is fixed. The regularization term is
added to avoid over-fitting the training dataset and to bias toward simpler models. In
practice, one of the most common regularization terms is the 2-norm (R(w) � ‖w‖22), which
generates a model with overall smaller components. In this case (called ridge regression), the
model w∗ is computed by minimizing the function Fridge(w) � ‖Xw − y‖22 + λ‖w‖22 . Since,
∇Fridge(w) � 2Xᵀ(Xw − y) + 2λw, we have that w∗ is computed solving the linear system

Aw � b (1)

where A � XᵀX + λI (symmetric d × d matrix) and b � Xᵀy (vector of d components).
Notice that since X is full-rank, A is positive definite and therefore det(A) > 0 (in particular
A is invertible).

Cryptographic tools. To design our privacy-preserving system, we utilize homomorphic
encryption. Let (M ,+) be a finite group. A linearly-homomorphic encryption (LHE) scheme
for messages inM is defined by three algorithms:

1. The key-generation algorithm Gen takes as input the security parameter κ and outputs
a matching pair of secret and public keys, (sk, pk) ← Gen(κ).

4 Size of the messages exchanged among the parties running the system.
5 Timing on a 2.6 GHz 8 GB RAMmachine running Linux 16.04; 80-bit security.
6 Timing on a 1.9 GHz 64 GB RAMmachine running Linux 12.04; 80-bit security.
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2. The encryption algorithm Enc is a randomized algorithm that uses the public key pk to
transform a message m fromM (plaintext space) into a ciphertext, c ← Encpk(m).

3. The decryption algorithm Dec is a deterministic function that uses the secret key sk to
recover the original plaintext from a ciphertext c.

The standard security property (semantic security) says that it is infeasible for any com-
putationally bounded algorithm to gain extra information about a plaintext when given
only its ciphertext and the public key pk. Moreover, we have the homomorphic property:
Let C be the set of all possible ciphertexts, then there exists an operation � on C such that
for any a-tuple of ciphertexts c1 ← Encpk(m1), . . . , ca ← Encpk(ma) (a positive integer), it
holds that Pr[Decsk(c1 � · · · � ca) � m1 + · · · + ma] � 1. This implies that, if c � Encpk(m),
Decsk(cMult(a , c)) � am, where cMult(a , c) � c � · · · � c (a times). Known instantiations
of this primitive include Paillier’s scheme [31] and its generalization by Damgård and
Jurik [10, 11], Regev’s scheme [34], and Joye-Libert scheme [19, 7].

In some cases being able to perform only linear operations on encrypted messages
is not sufficient. For example, when considering arbitrarily partitioned datasets, we will
need to be able to compute the encryption of the product of two messages given the
encryptions of the individual messages. An LHE scheme cannot directly handle such
an operation. On the other hand, a general solution to the problem of computing on
encrypted data can be obtained via the use of fully-homomorphic encryption [16]. Since full
fledged constructions of fully-homomorphic encryption are still inefficient, more efficient
solutions have been designed for evaluating low-degree polynomials over encrypted
data functionalities (somewhat-homomorphic encryption). In a recent work, Barbosa et
al. [4] introduce the concept of labeled-homomorphic encryption (labHE); this new primitive
significantly accelerates homomorphic computation over encrypted data when the function
that is being computed is known to the party that decrypts the result. Since in this paper
we consider that the machine-learning algorithm and the data distribution among the
participants is publicly known, the previous assumption is satisfied and we can make use
of labHE. In particular, Barbosa et al. show how to design an homomorphic encryption
scheme that supports the evaluation of degree-two polynomials using only an LHE and
a pseudo-random function. The new scheme is public-key and works in the multi-user
setting: two or more users encrypt different messages, an encryption of the evaluation of a
degree-two polynomial on these messages can be constructed by any party having access
to the public key and the ciphertexts. Then the party holding the secret key can decrypt
and reveal the result of the evaluation (the polynomial is public, the correspondence
user-ciphertext is known). We briefly recall here their construction [4, Section 5] in the case
that the polynomial is evaluated on messages encrypted only by two different users.

Let (Gen,Enc,Dec) be an LHE scheme with security parameter κ andmessage spaceM.
Assume that a multiplication operation is given inM; i.e., (M ,+, ·) is a finite ring. Let also
F : {0, 1}s × L →M be a pseudo-random function with seed space {0, 1}s (s � poly(κ))
and label space L. Define:

– labGen(κ): On input κ, it runs Gen(κ) and outputs (sk, pk).
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– localGen(pk): For each user i and with the public key as input, it samples a random seed
σi in {0, 1}s and computes pki � Encpk

(
σi

)
where σi is an encoding of σi as an element

ofM. It outputs (σi , pki).
– labEncpk(σi ,m , τ): On input a message m ∈ M with label τ ∈ L from the user i, it
computes b � F(σi , τ) and outputs the labeled ciphertext c � (a , c) ∈ M × C with
a � m − b inM and c � Encpk(b).

– labMult(c , c′): On input two labeled ciphertexts, c � (a , c) and c′ � (a′, c′), it computes a
“multiplication” ciphertext d � labMult(c , c′) as d � Encpk(a ·a′)�cMult(a , c′)�cMult(a′, c).
Observe that Decsk(d) � m · m′ − b · b′. Moreover, notice that given two or more
multiplication ciphertexts d1, . . . , dn , they can be “added” using the operation of the
underlying LHE scheme: d1 � · · · � dn . Assume that user i and user j have both
encrypted n messages, m1, . . . ,mn and m′1, . . . ,m

′
n , respectively. Let c̃ ∈ C be the

ciphertext obtained as
n⊙

t�1
labMult

(
labEncpk(σi ,mt , τt), labEncpk(σ j ,m′t , τ

′
t)
)
.

– labDecsk(pki , pk j , c̃): On input c̃, it first recovers σi and σ j from Decsk(pki) and Decsk(pk j).
Next, it computes bt � F(σi , τt) and b′t � F(σ j , τ′t) for all t � 1, . . . , n. Finally, it computes
b̃ �

∑n
t�1 bt · b′t and m̃ � Decsk(c̃) − b̃. It is easy to verify that m̃ �

∑n
t�1 mt · m′t .

Data representation. In order to use the cryptographic tools described in the former
section, we need to represent the real values that form the input datasets as elements in
the finite setM (the message space). Without loss of generality, we assume thatM � ZN
for some big integer N and that the entries of X and y are numbers from the real interval
[−δ, δ] (with δ > 0)7 with at most ` digits in their fractional part. In this case, the conversion
from real values to elements inM can be easily done by rescaling all the entries of X and y
and then mapping the integers in ZN using the modular operation. For this reason, from
now onwe consider that the entries of X and y are integers from 0 to N−1. This implies that
we consider the matrix A and the vector b having positive integer entries8 and, finally, that
we assume that the model w∗ is a vector in Qd . Notice that for the integer representation
of A and b it holds that ‖A‖∞, ‖b‖∞ ≤ 102`(nδ2 + λ). Therefore, if 102`(nδ2 + λ) ≤ N−1

2 ,
then A and b are embedded in ZN without overflow for their entries. However, if the
linear system (1) is now solved over ZN , then clearly the entries of the solution are given as
modular residues of ZN and may be different from the entries of the desired model w∗ in
Qd . In order to solve this problem and recover the model in Qd from the model computed
over ZN , we can apply the rational reconstruction technique component-wise. With rational
reconstruction [37, 14] we mean the application of the Lagrange-Gauss algorithm to recover
a rational t � r/s from its representation in ZN as t′ � r s−1 mod N, for N big enough
(see (4) in Section 4).

7 In other words, δ � max{‖X‖∞ , ‖y‖∞} for the original X and y.
8 We assume that λ ∈ R has at most 2` digits in the fractional part.
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3 Threat Model and System Overview

We consider the setting where the training dataset is not available in the clear to the entity
thatwants to train the ridge regressionmodel. Instead, the latter can access encrypted copies
of the data and, for this reason, needs the help of the party handling the cryptographic keys
in order to learn the desired model. More precisely, protocols in this paper are designed
for the following parties:

– The Data-Owners: There are m data-owners DO1, . . . ,DOm ; each data-owner DOi has a
private datasetDi and is willing to share it only if encrypted.

– TheMachine-Learning Engine (MLE): This is the party thatwants to run a linear regression
algorithm on the datasetD obtained by merging the local datasetsD1, . . . ,Dm , but has
access only to the encrypted copies of them. For this reason, MLE needs the help of the
Crypto Service Provider.

– The Crypto Service Provider (CSP) takes care of initializing the encryption scheme used
in the system and interacts with MLE to help it in achieving its task (computing the
linear regression model). CSP manages the cryptographic keys and is the only entity
capable of decrypting.

We assume that MLE and CSP do not collude and that all the parties involved are honest-
but-curious. That is, they always follow the instructions of the protocol but try to learn
extra information about the dataset from the messages received during the execution of the
protocol (i.e., passive security). Moreover, we assume that for each pair of parties involved in
the protocol there exists a private and authenticated peer-to-peer channel. In particular,
communications between any two players cannot be eavesdropped.

The goal is to ensure that MLE obtains the model while both MLE and CSP do not
learn any other information about the private datasetsDi beyond what is revealed by the
model itself. Even in the case that one of the two servers (MLE or CSP) colludes with some
of the data-owners, they should learn no extra information about the data held by the
honest data-owners. In order to achieve this goal we design a system that can be seen as
multi-party protocol run by the m + 2 parties mentioned before and specified by a sequence
of steps. This system (described in Section 4) has the following two-phase architecture:

Phase 1 (merging the local datasets): CSP generates the key pair (sk, pk), stores sk and
makes pk public; each DOi sends to MLE specific ciphertexts computed using pk and
the values inDi . MLE uses the ciphertexts received and the homomorphic property of
the underling encryption scheme in order to obtain encryptions of A and b (coefficient
matrix and vector in (1)).

Phase 2 (computing the model): MLE uses the ciphertexts Encpk(A) and Encpk(b) and
private random values in order to obtain encryptions of new values that we call
“masked data”; these encryptions are sent to the CSP; the latter decrypts and runs a
given algorithm on the masked data. The output of this computation (“masked model”)
is a vector w̃ that is sent back from the CSP to the MLE. The latter computes the output
w∗ from w̃.
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Informally, we say that the system is correct if the model computed by the MLE is equal to
the model computed by the learning algorithm in the clear usingD as training data. And
we say that the system is private if the distribution of the masked data sent by the MLE to
the CSP is independent of the distribution of the local inputs. Thus, no information about
D1, . . . ,Dm is revealed by the messages exchanged during Phase 2.

As we will see in Section 4, the specific design of the protocol realizing Phase 1 depends
on the distributed setting: horizontally- or arbitrarily-partitioned datasets. However, in both
cases, the data-owners input encryptions of local values and the MLE gets the encryptions
of A and b. The CSP simply takes care of initializing the cryptographic primitive and
generates the relative keys. Phase 2 is realized by an interactive protocol between the MLE
and the CSP. CSP takes on input the encryptions of A and b from the MLE and returns
the solution of the system Aw � b following this pattern (we refer to this as the “masking
trick”):

– The MLE samples a random invertible matrix9 R ∈ GL(d ,M) and a random vector
r ∈ M and it uses the linear homomorphic property of the underlying encryption
scheme to compute C′ � Encpk(AR) and d′ � Encpk(b + Ar). The values C � AR and
d � b + Ar are the “masked data.” We slightly abuse notation here; Encpk(·) is applied
component-wise in the computation of C and of d′.

– The CSP decrypts C′ and d′ and computes w̃ � C−1d. The vector w̃ is the “masked
model” sent back to the MLE.

– The MLE computes the desired model as w∗ � Rw̃ − r . Indeed, it is easy to verify that
Rw̃ − r � R(AR)−1(b + Ar) − r � A−1b.

Informally, the security of the encryption scheme assures privacy against an honest-but-
curious MLE. On the other hand, if R and r are sampled uniformly at random, then the
distribution of the masked data is independent of A and b. This guarantees privacy against
an honest-but-curious CSP. Similar masking tricks have been previously used in different
settings. In [3], a similar method is used to design a secret-shared based MPC protocol for
the evaluation of general functions. In this work, we tailor the masking trick for the goal
of solving the linear system Aw � b gaining in efficiency. In [36], masking with random
values is used to outsource a large-scale linear system to an untrusted “cloud server”.
They assume that the coefficient matrix A and vector b of the linear system are known to
a “cloud customer” seeking the solution w. In this work, A and b are encrypted and the
masking is applied “inside the encryption”; to make the masking trick, which works in Q,
compatible with the encryption and the modular arithmetic used for it, we make use of
rational reconstruction.10

Notice that the two-server model allows for different implementations in practice. If
we consider applications in which the majority of data-owners are willing to help to run

9 GL(d ,M) denotes the general linear group of degree d over the ringM; namely, the group of d × d invertible matrices
with entries fromM.

10 Notice that the system presented in [36] fails because no techniques are used to make the arithmetic over Q compatible
with the modular arithmetic used by the underling LHE (i.e., Paillier’s scheme). See [8] for more details on this.

8



Protocol 1. Π1,hor: Phase 1 in the horizontally-partitioned setting.

– Parties: CSP, MLE, and DOk with inputDk (as defined in (2)) for all k � 1, . . . ,m.
– Output: MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Step 1: (key-generation) CSP runs (sk, pk) ← Gen(κ) and makes pk public, while it keeps sk secret.
Step 2: (local computation) For all k � 1, . . . ,m, DOk computes Ak �

∑
i x i x

ᵀ
i and bk �

∑
i yi x i with nk−1 + 1 ≤ i ≤ nk ;

next, DOk encrypts them, A′k[i , j] � Encpk(Ak[i , j]), b′k[i] � Encpk(bk[i]) for all i , j � 1, . . . , d and j ≥ i; finally,
DOk sends all A′k and b′k to MLE.

Step 3: (datasets merge) For all i , j � 1, . . . , d and j ≥ i, MLE computes

A′[i , j] �
{(⊙m

k�1 A′k[i , i]
)
� Encpk(λ) if j � i⊙m

k�1 A′k[i , j] if j > i
, b′[i] �

m⊙
k�1

b′k[i] .

collaborative analysis but don’t want to (or cannot) spend to much resources to execute
it, then the role of MLE and CSP can be taken by two semi-trusted11 third-parties (e.g.,
two independent research institutions). This setting offers the practical advantage that
the involvement of all data-owners is minimal. Otherwise, since CSP and MLE are only
required to be non-colluding, their role can be taken by two disjoint subsets of data-owners
(e.g., for m ≥ 2, we can have DO1 and DO2 playing the role of MLE and CSP, respectively).
In this case, no third-parties are required to implement the system.

4 Protocols Description

In this section we describe how to implement Phase 1 and Phase 2. Let (Gen,Enc,Dec) be
an LHE scheme with security parameter κ and message spaceM � ZN .

4.1 Phase 1: Merging the dataset

Horizontally-partitioned setting. Assume that the dataset represented by the matrix X and
the vector y is horizontally-partitioned in m datasets. That is, the data-owner DOk holds

Dk �
{
(xnk−1+1, ynk−1+1), . . . , (xnk , ynk )

}
, (2)

for k � 1, . . . ,m (0 � n0 < n1 < · · · < nm � n). In this case, as already noticed in [30],
defining Ak �

∑nk
i�nk−1+1 x ix

ᵀ
i and bk �

∑nk
i�nk−1+1 yix i , we have that A �

∑m
k�1 Ak + λI

and b �
∑m

k�1 b i . In Protocol Π1,hor, each data-owner DOk computes and sends to MLE
encryptions of the entries of Ak and bk ; then MLE computes encryptions of the entries of
A and b using the above formulas and the operation � (details in Prot. 1).

11 That is, trusted to be non-colluding.
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Arbitrarily-partitioned setting. Assume that each DOk holds some elements of X and y. That
is, DOk holds

Dk �
{
X[i , j] � x i[ j] | (i , j) ∈ Dk

}
∪

{
y[i] � yi | (i , 0) ∈ Dk

}
, (3)

where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d}. Assume that each data-owner sends encryptions of
the elements it knows to MLE. Then, in order to compute encryptions of the entries of
A and b, MLE needs to multiply two ciphertexts. Indeed, we have b[i] � ∑n

t�1 xt[i]y[t]
and A[i , j] � ∑n

t�1 xt[i]xt[ j] if j , i, otherwise A[i , i] � ∑n
t�1 xt[i]xt[i] + λ. To allow this,

we use labeled-homomorphic encryption. As we recalled in Section 2, the latter can be
constructed on top of any LHE scheme and it enhances the underlying scheme with the
multiplication command labMult. In particular, after having received labeled-encryptions
of the input from the data-owners,12 MLE can compute the encryptions of the entries of
A and b using formulas of the form

⊙n
t�1 labMult

(
labEnc(xt[i]), labEnc(xt[ j])

)
. Remember

that the output of the command labMult used to compute the encryption of the product
of two messages, m1 and m2, is in fact an encryption of m1m2 − b1b2 where b1, b2 are two
random values used to compute the labeled-encryptions of the values m1 and m2. For this
reason, at the end of the procedure described before, MLE obtains encryptions of A − B
and b − c, instead of encryption of A and b, where B and c depend on the random values
used to encrypt the entries of the local datasets using the labeled-homomorphic scheme.
The matrix B and the vector c can be reconstructed by the party handling the decryption
key (i.e., CSP). The decryption procedure of the labeled-homomorphic scheme, labDec,
accounts for this. However, in the application we consider here (training a ridge regression
model) it is necessary that at the end of Phase 1 the MLE has proper encryptions for A and
b. Indeed, only in this case we can proceed to Phase 2 and use the masking trick (using
the masking trick with labeled-encryptions of A and b doesn’t work). For this reason, we
need to add one round of communication where CSP sends to MLE encryptions of the
entries of B and c. This can be done before the beginning of the actual computation (Step 1
of Phase 1) since B and c do not depend on the actual data used to train the regression
model. In this way, the MLE can finally gets encryptions of A and b. Protocol Π1,arb in
Prot. 2 describes this in detail.

4.2 Phase 2: Computing the model

At the end of Phase 1, MLE knows component-wise encryption of the matrix A and the
vector b (both with entries represented in ZN , the message space of the LHE scheme used
in Phase 1). Recall that the final goal of our system is computing w∗ ∈ Qd solution of (1). In
order to do this in a privacy-preserving manner, in Phase 2 we implement the masking
trick described in Section 3 and compute w̃∗ that solves (1) in ZN . Then we use rational
reconstruction to find w∗. All the details of this are reported in Protocol Π2 (Prot. 3). The
correctness is easy to verify, indeedwe have Rw̃−r ≡ R(AR)−1(b+Ar)−r ≡ A−1b (mod N).
12 If xt[i] and xt[ j] are both held by one DOk , then the former can send Encpk(xt[i]xt[ j]) to MLE, who updates the
formulas in Step 3 of Π1,arb accordingly.
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Protocol 2. Π1,arb: Phase 1 in the arbitrarily-partitioned setting.

– Parties: CSP, MLE, and DOk with inputDk (as defined in (3)) for all k � 1, . . . ,m.
– Output: MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Step 1: (key-generation) CSP runs (sk, pk) ← labGen(κ) and makes pk public, while it keeps sk secret. For k � 1, . . . ,m,
DOk runs (σk , pkk) ← localGen(pk) and makes pkk public, while it keeps σk secret.
(setup) For k � 1, . . . ,m, CSP recovers σk from Decsk(pkk) and computes bi j � F(σk , (i , j))with (i , j) ∈ Dk . For
i , j � 1, . . . , d and j ≥ i, CSP computes B′[i , j] � Encpk(

∑n
t�1 bti bt j) and c′[i] � Encpk(

∑n
t�1 bti bt0). These are

sent to MLE.
Step 2: (local computation) For k � 1, . . . ,m, DOk computes labeled-encryptions of the known entries of X and

y. That is, for all (i , j) ∈ Dk , DOk computes c i j � (ai j , ci j) � labEncpk(σk , x i[ j], (i , j)) when j > 0 and
c i0 � (ai0 , ci0) � labEncpk(σk , y[i], (i , 0)).
For all k � 1, . . . ,m, DOk sends all labeled-ciphertexts c i j to MLE.

Step 3: (datasets merge) For all i , j � 1, . . . , d and j ≥ i, MLE computes

A′[i , j] �
{(⊙n

t�1 labMult(cti , cti)
)
� B′[i , i] � Encpk(λ) if j � i(⊙n

t�1 labMult(cti , ct j)
)
� B′[i , j] if j > i

,

b′[i] �
(

n⊙
t�1

labMult(cti , ct0)
)
� c′[i] .

Security is also straightforward: Protocol Π2 is secure against a honest-but-curious CSP
because the values seen by it (the masked data AR mod N and b + Ar mod N) have
a distribution that is unrelated with the input datasets. Moreover, Protocol Π2 is secure
against a honest-but-curious MLE because of the security of the underlying encryption
scheme. Indeed, the MLE sees only an encrypted version of A and b. See Appendix A.6 for
the formal security proof.

In some applications, a desirable property is that the model is delivered only to the
data-owners. If the role of MLE and CSP is taken by third-parties, this can be achieved
using a standard tool like threshold encryption [10]. In this case, the key generation step
of Phase 1 is enhanced with the sharing of sk (i.e., CSP knows sk and each DOi knows
a share for sk). Then, Step 2 of Protocol Π2 is modified in such a way that CSP sends to
MLE the value Encpk(w̃), instead of the vector w̃ in the clear. MLE computes Encpk(w̃∗)
and broadcasts it to all data-owners. Finally, the DOi collaborates to jointly decrypt and
compute w∗.

Choice of parameters. In the last step of Π2 we use rational reconstruction to recover the
components of w∗ ∈ Qd from the solution of Aw � b computed in ZN . According to [37, 14]
if a rational t � r/s with−R ≤ r ≤ R, 0 < s ≤ S and gcd(s ,N) � 1 is represented as t′ � rs−1

mod N in ZN , then the Lagrange-Gauss algorithm uniquely recovers r and s provided that
2RS < N. Since w∗ � A−1 b �

1
det(A) adj(A)b ∈ Qd , in order to choose N that satisfies the

condition stated before, we need to bound the det(A) and the entries of the vector adj(A)b.
Let α � max{‖A‖∞, ‖b‖∞}, using the Hadamard’s inequality(see Appendix A.1), we have
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Protocol 3. Π2: Phase 2.

– Parties: CSP knows sk, MLE knows A′ � Encpk(A) and b′ � Encpk(b).
– Output: MLE gets w∗.

Step 1: (data masking) MLE samples R← GL(d ,ZN ) and r ← Zd
N and computes

C′[i , j] �
⊙d

k�1 cMult(R[k , j],A′[i , k])

d′[i] � b′[i] �
(⊙d

k�1 cMult(r[k],A′[i , k])
)

for all i , j � 1, . . . , d; next, MLE sends C′ and d′ to CSP.
Step 2: (masked model computation) CSP first decrypts C′ and d′ obtaining C and d (C[i , j] � Decsk(C′[i , j]), d[i] �

Decsk(d′[i]) for all i , j � 1, . . . , d); then it computes w̃ ≡ C−1d mod N and sends it w̃ to MLE.
Step 3: (model reconstruction) MLE computes w̃∗ ≡ Rw̃−r mod N and uses rational reconstruction on each component

of w̃∗ to compute w∗ ∈ Qd .

that 0 < det(A) ≤ αd (A is a positive definite matrix) and ‖ adj(A)b‖∞ ≤ d(d − 1) d−1
2 αd .

Using the same assumptions of Section 2 on the entries of X and y (that is, the entries of X
and y are real number in [−δ, δ]with at most ` digits in the fractional part), we have that
α ≤ 102`(nδ2 + λ). It follows that the condition 2RS < N is fulfilled when

2d(d − 1) d−1
2 104`d (nδ2

+ λ)2d < N . (4)
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n � 107

n � 109

Fig. 1. Communication overhead in MB of Π2 (δ � 1, 80-bit
security, ` � 3, Paillier’s scheme, λ � 0).

Communication complexity. The mes-
sages sent during Protocol Π1,hor and Pro-
tocol Π2 contain Θ(d2) elements from ZN ,
while the ones in Protocol Π1,arb contain
Θ(dn) elements. This implies a communi-
cation cost of O(d3 log(nd)) bits for Π1,hor
and Π2, and of O((nd2 + d3) log(nd)) bits
for Π1,arb (details in Appendix A.3). In par-
ticular, our approach significantly improves
the communication complexity compared
to the previous solutions that use Yao’s
scheme [30, 15]. Indeed, the latter requires
CSP sending the garbled representation of
a boolean circuit of millions of gates (see [30, Fig. 5] and [15, Fig. 7]) to MLE. In [30] the
authors show that the garbled representation of one gate is a lookup table of around
30 bytes (80-bit security). This means that a privacy-preserving system based on Yao’s
scheme, only for sending the garbled circuit and without considering the other steps needs
at least hundreds of megabytes. On the other hand, even for large values of n and d, the
communication complexity of Π2 is much smaller than 100 MB (see Fig. 1). For example,
in the horizontally-partitioned setting [30] uses same techniques we deploy in Π1,hor and

12



Yao’s protocol. In particular, [30] reports that the garbled representation of the circuit that
solves (1) with d � 20 using Cholesky decomposition (24-bit integer representation) has
size 270 MB. On the other hand, for a dataset with 10 millions instances and d � 20, the
overall overhead13 of Π1,hor +Π2 is less than 1.3 MB. In the arbitrarily-partitioned setting,
the communication overheard of our system is dominated by the cost of Phase 1 (Protocol
Π1,arb) because of its linear dependency on the number of instances n. However, this seems
to be the case also in other approaches. For example, in [15], a secure inner-product protocol
based on additive secret-sharing and Beaver’s triples [5] is used to compute the inner
product of the columns of the matrix X vertically-partitioned among two or more users.
The complexity of this approach for Phase 1 is Θ(nd2 log(n)) bits (comparable with the
complexity of Π1,arb). In Phase 2, [15] use Yao’s protocol and conjugate gradient descent
(CGD) algorithm to solve (1). They do not report the concrete size of the circuit, but they
show the number of gates. For d � 100 and 5 iterations of the CGD, more than 108 gates
are used: this gives an overhead of at least 3 GB only for sending the garbled circuit during
Phase 2 (assuming a garbled gate is 30 bytes). On the other hand, the overall overhead of
Π1,arb +Π2 when d � 100 for a dataset of 5 thousands instances is less than 1.3 GB.

The SecureML paper [28] uses only additive secret-sharing and Beaver’s triples to design
a system that assumes an arbitrary partitioning of the dataset. When the pre-processing
needed for the triples is implemented via LHE, the linear regression training system
proposed in [28] has complexity Θ(nd + n). Thus, in terms of communication complexity,
[28] performs better than our solution in the arbitrarily-partitioned case. Our system,
however, is preferable if the training dataset is horizontally-partitioned and n � d (e.g.,
n � Θ(d2.5)). For example, if d � 100 and n � 105 the system in [28] has an overheard
of 200 MB for the pre-processing phase only (see [28, Table II]), while the total cost of
Π1,hor +Π2 is less than 120 MB.

5 Implementation

In this section we describe our implementation case study of the system described in
Section 4. Our goal is to evaluate the effect of the public parameters on the system’s accuracy
and efficiency, and to test our system on real-world datasets. In particular, the experiments
we run are designed to answer the following questions:

1. Evaluating accuracy: How does the system parameter ` (number of digits in the fractional
part of the input data) influence the accuracy of the output model w∗? Recall that
we assume that the values in X and y are real number with at most ` digits in the
fractional part. In practice, this means that each user must truncate all the entries in the
local dataset after the `th digit in the fractional part. This is done before inputting the
values in the privacy-preserving system. On the other hand, in the standard machine
learning-setting this requirement is not necessary, and the model is computed using
floating point arithmetic on values with more than ` digits in the fractional part. For

13 In this section, for our system we assume ` � 3 and Paillier’s scheme with 80-bit security as underlying LHE.

13



this reason, the model w∗, which is trained using our privacy-preserving system, can
differ from the model w̄∗ learned in the clear (same regularization parameter λ is used).
To evaluate this difference we use

RMSE �

����MSE(w∗) −MSE(w̄∗)
MSE(w̄∗)

����
where MSE is the mean squared error of the model computed on a test dataset (this is a
common measure of model accuracy in the machine learning setting). The value RMSE
tells the loss in accuracy caused by using the vector w∗ instead of w̄∗ as model.

2. Evaluating running-time: How do the data parameters n and d influence in practice the
running time of each step in our privacy-preserving system? In Appendix A.3, we report
the number of different elementary operations (e.g., encryptions, modular additions,
etc.) for each step in the system, while in this section we report the total running time of
each step.

3. Evaluating efficiency in practice: How does our system behave when is run on real-
world data? In particular, we run our system on datasets downloaded from the UCI
repository,14 which is commonly used for evaluating new machine-learning algorithms
in the standard setting (i.e.,with no privacy guarantees).

1 3 5 7
10−8

10−5

10−2

`

HP
VP

Fig. 2. Error rate RMSE (log scale) in function of
` (n � 103 , d � 10).

Setup. We implemented our system using Paillier’s
scheme with message spaceM � ZN where N is a
large RSA modulus (see Appendix A.2). In order to
assure a security level of at least 100 bits,15 decrease
the running time and the communication overhead,
and satisfy (4), we choose N such that log2(N) �
max{2048, bβc + 1} where β is the logarithm in base
2 of the left-hand side of (4). We wrote our software
in Python 3 5.2 using the phe 1.3 library16 to for
Paillier encryption/decryption and operations on
ciphertexts, and the gmpy2 library17 for arithmetic
operations with large integers. Gaussian elimination was used to compute determinants
and linear systems.

To test the system composed by Π1,hor + Π2, we run experiments in the horizontally-
partitioned (HP) setting, splitting n data points evenly among 10 data-owners. To test the
system Π1,arb +Π2, we run experiments in the vertically-partitioned (VP) setting, where we
assume that d features are evenly split among 3 data-owners and DO3 also has y.

14 https://archive.ics.uci.edu/ml/datasets.html
15 According to NIST standard, an RSA modulus of 2048 bits gives 112-bit security.
16 http://python-paillier.readthedocs.io
17 https://pypi.python.org/pypi/gmpy2
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Table 1. Running times (secs) for synthetic data in the HP and VP settings (` � 3).

n d log2(N) RMSE
Phase 1 Phase 2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3
—

H
P
se
tti
ng

—

1000

10 2048 7.21E-05 0.21 1.10 0.03 1.21 0.56 0.04
20 2048 1.54E-04 0.32 3.88 0.12 7.96 2.15 0.14
30 2048 1.58E-04 0.18 8.34 0.26 24.76 4.80 0.29
40 2504 2.01E-04 0.38 26.13 0.62 100.94 14.72 0.67

10000

10 2048 5.45E-05 0.16 1.11 0.03 1.21 0.57 0.04
20 2048 1.29E-04 0.09 3.93 0.12 7.99 2.14 0.15
30 2072 1.90E-04 0.36 8.83 0.26 25.96 5.17 0.32
40 2768 1.84E-04 0.39 29.81 0.72 120.43 19.34 0.86

100000

10 2048 1.05E-04 0.13 1.17 0.03 1.22 0.57 0.05
20 2048 1.08E-04 0.20 4.13 0.12 7.99 2.15 0.16
30 2270 1.38E-04 0.23 11.65 0.31 33.19 6.26 0.40
40 3034 1.76E-04 0.61 38.38 0.86 151.37 24.82 1.08

—
V
P
se
tti
ng

—

1000
10 2048 1.50E-04 1.41 62.06 135.09 1.22 0.56 0.04
15 2048 8.90E-05 2.52 90.36 220.32 3.51 1.22 0.08
20 2048 1.78E-04 4.08 118.73 327.48 8.10 2.16 0.14

2000
10 2048 1.08E-04 1.92 124.35 276.13 1.23 0.59 0.04
15 2048 6.64E-05 3.54 181.09 443.78 3.56 1.31 0.09
20 2048 1.67E-04 5.62 236.54 653.06 8.03 2.17 0.14

3000
10 2048 6.46E-05 2.31 185.89 402.53 1.21 0.57 0.04
15 2048 1.06E-04 4.38 270.12 659.67 3.52 1.22 0.08
20 2048 1.36E-04 7.00 355.12 979.89 8.12 2.14 0.14

Numerical results. All experiments were run on a machine with the following specifics.
OS: Scientific Linux 7.4, CPU: 40 core (Intel(R) Xeon(R) CPU E5-2660 v2 2.20 GHz), Memory:
500 GB. All the timings are reported in seconds, all the values are averaged on 5 repetitions
of the same experiment.

To answer Question 1, we measure the RMSE for different values of ` for synthetically-
generated data (see Appendix A.4) in both the HP and VP settings (see Fig. 2). With the
increasing of `, regardless of the values of n and d, the value of RMSE decreases very
rapidly, while the efficiency degrades. Indeed, because of (4), the value of ` has effect on
the bit-length of the plaintexts and ciphertexts. For this reason, we recommend to choose `
equal to a small integer (e.g., ` � 3). This choice allows to have a negligible error rate (e.g.,
RMSE of order 10−4) without degrading the system efficiency.

To answer Question 2 and assess the effect of parameters n and d on our system’s
performance, we report in Table 1 the running time of each step of the system when it is
run on synthetic data. The advantage of this approach is that we can run experiments for a
wide range of parameters values. For Step 2 in Phase 1 (Protocol Π1,hor in the HP setting,
ProtocolΠ1,arb in the VP setting) we report the average running time for one data-owner. In
Protocol Π1,hor, Step 2 is the most expensive one. Here, the data-owner DOk computes the
d × d matrix Ak and encrypts its entries. In our setting (n data points evenly split among
the ten data-owners), this costsΘ(nd2) arithmetic operations on plaintext values andΘ(d2)
encryptions for one data-owner. We verified that the costs of the encryptions is dominant
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for all values of n considered here.18 In Step 3 of Π1,hor, the MLE computes the encryption
of A and b using approximately Θ(d2) ciphertexts additions (i.e.,multiplications modulo
N), which turns out to be fast. In Π1,arb, Step 3 is the most expensive step, here the MLE
performs Θ(nd2) ciphertexts operation to compute Encpk(A) and Encpk(b). In particular,
the running time of Π1,arb is more influenced by the value of n than that of Π1,hor and Π2.
Finally, for Π2 the results in Table 1 show that Step 1 requires longer time compared to the
other two steps because of the Θ(d3) operations done on ciphertexts. Step 2 and 3 require
Θ(d2) decryptions and Θ(d2) operations on plaintexts and therefore are faster (e.g., less
then 27 seconds for both the steps for a dataset of one hundred thousands instances with
40 features).

To answer Question 3 and show the practicality of our system we report in Table 2
the total running time and communication overhead for seven different UCI datasets
(references in Table 5 in Appendix A.4). Some of these datasets were used also in [30, 15].
For example, [30] reports a running time of 45 seconds and a communication overhead of
83 MB (69 MB, resp.) for the Phase 2 of their system run on the dataset “forest” (“wine”,
resp.) ([30, Table I]). Our protocol Π2 for the same datasets takes about 3 seconds with
less then 83 kB sent. Phase 2 of the system presented in [15] runs on the dataset “student”
in 19 seconds ([15, Table 3]) and we estimate an overhead of 3 GB (20 CGD iterations).
Protocol Π2 on the same dataset runs in about 40 seconds with 484 kB of overhead.

Table 2. Running times (secs) for UCI datasets in the HP and VP settings.

Dataset n d ` log2(N) RMSE
Phase 1 Phase 2

Time kB Time kB

—
H
P—

air 6252 13 1 2048 4.15E-09 1.99 53.24 3.65 96.51
beĳing 37582 14 2 2048 5.29E-07 2.37 60.93 4.26 110.10
boston 456 13 4 2048 2.34E-06 2.00 53.24 3.76 96.51
energy 17762 25 3 2724 5.63E-07 12.99 238.26 37.73 451
forest 466 12 3 2048 3.57E-09 1.66 46.08 2.81 82.94
student 356 30 1 2048 4.63E-07 9.36 253.44 30.40 483.84
wine 4409 11 4 2048 2.62E-05 1.71 39.42 2.38 70.40

—
V
P—

boston 456 13 4 2048 2.34E-06 123.76 1.5 103 3.73 96.51
forest 466 12 3 2048 3.57E-09 115.04 1.4 103 2.92 82.94
student 356 30 1 2048 4.63E-07 297.52 2.7 103 30.54 483.84

Acknowledgments. This work was partially supported by the Clinical and Translational
Science Award (CTSA) program, through the NIH National Center for Advancing Transla-
tional Sciences (NCATS) grant UL1TR002373, and by the NIH BD2K Initiative grant U54
AI117924.

18 For larger values of n and d, using Damgård and Jurik’s scheme instead of Paillier’s scheme reduces the running time
of operations on ciphertexts. See Appendix A.5.
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A Appendix

A.1 Standard notations

For any integer N > 1, ZN denotes the ring of integers modulo N and Z∗N denotes its group
of units. For an integer a, a mod N represents the smallest integer in {0, 1, . . . ,N − 1}
that is congruent to a modulo N. We use bold notation for vectors and capital letters for
matrices (e.g., x ∈ Rn is a column vector, X ∈ Rn×d is matrix with n rows and d columns,
both with real-value entries). We indicate the i-th component of a vector x with x[i] and
the i-th component of the j-th column of a matrix X with X[i , j]. The p-norm of a vector

x ∈ Rn is defined by ‖x‖p �
p
√∑n

i�1 |x[i]|
p . The sup-norm of a matrix (or vector) X ∈ Rn×d is

defined by ‖X‖∞ � maxi , j{|X[i , j]|}. If A is a d × d matrix, then the adjunct of A is defined
as adj(A) � Cᵀ with C[i , j] � (−1)i+ jAi j and Ai j is the determinant of the (d − 1) × (d − 1)
matrix that results from deleting row i and column j of A (i.e., the (i , j) minor of A).
Note that adj(A) � det(A)A−1. Finally, we recall that Hadamard’s inequality implies that
| det(A)| ≤ (

√
d ‖A‖∞)d , and det(A) ≤ ‖A‖d∞ if A is positive definite.

A.2 Paillier’s scheme

We briefly recall here Paillier’s scheme [31] used in the implementation presented in
Section 5. Given a security parameter κ, Gen samples p and q, two prime integers of
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same bit-length, and defines N � pq and ν � lcm(p − 1, q − 1). It sets pk � N, sk � ν and
M � ZN , C � Z∗N2 . To encrypt m ∈ M, Enc randomly chooses r in Z∗N and computes

c � (1+mN)rN mod N2. To decrypt c ∈ C, Dec first computes m̄ �
(cν mod N2)−1

N and returns
m � m̄/ν mod N. The correctness follows by observing that c ≡ (1 + N)m rN (mod N2)
and that (rN)ν ≡ 1 (mod N2).

For Paillier’s scheme, � is the standard product in Z∗N2 ; indeed: c1 · c2 ≡ [(1 + N)m1 rN
1 ] ·

[(1+N)m2 rN
2 ] ≡ (1+N)m1+m2 (r1r2)N (mod N2) and cMult(a , c1) ≡ (c1)a ≡ [(1+N)m1 rN

1 ]a ≡
(1 + N)am1(ra

1 )N (mod N2).

A.3 Complexity analysis

Table 3 presents the communication complexity in terms of number of plaintexts and
ciphertexts sent at each step. We use the following public parameters: n (number of
instances), d (total number of features) and dk (in the arbitrarily-partitioned setting,
the data-owner DOk holds dk entries of X, y. That is dk is the size of Dk). Notice that∑m

k�1 dk � d(n + 1). Notice that because of the use of rational reconstruction, the bit-length
of a plaintext (and therefore also the bit-length of a ciphertext) depends on the parameters
n and d (see Eq. (4)). It follows that both Protocol Π1,hor and Protocol Π2 have complexity
O(d3 log(nd)) bits, while Protocol Π1,arb has complexity O((nd2 + d3) log(nd)) bits (we
assume ` and m constant).

Table 3. Summary of communication complexity.

Π1,hor (Protocol 1) – CSP sends pk to each party
– DOk sends d(d+1)

2 + d ciphertexts to MLE

Π1,arb (Protocol 2) – CSP sends pk to each party
– DOk sends pkk to CSP and MLE
– CSP sends d(d+1)

2 + d ciphertexts to MLE
– DOk sends dk ciphertexts and dk plaintexts to MLE

Π2 (Protocol 3) – MLE sends d2 + d ciphertexts to CSP
– CSP sends d plaintexts to MLE

Table 4 summarizes the computational complexity in terms of number of elementary
operations (e.g., arithmetic operations on plaintexts, arithmetic operations on ciphertexts,
encryptions, decryptions, etc.). Beside the aforementioned public parameters n and d weuse
m (number of data-owners) and nk (in the horizontally-partitioned setting, the data-owner
DOk holds the instances from nk−1 + 1 to nk). The notation “mult.” (resp.“add.”) represents
a multiplication (resp. an addition) on plaintext messages (i.e., with the arithmetic of
ZN); “enc-add.” represents for one operation � on ciphertexts. Notice that the number of
features d influences the computational complexity of all the steps of our system, while the
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parameter n influences the complexity of some of the steps in Phase 1 only (specifically,
Step 2 of Π1,hor and Step 2 and 3 of Π1,arb). Since, each operation considered for Table 4
has a different execution time (e.g., operation on plaintexts are much faster than operation
on ciphertexts), for concrete running times we refer to Section 5, where results of the
implementation of our system are presented.

Table 4. Summary of computational complexity.

Step 1 Step 2 (DOk ) Step 3 (MLE)
CSP DOk

Π1,hor

1 execution of Gen − (nk − nk−1)
(

d(d+1)
2 + d

)
mult. m

(
d(d+1)

2 + d
)
enc-add.

(nk − nk−1)
(

d(d+1)
2 + d

)
add.

d(d+1)
2 + d enc.

Π1,arb

1 execution of Gen 1 enc. dk add. n
(

d(d+1)
2 + d

)
mult.

m dec. dk enc. n
(

d(d+1)
2 + d

)
enc.

d(d+1)
2 + d enc. 2n

(
d(d+1)

2 + d
)

cMult

(3n + 1)
(

d(d+1)
2 + d

)
enc-add.

Step 1 (MLE) Step 2 (CSP) Step 3 (MLE)

Π2
d3 + d2 + d enc-add. d2 + d dec. d2 + d add.

d3 + d2 cMult 1 solution of d × d linear system d2 mult.
d rational reconstruct.

A.4 More details on experiments

Computational resource. All experiments were executed on a machine with 500 GB of RAM
and 40 core CPU. Our goal was to simulate a setting where the CSP and data-owners have
available only commodity servers, whereas MLE use a more powerful machine. Thus, we
run CSP and each DOk using a single core of the machine, and we run MLE using parallel
computing through multi-core processors.

Synthetic datasets. To evaluate the effect of the parameters on our system’s performance
we run experiments on synthetically generated datasets. For any pair of n and d, each
x i is sampled from a standard d-dimensional Gaussian distribution (i � 1, . . . , n). The
coefficients of the vector w∗ are sampled independently and uniformly at random from
the real interval [0, 1]. Finally yi � xᵀ

i w∗ + εi , where εi is sampled from a Gaussian
distribution with zero mean and variance σ2 � 0.1. As suggested by the statistical theory,
the regularization parameter λ is set to σ2d/n‖w∗‖22 . The error rate RMSE is computed
using a test set sampled from the same distribution and with size equal to n/10.
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UCI datasets. In Section 5, we ran our system on different real-world datasets downloaded
from the UCI repository. References about each one of the datasets are given in Table 5. For
each dataset, we removed the data points with missing values and we use 1-of-k encoding
to convert nominal features to numerical ones. Moreover we split the dataset in two subset:
the first one, with 90% of the total instances, is used for training and the complement is
used to compute RMSE. The regularization parameter λ is computed using cross-validation.
The results of our experiments on the UCI datasets are reported in Table 2 in Section 5. For
Phase 1 in the HP setting, we report the total running time (in seconds) of Π1,hor assuming
that the 10 data-owners execute Step 2 in parallel, and the size in kilobytes of the message
sent from one data-owner to MLE. For Phase 1 in the VP setting, we report the total running
time (in seconds) of Π1,arb assuming that the 3 data-owners execute Step 2 in parallel, and
the average size in kilobytes of the message sent from one data-owner to MLE (in Step 2)
plus the message sent from CSP to MLE (setup in Step 1). In both cases, for Phase 2 we
report the total running time (in seconds) of Π2 and the overall communication required
between CSP and MLE (in kilobytes).

Table 5. References for the UCI datasets.

Dataset Reference

forest http://archive.ics.uci.edu/ml/datasets/Forest+Fires
boston http://archive.ics.uci.edu/ml/datasets/housing
facebook http://archive.ics.uci.edu/ml/datasets/Facebook+metrics
air http://archive.ics.uci.edu/ml/datasets/Air+Quality
energy http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
beĳing http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
wine http://archive.ics.uci.edu/ml/datasets/Wine+Quality
bike http://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
student http://archive.ics.uci.edu/ml/datasets/student+performance

Warfarin experiment. Wewant to prove the concrete utility of our system considering here its
application to an existing medical scenario: theWarfarin dosing model. Warfarin is a popular
anticoagulant, used for instance to prevent stokes in patients suffering from atrial fibrillation.
In 2009 the International Warfarin Pharmacogenetics Consortium (IWPC 2009)19 proposed
an accurate dosing model trained using linear regression on a database containing clinical
and genetic information of 4043 patients. The database was the result of the merge of
the data of different patients collected by 21 research groups. The model proposed by
IWPC 2009 was tested on a validation cohort of 1009 patients, on which it achieved a MAE
(mean absolute error) of 8.5 mg per week (as baseline, notice that a fixed-dose approach
of 35 mg per week has a MAE of 13 mg per week). We downloaded20 the database used
for this study and, after removing the instances with missing values, we randomly split
it in a training set (80%) and validation set (20%). We run our system (Protocol Π1,hor

19 https://www.pharmgkb.org/page/iwpc
20 https://www.pharmgkb.org/downloads

21
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+ Protocol Π2) with m � 21 and ` � 5 on the training set and we compute the MAE of
the learned model using the validation set. The average result of this experiment on 30
repetitions is a MAE of 8.8 mg per week. That is, the MAE increases of 3.35% only. Notice
that our system in this setting runs in less than 3 minutes on a commodity server21 and
produces an overall communication overhead of less then 2.5 MB.

A.5 Further optimizations

When the logarithm in base 2 of the left-hand of (4) is greater or equal to 4095 (i.e., β ≥ 4095),
in order to reduce the communication overhead of all the protocols and the running time
of the steps involving operations on ciphertexts (� and cMult) we can use Damgård-Jurik
scheme [10, 11]. This cryptosystem is a generalization of the Paillier’s cryptosystem that
has message space ZN s and ciphertext space ZN s+1 where N is an RSA modulus and s is
(positive) natural number (Paillier’s scheme is the special case where s � 1). If β ≥ 4095 we
can use Damgård-Jurik scheme with s �

⌊ β+1
2048

⌋
≥ 2 and log2(N) � 2048. With this choice

of parameters, Damgård and Jurik’s scheme still guarantees 100-bit security and works
with ciphertexts of bit-length ≤ β + 2049; while Paillier’s scheme with log2(N) � bβc + 1
works with ciphertexts of bit-length 2(bβc + 1).

A.6 Security proof

Let GL(d ,M) be the set of all invertible matrices with coefficients in the ringM.

Lemma 1. Let (A, b) ∈ GL(d ,M) × Md . Assume that R is sampled uniformly at random
from GL(d ,M) and that r is sampled uniformly at random fromMd . Then, the distribution of
(AR, b + Ar) is the uniform distribution over GL(d ,M) ×Md .

Proof. Fix (M, v) ∈ GL(d ,M) ×Md . Then

Pr[AR � M, b + Ar � v] � Pr[R � A−1M, r � A−1(v − b)]

�
1

|GL(d ,M) ×Md |
.

ut

To formally prove security, we use the standard simulation-based definition [17].
Consider a public function φ : ({0, 1}k)n → {0, 1}` and let P1, . . . , Pn be n players modeled
as PPT machines. Each player Pi holds the value a i ∈ {0, 1}k and wants to compute the
value φ(a1, . . . , an) while keeping his input private. The players can communicate among
them using point-to-point secure channels in the synchronous model. If necessary, we
also allow the players to use a broadcast channel. To achieve their goal, the players jointly
run a n-party MPC protocol Π. The latter is a protocol for n players that is specified via the
next-message functions: there are several rounds of communication and in each round the

21 Timing on a 2.6 GHz 8 GB RAMmachine running Linux 16.04; 80-bit security.
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Protocol 4. Π: Our system.

– Parties: CSP, MLE, and DOk with inputDk for all k � 1, . . . ,m.
– Output: Each party gets w∗.

Phase 1: MLE, CSP, and DO1 , . . . ,DOm jointly run Π1,hor or Π1,arb.
Phase 2: – MLE and CSP jointly execute Π2;

– MLE sends w∗ to the other parties.

player Pi sends to other players a message that is computed as a deterministic function
of the internal state of Pi (his initial input a i and his random tape k i) and the messages
that Pi has received in the previous rounds of communications. The view of the player P j ,
denoted by ViewP j (a1, . . . , an), is defined as the concatenation of the private input a j , the
random tape k j and all the messages received by P j during the execution of Π. Finally, the
output of Π for the player P j can be computed from the view ViewP j . In order to be private,
the protocol Π needs to be designed in such a way that a curious player Pi cannot infer
information about a j with j , i from his view ViewPi (a1, . . . , an).

More precisely, we have the following definition.
Definition 1 ([17, Definition 7.5.1]). We say that the protocol Π realizes φ with correctness
if for any input (a1, . . . , an), it holds22 that Pr[φ(a1, . . . , an)] , output of Π for Pi � 0 for all
i ∈ [n]. LetA a subset of at most n − 1 players, the protocol Π f realizes φ with privacy against
A if it is correct and there exists a PPT algorithm Sim such that (ViewPi (a1, . . . , an))Pi∈A and
Sim((a i)Pi∈A , φ(a1, . . . , an)) are computationally indistinguishable for all inputs.

The protocol Π described in Prot. 4, which summarizes the privacy preserving system
described in Section 4, can be seen as an MPC for m + 2 parties: DO1, . . . ,DOm , MLE and
CSP. The input of DOk isDk defined by:

Dk �
{
(xnk−1+1, ynk−1+1), . . . , (xnk , ynk )

}
with 0 � n0 < n1 < · · · < nm � n for the horizontally-partitioned (HP) setting, and by:

Dk �
{
X[i , j] � x i[ j] | (i , j) ∈ Dk

}
∪

{
y[i] � yi | (i , 0) ∈ Dk

}
where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d} for the arbitrarily-partitioned setting. Notice that we
assume here that all the entries in the local dataset are integers number in in the interval
[−10`δ, 10`δ] (see Section 2). Moreover we assume that (Gen,Enc,Dec) is a LHE scheme
with plaintext spaceM � ZN and that Eq. (4) is satisfied. Finally define φ the function that
computes the ridge regression model from the data in the clear (φ(D1, . . . ,Dm) � A−1b).
With this assumption we have the following.

Theorem 1. Let D ⊂ {1, . . . ,m}, thenΠ (Prot. 4) realizes φ with correctness and privacy against
the adversariesA1 � {MLE} ∪ {DOi | i ∈ D} andA2 � {CSP} ∪ {DOi | i ∈ D}.
22 The probability is over the choice of the random tapes k i .
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Proof. Correctness: Using the homomorphic properties of the underlying encryption
scheme, it easy to verify that at the end of Phase 1 of Π, the MLE knows A′ and b′ such
that Decsk(A′) � A and Decsk(b′) � b. It is also easy to verify that in Step 3 inΠ2 we have

w̃∗ ≡ Rw̃ − r ≡ R(C−1d) − r ≡ R((AR)−1
+ (b + Ar))

≡ A−1b (mod N) .

Since Eq. (4) is satisfied, applying the rational reconstruction to w̃∗ we obtain the model
w∗ � A−1b in Qd .

Privacy: To prove privacy we construct two simulators Sim1 and Sim2 which simulate the
view of the parties inA1 andA2, respectively. Let w̄∗ � φ(D1, . . . ,Dm).

– Sim1({Di}i∈D ,w∗) in the HP setting is defined by the following steps:
1. Run (pk, sk) ← Gen(κ);
2. For all k � 1, . . . ,m, if k ∈ D compute A′k and b′k as in Step 2 ofΠ1,hor. Otherwise

compute A′k and b′k as component-wise encryption of the identity d × d matrix
and the zero vector (d components) (i � nk−1 + 1, . . . , nk);

3. Sample R and r as in the protocol;
4. Compute w̃ � R−1(w∗ + r) mod N ;
5. Output ({Di}i∈D , pk, enc, w̃ ,w∗)where enc contains the encryptions of Step (2).

– Sim1({Di}i∈D ,w∗) in the arbitrarily-partitioned setting is defined by the following
steps:
1. Run (pk, sk) ← Gen(κ) and run (pki , ski) ← labGen(κ) for i � 1, . . . ,m;
2. For all k � 1, . . . ,m, if k ∈ D compute c i j for all (i , j) ∈ Dk as in Step 2 of Π1,arb.

Otherwise compute c i j as encryption of 0.
3. Sample R and r as in the protocol;
4. Compute w̃ � R−1(w∗ + r) mod N ;
5. Output ({Di}i∈D , pk, {pki}i�1,...,m , enc, w̃ ,w∗) where enc contains the encryptions

of Step (2).

It follows from the semantic security of the encryption scheme that the simulation
output has the same distribution of the views of the corrupted parties in A1 in the
protocol Π.

– Sim2({Di}i∈D ,w∗) is defined by the following steps:
1. Run (pk, sk) ← Gen(κ);
2. Sample R and r as in the protocol;
3. Compute Encpk(R) and Encpk(r);
4. Output ({Di}i∈D , pk,Encpk(R),Encpk(r),w∗).

It follows from Lemma 1 that the simulation output has the same distribution of the
views of the corrupted parties inA2 in the protocol Π. ut
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A.7 Beyond passive security

The protocols described in Sections 4.1 and 4.2 guarantee privacywhen all the parties follow
the protocol (passive security). Here we briefly discuss the security of these protocols in
the case when the CSP or the MLE are corrupted and arbitrarily deviate from the protocol.
We still assume that they do not collude.

If we have the guarantee that MLE always follows the protocol and only the CSP can
be malicious, an easy solution is possible. First of all, notice that we can assume that the
encryption scheme is initialized in the correct way and that all users obtain a valid public
key using standard techniques as Certificate Authorities. Nevertheless, if CSP is corrupted,
in Phase 2 (Protocol Π2) it can send to the MLE a faulty w̃ causing the computation of a
wrong model. To prevent this, it is enough to add a simple verification step run by the MLE
at the end ofΠ2. Assume that w̃∗ is the model in Zd

N computed by MLE during Step 3 inΠ2.
In other words, w̃∗ � Rw̃ − r mod N where w̃ is the —possibly wrong— masked model
sent by the CSP. Since in ridge regression the model is computed as solution of the system
(1), if w̃∗ satisfies Aw̃∗ − b � 0 in Zd

N , then the MLE has the correct model. Recall that at the
end of Phase 1 the MLE gets the encryptions of the entries of the matrix A and the vector b.
Therefore, the MLE can easily compute the encryption of the components of the vector
Aw̃∗ − b in Zd

N using the homomorphic property of the underlying encryption scheme. At
this point the problem of checking the validity of w̃∗ is equivalent to the following problem:
the MLE (honest party) has a ciphertext Encpk(x) and it needs to be convinced that x � 0
by interacting with the CSP who knows sk but is malicious. This can be easily solved in
the following manner: MLE samples r ← ZN , computes c � Encpk(x) � Encpk(r) and sends
c to CSP. The latter decrypts and sends the result back to MLE, who accepts the proof if
and only if the received value is equal to r. If x , 0, the probability of a malicious CSP to
convince MLE of the opposite is 1/N .

The case when the MLE can be malicious is more involved. If the MLE is corrupted,
then it can decide to ignore (or to replace with encryption of dummy values) the ciphertexts
received during Phase 1 from some of the m data-owners. In this way, at the end of Phase 2,
the MLE learns a model that is trained only on the data from a small subset of the m
data-owners (potentially only one them); such a model may reveal extra information about
the private datasets held by these users. Moreover, if the verification step described before
is implemented, then a malicious MLE could use the CSP as decryption oracle and break
the privacy of the data-owners. Therefore, we need to find another solution that guarantees
the correctness of w̃∗. These issues can be mitigated considering the modification of our
system described at the end of Section 4.2. There we show how to use threshold LHE to
avoid releasing the model to MLE. In this case, the data-owners use the shared decryption
functionality to compute w∗, while MLE only sees Encpk(w∗). In particular, 1) since MLE
does not see the model in the clear, it cannot use it to gain information about the private
training datasets, 2) each data-owner can locally check the model on a local validation set.
In this way, they indirectly check the computation of w̃∗.

If we prefer not to modify the system, active security can be achieved by a mechanism
that requires 1) CSP to prove in zero knowledge to MLE the correctness of w̃∗, 2) MLE
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to prove in zero knowledge to CSP that Encpk(C) and Encpk(d) are computed in the
correct way using the ciphertexts from all the DO’s (e.g., Encpk(A1), . . . ,Encpk(Am) for the
horizontally-partitioned case). A mechanism with this property can be obtained using a
zero-knowledge argument protocol for proving generic statements (e.g., [32]). Investigating
this enhancement in details is left for future work.
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