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Abstract. Bad choices of passwords were and are a pervasive problem. Users choosing weak passwords
do not only compromise themselves, but the whole ecosystem. E.g, common and default passwords in
IoT devices were exploited by hackers to create botnets and mount severe attacks on large Internet
services, such as the Mirai botnet DDoS attack.

We present a method to help protect the Internet from such large scale attacks. Our method enables
a server to identify popular passwords (heavy hitters), and publish a list of over-popular passwords
that must be avoided. This filter ensures that no single password can be used to compromise a large
percentage of the users. The list is dynamic and can be changed as new users are added or when current
users change their passwords. We apply maliciously secure two-party computation and differential
privacy to protect the users’ password privacy. Our solution does not require extra hardware or cost,
and is transparent to the user.

Our private heavy hitters construction is secure even against a malicious coalition of devices which tries
to manipulate the protocol to hide the popularity of some password that the attacker is exploiting. It
also ensures differential privacy under continual observation of the blacklist as it changes over time.
As areality check we conducted three tests: computed the guarantees that the system provides wrt a few
publicly available databases, ran full simulations on those databases, and implemented and analyzed a
proof-of-concept on an IoT device.

Our construction can also be used in other settings to privately learn heavy hitters in the presence of
an active malicious adversary. E.g., learning the most popular sites accessed by the Tor network.
Keywords: differential privacy, heavy hitters, passwords, secure computation, malicious model.

1 Introduction

We show a novel solution to the problem of privately learning heavy hitters in the presence of an
active malicious adversary. Although we highlight several compelling use cases for our solution (see
Section 1.2), we were particularly motivated by the problem of identifying and blacklisting popular
passwords.

1.1 Passwords

The first use of a password in the modern sense was in 1961 in MIT’s CTSS, and they are still
ubiquitous today. It is well-known that users tend to choose very simple and predictable passwords,
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with very little min-entropy. The use and reuse of easy to guess passwords is one of the top security
threats for the internet [CC19]. Moreover, using an insecure password does not only endanger the
user but also endangers other users. For example, using a compromised account to send spam
mail or to perform a denial-of-service (DoS) attack. Although their demise has been announced
many times (most notably in Bill Gates’ famous 2004 speech), passwords are here to stay for the
foreseeable future, especially in the IoT world.

Motivating Example: Web Cameras and the Mirai Attack Web cameras allow users to
connect and watch live video streams over the Internet. Dedicated search engines such as Shodan
[Wikb] and the recent Mirai attack, demonstrate how such devices can be found and hacked using
default or popular passwords. In the Mirai attack, a huge number of compromised web-based
cameras were used to mount a distributed DoS (DDoS) attack, sending a total of over 1Tbps and
taking down large DNS servers [Wika]. This attack motivated many security experts to demand
liability from the manufactures of such insecure products [Sch16].

Many IoT devices today (especially low-cost products) use passwords as a cheap and easy to
use authentication solution. Alternative solutions (such as two-factor authentication) may increase
cost and arguably hurt the usability of the system and are hardly used even in security-oriented
services (e.g. less than 10% of Google’s users [Thol8]). We need a cheap and user-friendly way to
make the usage of passwords more secure not just for the single user, but to protect the Internet
from such large scale attacks.

Many of the compromised cameras in the Mirai attack used a factory default password. There
are some straightforward measures to prevent the usage of weak default passwords. The most basic
of which is forcing a password change before the first use of their product. However, the response of
many users might be to choose a simple password such as “123456”. Such popular or easy passwords
may be used in an amplified dictionary attack.’

Blacklisting Popular Passwords How to cause users to choose safe passwords is an open prob-
lem. For example, the National Institute of Standards and Technology (NIST) have recently changed
their longstanding recommendation to require users to choose passwords including uppercase let-
ters, symbols, and numerals in passwords [GGF17]. There are two types of weak passwords: One
type is based on the user’s private information (e.g a child’s name and birthday). Such a password
is vulnerable only to a targeted attack against the user. The second type is a popular password
used by many different users. This type is much more dangerous, as the attacker does not need to
know any auxiliary private data about the user, and can mount a large scale attack.

A promising approach is to blacklist any popular password, thus preventing any password from
being used by more than a small 7 fraction of the users. Although this might not protect some
individual users from an attack, it will help protect the whole ecosystem from large scale
attacks. In order to blacklist “popular” passwords a service provider needs to know the current
popular passwords, which is hard for several reasons:

- User populations in different languages or locations (e.g. US vs. France) might use different
popular passwords. Users in a small university town might choose their passwords based on the
local sports team or mascot. Attackers can target their password guesses to the location or other

1 A law approved in California in 2018 [32718], requires that connected devices either use a unique preprogrammed
password or force the user to choose a new password before first access. We assume that users will prefer to choose
the passwords and that they are likely to choose unsafe ones.



public properties of the victims. Therefore, the system must identify popular passwords along
different locations (or other dimensions such as age, language, etc.). 2
- When a system prevents the usage of certain popular passwords, other passwords become popular
and should be identified as such (e.g. “password”— “Password” — “Passwordl” — “P@ssword!”)
- There might be password trends that are based on trending topics (for example, more users today
(2019) will prefer “wonderwoman” to “superman” as their password, not to mention “covfefe”).

The simplest solution is for all users to send their passwords to a server, which will, in turn,
identify and reject popular passwords. However, in that case, the server needs to save a list of
all passwords or at the very least unsalted hashes of these passwords, which are vulnerable to a
dictionary attack. This compromises the user’s password privacy in case the server is breached, or
in case of a subpoena. This also jeopardizes other sites, as users tend to reuse passwords between
different sites and services.

Can publishing a password blacklist help attackers? The simple answer is that one should
compare publishing the list of popular passwords to revealing a new bug or security weakness. Note
that a returning user who enters his/her password can be alerted to the fact and asked to change
it. Thus, though publishing the blacklist may put some users at risk, it helps protect the majority
of users and the ecosystem from a large scale attack.

1.2 Use Cases

For concreteness, most of the discussion in this paper focuses on passwords for IoT devices. However,
we also mention here other promising applications for the solutions suggested in this paper.

IoT service providers Our solution can be used to protect IoT devices against Mirai-like attacks,
especially as IoT users tend to choose weak passwords and the dangers of large scale attacks are
proven. The solution is very suitable to the IoT world, as it is low-cost and easy to implement.
Moreover, it does not require the users to reveal their passwords to the IoT manufacturer who
might not be trusted.

On-device user authentication Many devices or apps require users to authenticate themselves
using a short PIN code or pattern that are kept on the device and are not sent to a service provider
(e.g. unlocking smartphones, or in applications such as Snapchat’s "My Eyes Only” secure cloud
storage [Yunl17]). Those PIN codes or patterns typically have less entropy than regular passwords.

Our solution lets service providers identify popular passwords while preserving the privacy and
security of individual users (see exact definition in Section 2.1).

Tor network statistics The Tor network aims to provide better privacy and security for Internet
users. To allow for a better understanding of users’ needs and to advocate for better privacy,
the Tor network provides researchers with statistics about its operation [LMD]. However, such
statistics gathering must protect the users’ privacy and be resilient to malicious users trying to
influence the results. For example, we would like to enable researchers to privately learn the most
popular websites visited by Tor users. A malicious repressive regime may want to delegitimize Tor,
by making human rights sites seem less popular and drug trafficking sites more popular.

2 Wang et al. [WCWT17] argued that it is not possible to accurately approximate different passwords databases
using a single distribution.
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Fig. 1. Popular Password Distribution

Dynamic password statistics Our solution can be used by large service providers such as Google
and Facebook to identify overly popular passwords among specific subsets of their user population.
This procedure can be applied to specific targeted populations (e.g. by language, age range, favorite
sports team, etc.) and be used to monitor passwords over time, again while protecting the individual
users and without storing sensitive data such as unsalted hashes of the users’ passwords.

1.3 Password Statistics Gathering: Desiderata

Our goal is to identify popular passwords while maintaining privacy. Such a system must satisfy
several seemingly contradicting goals.

- The center (server) must learn the approximate distribution of the currently popular passwords,
but without requiring the devices to divulge their passwords (even if the server is malicious).

- The center should publish, essentially to the world, some information about these passwords, but
without this allowing a coalition of devices to learn anything (useful) about other devices’ pass-
words. This assurance must hold even after repeated publications of lists of popular
passwords by different servers.

- It is not realistic to run a secure multi-party protocol involving more than a single device, and
any protocol between the server and a single device must be very lightweight.

- We only assume the existence of a single (untrusted) server and do not rely on an assumption
that data sent outside the device is divided between several non-colluding parties.

- Even a coordinated coalition of malicious devices must not be able to affect the statistics
in a significant manner, except in the obvious way: choosing their passwords. This is true both
for undercounting the popular passwords and for overcounting (by more than one password
per device in the coalition). The protocol should handle dynamic password changes and early
stopping by the devices.

Communication Model: We work in the local model. We assume that the server executes the pro-
tocol with each device separately. The server maintains a state and communicates with each device
at a different time over a secure and encrypted channel. There are no synchrony assumptions,
and the communication between the server and the devices may be executed concurrently.



1.4 Owur Contributions

To identify and blacklist popular passwords we propose a general scheme for privately identifying
heavy hitters. It is the first such scheme which is secure against malicious adversaries and ensures
differential privacy even under the continual observation of the dynamically changing heavy hitters’
list. We define the privacy requirements of the passwords via a password guessing game and show
its tight relationship to differential privacy. We bound the error probability both in the semi-honest
and malicious settings, and give concrete examples for the possible parameters, calculated using
a simulation. We describe two instantiations of the secure protocols for this task (both secure in
the malicious setting). We show run times of a proof-of-concept (PoC) implemented on a sample
platform, and describe the results of simulating the application of our private blacklisting scheme
to three actual password databases.

We examined three lists of frequencies of passwords that were leaked, of users of Linkedin, Yahoo!
and RockYou [BH19,Bon12,Wik19] which contain 174M, 70M, and 33M passwords respectively.
Our theoretical analysis for an arbitrary distribution guarantees the blacklisting of the top 5, 3,
and 5 passwords of these lists, respectively, and altogether blacklisting the passwords used by 1%,
1.4% and 1.4% of the users. The Zipfian nature of the password distribution (see Figure 1 and
[WCW17]) means that the popularity of the ¢ most popular password is exponentially decreasing
in ¢t. This implies two things: we only care about blacklisting the top passwords (since they are
much more popular than the other passwords), and we can do better than what our theorems
guarantee. Indeed our simulation in Section 7.2 shows that we are very close to the “ideal password
blacklisting process”, one that gets the passwords of all users and blacklists the real top passwords.
Our scheme performs closely to that ideal blacklisting process even when blacklisting the top 25
passwords. See Figure 3 for a comparison with the ideal system.

For the formal definition of our scheme’s correctness and privacy properties see Section 2.4

1.5 Background

Differential Privacy (DP) Differential Privacy is a natural tool to discuss the limit on the amount of
information that is learned about a user’s password; see Dwork and Roth [DR14] for a survey of the
field. Roughly speaking, a mechanism that outputs some aggregate statistic on a collection of users
is differentially private if for any user, whether its data contributed to the aggregate statistic or not,
cannot be determined even a posteriori. A little bit more precisely, it is e-differentially private if for
every possible outcome and every two adjacent inputs (differing in a single entry) the ratio between
the probabilities of obtaining the output is bounded by ef. Two common techniques of achieving
DP are adding Laplacian noise and randomized response. In the randomized response technique,
to learn the prevalence of a property one asks responders to give a noisy answer regarding it. This
affects the aggregate answer in a manner that allows retrieving, at least approximately, the real
answer. One important property of differential privacy is that it is preserved under post-processing.
Also note the posteriori nature of DP: the privacy is protected for any individual even if chosen
after the release of the data (which would be false for a scheme that say samples a subset and
releases all information about it).

Secure Computation: Secure two-party computation allows two mutually distrustful parties, each
holding an input, to compute a function of their joint inputs without leaking any other information
about their inputs.



Related Work The problem of finding the heavy hitters (i.e. popular items) of a collection of
items in a differential private manner has been addressed in several settings, including when the
input is given as a stream (see [DNP*10,DNPR10,CSS11,CLSX12,HKR12,DNRR15]).

Blocki et al. [BDB16] showed an efficient differential private mechanism to securely publish a
password frequency list of Yahoo!’s users. However, their mechanism requires the full frequency list
as an input and does not solve the problem of how to learn it privately.

Bassily and Smith [BS15] have an efficient protocol in the local model (similar to our communi-
cation model) for finding heavy hitters, that is differentially private. Bassily et al. [BNST17] have
recently provided an improved protocol wrt to the communication and computational complexity
and in particular showed a technique for domain reduction on the set of items. Chan et al. [CSS]
have given a lower bound of 2(y/n) on the approximation accuracy in the local DP model (see
Theorem 9.3 [Vadl7]), which corresponds to our communication model.

However, none of these work in the adversarial setting with malicious users (e.g. trying to make
a popular item disappear - undercounting see Section 3.4).

The RAPPOR project at Google [EPK14] is a good example of an application of local differential
privacy to gather statistics about end-users (e.g. their homepages). It does not withstand malicious
users who collude to make a homepage seem less popular.

Moran and Naor [MNO6] considered randomized response protocols when some of the responders
are trying to bias the result (see also Ambainis et al. [AJL]). This is the analogue of a malicious
set of users who are trying to overcount or undercount the heavy hitters. They related the issue to
oblivious transfer protocols.

One work that combines a privacy-preserving statistics collection scheme robust against ma-
licious manipulation is that of Mani and Sherr [MS17]. They also proposed a histogram-based
privacy-preserving statistics collection scheme robust against malicious manipulation in the con-
text of a Tor network. However, their communication complexity is linear in the number of bins,
compared to logarithmic in our protocol (for our example of 2'6 bins they require 122 MB per client
instead of 2 MB in our case). They also required non-colluding mix servers for privacy, while in our
protocol the user does not need to trust anyone.

Schechter et al. [SHM10] proposed a method (data structure) to securely publish a list of popular
passwords, with similar motivation to ours. However, they require users to reveal their passwords
to the server and do not offer DP for the user upon password publication.

1.6 Paper Structure

Section 2 describes the security definitions and requirements. Section 3 explains the basic scheme,
the usage of DP to protect the device, and the possible attacks on the system and required secure
functionality in the malicious setting. Section 4 discusses how the server generates the list of popular
hash values and proves the correctness of our scheme.

The next two (sections 5 and 6) describe two different methods for securely computing the
required functionality in the malicious setting, based on garbled circuits, and the assumption on
the intractability of quadratic residuosity (QR), respectively. The garbled circuit solution is more
efficient both in run time and in bandwidth. On the other hand, it requires an interactive protocol.
The QR based protocol demands more resources but has a non-interactive version.

Section 7 describes a PoC implementation of the QR-based protocol and simulation results of
learning popular passwords. Section 9 discusses the results and raises open questions. Appendix A
has a summary of frequently asked questions about the scheme.



2 Overview of Security Definitions

We start with describing a password security game (Section 2.1) that is used to properly define the
privacy requirement regarding password protection (Section 2.2) and then go on with correctness
requirements (Section 2.3).

2.1 The Password Security Game

There are two main parameters for a password guessing attack: one is L, the number of trials
that the attacker is allowed to make. This number might be restricted either by computational
power (e.g. brute-forcing a hashed password list) or by the number of allowed trials (e.g. an online
account might be locked after 3 login attempts with a wrong password). The other parameter is =,
the probability of success.

The password security game: To analyze the effect that the proposed heavy hitters gathering
system has on password security we consider the password security game PGame(L): we think
of an attacker A that has some info about the system. Its move against a user (device) D is to
publish a list of L words which are the attacker’s guesses of the password of D. If the password is
one of the L words then the attacker wins. The attacker wishes L to be as small as possible and
the probability of winning to be as large as possible.

Our definition of privacy will say that the attacker does not gain much in terms of the parameters
of the attack as a result of witnessing the execution of the system.

Length/success probability trade-off: In general, there is a trade-off between the length L
and the probability of success ~v: if an attacker A can win PGame(L) with probability v, then for
any 0 < p <1 there is an attacker A’ with the same information who can win PGame(pL) with
probability p - . This is true, since A’ can imitate A and then simply sample pL of the words in
the list. If the list contains the password (which happens with probability ), then the probability
of successfully sampling it is p.

The effect of releasing one bit: Given any a priori information about the password, releasing
a single bit function (even one chosen adversarially) about the password can increase the success
probability by a factor of at most 2 (which is equivalent to making the list twice as long). More
formally, for any Boolean function f, and for any attacker 4 that has some information about the
system and also obtains f(password), and then plays PGame(L), there exists attacker A" that
receives the same information about the system but not the value of f(password) and has at least
the same probability of success in PGame(2L) (where the attacker generates a list that is twice as
long). The argument is simple: run A twice, with the two possibilities for the value of f(password),
and then concatenate the resulting lists.

Note that this sort of protection on its own might not be sufficient wrt system-wide consid-
erations. In particular, the problem is that the adversary may decide on whom to prey after the
fact, namely after the information is gathered and some leakage occurred. Consider the case where
for each user there 10 possible passwords and the adversary guesses at random for each user a
candidate password ¢ and a single bit function f. that isolates ¢ from the rest of the bunch (this
could even be a linear function). Now for each user, after receiving f.(password) the adversary
learns whether the candidate ¢ is correct or not. For roughly 1/10th of the users, the adversary
learns the password and can win the game PGame(1) with probability 1, without leaving a trace
of this wrt the rest of the users. As we shall see, this is addressed by differential privacy (DP).



Differential privacy: An important issue is the relationship between the password security game
and DP. Consider an adversary A that obtained e-differentially private information regarding a
password, and compare its probability of success to that of A’ that did not receive this information
at all. Then for any list length L, the success probability of A in PGame(L) is at most e times the
probability of A" in PGame(L). This follows from the immunity to post-processing of differential
privacy. This holds similarly to (e,0)—DP, where 0 should be added to the probability of success.

Looking at the above example of picking which devices to attack after the protocol, we see that
the posteriori property of differential privacy prevents this case: the adversary cannot choose a
bunch of users where he will win the password game PGame(L) with much higher probability. Le.
if the adversary received e-DP information about many passwords, whenever the adversary chooses
a device to attack the probability of success is at most e¢ times the probability of success of A’.

2.2 Privacy and Password Security

The privacy requirements are that the chances of an adversary in winning the above Password
Game with regards to a device (i.e. its password) do not increase by much if the individual de-
vice participates in the protocol (or participates with a fake-password). This should remain true
against an adversary controlling a coalition of devices. Furthermore, this should remain true even
a posteriori, that is when the adversary decides which devices to attack following the execution of
the protocol®.

We consider an adversary A that has a lot of power: it chooses a collection of distributions
of passwords for the devices, witnesses the protocol (in the sense that it sees the communication
with the devices and perhaps controls a subset of them) and then chooses one of the devices (not
under its control) as the challenge device, receives the passwords of the remaining devices and
participates in a Password Guessing game against the challenge device with parameter L. We want
to say that this A does not succeed in the game much better than a player that did not participate
in the protocol. We define the requirement by two parameters a and b related to whether the server
cooperates with the adversary or not (these parameters should ideally be very close to 1).

Coalition without the server: For any adversary A as above, controlling a coalition of devices
that does not include the server and after the execution of the protocol choosing another device as
a challenge in the password game PGame(L) (and receiving the passwords of all other devices)
there exists an A’ that simply gets the passwords of all the devices except for that of the challenge
device, but does not witness the execution of the protocol, so that A’s probability of winning the
game is at most a multiplicative factor a larger compared to that of A’.

Coalition with the server: When the server joins the coalition (and may even behave maliciously
in the protocol) then the probability of winning the game PGame(L) against the chosen device
increases by at most a multiplicative factor of b compared to that of A’ that simply gets the
passwords of all the devices except the challenge device but does not witness the execution of the
protocol.

3 8o, for instance, a scheme where some devices are sampled and full information about their passwords is given
would be very bad in this respect.



2.3 Correctness Requirement

The correctness requirement is defined via the functionality of a trusted third party (TTP). The
functionality is probabilistic and receives passwords one by one and at the end of the process releases
the list of heavy hitters. Functionality 1 describes the desired functionality in terms of correctness.

The parameters of the system are 7, the threshold, and §, an allowed tolerance. The TTP should
return the correct label of the heavy hitter even in the presence of a malicious coalition of devices.
Namely, for parameters 7 and §, the protocol must ensure that passwords with a frequency of at
least 7(1 4 d) are added to the heavy hitters list, whereas passwords with a frequency of less than
7(1—¢) are not added to this list (where 7,d,7(14 ) € (0,1)). There are also tolerable parameters
for the probabilities of false negatives ppy and false positives ppp.

We think of the false negative probability threshold pry as being negligible, and therefore any
frequent password in the above sense is labeled as such with probability at least 1 — prn, where
the probability is over the random coins of the server and the participants. On the other hand,
the false positive probability threshold pgp is not necessarily negligible: in particular, if we hash
the passwords to a relatively small range with 16, 24 or 32 bits, then an ‘innocent’ password may
simply hit a heavy hitter. If we have that for any password the probability of being disallowed is
prp, this might not be so bad, since all it means that the human user will need to choose a new one.
But what we do not want to happen is the case where the user has in his or her mind a sequence
of potential passwords and all of them are falsely labeled as heavy hitters (so the user cannot
successfully choose a password). Instead, we add the requirement that any large enough collection
of passwords (of size at least M), where none of them is a heavy hitter, are not simultaneously
labeled as such, except with negligible probability piotar (Which is another parameter).

Functionality 1 (Protocol’s Correctness requirement)
- Input:

e All users send their passwords to the trusted party (TTP).
- Blacklist generation:

e For each password pass € {0,1}" with frequency of at least 7 - (1 + §) we have that pass is added
to the blacklist with probability at least (1 — prn).

e For each password pass € {0,1}" with frequency of at most 7 - (1 — §) we have that pass is added
to the blacklist with probability at most prp.

e For any subset P of passwords of size at least M where all of passwords in P have frequency at
most 7 - (1 — &) we have that the probability that all passwords in P are added to the blacklist is
at most protal-

e A password with frequency between 7 - (1 4+ ¢) and 7 - (1 — d) may be added to the list arbitrarily.

- Output:
e The TTP sends to server the passwords in the blacklist.

The threshold 7 is dynamically chosen as the smallest possible value satisfying the required
error probability ppy, with the current number of users N¢.

2.4 Correctness and Privacy Achieved

The protocols described in this work achieve correctness with parameters pry, prp and piotal as de-
scribed above in the sense that the parameters can be set as a function of the number of participants
and the privacy requirement. See Section 4.5.

As to privacy, any coalition that does not include the server can only increase its success proba-
bility in the Password Guessing Game PGame(L) by at most an a = e“P? factor. In Section 4.3 we



derive the value epp from the scheme parameters. We achieve this by making sure that the pass-
word is protected in a differentially private manner; therefore the adversary cannot pick a device
whose password was compromised. When the coalition includes the server this increase in success
should be bounded by b. If the server learns a single bit regarding the password, as is the case
in our protocols, then to make sure that b is indeed the bound we may use a simple randomized
response technique by flipping this bit at random with probability In2/(b—1). The password is then
protected in a differentially private manner and the corresponding consequences in the Password
Guessing game.

“Everlasting” security and privacy: The proposed system should handle prolonged mainte-
nance of these properties, that is the system lives for a long time and tries to learn the current list
of heavy hitters. We will modify the requirements with some minor relaxations. The server needs to
add ephemeral noise to each publication of the blacklist to protect the user’s privacy and prevent
leakage of data that is required for the protocol’s secure functionality. Therefore, with regards to
the published blacklist, we will allow a password that should appear in this list to be omitted in a
single publication with probability pEphpry, and for a password that should not appear in the list
to appear in it with probability pEphpp.

3 Overview of the Scheme

We start by explaining our domain reduction to hash values. We then describe the basic con-
struction and provide details on how to fulfill properties such as differential privacy and security
against malicious behavior. A rough outline of the basic scheme is that blacklisting the popular
passwords can be reduced to learning a single bit via the Fourier coefficients of the distribution
on the passwords’ hash values. This is done by the server sending a random vector to the device,
who responds with the inner product of the vector and the password’s hash value. To overcome
malicious behavior we need to perform this operation securely, without letting the user learn the
server’s random vector.

3.1 Password Domain Reduction

As we assume the password domain to be unbounded, we use a system-wide hash function H
to map arbitrary length passwords to an ¢-bit output (a typical output length will be £ = 16,24 or
32). Our scheme will find and publish a blacklist of heavy hitters hash values. A user’s device can
check if the hash value of a newly chosen password is in the blacklist. In that case, the user will be
asked to choose a different password.

A collision in the hash value of a user’s password and some “popular” password will cause a
“false positive”, where the user will be asked to change its password even though it is not popular.
This happens with a low probability, O(27¢/7) where 7 is the threshold frequency for a heavy hitter
(see Section 4.3). We can tolerate these events since the only consequence of a collision is that a
user will be asked to choose another password. We will therefore analyze the general problem of
finding heavy hitters in ¢-bit hash values.

3.2 The Basic Semi-honest Scheme

The scheme works in the following way each time a new device is added or change password:

1. Device j maps its password to a secret £-bit value v; = H(pass;).
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2. The device receives from the server a uniformly distributed random ¢-bit value ;. The device
sends back the one bit value of the inner product of v; and r; over GF'[2], denoted as (vj,r;).

3. The server keeps a table T'[x] of 2¢ counters, corresponding to all possible ¢-bit values z (initialized
to zero on system setup).

4. For every value of z if (x,7;) = (vj,7;) the corresponding counter is incremented by one, oth-
erwise it is decreased by one. Equality holds for exactly half of the values, that we call the
“correlated” values.

We denote the total number of unique users that ran the protocol as N¢, and p is the frequency
of the hash value x. The expected numbers of increments and decrements are No(p + (1 — p)/2)
and N (1 — p)/2 respectively. The expected value of the counter is E(T'[x]) = pN¢.

For a threshold frequency 7, the server simply publishes all = values such as T'[x] > 7 N¢. Each
device j can now check if H (passj) is in the published hash values list. If it is, the device asks the
user to change the password.

Note that to allow password changes, the server needs to save r; and (v;, r;). If a device wants to
change its password, the server will first reverse the change to the counters due to the old password
before applying the new changes.

Running Time: This procedure requires 2¢ operations per update. This can be optimized using
Goldreich-Levin’s list decoding (see [Sud00]). However, the actual run time is insignificant for
suitable values of ¢ such as 16, 24 or 32.

3.3 User Differential Privacy

The scheme leaks only one bit of information about the user’s password. Although it seems that
leaking one bit of entropy about a password would not affect its security by much (since passwords
should have good min-entropy to begin with), in some cases even one bit might be too much. There
are two different privacy concerns from the user’s point of view:

1. Privacy from the server — Although some information must be leaked to the server for the scheme
to work, users may want to have some differential privacy guarantees on the single bit they send
to the server.

2. Privacy from third parties — Although a user may be willing to leak some information about his
password to the server, we want to assure that this information does not leak to any coalition of
users viewing the popular hash values list that is published by the server. This issue is amplified if
the user participates in schemes for discovering popular passwords with several different services,
and each of these services publishes a list of popular passwords.

Protection from the Server: Pure Differential Privacy by Applying Randomized Re-
sponse The device can use a randomized response to reduce the amount of information that is
leaked to the server. Namely, after hashing its password to v;, the device decides with probability
€ to choose a uniformly distributed random value v}, and send (v}, 7;) instead of (vj, ;). It holds
that:

Pr((v},rs) = (vj,r5) | v} # vj) = 1/2 (1)

Pr(v; = v;) = 27¢ (2)



From equations (1) and (2) we get that the probability of the server learning the correct bit (vj,r;)
is pe = 1 — &.(1 — 27%)/2. From this we can conclude that this procedure provides the device with
pure DP, with € &~ In(2/e, — 1).

Protecting Privacy from other users: (€,, §) Differential Privacy by Applying Laplacian
Noise To ensure users that they have ¢, differential privacy from any coalition of users, the server
can add independent Laplacian noise Lap(1/e,) to each table entry before deciding which hash
values to blacklist (adding a device’s password can change the value of each entry by at most 1).

We comment that this procedure might not be sufficient. The device can affect the publication
probability of several passwords in the list. Moreover, the server needs to periodically republish its
current hash value list. As we need to generate new noise each time we publish, an attacker can
average the results over time and learn information about a single user’s password. Even given this
observation, we still retain DP as long as the number of hash value list publications is not very
large. Dwork et al. [DRV10] have shown the advanced composition property that enables to get
O(\/klog(1/d") - €y, 8")-differential privacy for k publications. This means that the penalty we get
in privacy is proportional to the square root of the number of publications, see Section 4.3.

3.4 The Malicious Setting

In a semi-honest model, the naive protocol suggested above is sufficient: the server sends r; to the
device and receives (vj,7;) (perhaps after the user applies the randomized response technique).
The server cannot learn more than a single bit, and the device does not have anything to learn.
However, in the malicious setting, the parties have different possible behaviors:

A Malicious Server The user/server protocol must ensure that the server does not learn more
than a single bit about the password. This protects each user individually. However, on a system-
wide scale, a malicious server can tweak the hash value list that is published. One option is to
publish a very large list of popular passwords and cause a large number of false positives. This can
be done to cause a DoS attack or to try and influence the users to choose from a smaller set of
popular passwords. However, if 7 is the popularity threshold, then the server can publish at most
O(1/7) popular passwords. Moreover, the server has no incentive to do a DoS attack on its own
system.

Another option is to create a targeted malicious blacklist for each device. This attack can be
prevented by publicly publishing the blacklist to all users.

A Malicious Device In the setting that we consider, it is very likely that some devices were
compromised (perhaps, by utilizing their weak passwords) and are now controlled by an adversary.
A coalition of malicious devices may try to influence the statistics gathered by the server in two
ways. It can apply an overcount attack to make unpopular passwords seem more popular or apply
an undercount attack to make popular passwords seem unpopular. Note that in our scheme, a single
device can change the value of a counter by at most +1.

Undercount attack: This might be the most severe form of attack: A coalition of devices can try to
“hide” some popular passwords, and cause “false negatives” to be able to continue exploiting these
passwords. This attack may result in a larger fraction of the users using the same (weak) password
and being susceptible to attacks. Assume that a corrupt device wants to cause an undercount of a
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popular password pass. Lets assume that v, = H(pass). The expected contribution to the counter
T'[vp] by a device that did not choose v, is 0. However, by choosing v s.t. (v,7;) = —(vp,r;) the
contribution is always —1. In this way, a [ fraction of malicious users out of N¢ can undercount
a popular passwords counter by SN¢. This can cause the counter value to go below the threshold,
and remove the hash value from the published list.

Overcount attack: A coalition of devices can try to make many passwords that have been chosen
by less than a fraction 7 of the users to seem more popular. This will result in a large number
of “false positives”. This attack is significant only if the attacker can apply it on a large fraction
of the passwords, and reduce the total min-entropy. However, this attack is feasible only on a
small number of passwords simultaneously and will have a negligible effect on the min-entropy.
Moreover, the solution we present for the undercount attack is also effective against the overcount
attack. Therefore we will focus only on the more severe undercount attack.

A Malicious Third party A third party might try to comprise the protocol or the published
blacklist using a Man in the Middle attack on the connection. This is not possible, as we assume
an encrypted and authenticated channel between the server and device. Moreover, the server will
sign the publicly published blacklist including a timestamp (e.g. using HT'TPS-protected website).

3.5 The Required Secure Functionality

To protect against malicious undercount attacks we need to prevent the possibility of sending an
output bit that is anti-correlated to any value v (namely 1 — (v, ;)) with probability greater than
1/2. We want to only allow the device to choose some value z and send (z, 7, ;). In Functionality 2
we define a functionality in the ideal model (where a trusted party is assumed to exist) which
provides the desired privacy and correctness properties. The actual execution of the protocol (with
no trusted party) must securely compute this functionality.

Functionality 2 (Ideal inner-product)
- Input:
e The server sends to the TTP an ¢-bit input rs ;.
e The device sends to the TTP an #-bit input v.
- Output:
e The TTP sends to server the inner-product value (v, s ;).
e The device learns no output.

The definition implies that a device cannot learn r; ; before providing its input. The device is
allowed to randomize its response, by choosing a random input v. As v is independent of ry ;, the
result of the inner-product is random.

In Sections 5 and 6 we show two secure protocols which implement Functionality 2 (or a small
variant). The protocols are secure against malicious devices.

4 Popular Hash List Correctness

We describe how to generate and publish the blacklist of popular hash values using the inner-
product results received from the devices. We prove the correctness by providing upper bounds on
the probability of false negative and positive.
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The basic scheme is secure against semi-honest devices. On the other hand, a coalition of
malicious devices can force an undercount to a specific popular hash value rather simply and break
the correctness (see Section 3.4). However, due to our secure functionality, a malicious device with
no knowledge about the secret r,; vector, has no better strategy to undercount a hash value v than
choosing a random hash value v/ # v. This reduces the case to the semi-honest setting. We will
prove the correctness of the scheme under this assumption. We also show how to calculate the
minimum possible threshold 7,,;, preserving correctness as a function of the number of devices.

We also analyze correctness under the much stronger “Malicious Campaign” setting. In this
setting, a malicious coalition of all of the devices tries to learn information about the secret r;
vectors (which are fixed per device in this setting) over several years to mount an undercount
attack. This is done by adaptive runs of the protocol and learning information about the 75 vectors
using leakage from the repeated publications of the blacklist. Using this information the coalition
tries to undercount the hash value chosen by the small fraction of honest devices that were added
before the last publication. Although this model might not seem realistic, it allows us to prove
correctness in an information theoretical worst case. This allows us to calculate an upper bound on
the slightly larger threshold value 7/, that is required to preserve the correctness requirement in
any setting.

in

4.1 Notation
We use the following notation in the analysis:

1. N¢ - the total number of devices participating in the protocol.

o

Np(v) - the total number of devices that are currently using any password such that v =
H(pass).

T'[v] - the value stored at the counter table with index v.

a(v) - the server’s approximation of the number of votes for a hash value v.

€, - the probability for randomizing a device’s response (for DP).

o ot W

1(z) - the unit step function.

All probability calculations are taken over the possible values of the r* vectors used by the server
and the devices’ possible randomized responses.

4.2 Estimation of Popular Hash Values

The server’s approximation to the number of devices that are currently using a password that
hashes to a value v, given the current value of T'[v], is defined as:

a(v) = (Tv] = Nee:2 ™) /(1 — &) 3)

Lemma 1. If a fraction p of the devices choose a password which hashes to a value v, then the
expected value of a(v) is pN¢.

The proof of this lemma appears in Appendix E.
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4.3 False Negative and Positive Bounds

We want to identify hash values which are used by more than a fraction 7 of the devices. Namely,
identify any hash value v for which Ny (v) > 7N¢. As we can only learn an approximation of Ny (v),
we relax our requirement, to that of identifying any hash value for which Ng(v) > 7Ng(1 + 9).
We will also allow error on the other side — namely allow the server to blacklist hash values which
are only used by more than 7N¢(1 — §) devices (but no hash value which is used by fewer devices
should be declared as popular).

We assume the malicious setting using our secure functionality.

Estimating the false negative probability: We define as a “false negative” the event that at a given
time, a specific hash value v was over the upper threshold, but the approximation a(v) was below
the threshold. Namely,

Ng(v) >TNc(1+6) AN alv) <TNco
Lemma 2. The probability of a false negative event, prpy, is bounded by:

prN < 2exp(—Ne(16(1 — €.))?/2)

Estimating the false positive probability: We define a false positive as the mirror case of a false
negative, namely

Ng(v) < TNe(1—0) A a(v) >7N¢
Lemma 3. The probability for a false positive ppp is bounded by:

prp < exp(—No(78(1 - €,))%/2)

Lemmata 2 and 3 are proved in Appendix E.
Note that as was described in Section 3.1 there is a larger chance of false positive on the original
passwords due to collision in the hash values. This probability is calculated in Appendix E.

Dynamic Threshold 7 As N¢ increases we can get a better approximation for the hash values
distribution (namely, can use smaller 7 values). The server can dynamically change 7 as a function
of N¢ and its chosen bound on pgy. Using Lemma 2 we propose that the minimal threshold 7,
will be bounded such that the following constraint holds for some constant C':

2C 1
C < No(Tmind(1 — 67’))2/2 = Tmin > Nic' . m
This will assure a very low probability of false negatives even after publishing the hash list a
polynomial number of times. For example, in a system with ten million users (N¢ = 107), § = 0.8,
€ = 0.25 and C' =7, we get that 7,,,;, = 0.002. We can also use a numerical approach to calculate
pry and find a lower more accurate Tp,,.
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Laplacian Noise We use Laplacian noise to get (epp,d’) differential privacy from third parties.
Before each publication, the server adds to each counter 7'[x] independent noise xr ~ Lap(1/ey),
and blacklists a hash value x only if T'[z] + x% > TN..

Remember that the maximal number of possibly published counters in each publication is
1/(t(1 — §)). So we get that for k repeated publications of the blacklist we can get (epp,d’)
differential privacy where epp = \/k/(7(1 —0)) *In1/¥ - ¢,. Using a 7 value slightly larger than
Tmin Will allow us to add the required Laplacian noise while still keeping the value of pEphprn
negligible.

4.4 Bounds for a “Malicious Campaign”

In a malicious setting, a coalition of devices might run an undercount attack, trying to cause a
false negative wrt an actual popular password. The system, however, uses a secure inner-product
protocol that is resilient to malicious devices (see Sections 5 and 6). In a “one-shot” scenario, where
the attacker has no information about the secret r; vectors, we get the same probability pry as in
the semi-honest case (best strategy for the coalition: choose random hashes).

The publication of the list of popular hash values leaks a small amount of information about the
secret rg values. This information might be used in an undercount attack to cause false negatives
with higher probability. For example, a device might learn from a change in the published hash list
that its chosen hash value is correlated with a popular hash value. Therefore the device chooses
another hash value in the hope that the result will be anti-correlated.

The server can add independent random noise to the counter table before each publication of
the blacklist. In this way, the server reduces the amount of leaked data. We conjecture that even
a small amount of added noise (e.g. the Laplacian noise used for DP) will render the leaked data
unusable for the attacker. However, we provide a full information-theoretical worst-case analysis.

We assume that for the entire life span of the system, a malicious coalition of all devices
found an optimal adaptive strategy to cause each publication to leak the maximum possible (in an
information-theoretic sense) number of bits about the secret ry vectors. Moreover, we assume that
this coalition has an optimal strategy to use this noisy information to improve their undercount
probability by the maximal theoretically possible factor. In Part B of the Appendix we prove the
scheme’s correctness under those assumptions.

4.5 Security and Correctness Analysis

We need to show that the desired privacy property expressed by the password game of Section 2.1
and 2.2 indeed holds, and show that the correctness property of Section 2.3 holds as well. The privacy
property follows from the randomized response giving us e differential privacy protection against
a malicious server, and from the (epp,d’) differential privacy protection given to each password
regarding any malicious coalition that does not include the server, as shown in Section 4.3.

As for correctness, in Section 4.3 we show how to bound ppy, and how to dynamically (i.e. as
the number of participants increases) choose the parameters to ensure this requirement. Figure 2
shows the Ty, values for § = 0.8, ¢, = 0.25 and C = 7. Parts B.4 and B.5 of the supplementary
material show the same bounds in the worst case “Malicious Campaign”setting. A suitable choice
of slightly larger 7/ > 7,,,;, and €, will give us the required pEphpy and pEphpp.

Regarding piota;, we prove in Appendix E that the only event that should worry us is the
occurrence of M collisions to popular hash values under the hash function. This happens with a
very small probability of (27¢ / (1 — §))M.
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5 Garbled Circuits Based Inner Product Protocol

Generic protocols for secure computation, such as Yao’s garbled circuit protocol, can be used for
securely computing any function. The Binary circuit computing the inner-product of ¢-bit values
is very small, and is composed of only ¢ AND gates and ¢ — 1 exclusive-or gates. The secure
computation of this circuit is extremely efficient.

The main challenge in using garbled circuits in our application is ensuring security against
malicious behavior. The most common approach for achieving security against malicious adversaries
is the cut-and-choose paradigm (see, e.g. [LP07]), but this paradigm requires computing at least
§2(s) copies of the circuit to reduce the cheating probability to 275 4.

Fortunately, our setting enables a much more efficient implementation. This is based on two
features existing in this setting:

1. The device does not receive any output from the computation.

2. The server is allowed to learn a single bit about the input of the device (this feature is a
byproduct of learning the inner-product, but we can also use it for designing a more efficient
two-party protocol).

In our implementation, the server is the constructor of the circuit, and will also learn the output
of the computation. We make a minor change to Yao’s protocol to enable the device to verify that
the circuit outputs only a single bit. The device cannot, however, know which function is computed
by the circuit (the device can verify the circuit’s topology, but not the function computed). The
server can therefore use the circuit to learn other one-bit functions of the input of the device. This
is still fine by our security requirements, but we need to re-define the ideal functionality to model
this computation. The modified functionality appears in Functionality 3.

The protocol we use is based on the observation that running the basic Yao protocol, which is
only guaranteed to provide security against semi-honest adversaries, is actually also secure against
malicious circuit evaluators (this was also used in the dual execution paradigm [MF06], and follow
up work [KMRR15,RR16]).

The parties run Yao’s semi-honest protocol, with two modifications:

1. The oblivious transfers are secure against malicious adversaries. They can be implemented, e.g.
using the protocols of [PVW08,CO15], whose overhead consists of only a few exponentiations.

4 We are only interested in running a single computation, and therefore there is no benefit in using proto-
cols which reduce the amortized overhead of cut-and-choose over many computations of the same function, as
in [HKK™14,LR15].
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2.

Functionality 3 (Yao’s protocol modified inner-product)
- Input:
e The server sends to the TTP the following inputs:
* An /(-bit input r;.
x A circuit computing a function F' which receives two ¢-bit inputs and outputs a single bit.
e The device sends to the TTP an #-bit input v.
- Output:
e The output of the server is F'(h,r}).
e The device learns no output.

The server provides in advance the output of a collision-resistant hash function applied to the
two possible garbled outputs of the circuit. The device verifies, before sending the garbled output
to the server, that the garbled output hashes to one of these values. (This guarantees that the
circuit can have only two valid outputs.)

We assume that the reader is familiar with Yao’s garbled circuit protocol. The protocol we

suggest includes the following steps:

1.

The server prepares a garbling of a circuit computing the inner product of two ¢-bit inputs. In
addition, it applies the hash function to the two garbled values of the output wire of the circuit
and records the results.

The parties run £ invocations of 1-out-of-2 oblivious transfer, one for each of the £ input wires
corresponding to the device’s input. The server is the sender, and in each OT the device learns
one of the two garbled values of the corresponding input wire. The oblivious transfers are im-
plemented using an oblivious transfer protocol that is secure against malicious adversaries.
The server sends to the device (1) the garbled tables of all gates, (2) the garbled values corre-
sponding to the input wires of the server, and (3) the hash values of the two possible garbled
values of the single output wire (sent in random order).

The device evaluates the circuit’s garbled output value, and compares the hash of this value to
the two hashes of the output wire sent by the server. If there is a match then it sends the garbled
value to the server.

. The server receives the garbled output value and translates it to the 0/1 value of the inner

product.

Overhead. We note that the circuit size is very small (2¢ — 1 gates, where / is typically equal to
16, 24 or 32), whereas current implementations of Yao’s protocol can process millions of gates per
second. The run times of each oblivious transfer is at most a few milliseconds (see, e.g., [CO15]).

Security analysis of the protocol The full security analysis of the protocol can be found in

Appendix C.

6 Quadratic Residuosity Based Inner Product Protocol

The goal of the protocol is to implement the secure functionality described in Figure 2 and calculate
the inner product (Vs, Rs) between a device’s (D) input Vs and a server’s (S) input Rs in a
malicious setting. This functionality requires that S only learns the result, while D learns nothing
and is not able to deviate from the protocol.

1.

We use the following notation regarding a composite number N = p - ¢:

a

(W) is the Jacobi symbol of a with respect to N (which is easy to calculate).
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2. QRN (nQRy) is the set of all numbers that are (non) quadratic residues modulo N, and have a
Jacobi symbol 1.

3. Tory (a) tests the quadratic residuosity of a in respect to N. The output is L if (%) # 1. Else
the output is 0 if a € QRy and 1 otherwise. The quadratic residuosity assumption implies that
computing this function requires the knowledge of p and q.

4. The notation & denotes that an item is chosen uniformly at random from a specific domain. In
particular,

ca & QRN (nQRy) denotes that the value a is chosen uniformly at random from QRy

- Mg ¥id m{l} denotes that the permutation 7, is chosen uniformly at random from the family
of permutations on /¢ items.

cxd {0,1}* denotes that the value z is chosen uniformly at random from {0, 1}*.

5. Capital letters such as V; denote vectors of numbers in {0, 1}, lowercase letters such as rp, denote
vectors of numbers in Zy.

The protocol is based on the intractability of the quadratic residuosity (QR) assumption. Under

x

this assumption it is hard to distinguish whether z bl QRN or x & n@Q Ry where (N) =1 (with
non-negligible advantage) without knowledge of the factorization of N.

We use this assumption for encrypting vector Rg of the server S in a similar way to the
famous Goldwasser-Micali public encryption scheme [GM84]. In particular, we use the homomorphic
properties of this scheme —i.e. if x,y € QRy and a,b € nQRy then xy,ab € QRN and ax € nQRy.
This also allows us to ‘blind’ an encryption: we create a new encryption which is decrypted to the
same bit but cannot be connected to the original one by multiplying with a random square.

6.1 Protocol - Semi-honest Version

We will start by describing the semi-honest version of the protocol. For each device D , the server
S generates a unique public and secret key pair SK = (p,q), PK = N = p-q (p and ¢ are primes
and |N| depends on a security parameter k1). S then encodes R as a public vector r, € Z4; that
is sent to D . Each number r,; is a public-key encryption of the corresponding bit R, ;:

- 0 is encoded as a QR: if R,; = 0: 1p; ﬁ QRy.
- 1is encoded as a nQR: if Ry; = 1: 1, <£ n@QRy.

D calculates the product of the numbers in 7, corresponding to the 1 bits in Vj, and blinds the
result by multiplying it with a random QR:

l
e=d*- H(rw-)VS’i where d & Zy

i=1
After receiving e from D , S learns the result of the inner product:
result = Tor, (€)

Under the QR, assumption D does not learn anything (in the semantic security sense) about Rs.
Due to the homomorphic properties of the encryption, a product of encoded bits gives an encoding
for the xor of the bits. We get that e encodes the inner product result.
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The blinding by d? does not change the result (it is equivalent to an exclusive-or with zero).
However, because d is chosen uniformly at random in QRy, then e is also distributed uniformly
at random inside its class (either QRyx or nQ Ry ). This ensures that the S only learns the one-bit
result of the inner product.

Insecurity in the malicious setting? The attack we wish to prevent is anti-correlation with
a certain password (or passwords). Applying this attack is easy given a member of nQ Ry, since
multiplying the answer with an n@Q Ry number flips the result®. However, under the QR assumption,
we do not know if it is easy or hard to find a single number x such that € nQ Ry (with probability
better than 1/2). By assuming that finding x € nQRy for certain N’s is indeed hard we do not
need to change the semi-honest protocol to handle the malicious case, but we take the conservative
path of not adding new assumptions.

6.2 Malicious Setting: Naive Implementation

The basic approach for handling the malicious case is to add a zero-knowledge proof by the device
D to prevent malleability attacks. We begin the exposition with a naive implementation that is
secure against a malicious D, but allows S to learn more than one bit of information about V.

D creates a vector 74 that is a permuted and “blinded” version of the vector r, that it received
from the server. That is, the device blinds each value in 7, by multiplying it with a random QRx
and randomly permutes the resulting vector. D then sends to S the list of indexes of the numbers
in 7, that correspond to the 1 bits in D ’s vector. S can then compute the multiplication of these
numbers.

Since S must not learn how many bits equal to 1 in D ’s vector, we pad 7, with ¢ numbers
that are in QRy. This allows D to always send a product of exactly ¢ numbers regardless of the
Hamming weight of its vector V.

D proves to S that 7, is indeed a blind permutation of 7. This is done by generating a vector
r; that is a blinded permutations of r,, and proving to § that D knows how to “open” this vector
either to 7, or to rp, (this is in the style of the zero-knowledge proof of Hamiltonicity). A cheating
D is caught with probability 1/2. D must therefore use ks vectors r;, and then the probability of
D to deviate from the protocol is 2752,

Device setup Phase D generates and saves the following data.

1. r = rp||pad?® where pad ¥id va. We pad rp with £ numbers in QRy.
2. V = V4||V;s where Vy; =1 — V.

3. T, & {20}, d. & Z%. D generates a random permutation 7w, on 2¢ items, while d, are 2¢
random numbers.

4. ry = mu(r - (ds)?), Vi = m(V). 74 is a blinded random permutation of r, and Vj is the same
permutation of V.

5. e= H?ﬁl(ri(d*,i)Q)Vi = Hfﬁl(r*yi)v*vi. e is the product of the blinded items in r corresponding
to the 1 bits in V. The bit that is encoded is the result of the inner product.

6. For j =1...ko:

5 That is, if e is the appropriate answer for the password that a malicious D wishes to undercount, then by sending
e’ = e - x the count is decreased
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(a) m; & m{20}, d; & Z%. D generates a random permutation 7, on 2/ items, while dy are 2/
random numbers.
(b) rj = m;j(rx - (d4)?) is a blinded random permutation of 7,
7. D sends (7, Vi, pad) to S.

Interactive proof phase The server first computes the result.

1. S calculates r = 7, ||pad? using the vector pad it received from D and 7}, that it stored locally.

2. S calculates e = H?il(r*,i)v**i. Namely, e is the product of the items in r, corresponding to the
1 bits in V.
3. 8 calculates result = Tgr, (), to retrieve the inner product.

Then the server verifies the result using an interactive proof for j = 1,..., ko:

1. D sends rj to S
2. § sends b; ¥id 0,1 to D

3. ifb; =0
(a) D sends to S (my; = mjm, dyj = 7j(m.(dy) - dj), opening the blinded permutation from r
to r;.
(b) S verifies that 7; = 7. ;(r) - (dxj)*.
4. else

(a) D sends to S (7j,d;), opening the blinded permutation from 7 to r;.
(b) S verifies that r; = 7;(r - d;?).

Information leakage in the naive implementation S receives a blinded version of the numbers
used in the inner product calculation (the numbers in r, corresponding to the ‘1’ bits in V).
However, recall that S can find the sign of Tgr, () for any z. This lets it learn the exact number
of 1 bits in the device’s vector Vg that correspond to 1 bits in the server’s vector Rg. For example,
S can choose R to be all ‘1’ and use it to learn the Hamming weight of V.

6.3 The Full Protocol

The main difference between the full and naive protocols is that instead of sending the vector 7,
D sends a vector s, containing the squares of the entries of r,, and also the indexes of the entries
in 7, which correspond to D ’s 1 bits, and the result e of multiplying these entries. As all the
numbers in s, are in QRy, the vector that D sends is indistinguishable from a random vector
in QR% and leaks no information. Nonetheless, the server can verify that e is indeed the square
root of the multiplication of the ¢ elements in s, which correspond to 1 bits. We prove that under
some restriction on the generation of N the soundness of the modified protocol holds. The complete
protocol is described in Appendix F.

Non-interactive proof The interactive part of the protocol can be converted into a non-interactive
proof. In addition, the results of S setup can be stored on D, and this allows the implemented
protocol to include only a single message from D to S.

The conversion is done using the Fiat-Shamir heuristic [FS86] in the (non-programmable) ran-
dom oracle model.
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Completeness, Soundness and Zero-Knowledge Proof The full proofs can be found in Ap-
pendix F.

6.4 Implementation Considerations

Reusing r, The vector r, can be re-used for repeated runs of the protocol, without any effect
on the security from S’s viewpoint. From D’s side, re-using r, helps by limiting the number of
password bits that can be leaked to one, even if the same password is chosen multiple times (e.g.
if D was reset, or the user changed back to an old password).

As 7, is fixed, it can be stored on D in production and not sent over the network. This saves
the first message in the protocol.

Interactive vs. Non-Interactive As was mentioned above, the protocol can be turned into a
non-interactive protocol, allowing D to prepare and send a single message. S can then verify and
add the result to the gathered statistics with minimal interaction.

This advantage comes with a price. In the interactive setting ks is a parameter of the probability
of deviating from the protocol p(ks) = 27%2. For all practical usages setting ks to be between 10
and 30 should be more than sufficient. However, in the non-interactive proof ko is a parameter of
the amount of preprocessing work necessary for deviating from the protocol (O(2%2)), and we will
usually require a much larger value of k3 (e.g. 80 or 128).

Although the non-interactive protocol is simpler, using a larger value of ko is more suitable for
ToT devices with sufficient memory and processing power, such as web cameras. Low-performance
or low-power devices should use the interactive protocol.

Communication complexity We calculate the number of bits that are sent in the protocol. As
we assume S generates a fixed rp, per D, we will only consider the size of D’s proof (and neglect
the ko bits sent by S).

The size of the representation of each permutation is 2¢ - |2¢] = 2¢ - (log¢ + 1). The size of
each vector is | (s, e, Vi, pad)| = k1 - (20 + 1 + £) + 20 ~ 30ky, |(sj, 7%, blind;)| = |(sj, 77, dj)| =
4kl + 20 - (logﬁ + 1) ~ 40k .

The total communication complexity is approximately 4¢kiko. For specific parameters of the
non interactive protocol, £ = 16,k; = 2048, Ko = 128, it is about 2 MB, and for the interactive
protocol with ko = 20 about 312 KB.

7 Proof of Concept Implementation

7.1 QR Protocol PoC

We implemented a proof-of-concept (PoC) of our maliciously secure QR protocol in python, showing
that even an unoptimized implementation is sufficiently efficient for many IoT devices. To simulate
an IoT device, we ran the device-side code on a Raspberry Pi 3 Model B [ras|, and the server code
on an Intel i7-7500U 2.7GHz CPU.

We use a modulus N of size 2048 bits and ¢ = 16. We measure processing time of the protocol
with kg = 20 (interactive version) and ko = 128 (non-interactive version).

The device required 2.8 seconds of run time and 13.5 seconds of preprocessing for ks = 128, and
0.4 seconds of run time and 2.1 seconds of preprocessing for ko = 20. The server required about 0.5
sec to verify the ko = 128 non-interactive proof, and about 3msec to update the counters.
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Fig. 3. A Comparison of the numbers of users blacklisted by our scheme and by an ideal blacklisting process.

7.2 Popular Hash List Simulation

We simulated our password blacklisting scheme using three lists of frequencies of passwords that
were leaked, of users of Linkedin, Yahoo! and RockYou [BH19,Bon12,Wik19], which were of sizes
of 174M, 70M, and 33M passwords respectively.

We ran the simulation 150 times for each database. In each run of the simulation, the passwords
were hashed to random 16-bit values, and the protocol was simulated between each “user” and the
server. For supporting local differential privacy, each user’s answer was randomized with probability
€y, = 0.25.

We compare the success of blacklisting passwords using our scheme to the success of an ”ideal”
blacklisting of passwords which has the entire list of passwords of all users. We assume that the
server decides on a threshold ¢ and blacklists the top ¢ popular passwords. We measure the percent-
age of users whose password is blacklisted by the server. For our simulation, we take the median
result among the 150 runs of the simulation.

Figure 3 shows the percentage of users whose password is blacklisted, as a function of the
number t of top popular passwords that are blacklisted. The results of our simulation are compared
to those of an “ideal blacklister” which blacklists the actual ¢ most popular passwords. Note that
due to the Zipf distribution of passwords, the utility of blacklisting each additional password is
sharply decreasing. Therefore it is only needed to examine the effect of blacklisting a relatively
small number of passwords.

When blacklisting up to the ¢ = 8 most popular passwords, the results of the simulation are
identical to the ideal blacklisting. When blacklisting more passwords, the results of the simulation
are very close to the ideal run. For example, when blacklisting the top ¢t = 25 passwords, applying the
simulation to the Linkedin database blocked the passwords of 92% of the users whose passwords were
blacklisted by the ideal blacklister. The simulation for the smaller RockYou database blacklisted
the passwords of 86% of the users that were blocked by the ideal simulation.

8 Discussion and Open Questions
Tradeoff between the QR and garbled circuit solutions: The garbled circuit solution is more

efficient both in run time and in bandwidth. On the other hand, it requires an interactive protocol
and generating a new r value for each password change. The QR based protocol demands more
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resources but has a non-interactive version that only requires the device to prepare and send a
single message to the server reusing the same r.

Implementation for the Tor Network: We believe our protocol can be useful for private statis-
tics gathering in the Tor network. This requires working with the Tor project for choosing the best
use case and adjusting and implementing the protocol in that setting.

Open question — is cryptography needed? We described a protocol for the semi-honest setting
which does not require any (complexity based) cryptographic primitives. (Namely, the server sends
r to the device, which sends back the result of the inner-product.) This protocol is secure even if
the server is malicious. However, to guarantee security against a coalition of malicious devices, our
protocol instantiations use Oblivious Transfer (OT) or public-key cryptography. The interesting
question is whether protecting against an undercount attack implies the existence of OT or other
cryptographic primitives. It is an open problem to either prove this claim or show an alternative
protocol.

Open question — how effective is the data leakage? In the “Malicious Campaign” setting, we
treated the data leakage as allowing the adversary to mount an attack with a success probability
that is linear in the number of bits leaked. It is unclear if this approach can indeed be exploited.
Hence the parameters of the system may be improved. Is it possible to argue that the system
behaves better than our analysis?
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A Frequently Asked Questions

Isn’t the password distribution already known?

As we explain in Section 1.1, the password distribution can change over time, or between
different populations.

Can publishing the blacklist put users at risk?

As we explain in Section 1.1, this is similar to publishing new code vulnerabilities, as the only
way to help most of the users and to protect the ecosystem. Moreover, as we prevent any single
password from becoming too popular, this will actually limit the attackers’ ability to exploit
this information.

Can we use some PIR, PSI or other mechanisms to protect the blacklist of passwords?
Unfortunately no. In our analysis we assume there is a large colluding coalition, and each device
is allowed to test if its password is blacklisted or not. If this coalition is large then it might be
able to test the entire hash domain and find all blacklisted values regardless of the protection
mechanism.

What about the users that are already using a blacklisted password?

As we note in Section 1.1, the device can alert the user if its current password is added to
the blacklist. However, this results in a security trade-off, as the change may reveal a lot of
information about the user’s previous password.

Leakage: why leaking one bit of information is fine?

The password game defined in Section 2.1 shows what is the effect of releasing one bit of
information. Moreover, this section shows how differential privacy can be used to reduce this
effect.

Is it practical to implement this protocol?

Yes! In section 7 we describe the PoC we implemented both for the device and the server sides
and for participial parameters of the scheme. A relatively weak server requires =~ 0.5 seconds
to run the whole non-interactive proof verification and to update the counters. A low resources
Raspberry Pi 3 Model B can prepare the proof in less than 15 seconds.

What size of the domain can be used in the real world?

The domain size does not affect the security of the protocol in any way. It is just a trade-
off between communication complexity and performance on one hand, and password rejection
false positive rate on the other hand. Our PoC was done with ¢ = 16, which allows for good
performance and a low false positive rate of 2716 /7.

Your protocol does not defend against unique weak passwords
Yes, but the main goal is to protect against large scale attacks. Exploiting unique weak password
requires a targeted attack against a specific user. See Section 1.1 for more details.

What is the main difference between the QR and the garbled circuits based solutions?
See Section 9 for the tradeoff between the two solutions.

Does using a new r value for each password protect against the leakage that leads to
the “Malicious Campaign” scenario?

Unfortunately no. If there is any leakage on the result of the protocol, the attacker can just run
the protocol multiple times until it gets the required results. On the other hand, keeping r fixed
allows for a simpler and safer protocol (see Section 6.4).

How do you set the threshold for 7 for popular passwords
The threshold 7 is chosen dynamically to be the smallest possible value satisfying the required
error probability ppa, with the current number of users N¢. See Section 4.3 for more details.
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How many of the top passwords can you blacklist?
Our theoretical analysis for an arbitrary distribution guarantees only the blacklisting of a few
very popular passwords. However, the Zipfian nature of the password distribution means that we
only care about blacklisting the top passwords as they are much more valuable to an attacker.
Moreover, using simulation on real-world data we show that our scheme performs closely to
that ideal blacklisting process even when blacklisting the top 25 passwords. See Section 1.4 and
Section 7.2 for more details.

Can someone modify the blacklist and create a DoS type of attack?
We assume that the published blacklist is authenticated (e.g. in an https protected website). As
the list is publicly available it is easy to make sure all devices receive the same blacklist, and
the device can reject the blacklist if its size is unreasonably large (e.g. more than some fraction
of the domain), see Section 3.4.

B Bounds for the “Malicious Campaign” Setting

In this section we will bound pMalCampy, the false negative probability in the “Malicious Cam-
paign”setting. We also show how the server can dynamically control the scheme’s parameters to
achieve a target pMalCampy.

We therefore discuss in this section how the server can add noise to the published list of popular
hash values, in order to reduce the probability of a successful undercount attack. Note that we
assume that the r° value is reused between different runs of the protocol with the same device, see
Section D.1.

B.1 “Malicious Campaign”Setting Information Leakage

We consider the worst case scenario, where all of the devices are malicious and try to collude to
learn information about the different secret r7 values used by the server. We want to bound the
amount of bits leaked on a single publication of the statistics. As all of the devices are colluding, all
the chosen hash values are known (the devices know Ny (v) for every v), and so all the information
leaked is on the 7; values.

A hash value v is added to the published list if 1(a(v) — 7N¢) = 1. The maximum entropy for
a single bin happens when E(a(v) = 7N¢) and then the entropy is H(1(a(v) —7N¢)) = 1. As the
malicious devices do not have to randomize their responses, this happens when exactly 7N (1 —¢,)
devices choose v. Due to our secure inner product protocol the devices cannot control the part of
a(v) that is a binomial distribution:

xB ~ bin(n = N¢(l —71(1—¢.)),p=1/2) = bin(n = No,p = 1/2)
a(v) ~ TNe +2(xp — No/2)/(1 —€)

The devices control all of the chosen v values, but xp is randomized due to the secret r; vectors.
Any bit of information on the value of xp can be translated to information on r;. We will like to
bound the amount of information leaked.

B.2 The Effect of the Laplacian Noise on False and Positive Negatives

We consider the addition of Laplacian noise with 1/€, = 7N¢d/C where C is a small constant (e.g.
2). In that case we can view the noisy approximation ay as:

ay(v) = a(v) + xr = Ng(v) + xB + XL
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where xp is the binomial noise due to the devices that did not choose v and the randomized
response, and 7y, is the added Laplacian noise.

The ephemeral Laplacian noise added by the server can cause false and positive negatives, with a
relatively low but non-negligible probability. By choosing a threshold value 7 > 7,,,;;, we get smaller
binomial noise compared to §7N¢, and allow for the extra noise. Moreover, the server generates
new ephemeral noise for each publication in the hash list. So even if a false negative will happen
with low probability, the expected number of such events is small and they will have a small effect
on the users. For example if once every 10 weeks a popular password will not appear on the list,
not many new users will choose it. In contrast, a false negative event caused by the binomial noise
that was described before will be maintained in all the next publications.

B.3 Bounding the Information Leakage

As we have demonstrated, all bins with Ny (v) > 7N¢(1 + 6) have negligible probability of not
being published. Therefore, the fact that they are in the list leaks no information. The mirror case
is with regards to all bins such that Ny (v) < 7Ng(1 — 6). The fact that they are not in the list
also leaks no information. We get that a bin can only leak information if:

TNe(1 —6) < Ng(v) < 7Ne(1+96)

In the “Malicious Campaign”setting, the devices do not have to randomize their response and the
maximum number of such bins is:

/(1 =6)(1 —er))
As the colluding devices know Ny (v), the only information they can gather is on the value of

XB, Which is the sum of binomial noises. To bound the leakage we want to bound the mutual
information.

I(xp; 1(an(v)— T7N¢)) = H(1(any(v) — 7N¢))
H(L(an(v) = 7Nc)|xB)
<1-H(1(an(v) — 7Nc)|xB)
=1-H(L(xB + xz)|xB)

We define b(t) as the maximum possible number of bits leaked at time ¢ with the current values of
T(t):
(1 = H(L(xs(t) + xr(t)[xB(?))

T(H)(1 = 0)(1 — &)
As N¢ increases we can add larger Laplacian noise xr. As xr, gets larger H(1(xg(t)+xr(t))|x5(t))
tends to 1 and b(t) tends to zero.

b(t) =

B.4 Bounding the Probability of an Undercount Attack

In Lemma 2 we bounded the probability of a false negative ppy in the semi-honest setting. We
can view all the possible choices of hashes by the attacker’s devices as a search space, where the
attacker goal is find such a hashes that cause an undercount attack. Without any auxiliary data
on the r; values, an attacker best strategy is to randomly sample from this space, and test if the
undercount attack succeed. This will happen at a probability of pry.
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Every bit of information on r; can help the attacker ignore half the search space or increase the
success probability by a factor of 2. We define B(t) = ) b(t;) the total bits of information leaked
up to time ¢. So the attacker can use B(t) to increase is success probability by 2B(®), We get an
upper bound for the new probability of a false negative with malicious devices:

pMalCampy = pry - 280 < 2exp(—Ne(70(1 — €))% /2) - 250
= 2exp(—Ne(16(1 — €.))%/2 + B(t) - In(2))
~ 2exp((1.38B(t) — Nc(16(1 — €,))%)/2)

This Probability is greatly affected by two parameters N and 7. As N¢ increases pMalCampy
decreases exponentially. Moreover, as N¢ increases we can use larger Laplacian noise, reduce the
data leakage and so B(t). As 7 decreases pMalCampy decreases exponentially. Moreover B(t) o<
1/7.

B.5 Dynamic Publication Frequency

Similarly to the analysis in Section 4.3, we want to allow the server to dynamically change the 7
and the publication frequency. We define LS as the planned lifespan of the system. This might be
the life expectancy of the devices or of the service (e.g. the manufacture can decide that he will
stop support of the web cameras after 10 years).

For correctness in the “Malicious Campaign”setting, we require that for any time ¢, pMalCampy <
exp(—C) for some constant C. We do this by defining a dynamic threshold and publication fre-
quency that depend on the amount of previously leaked information B(t), the remaining lifespan

of the system LS — t, and the number of devices that have run the protocol so far®

In(pMalCampy) ~ (1.38L(t) — No(t)(1(t)6(1 — €,.))?)/2 < —C
Ne(®)(r(£)6(1 — €.))? — 1.38L(t) > 2C

For any time ¢, the worst case scenario is that no more devices will choose a hash and N¢(LS) =
N¢(t). In that case we want to choose a publication frequency freq(t) and threshold 7(¢) such that
even at the end of the lifespan of the system the information leaked will be bounded:

L(LS) = L(t) + (LS — t) freq(t)L(t) (4)
2C < No(LS)(T(LS)5(1 — ¢,.))* — 1.38L(LS) (5)
= Ne()(r(£)5(1 — €))% — 1.38(L(t) + (LS — t)freq(t)l(t))

Equation 4 gives an upper bound for the amount of information leaked in the rest of the lifespan if
the statistics are published with frequency freq(t) and threshold 7(¢). Equation 5 gives the required
ratio needed to prevent “Malicious Campaign”undercount attacks.

As N¢(t) increases over time the server can increase the frequency of publication or decrease
the threshold.

6 Devices can change their hash but not remove themselves from the statistics, so Nc(t) is a monotonic increasing
function of time ¢
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C Security analysis of the Garbled Circuits Protocol

Security against a malicious device. The device plays the role of the evaluator (receiver) in
the protocol. It is well known that Yao’s protocol is secure against a malicious evaluator [MFO06].
The device sends an output to the server, but since the server verifies that this output is a garbled
value of the output wire the device has no option but to evaluate the circuit and send the garbled
output value to the server. Formally, security can be proven in a straightforward way by assuming
that the oblivious transfers are secure and using the simulation proof presented by Lindell and
Pinkas [LP09].

Security against a malicious server. A malicious server can use an arbitrary circuit in the
protocol. The main feature ensuring security against the server is that the device is only willing to
send to the server an output whose hash value matches one of two outputs of the hash function.
Namely, there are only two possible outputs which the device might send to the server.

A selective failure attack. In addition, a malicious server can apply a selective failure attack,
and prepare a corrupt circuit whose evaluation fails for a subset of the inputs of the device. In this
case, the server can identify that the device’s input is in this subset. In total, the server can learn
whether the device’s input is in one of three subsets (the preimages of 0, the preimages of 1, and
the values for which evaluation fails). In other words, the server can learn at most logs 3 = 1.58
bits of information about the password.

We note, however, that this failure of the protocol is an illegitimate outcome. When this happens,
the device can complain about the behavior of the server. (If the protocol further requires the server
to sign the messages that it sends, then the device has a proof that the sender misbehaved).

A simulation argument for the security of the construction works with a slightly modified
function used in the ideal model, which also considers the selective failure attack. The server’s
input to the trusted party is a value 7";7 , and a function a , which has three possible outputs: 0, 1,
or “computation failure”. The simulator receives the server’s input and output. The simulator can
simulate the server’s input to the OT's, and can easily generate the garbled tables. It then simulates
the answer that the server receives based on the output of F' given by the trusted party.

D Design Choices

D.1 Reusing r vectors between runs

A malicious adversary can undercount a popular hash and achieve a higher pgy due to information
leaked on the secret r from publishing the blacklist. An obvious approach to avoid this attack is
to use a new r vector for each run of the protocol. However, this only complicates the attack but
does not stop it. On the other hand, using a fixed r helps simplifying the protocol and block any
targeted adaptive attack by the server.

The main idea of the attack, is that a device can use other colluding devices to learn if his vote
is anti correlated or not to the popular hash, without rerunning the protocol. Lets assume that the
device knows that a hash h, will become popular in the future, and whats to start undercounting
it. Colluding devices will vote for h, over time, until they reach the threshold 7. This is done by
checking over time that the probability of the hash to be published is equal to half. After that the
device votes for some value h, # h;, and checks if the probability for the hash to appear decreases
- meaning that he is anti correlated. Although this attack seems to be impractical due to large
Laplacian noise added, a more sophisticated attack might still be possible.
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If we do not reuse the same 7, even a semi-honest server might learn extra information about a
password using auxiliary data. Lets assume the user switch back to an old password he used before.
If the server knows that it is the same password, by using different r he can possibly learn more
than one bit.

Moreover, in the OR based protocol, the server can save the public r, vector on the device in
production time. This saves us the first message in the protocol. In the Non-Interactive version,
the protocol is reduced to sending one message from the device to the server.

E Proofs

We prove here Lemmata 1, 2 and 3 of Section 4.
Lemma 1. If a fraction p of the devices choose a password which hashes to a value v, then the
expected value of a(v) is pN¢.

Proof. Let us first calculate the expected value of counter T'[v] given the number of devices whose
password is hashed to v. The expected contribution of any value v; # v to T'[v] is 0 and for v; = v
it is 1. We calculate the expected number of devices that chose the value v. There are three ways
for a device to choose a password pass, and get a hash v.

1. v = H(pass) and the device is not randomizing the response.
2. v # H(pass), the device randomizes the response, and as a result gets the value v.
3. v = H(pass), the device randomizes the response, but gets the same v again.

Therefore,

E(T[U] ‘ NH(U) = pNC) = N¢ - (p(l — €& + 57“27[) + (1 - p)6r276)
= No-(p(1 — &) +627°) (6)

From (3) and (6) we get that the expected value of a(v) is:

E(a(v)|Nu(v) = pNo) = pNe
Lemma 2. The probability for a false negative pgy is bounded by pry < 2 exp(—Ng(76(1 — €,.))%/2).

Proof. The worst case is Ny (v) = 7Ne(1 +6)

a(v) can be viewed as the sum of N independent random variables bounded by the interval
[—1/(1—€),1/(1 —€)] and E(a(v)|Ng(v) = pN¢) = pNe. Using Hoeffding’s inequality (Theorem
2) [Hoe63] we can show that:

prn = Pr(a(v) < 7Neo|Ng(v)=7Ne(149))

= Pr(a(v) = TNc(1+6) < —7Ngd|Ny(v)=7Nc(149))
= Pr(a(v) — E(a(v)) < =7N¢d|Ng(v) = TNe(1 + 6))
< Pr(jav) - B(a(v))] > rNed|Na(v) = 7No(1 +9))
2(TNcd(1 —¢,))?

< 2exp(— ING

) = 2exp(—Ng(16(1 — €.))%/2)

There are at most (1 5y bins where N (v) > 7Ne(1+6) (bins where a false negative can occur).
The expected number of FN events Ny is: E(Npy) < 2exp(—Ne(75(1 — €,.))2/2) / 7(1 +6).
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Lemma 3. The probability for a false positive ppp is bounded by prp < 2exp(—Ng(76(1 — €,.))%/2)
Proof. In a similar manner to Equation E we can show that

prp = Pr(a(v) > 7N¢|Nuy(v) = 7Ne(1 —6))
= Pr(a(v) = 7Nc(1 —6) > TNcd|Ng(v) = TNe(1 —9))
= Pr(a(v) — E(a(v)) > TNcd|Ng(v) = TN (1 = 9))
2(TNeé(1 —¢,))?
AN

< exp(- ) = exp(—No(rd(1 — ¢,))*/2)

There are 2° bins, so the expected number of FP events Ngp is: E(Npp) < 2 exp(—Ng(16(1 —
e))2/2).

Note that as long as E(Npp) < 1/(7(1+49)) the probability for a false positive on a password
is dominated by the probability of a collision with a “popular” hash value. As there are at most

1/(7(1 + 6) such hash values, pp,scFp the probability for a password false positive is: ppyspp <
27 /(1 —96).

F Complete Protocol and Proofs for the QR Protocol

F.1 Complete Protocol
We shall now give a full description of the complete protocol:

1. S global setup — initial setup of the public and private parameters of the protocol. This step
can be run once by S with regards to all Ds.

2. S instance setup — should be run once by S for each D .

3. D instance setup — should be run by D every time a new Vg is chosen. Calculates the inner
product.

4. The interactive protocol — a description of the run of the interactive protocol.

Server global setup S runs a setup algorithm GlobalSetup(1%), taking security parameter kj. It
generates an RSA key pair (PK; SK) where SK = (p,q) and PK = (N = pq), p and q are distinct
prime numbers congruent to 1 mod 4 (this implies that —1 € QRy, as is required for proving
soundness).

Additionally S publishes a proof that N is a semiprime (N = p®¢® where p and ¢ are primes).
This is required for the zero-knowledge proof. Such a proof can be found in Appendix G.

Server instance setup For each D | S runs ServerSetup(PK,SK, Rg, (), taking the private
and public keys generated by GlobalSetup, and a secret vector Rg € {0, 1}£. S encodes R; in a
public vector 7, € Z&4 that is sent to D. As in the semi-honest version, each number in 7,; is a
public encryption of the corresponding bit R ;. S sends r, to D.

Device instance setup D runs DeviceSetup(1¥2, ¢, PK, rp, Vi) taking a security parameter ko,
¢, PK, rp and a private vector V € {0,1}".

First, D checks that for any number x € rp, the Jacobi symbol (%) is 1. Then D generates
and saves the following data:
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1. r= 'rpHpﬂiz where pad & va. We pad r, with £ numbers in QRy.
2. V =V,||Vs where V,; =1 - V.
3. T £ {20}, d« @ Z%. Namely 7, is a random permutation on 2¢ items, and d, are 2¢ random

numbers.
4. 7y = (- (dy)?), Vi = m(V). Namely, 74 is a blinded random permutation of 7, and Vj is the
same permutation of V.

5. 8u = (ry)%
6. e = H?i1(7‘i(d*,i)2)% = H?il(rm)v*»i. That is, e is the product of the blinded items in r

corresponding to the 1 bits in V', and therefore encodes the inner product result.

D sends (sy,e, Vi, pad) to S . Notice that this time S can only calculate e? by itself, and
therefore it is also required to send e.

Inner product calculation and verification D and S run the following protocol. If any step or
calculation results in L, or a verification fails, then S outputs reject. Otherwise S outputs accept
and can use the value result = (Vg, Rs).

1. S calculates €2, and verifies that e = H?il(s*,i)v*ﬂ. S verify that e? is indeed equal to the

product of numbers in s,.
2. S calculates 7sqr = (7p||pad?)?, the square of r using pad it received from D and rp that it

stored locally.
3. For j=1,..., ko:
(a) m & w{20}, dj & 72
(b) D generates 7; & {20}, d; & 7% (Namely a random permutation on 2¢ items, and 2¢
random numbers).
(c) D sends sj=m;(s«-(d;j)*) to S. s; is a blinded random permutation of s..
(d) S sends b; &£ 0,1t0 D .
(e) if b; =0
i. D sends to S the values (m,; = 77y, dyj = 7j(ms(ds) - dj), opening the blinded
permutation from 744, to s;.
ii. S verifies that s = 7. j(Tsqr) - (du,j)*
(f) else
i. D sends to S the values (7, d;), opening the blinded permutation from s, to s;.
ii. S verifies that s; = (s - d;j?).
4. 8 calculates result = Tgr, (€), to retrieve the value of the inner product.

F.2 Completeness

It is easy to see that if both § and D follow the protocol then the protocol ends successfully as
the following statements hold:

Tory(e) = (Vs, Rs)
20

e = [[(sei)"

i=1
Vi, 85 = mj(sx - dj?)
V4,85 = T j(Tsqr) - blind;?
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F.3 Soundness

Theorem 4. For any (possibly not efficiently computable) adversarial algorithm Ap , if Tqr, (€) #
(Vs, Rg) then
Pr [S = accept] <27%]
b&{0,1}+2

Theorem 4 if proved using the following two lemmas.

Lemma 4. For any (possibly not efficiently computable) adversarial algorithm Ap , and for any

step j in the interactive proof stage, Pr [S # reject] > %, only if Ap knows (dy, ) such that
b;&0,1

T = (me(7 - (ds)?)) and sy = (1)

Proof. Pr [S #reject] > 5 only if Ap knows (7}, d;, Ty j, dsj) such that:

b;&0,1
S; = 7Tj(8* : dj4) (7)
85 = Tuj(1%) - (duj)" (8)
From 7 Ap can calculate

sw =, () dj~"

From 7 + 8 Ap can calculate

s =15 (M(r?) - (dug)") - dj ™" = (% (n 1 (dayg) - mi(dy ™))
We denote 7, = 7Tj_17r*J d, = (F;;((d*,j) mi(d; 1))

e = m(r - (di)?), s =m(r - (da)?)? = (10)? (9)
And Ap can calculate (74, dy).

Lemma 5. For any (possibly not efficiently computable) adversarial algorithm Ap that knows
(T4, ds) such that s, = m.(r - (d«)?)?, it holds that finding e such that Tgry(e) # (Vs, Rs) and
S #reject is equivalent to factoring N.

Proof. § = rejects unless

20
e? = [[(su)™ (10)
i=1
From 9 + 10 we get that ¢’ is a root of €.
20 20 20
() = ([Tre))” = [1((re)®) " = [J(s0) 0 = €
=1 i=1 i=1

As —1 € QRN we get that Tory (€) = Tory(—e€). If e = ¢’ then as Tor, (¢) = Tory (—€) =
Tory (¢') and we get Tor, (e) = (Vs, Rs).

If Tory(¢') # (Vs,Rs) than e # +€’ and Ap can calculate all 4 roots of N, and that is
equivalent to factoring.
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F.4 Zero-Knowledge Proof

Privacy of Ry The encoding of R, into rp is a semantically secure encryption [GM84], and does
not reveal any information on R4 to any PPT algorithm.

Privacy of V; There is a simulator Sp that given (Vg, Rs), Rs can simulate D . Sp chooses UAR
V' such that result = (V/, Rs) = (Vs, Rg). It then runs the protocol as D with V’ as the input.

The distribution of all values is the same between D and Sp : All values of s, s; are indepen-
dently and uniformly distributed in QRy. e is uniformly distributed either in QRy or in nQRy
depending only on result (as N is a semiprime, see Appendix G). Both m, ; and 7; are indepen-
dently and uniformly distributed random permutations (conditioned on the fact that for any j only
one of the permutations is revealed), and Vi is also a uniformly distributed random value with
Hamming weight £.

G Proving N is Semi-Prime

The blinding in our protocol is done by multiplying a given value x with a random uniformly chosen
d € QRpy. It is easy to see that if x € QRy then zx - d is a uniformly random number in QRy.
However if z € nQRy and [nQRy| > |QRy| then z - d will not be uniform in nQRy. In that case,
blinding done by the device might by ineffective.
It holds that |QRy| = [nQRy| if N = p®q® where p, q are primes and a, b are positive integers.
In that case xgzr (x € QRN) = 1/4. In any other case (N is the product of 3 or more powers of
N

primes) (x € QRN) < 1/8. If we can prove to the device that with high probability PZr (x €
TELN

Pr
TELN
QRy) > 1/8 then this implies N = p%g®. This can be in the (non programmable) random oracle
model in the following way. We generate 1,..., ks random numbers using a strong Hash function.
The server (knowing the factorization of N) publishes a single root for all the numbers that are in
QRN.

Fori=1,...,ks3:

1. v; = Hash(N||i) mod N.

2. ifv; € QRn:
(a) a,—a,b,—b=+/v mod N
(b) Publish (i, a)

Any verifier can check that v; = Hash(N||i) = a? mod N € QRn.
We define Nygr = |v; € QRN| and por = PZr (x € QRN).
xeLnN

Nugr can be viewed as the sum of k3 independent random variables bounded by the interval
[0,1], and E(Nugr|pr = pgr) = k3 - pgr- Using Hoeffding’s inequality [Hoe63] we can show that:

Pr(Nugr = k3/4lpgr < 1/8) < Pr(Nugr = ks3/4lpgr = 1/8)
= PT(NHQR — ]{:3/8 Z k3/8‘pQR = 1/8)
= Pr(Nuqr — E(Nuqr) = k3/8|pgr = 1/8)
k2 ks

< exp(—2ﬁ) = exp(—3;)
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For k3 > 128 - 32/1.44 ~ 2850 the probability of this event is smaller than 27128, However if we
generate N correctly then Pr(Npggr > k3/4) = 1/2. If for our chosen N, Nygr < k3/4 then we
just try to generate another IV until the condition is satisfied.

This non-interactive proof reveals to the verifier numbers that are in nQR (all the unpublished
numbers with Jacobi Symbol 1) that might be difficult to learn. However this information cannot
be used by the device in our protocol. If needed this proof can be turned to one not revealing such
information by using the same blind and permute scheme we used in the protocol.
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