Two Sides of the Same Coin: Counting and
Enumerating Keys Post Side-Channel Attacks
Revisited.

Daniel P. Martin!, Luke Mather?, and Elisabeth Oswald?

1 School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK,
and the Heilbronn Institute for Mathematical Research, Bristol, UK.
dan.martin@bristol.ac.uk
2 Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol, BS8 1UB, United Kingdom.
luke.mather@bristol.ac.uk
3 Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol, BS8 1UB, United Kingdom.
elisabeth.oswald@bristol.ac.uk

Abstract. Motivated by the need to assess the concrete security of a
device after a side channel attack, there has been a flurry of recent work
designing both key rank and key enumeration algorithms. Two main
competitors for key ranking can be found in the literature: a convolu-
tion based algorithm put forward by Glowacz et al. (FSE 2015), and
a path counting based algorithm proposed by Martin et al. (Asiacrypt
2015). Both key ranking algorithms can be extended to key enumeration
algorithms (Poussier et al. (CHES 2016) and Martin et al. (Asiacrypt
2015)). The two approaches were proposed independently, and have so
far been treated as uniquely different techniques, with different levels
of accuracy. However, we show that both approaches (for ranking) are
mathematically equivalent for a suitable choice of their respective dis-
cretisation parameter. This settles questions about which one returns
more accurate rankings. We then turn our attention to their related enu-
meration algorithms and determine why and how these algorithms differ
in their practical performance.

Keywords: Key Rank, Key Enumeration, Side Channel Attacks

1 Introduction

Side-channel analysis (SCA) is a powerful tool for extracting cryptographic keys
from secure devices. For instance, if an adversary can measure the power con-
sumption of a device performing cryptographic operations, then the resulting
power traces may subsequently lead to the recovery of the secret key [6]. SCA
attacks typically utilise a divide-and-conquer strategy: they target small portions
of a key individually, obtaining information on the distribution of the likelihood
of each portion, before combining these results to recover a full key.

Until recently, SCA attacks have been considered to be “all-or-nothing” at-
tacks: if the attack did not perfectly identify the correct value for each portion
of the key as the most likely, then the attack would be considered a failure. How-
ever, beginning with the work of Veyrat-Charvillon et al. [16] in 2012, it is now
possible for an adversary to make use of the information produced by an imper-
fect attack. In an imperfect attack, the adversary finds some, but not sufficient
side-channel information pertaining to the key. Consequently, they must then
enumerate and test the most likely candidate keys (in order from the most to
the least likely using known plaintext and ciphertext pairs) to determine whether
a candidate is the correct key. This scenario is significant for evaluation bodies
and certification authorities—the potential implication of this recent research
has prompted JHAS (JIL Hardware-related Attacks Subgroup; an industry led
group that essentially defines Common Criteria security evaluation practice) to
set up a specific working group to address the issue.

Informally, the number of candidate keys an adversary must enumerate (and
test) after an imperfect side-channel attack before arriving at the correct key is
termed the rank of the key. Recent efforts [1,3,5,12,18,17] considered determining
the rank of the correct (known) key after the side-channel phase of an attack.

Although the rank is an extremely informative measure of security, it does
not completely capture the strength of an adversary. If after an attack the rank
of a key is 2%, then the adversary (who does not know this) must generate
and eliminate the 2 — 1 candidate keys that were (incorrectly) rated to be
more likely by the attack. The generation and testing of candidate keys is thus
more costly than just computing the rank of a key, and it is important to know
how challenging this task is in practice (especially if it does not scale linearly).
Hence, it is important to characterise the existing key enumeration algorithms
in terms of their run-time, as well as whether the adversary can parallelise their
effort. The most recent works of Poussier et al. [15] and Martin et al. [12] go
some way towards this goal, but come to somewhat different conclusions. They
treat each others approaches as uniquely different, argue about differences in
accuracy and report differences in performance numbers (albeit measured on
different platforms).

1.1 Owur Contributions

We look “under the hood” of the mathematical representation of path counting,
used by Martin et al. [12], by utilising an elegant representation recently given in
[11]. The intuition from this representation is that some aspects of the counting
can be expressed as “binning” items for a specific weight, as used by Poussier
et al. [15], and vice versa, the binning of scores seems to relate to counting the
number of integer scores. Thus the two approaches could be mathematically
equivalent.

Our first contribution is hence to make this intuition formal. We thus show
how to express the histogram method as a (recent) version of the path count-
ing approach, and thus show mathematical equivalence between the two ranking
methods. Our proof is based on the fact that the convolution based approach

assumes equally spaced bins, and this implies an equivalence between the “pre-
cision” parameter of the path counting approach and the “number of bins” pa-
rameter of the convolution based approach. Using this we rewrite the equations
that underly the convolution based approach, such that they are equivalent to
the equations of the path counting approach. By showing mathematical corre-
spondence between “precision” and “number of bins” we also settle any open
questions about the accuracy of those methods (both methods are equally accu-
rate).

Whilst both methods arrive at the same result mathematically (assuming use
of the same discretisation parameter), there is a clear difference in how they are
expressed algorithmically, which implies that their practical performance will
be different. Whilst a rigorous complexity analysis of the path-counting based
algorithms is available, we argue that a similar analysis for the convolution based
approach must depend on assumptions about the distribution of values in the
(intermediate) histogram bins. Thus rather than making artificial assumptions,
we suggest relying on practical experiments to compare its performance with
the best variation of the path-counting based approach. To achieve a like-for-
like comparison we run both on the discretisation parameter for which their
underlying mathematical representations are equivalent. Our comparison shows
that up to 12 bits of precision (which is equivalent to 2'2 bins) the convolution
based method is faster than path-counting. From 12 bits of precision onwards
path-counting wins.

Precision is crucial for the ability to parallelise large enumeration efforts
across many cores. Thus we conclude that for small to medium size search efforts,
convolution is the better choice, whilst for large scale search efforts a path-
counting implementation is preferable.

1.2 Outline

Section 2 outlines the notation, gives a useful example, and provides some basic
definitions. Section 3 explains the two approaches to ranking as well as their
related enumeration algorithms that we study in this work. Section 4 proves the
mathematical equivalence of path counting based and convolution based ranking
(as defined in Section 3). Section 5 examines the real-world performance of the
enumeration algorithms when implemented in the same language, executed on
the same machine, and using corresponding levels of precision. Section 6 discusses
considerations for parallel implementations, in particular with respect to the
role that precision plays. We conclude in Section 7. To maintain a good flow
throughout this paper, we place all algorithms in Appendix A.

2 Preliminaries

In this section we begin by introducing the notation that will be used for the
remainder of the paper. We also recall the key rank and enumeration definitions.

2.1 Notation and Setup

We use a bold typeface to denote multi-dimensional variables. A key k can be
partitioned into m independent subkeys, each of which can take one of n possible
values (for ease of notation, we assume that all subkeys are of the same size). We
denote this as k = (k!,..., k™) and mark the true secret key as s = (s',...,s™).

We focus on side-channel attacks on symmetric encryption schemes, which
typically return a score vector per subkey as a result. A side-channel attack takes
in a set of leakages (of size N, where N might be as low as one) corresponding
to known plaintexts x; € X, ¢ = 1,..., N, and by making some guesses about
a small part (the subkey) of the unknown key, returns the output of a function
that is termed a distinguisher in the side-channel literature. There are many
techniques for side channel analysis, using different types of distinguishers, which
result in different types of scores (see [9] for an overview). We assume that we
deal with distinguishers that produce additive scores that indicate the likelihood
of subkey values. Thus each element in the distinguishing vector D? (for subkey
k') contains a score associated with how likely the associated subkey value is
to the be correct key. The score D;; corresponds to the likelihood of subkey %
taking value j.

The subkey distinguishing vectors all have the same size and thus can be
arranged into a distinguisher matrix D (each column vector corresponds to a
subkey D?%). The result of a side-channel attack is hence a set of distinguishing
vectors, which hold the information about subkeys (when studied individually),
and the entire key (when studied jointly).

2.2 Running Example

We introduce a running example which will be used throughout the paper to help
explain all of the algorithms detailed. We will consider a secret key s = (3,1)
(consisting of two subkeys, each of which can take one of three possible values
1,2,3). After a side channel attack a (hypothetical) distinguisher outputs the
(additive) score matrix representing (log)likelihoods, such that the largest value
corresponds to the most likely key?:

6/112/11
D= 3/116/11
2/11 3/11

The path counting algorithm by Martin et al. explicitly converts distinguish-
ing scores to integers, and requires that the most likely distinguishing score
corresponds to the smallest integer. While in principle any arbitrary method
can be used to convert scores to integers with the desired properties (as in this

4 For the ease of explanation we omit in the reminder the (log) and just use the term
likelihoods. Previous works such as [2,14,17] showed that it is possible to ‘convert’
various side channel attack outputs to probabilities. Other papers [12,10,4] examine
converting probabilities to integers.

example), for the remainder of this work we consider the mapping proposed
by Martin et al.: a distinguishing value D;; is mapped to a weight W;; via
W;i =27 Dj,]|, for a chosen precision parameter p. This is called the “map to
weight” conversion.®

This results in matrix of integer weights W, which for our running example
is as follows:

13
W=1|21
32

In our example the likelihood of the target key is 2/11 4+ 2/11 = 4/11. The
weight of the target key is 3 +3 = 6. All other combinations have higher likeli-
hoods (or equivalently smaller weights). Thus as there are 9 keys overall, 8 keys
are more likely than our target secret key.

2.3 Definitions

Given the weights (or scores), it is possible to order (full) keys based on their
overall weights (likelihoods) as the scores are additive. Thus the definition of
the rank of a (target) key can be given in a natural way (either using weights
or likelihoods). For simplicity, we now only give the definition based on weights.
Using weights, the rank of a target key is informally defined as the number of
keys that are more likely (have smaller weight) than the given (target) key.

Definition 1 (Key Rank (weight based)). Given an n x m matrix W and
target key s, the rank of the key s is defined as the number of keys k with a
weight smaller than the weight of s. Formally:

ranks (W) = [{k = (k*, ..., k™) : > Wi, <> Wi}
=1 =1

In the context of an attack, where an adversary has access to a weight matrix
but does not know the target key s, the adversary will want to enumerate (and
test) keys with respect to their likelihood as given by the weight matrix and
some set budget B. We hence define key enumeration with respect to a weight
matrix and a budget.

Definition 2 (Key Enumeration (weight based)). Given an n x m weight
matric W and B € Z, output the B keys with the lowest weights (breaking ties
arbitrarily).

This definition pays no attention to the order in which the B most likely
keys are returned. Optimal key enumeration would output the B most likely
keys ki, ...,kp in the order of their weights.

5 If the initial scores have the largest value most likely, the map to weight function
will have to account for this first.

3 Ranking and Enumeration Approaches

Our work touches both on mathematical, as well as algorithmic, aspects of two
competing approaches to key ranking and enumeration. To aid readability we
now recap their working principle.

3.1 Path Counting Algorithm of Martin et al. [12]

The Rank Algorithm Based on Path Counting. Intuitively the algorithm
works by constructing a graph with m - W5 + 2 nodes, where W5 is the weight of
the key s to be ranked. Each of the m rows in the graph corresponds to a subkey
and the columns Wy correspond to the weight of a partially constructed key. If
there is a path from the initial node to the accept node, this corresponds to a
valid key with a weight less than the secret key s. The algorithm then calculates
the rank of the keys by counting the number of paths between the start node
and the accept node.

Cumulative Weight
01 2 3 4 5

Fig. 1. The graph for our running example. Paths not contributing to the rank are
excluded for clarity.

The graph for the running example can be seen in Fig. 1. The number of
paths from the initial node S to the accept node A is exactly the rank of our
secret key. The formal description of the algorithm is given in Alg. 1, which for
the sake of flow is placed in App. A.

Recently an elegant mathematical description of the algorithms was provided
in [11], which we give below. The matrix elements b; ,, contain the number of
paths from the corresponding vertex (in the graph) to the accept node. Con-
sequently, the element b; ¢ then corresponds to the number of all paths to the
accept node in the graph, which in turn gives the rank of the target key.

bi,w = Zbi+1vw+W1,i fori <m (1)
j=1

n

b 1= Y H{Wjs < W —w} (2)

j=1

where 1(-) returns 1 if the expression evaluates to true and 0 otherwise. This
expression can be adapted to account for lower and upper weight bounds (W}
and W3) as detailed in [11].

Path Counting Based Enumeration Algorithms. Several variations of key
enumeration algorithms based on the path based ranking idea can be found
in the existing literature. In the original paper [12] the algorithm constructs
partial keys, and passes them through the graph. At the end of the algorithm,
O[0] contains the set of keys with weight between W7 and Wa. Intuitively; for
the final subkey, if the weight is within the correct range then the subkey value
is added to the set of partially constructed keys. For the remaining subkeys the
correct weight is looked up in O and the subkey value is appended to every
partial key in the set.

The time complexity of this algorithm is O(m? - n - Wy - B - logn), where B
is the number of keys with weight at between W; and Ws.

Fig. 2. The key tree for all possible three character keys containing ‘a’ or ‘5’ [12].

Forest Enumeration (FOREST) [12,10]. In the same paper [12] the authors com-
mented on the fact that if many keys are being enumerated, then there will be a
lot of redundancy. For example if all keys with k! = a are enumerated, then the
same initial key byte (k! = a)) would be stored 220 times. Consequently one can
improve memory complexity by storing the keys in a tree structure (with each
level corresponding a subkey), instead; see Fig. 2 for an example and Alg. 2 for
the formal description.

Another advantage comes with a reduction of the time complexity. This is
because a subkey does not need to be “added” to all possible partial keys seen

so far (this “adding” would be linear in the number of partial keys) but just has
to be added as the root of forest (turning it into a tree), which takes constant
time.

The FOREST algorithm has thus a time complexity of O(m - n - Wy - logn +
m- B -logn).

Single Key Enumeration (SINGLEKEY) [11]. Recently a variation of the enu-
meration algorithm was given that allows a quantum speed up [11]. Unlike the
previous algorithms, the memory complexity of this new version does not depend
on the number of keys to be enumerated. The algorithm first computes the key
rank, however it keeps the entire matrix b in memory (instead of just keeping
the most recent two rows, as per Alg. 1). Hence the algorithm takes as input a
‘key number’ and uses it to “walk down” the graph to find that particular key.
For instance, consider the graph in Fig. 2: a key is output by starting at the
initial node S and following a path to the accept node A. Since each edge in
the graph corresponds to an assignment to a subkey, the walk corresponds to a
valid key assignment. Using the information stored in the rank graph, and the
implicit ordering of subkey values, a path can be chosen in consistent manner so
that no keys get missed and no keys get repeated. This process is repeated to
enumerate multiple keys. The formal description is given in Alg. 3.

This algorithm has a time complexity of O(m?-n-Ws-logn+ B-m?-n-logn).
This is asymptotically slightly worse than FOREST, however, it offers better
parallelisation because it can parallelise over the number of keys B, instead of the
total weight W5. We will return to this aspect in Section 6. Another advantage
is that its memory does not depend on the number of keys being enumerated,
unlike all other algorithms discussed in this work.

3.2 Convolution Based Algorithm of Glowacz et al. [5]

The Rank Algorithm Based on Convolution. This rank algorithm begins
by creating a histogram H; per subkey ¢ using D?. The number of bins 3 is a
user controlled parameter. These histograms can be used to calculate the subkey
rank. For example, if for subkey 4 the value is in bin y, then the subkey rank is
given by Zlﬂ:y H; ;. The algorithm then uses the following fact. If H;, Hy are the
histograms for sets S1, S respectively then H = conv(H;, Hs) is the histogram
for S = {s1 + s2: 81 € S1,52 € Sa}. Thus repeatedly convolving in the subkey
histograms, gives a histogram on the entire key space and summing the counts
up to the bin containing s will give the rank of s. Note that, given the bin
numbers for each of the subkeys in s, it is easy to compute the bin containing s.

Mathematically this results in a recursion that can be formalised as given
below. The element c; then corresponds to the “final” histogram, from which
the rank can be derived as r < Zgéﬁ (_Sl))+1 1,1 (where ¢y ; refers to the elements
of the [-th bin in the histogram c;.

c; :=conv(c;y1, Hy) for 1 <i<m (3)
¢, = H,, (4)

The full algorithm is given in Alg 4.

To continue with our example, Fig. 3 shows the two initial histograms for D*
and D? respectively. The secret key (3, 1) would be located in the bin with label
2, thus summing over the bins from label 2 gives correct rank 2434241 =38.

1f 11F B 1
27 |
0.5 0.5 |- R
17 |
U \ \ ! 1o \ \ ! i S —
0 1 1 3 1 0 1 1 3 1 1131 5 3 7 2
1 2 1 1 2 1 12 1 1 2 1

Fig. 3. Histograms for the running examples. From left to right: the histogram of the
first subkey, the histogram for the second subkey, the histogram for the convolution.

Enumeration (Histogram) [15]. The algorithm first calculates the ¢;’s used
by the histogram ranking algorithm. To enumerate keys the algorithm computes
the keys in a recursive manner. Given a key of length m and ¢;, to enumerate
keys of weight w, for each possible weight of subkey z, combine all subkeys
of weight x from H; (this information is easily tracked), with the partial keys
output from the recursive call using length m — 1, weight w — x and histogram
Co.

The time complexity of this algorithm depends on the distribution of keys
within the histograms. As such a distribution is not known, and there are no
obvious assumptions that can be made about it, the only way to assess the
performance of this algorithm is via experiments.

4 Mathematical Equivalence of Ranking Approaches

In this section we show that the path counting approach and the histogram
convolution approach are mathematically equivalent: this means that rank r =

(B—=1)+1
b170 = Z;zlgm(s)) C1,1-
We start with equations for the histogram convolution. Recall that H; de-
notes the histogram of the distinguishing vector D*, and we refer to the w-th

bin of a histogram H via the notation H,, or H;,, (if we index into the i-th

histogram as well). The convolution of two histograms H = conv(Hy, Hs) is de-
fined as H,, = Z;ﬂ:o H,y ;- Hy4y—;, which implies that all considered histograms
have linearly spaced bins.

c; :=conv(c;y1, Hy) for 1 <i<m (5)
cm:=H, (6)

4.1 Binning Equals Integer Conversion

Let o be the spacing of the bins. In a histogram, the value D;; will hence be
located in the bin LD;’i |.The value of « is determined by the number of bins 53,
which is a user supplied parameter, i.e. @ = % (since the bins are equally sized).
We set 8 = 2P, where p is the precision parameter that is used in the “map to
weight” float-to-integer conversion used prior to the path counting algorithm.
Consequently, we get that the value D ; is located in bin |5 - Dj;|.

Evidently this results in precisely the “map to weight” conversion that is

utilised to map values D;; to integer weight values W, ; as given by [12].6

4.2 Base Case

To show that by = Z;’iéﬁ(_sl))ﬂ c1, we first consider the base case, which is
¢, = H,,. We expand this expression by considering it for the w-th bin in the

histogram:

Cmaw = Hm,w

= Z 1{D, ,, falls in bin w}

j=1

We simply plug in the definition of a histogram for H,, ,,, which is to count all
elements that are located in bin w: 377, 1{ D} ;, is located in bin w}. Now using
the fact that converting the distinguishing scores to integer values is equivalent
to binning, this looks now like the base case of Martin et al..

However, the array does c,, does not contain the same values as b,,. The
histogram c,,, contains values which fall into a range, while b,,, contains values
which are less than a certain boundary. As an effect of this b,,, is the cumulative
sum of ¢,,. This is why the histogram rank must return a sum over c¢; when it
completes, while path count rank can just return by .

5 The conversion between largest being most likely and smallest being most likely, will
simply result in a “flip” of the arrays that are stored.

10

4.3 Recurrence Relation

Next we consider the recurrence relation c¢; = conv(c;4+1, H;). Like before, we
consider the w-th bin:

Ci,w = COHV(CH_l, Hz)w

w
= E H; - civ1,w—1
1=0
n

= Z(Z 1{D;; falls in bin I}) - ¢i41,w—1

=0 j=1

n
- E Ci+1,w7wj,i
=1
n
= Z ci+1,’u)7Wj,i
i=1

We expand the convolution function using its definition. We then plug in the
definition of a histogram, and finally rearrange the terms. In the second but last
step we denote by x;; the histogram bin D;; is located in after the convolu-
tion. We have shown previously that the bin x;; corresponds to the W ;, thus,
the final step follows. What remains to consider is that we subtract W;; here
rather than adding it as in Martin et al.’s recurrence relation. Recall that in the
“map to weight” conversion larger scores are mapped to smaller weights (and
hence the weight based definition of key rank counts keys with weight smaller
than the target weight whereas the likelihood based definition counts keys with
scores larger than the target weight). Thus here we subtract Wj;, whereas in
the recurrence relation in b;,, we add W; ;. Finally then we have indeed that
r=bo= Z;Zéﬁ@?ﬂ €1,

We have shown that the two sets of equations for path counting and his-
togram convolution counting are equivalent and the algorithms computing over
them, for both rank and enumeration are equivalent for suitable input parame-
ters. In particular the number of bins and the spacing of the bins in the histogram
algorithm, are in direct correspondence with each other. Therefore, due to the
correctness of each algorithm, they both compute the same metric to the same
accuracy. Thus, the decision of which algorithm to favour over another, comes
down to its particular use case, and the differences in the algorithmic represen-
tations. We spend the remainder of the paper exploring this space.

5 Experimental Analysis

Although convolution based ranking and path counting based ranking are math-
ematically equivalent assuming their discretisation parameter is chosen corre-
spondingly, the algorithms that they result in are different. Thus their related

11

key enumeration algorithms are different as well, and come with different algo-
rithmic complexities. Among the different variations of the path counting enu-
meration algorithms, the FOREST algorithm is the most desirable both in terms
of time and space complexity when it comes to “realistic” search efforts. Only in
the case of an extremely deep key search, the single key enumeration algorithm
would potentially be a better choice because of its its capability to parallelise
based on the number of keys to enumerate rather than the precision parameter.

As we argued before it is impossible to give sound bounds for the convolution
based algorithm because its performance depends on the distribution of items
in bins. We hence now set up a concrete experiment, based on the best available
implementations of two respective approaches. Our comparison is comprised of
two parts. First we provide some concrete experiments on a single core across
different values of their discretisation parameter in this section. These experi-
ments enable us to conclude on their sequential performance depending on that
parameter. Thereafter, in the next section, we consider the impact of this pa-
rameter on larger enumeration efforts, which will require the use of many cores
in parallel.

5.1 Sequential Performance

As described in Section 2, both algorithms effectively discretise distinguishing
scores: FOREST uses a score-to-integer-values “weight conversion” method prior
to execution and HISTOGRAM uses convolution, after which the subkeys assigned
to a particular bin are considered equally likely to be correct candidates. The
level of precision retained in the score conversion process and the quantity of
histogram bins used directly impact algorithm run-time and memory usage. Both
algorithms are also impacted by the number of distinguishing vectors and the
number of subkey candidates per distinguishing vector.

Experimental Setup. The experiments outlined in this section were timed
using a workstation equipped with a Intel Xeon E5-1650v2 CPU and 32 GiB of
1600MHz PC3-12800 DDR3 RAM. All code was compiled using version 4.8.4 of
GCC with level 3 optimisations enabled.

The experimental strategy consisted of simulating DPA attacks on a 128-bit
AES key, using 16 independent attacks on the 8-bit SubBytes output for each
repeated experiment. Each set of synthetic trace data was simulated under the
standard DPA model as described in [8], using fresh randomness to generate
simulated leakage measurements. We chose a low signal to noise ratio which
ensured that the correct key was ranked between 24° and 27°. This ensures the
creation of realistic distinguishing vectors, which are important to realistically
assess the performance of the enumeration alogrithms. For each experiment, we
recorded the time taken to generate the first 21,212 .. 239 most likely key
candidates (producing 29 measurements in total).

We performed this process for p = 11 through p = 16 bits of precision (in
the case of HISTOGRAM this equates to using 2P bins for each initial histogram

12

at a precision level p bits). This range of precision covers a degree of parallelism
most suited to a well-resourced adversary such as a nation state or an individual
organisation with access to a super-computer or a botnet, and who desires an
enumeration capability that can be used search for very deep keys.

Configurations of Algorithms. For both algorithms we timed the enumer-
ation of keys but not the verification. Verification typically consists of the en-
cryption or decryption of one or more known pairs of plaintext and ciphertext
using a key candidate, and thus is a fixed cost.

ForesT Configuration. We used the open-source implementation of FOREST
provided by the authors of [7]. Execution time was recorded from the moment
the distinguishing vectors were converted into integer weights, up until every key
targeted was fully generated. The range of weights provided to the algorithm was
taken to be the minimum key weight observed up to and including the first weight
at which at least the targeted number of keys would be enumerated.

HisToGRAM Configuration. We used the open-source implementation of His-
TOGRAM provided by the authors of [15]. Execution time was recorded from the
moment distinguishing vectors were converted into histograms up until every key
within the relevant bins was generated. The bin indexes selected for enumera-
tion were calculated using the selection method provided by the open-source
implementation.

Pre-processing. The authors of HISTOGRAM note that it is possible to pre-process
distinguishing scores by multiplying through pairs of distinguishing vectors [15].
This method is essentially the approach described in the 2014 work of [13].
For example, given 16 distinguishing vectors each associated with 256 subkey
candidates, one can multiply each consecutive pair together, producing 8 distin-
guishing vectors each containing 65536 subkey candidates. We will define this as
a single “step” of pre-processing.

In [15], it is demonstrated that is pre-processing provides a significant per-
formance increase to the HISTOGRAM algorithm. In practice, the pre-processing
method can be applied to any enumeration algorithm. The pre-processing can
be repeatedly applied at a significant memory cost: taking the previous exam-
ple, the 8 distinguishing vectors could again be pairwise multiplied at a cost of
having to store the scores corresponding to 232 subkey candidates in memory at
a time.

In this work, we compare the FOREST algorithm with no pre-processing ap-
plied against an implementation of HISTOGRAM with both no pre-processing
and single level of pre-processing applied.

5.2 Results

Figures 4 and 5 illustrate the results of our experiments. All time measurements
are taken to the logarithm base 10. Figure 4 shows the performance of FOREST

13

11 bits of precision 12 bits of precision

5 T T T T T 5 T T T T
4 4

% 3 % 3

© ©

c c

(o] (o]

[$] (8]

[0] [0

o 2)

o o

> >

S S

[0] (0]

£’ £

C C

(] [y

(0] (0]

= 0 =0
-1 -1
) L L L L L 2 L L L L L
21 24 27 30 33 36 39 21 24 27 30 33 36 39

Enumeration budget (2* most likely keys) Enumeration budget (2* most likely keys)

—H— Forest
—--%---- Histogram (no pre-processing)
Histogram (one level of pre-processing)

Fig. 4. The mean running time of the FOREST algorithm and the HISTOGRAM algorithm
configured with and without pre-processing, for a variety of enumeration budgets and
at 11 and 12 bits of precision.

and HISTOGRAM when the level of precision is at 11 and 12 bits (2048 and 4096
histogram bins), and include measurements when HISTOGRAM uses distinguish-
ing vectors that have no pre-processing applied (16 distinguishing vectors, each
8-bits in size) and a single pre-processing step applied (8 distinguishing vectors,
each 16-bits in size).

Above 12 bits of precision the performance of the no pre-processing variant of
HisToGRAM was such that it was impractical to continue running experiments
using it. Figure 5 therefore contains measurements for HISTOGRAM using a single
pre-processing step only. It covers experiments run at 13, 14, 15 and 16 bits of
precision (8192, 16384, 32768 and 65536 histogram bins).

Impact of Pre-processing. Figure 4 confirms the results of the HISTOGRAM au-
thors, finding that pre-processing is very impactful to the run-time of the His-

14

13 bits of precision 14 bits of precision

% 6 6
e}
c
o
3 4 i
(2]
e
2 2
°
£ 0
< i
22 :
21 24 27 30 33 36 39 21 24 27 30 33 36 39

15 bits of precision 16 bits of precision

Mean time (log10 seconds)
O N »
'_‘O N B

-2 -2
21 24 27 30 33 36 39 21 24 27 30 33 36 39
Enumeration budget (2* most likely keys) Enumeration budget (2* most likely keys)

—H— Forest
Histogram (one level of pre-processing)

Fig. 5. The mean running time of the FOREST algorithm and the HISTOGRAM algorithm
configured with a single step of pre-processing, for a variety of enumeration budgets
and at 13 to 16 bits of precision.

TOGRAM algorithm. This allows it to be significantly faster than FOREST at
our lowest level of precision, and eventually demonstrated an advantage at the
second-lowest level of precision. Whilst the log-scale graphs are the most prac-
tical way to visualise the algorithm performance, they do not give an intuitive
idea of scale: when the enumeration budget was 239, at 11 bits of precision His-
TOGRAM with pre-processing was on average approximately 7 times faster than
FOREST. Whether FOREST would benefit equally as well to the pre-processing
step is an interesting question for future research.

An additional consideration could be whether two steps of pre-processing
provide equivalent performance gains. Assuming a 128-bit AES key and distin-
guishing scores stored as double-precision values, moving to two steps of pre-
processing would require the adversary to have at least 256 GiB of RAM (4 - 64
GiB) available to each parallel execution unit.

15

Impact of Precision. However, as can be observed in Figure 5, above 12 bits of
precision the run-time of HISTOGRAM degraded to the point that FOREST was
significantly faster even when the pre-processing was applied. The performance
gap widens as precision increases, indicating that if a precision of greater than
12 bits is required, FOREST is highly likely to be the most suitable choice. For
smaller-scale efforts, such as those performed by individuals constrained by re-
sources and time, HISTOGRAM configured for low levels of precision may be the
most expedient method to test the first 240 keys.

Minimum Precision Requirements. The previous works by [5,10,12] consistently
found that a precision of at least 12 bits was required for to ensure that “stable”
results were observed over repeat experiments. We can guess as to the underlying
cause: the distinguishing vectors in their experiments were produced by attacks
targeting 8-bit subkeys. An 8-bit vector may hold 2% distinct values and so, at the
very minimum, 8 bits of precision are required to assign each subkey candidate
a unique value. The attacks used in the experiments aimed to recover a target
key that consists of 16 subkeys. Given that the final score for a candidate is the
sum of its respective subkey scores, and that each addition of two values implies
the need for one extra bit to represent the result, at least 2% 28 = 212 bits of
precision are required to maintain the ability to assign a unique value for each
element resulting from a cumulative sum.

General Observations. The performance of both algorithms seem to behave con-
sistently. This may be useful for an adversary when attempting to calibrate their
effort: it may be possible to derive parameters that allow a reasonably accurate
prediction of the run-time of a workload. This would allow the adversary to fine-
tune the choice of precision and number of compute resources to enumerate to
a pre-defined depth in a pre-defined period of time.

One interesting future research questions is to understand whether the be-
havior observed in Figures 4 and 5 continues when enumerating extremely deep
keys (for instance, below a depth of 250 or 269).

6 Considering Parallelism

Before looking in more detail at the respective algorithms we briefly reflect on the
need to balance effort in case of any parallel enumeration effort. In this respect
we note that it is possible for the adversary to evenly distribute the workload
across multiple hardware resources for both algorithms. This can be done using
an (inexpensive) key ranking algorithm: in the case of HISTOGRAM the adversary
would ascertain how many keys are assigned to each bin in the final convolved
histogram, and in the case of FOREST the adversary would ascertain how many
keys are assigned to each unique weight value.

Both FOREST and HISTOGRAM are most intuitively parallelised along their
“discretisation” parameter. HISTOGRAM can be parallelised along the number of
bins in the final convolved histogram (corresponding to parallel invocations of

16

the “Decompose_bin” algorithm described in [15]). FOREST can be parallelised
along each unique weight value: the adversary can choose to sequentially process
the keys associated with a unique weight or within a continuous range of weights.

6.1 Exact Parallelisation Potential

For a given attack configuration, the number of parallel execution units that
can simultaneously execute the Decompose_bin algorithm is upper-bounded by
B+-m—m+ 1. The number of parallel execution units in the FOREST is bounded
by the maximum observed integer weight associated with a key. If the maximum
weight is W, then the adversary can execute at most W parallel enumeration
instances.

The number of histogram bins used and the level of precision retained in
the integer weight conversion process thus effectively act as tunable precision
and parallelism parameter: the lower the number of bins or conversion precision,
the less resolution available in the final ordering of keys and the fewer parallel
invocations of the respective algorithm can be made. Recall that we can consider
precision in terms of a number of bits: p-bits of precision is equivalent to using 2P
histogram bins or converting scores to integer weights such that the maximum
value associated with any subkey candidate is 2P. Given a fixed level of precision,
the theoretical parallelism potential of each algorithm is almost identical: given
p-bits of precision, FOREST can be run with, at most, m - 2P parallel invocations.
HisSTOGRAM can be run with, at most, m - 27 — m + 1 parallel invocations.

The algorithm SINGLEKEY is not limited by the precision parameter and can
parallelise up to the number of keys that it wishes to enumerate (one key per
core). We leave it as an interesting research question, as to when SINGLEKEY
becomes more desirable.

6.2 Trading Off Sequential Performance For Parallelism

The sequential performance of both algorithms deteriorates as the precision pa-
rameter increases. The natural assumption in brute-force cryptanalysis problems
is that the more computational resources the adversary can deploy in parallel,
the faster they are likely to achieve a breakthrough. Whether this remains true in
all instantiations of an enumeration problem is unclear. The work of Poussier et
al. proposes that an adversary who is willing to enumerate a very large amount
of keys (for instance, beyond 264), might be better served by reducing the num-
ber of bins in each histogram — the argument being that it may be more efficient
to maximise the occupancy of smaller quantities of hardware by providing each
unit larger quantities of factorised keys.” Whether this is indeed the case requires
a careful analysis, including the efficiency of the bin decomposition algorithm (in

T A set of factorised keys can be converted into a set of keys by taking the cross
product between all subkey sets. For example given the key factorisation ([1, 2], [3, 4])
which will all have the same weight in each subkey, this represents the four keys
(1,3),(1,4),(2,3),(2,4).

17

the case of HISTOGRAM), the efficiency of the forest tree traversal (in the case of
FOREST), whether specialised hardware is available, and memory requirements.

A complication arises as to how close an adversary wishes to be to a pre-
selected number of keys enumerated. Taking the proposal of Poussier et al., let us
consider an adversary attempting to recover a 128-bit AES key by enumerating
the output of a side-channel attack targeting each of the 16 8-bit SubBytes
outputs, with HISTOGRAM configured to use 256 bins per histogram. Using these
parameters, the final histogram will contain 4081 (256 - 16 — 15), or just under
2'2 bins. Therefore, the average number of key candidates associated with each
bin is approximately 2116,

At first glance, this seems to be a disaster for the adversary. Fortunately, as-
suming a ‘good’ side-channel attack, the bins associated with the most likely key
candidates will contain far fewer candidates than the bins associated with the
less likely candidates. However, some informal reasoning demonstrates how the
probability of the adversary getting ‘unlucky’ has increased: it is reasonable to
assume the expected position of the correct key amongst its equally-likely candi-
dates is in the middle of its bin, and so if the size of a bin is extremely large, the
chance of the adversary having to enumerate a significant number of unnecessary
keys increases. Experiments in other works indicate that the expected number
of keys per bin increases exponentially as the rank of the correct key increases,
and so this consideration becomes more important as the computational budget
of an adversary increases [7].

7 Conclusions and Future Research

Over the past few years two approaches for rank computation and key enumer-
ation have been proposed and researched. These were believed to be distinct
from each other. We show in this contribution that they are mathematically
equivalent, i.e. they both compute the exact same rank when choosing their dis-
cretisation parameter correspondingly. Thus they can both be equally accurate
(which matters for key ranking). Knowing that they are mathematically equiv-
alent, we then turn our focus on their algorithmic representations, which are
different. We compare their enumeration versions fairly (using the same plat-
form, the same language and compiler) via their performance on different levels
of the discretisation parameter.

Our practical experiments indicate that HISTOGRAM performs best for low
discretisation, and FOREST wins for higher parameters. We explain that a min-
imum of 12 bits should be allowed for accurate rankings, and any more bits are
desirable for large scale enumeration efforts. Thus the FOREST algorithm should
be the preferred choice if large quantities of parallelism are required.

An important direction for future research is to identify, given a fixed amount
of computational resources and time, how best to distribute the enumeration
workload. A solution to this will help identify the ideal level of precision used in
an enumeration algorithm. Furthermore, a particularly useful research direction
would be to consider how an evaluator could take the estimated rank of a side-

18

channel attack, a definition of a class of adversary — for instance, a group with
access to a botnet or a compute cloud — and to be able to derive a reasonable
estimate for the the total duration and cost of enumerating that key, without
doing the complete enumeration task. Whilst in our paper we observe consistent
results for relatively small search efforts, which could be seen as a stepping stone
in this direction, the best parallelisation strategy to tackle large scale search
efforts remains an open question.

Acknowledgements and Disclaimer This work was in part supported by
EPSRC via grant EP/N011635/1 (LADA). No research data was created for
this paper. The final publication will be available at link.springer.com in the
proceedings of CT-RSA 2018.

References

1. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive
2015, 221 (2015), http://eprint.iacr.org/2015/221

2. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. Cryptology ePrint Archive, Report
2015/221 (2015), http://eprint.iacr.org/2015/221

3. Bogdanov, A., Kizhvatov, 1., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. TACR Cryptology ePrint
Archive 2015, 795 (2015)

4. Bogdanov, A., Kizhvatov, 1., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310-327. Springer, Heidelberg
(Aug 2016)

5. Glowacz, C., Grosso, V., Poussier, R., Schiith, J., Standaert, F.X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117-129. Springer, Heidelberg (Mar 2015)

6. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (Aug 1999)

7. Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.: How low can
you go? Using side-channel data to enhance brute-force key recovery. Cryptology
ePrint Archive, Report 2016/609 (2016), http://eprint.iacr.org/2016,/609

8. Mangard, S., Oswald, E., Standaert, F.X.: One for All — All for One: Uni-
fying Standard DPA Attacks. IET Information Security 5(2), 100-110 (2011),
http://eprint.iacr.org/2009/449

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

10. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation
of the key rank distribution in the context of side channel evaluations. In: Cheon,
J.H., Takagi, T. (eds.) ASTACRYPT 2016, Part I. LNCS, vol. 10031, pp. 548-572.
Springer, Heidelberg (Dec 2016)

11. Martin, D.P., Montanaro, A., Oswald, E., Shepherd, D.: Quantum key search with
side channel advice (2017)

19

12. Martin, D.P., O’Connell, J.F.,; Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015,
Part II. LNCS, vol. 9453, pp. 313-337. Springer, Heidelberg (Nov / Dec 2015)

13. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: Pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 243-261. Springer, Heidelberg (Dec
2014)

14. Pan, J., van Woudenberg, J.G.J., den Hartog, J., Witteman, M.F.: Improving DPA
by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 241-261. Springer, Heidelberg (Aug 2011)

15. Poussier, R., Standaert, F.X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: An integrated approach. In: Gierlichs, B., Poschmann,
AY. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61-81. Springer, Heidelberg (Aug
2016)

16. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390-406. Springer, Heidelberg
(Aug 2013)

17. Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126-141. Springer, Heidelberg (May 2013)

18. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet Sufficient? How to Determine
Whether Limited Side Channel Information Enables Key Recovery. In: CARDIS
2014. LNCS, vol. 7707. Springer (2014)

A Algorithms

A.1 The MOOS Ranking Algorithm

The array begins in the row corresponding to the last key chunk, and works
across the weights. For each subkey value, if adding the weight of this value to
the current weight is between W; and Wy then the algorithm sets the count to
1, else it is set to zero. Working backwards over the other subkeys, the algorithm
sums the counts for assigning each possible subkey value. The function RC looks
up the corresponding position in the array for the subkey - this is just the weight
or either reject or accept depending on the weight boundaries and if it is the
final subkey. The copying of K into O is so that the previous subkey’s counts
are available when the current counts are calculated. For ranking a key W7 =0
but can be set to other values to count the number of keys between two given
keys. This can be useful for parallelising enumeration.

A.2 The Forest Enumeration Algorithm

The forest enumeration algorithm works in a similar manner to the key rank-
ing algorithm described above. However, instead of looking up partial counts in
the array O, partial key representations are stored. To update the representa-
tions the forest of keys in take and the subkey value is applied to the head of
the forest, to turn it into a tree.

20

Algorithm 1 The Martin et al. algorithm [12] (MOOS) plus improvements as
detailed in [10] (MOOS+).
Algorithm MOOS(m,n, W1, Wa, W):
OJ[Accept] + 1
OJ[Reject] < 0
for ¢ from m down to 1 do
for w from 0 up to W2 — 1 do
Klw] + 0
for j from n down to 1 do
K[w] + K[w] + O[RC(j,w, i, W1, Wa, W)]
end for
end for
O+ K
end for
return OJ0]

Algorithm RC(j, w, i, W1, Wa, W):
if w+ W;; > Ws then
return Reject
else if j =m — 1 then
if w4+ Wj,i < Wi then
return Reject
else
return Accept
end if
else
return w + Wj;
end if

A.3 The Single Key Enumeration Algorithm

Given an index of the key to output the algorithm works as follows. It looks
at how many keys have an initial subkey value, if the required key is contained
in this range then the algorithm assigns this value to the key and looks at the
next subkey, else it increments the value being considered. This is repeated until
the key has been constructed, at which point it is returned.

A.4 The Convolution Based Ranking Algorithm

The algorithm calculates the histogram H; for each distinguishing vector D?.
It then convolutes them all together. Based on the properties of convolution, the
key rank is then simply the sum of bins from the bin representing the secret key
in this final convolution.

A.5 The Convolution Based Enumeration Algorithm

The convolution algorithm works recursively where if a key of weight w is
required all subkeys of weight x are paired with remaining partial keys of weight

21

Algorithm 2 The Martin et al. enumeration algorithm FOREST [12] plus im-
provements as detailed in [10]. Where makeTree(r, F') turns the forest F' into a
tree by appending r as a root. The constructKeys algorithm takes a forest of trees
and traverses them to construct the keys.
Algorithm FOREST(m,n, Wi, Wa, W):
for ¢ from m down to 1 do
for w from 0 up to W2 — 1 do
Ku] — {}
for j from 1 up to n do
if RC(j,w,1, W1, Wa, W) = Accept then
K[w] + Kw] U {j}
end if
if RC(j,w,1, W1, Wa, W) # Reject then
K(w] + K[w] U makeTree(j, O[RC(j, w, i, W1, Wa, W)])
end if
end for
end for
O+ K
end for
return constructKeys(O[0])

w — x. This is considered for all possible weights x. The remaining partial calls
are generated using a recursive call to the algorithm.

22

Algorithm 3 The Martin et al. enumeration algorithm SINGLEKEY [11]. It
takes in the vector b as output by the rank algorithm and returns the r** key,
for arbitrary ordering. To produce an enumeration algorithm to output multiple
keys, this algorithm can just be run in a loop multiple times. See the original
paper for more details.
Algorithm SINGLEKEY (b, W, W1, Wa, 1):
if r > b1,0 then
return L
end if
k<+ €
w <+ 0
fori=1up tom—1do
for j =1 up ton do
if r < bj+17w+wj,i then

ke Kl
W — W+ Wy
break j
end if
T4 T = bjt 1wt
end for
end for

for j =1 up ton do
if r <1{Wi —w < wpm,; < Wao —w} then
ko kllj
break
end if
rer—1{W —w<wj, <W,—w}
end for
return k

Algorithm 4 The Glowacz et al. algorithm [5] (GGPSS).
Algorithm GGPSS(m,D):
co toHist(D™)
for i from m — 1 down to 1 do
H; « toHist(D?)
C; < COI‘]V(HZ'7 Ci+1)
end for

(B=1)+1
T Z;Zlgm(s)) CLi

return r

23

Algorithm 5 The Poussier et al. enumeration algorithm HISTOGRAM [15]. csh is
used in the recursive call and is initially set to 1, y is initially set as the bin to be
decomposed and k is initially empty. get(H,) is used to get all items of weight
x from histogram H and size(H) gets the size of histogram H. The algorithm
processKey(k) converts the factorised keys k into a list of keys. Enumeration
simply decomposes bins in order, see the original paper for further details.
Algorithm HisToGrRAM(c, {H;}i% 1, csh,y, k):
if csh = m — 1 then
z+—H,, —1
while z > 0 and x + size(H,,—1 > y do
if Hy, o >0and Hy,_1,,_, > 0 then
k(m) + get(H,,, z)
k(m—1) + get(Hpm-1,y — 2)
processKey (k)
end if
r—z—1
end while
else
T < Hcsh -1
while z > 0 and x + size(ccsh+1) > y do
if Heshe > 0 and cesnt1,y—z > 0 then
k(csh) <+ get(Hesh,)
HisTOoGRAM(c, {H;};2 1, csh + 1,y — x, k)
end if
r—z—1
end while
end if

24

