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Abstract. In traditional symmetric cryptography, the adversary has
access only to the inputs and outputs of a cryptographic primitive. In the
white-box model the adversary is given full access to the implementation.
He can use both static and dynamic analysis as well as fault analysis in
order to break the cryptosystem, e.g. to extract the embedded secret
key. Implementations secure in such model have many applications in
industry. However, creating such implementations turns out to be a very
challenging if not an impossible task.

Recently, Bos et al. [7] proposed a generic attack on white-box primitives
called differential computation analysis (DCA). This attack was applied
to many white-box implementations both from academia and industry.
The attack comes from the area of side-channel analysis and the most
common method protecting against such attacks is masking, which in
turn is a form of secret sharing. In this paper we present multiple generic
attacks against masked white-box implementations. We use the term
“masking” in a very broad sense. As a result, we deduce new constraints
that any secure white-box implementation must satisfy.

Based on the new constraints, we develop a general method for protecting
white-box implementations. We split the protection into two independent
components: value hiding and structure hiding. Value hiding must pro-
vide protection against passive DCA-style attacks that rely on analysis
of computation traces. Structure hiding must provide protection against
circuit analysis attacks. In this paper we focus on developing the value
hiding component. It includes protection against the DCA attack by Bos
et al. and protection against a new attack called algebraic attack.

We present a provably secure first-order protection against the new al-
gebraic attack. The protection is based on small gadgets implementing
secure masked XOR and AND operations. Furthermore, we give a proof
of compositional security allowing to freely combine secure gadgets. We
derive concrete security bounds for circuits built using our construction.

Keywords: White-box, Obfuscation, Cryptanalysis, Provable Security,
Masking
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1 Introduction

White-box cryptography aims to develop cryptographic primitives that can with-
stand attacks of very powerful adversaries. Those adversaries have full access to
the implementations, either in the form of source code or in the form of com-
piled programs. They can perform both static and dynamic analysis, including
debugging, tracing the execution, injecting faults, modifying the program parts,
etc. Cryptographic implementation resistant to such attacks is also called strong
white-box since it is essentially equivalent to a public key scheme achieved by
code-obfuscation means.

In 2002, Chow et al. [14,15] proposed the first white-box implementations of
the AES and DES block ciphers. The main idea was to represent small parts of
a block cipher as look-up tables and compose them with randomized invertible
mappings to hide the secret key information. Each such look-up table by itself
does not give any information about the key. In order to attack such scheme,
multiple tables must be considered. Another approach was proposed by Bringer
et al. [10]. Instead of look-up tables, the cipher is represented as a sequence
of functions over F2n for some n, with some additional computations as noise.
These functions are then composed with random linear mappings to hide the
secret key, similarly to the Chow et al. approach.

Unfortunately, both approaches fell to practical attacks [2,16,28]. Consequent
attempts to fix them were not successful [27, 33]. Moreover, Michiels et al. gen-
eralized the attack by Billet et al. [2] and showed that the approach of Chow et
al. is not secure for any SPN cipher with MDS matrices. This follows from the
efficient cryptanalysis of any SASAS structure [5]. Recently several white-box
schemes based on the ASASA structure were proposed [3]. However the strong
white-box scheme from that paper was broken [4,21,29] (which also broadens the
white-box attacker’s arsenal even further). Another recent approach consists in
obfuscating a block cipher implementation using candidates for indistinguisha-
bility obfuscation (e.g. [20]).

Besides academia, there are commercial white-box solutions which are used
in real products. The design behind those implementations is kept secret, thus
adding security-by-obscurity protection. Nevertheless, Bos et al. [7] proposed a
framework for attacks on white-box implementations which can automatically
break many white-box implementations. The idea is to apply techniques from
grey-box analysis (i.e. side-channel attacks) but using more precise data traces
obtained from the implementation. The attack is called differential computa-
tion analysis (DCA). Sasdrich et al. [30] pointed out that the weakness against
the DCA attack can be explained using the Walsh transform of the encoding
functions. Banik et al. [1] analyzed software countermeasures against the DCA
attack and proposed another automated attack called Zero Difference Enumer-
ation attack.

In light of such powerful automated attack the question arises: how to create
a whitebox scheme secure against the DCA attack? The most common coun-
termeasure against side-channel attacks is masking, which is a form of secret
sharing. It is therefore natural to apply masking to protect white-box imple-
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mentations. We define masking to be any obfuscation method that encodes each
original bit by a relatively small amount of bits. Such masking-based obfusca-
tion may be more practical in contrast to cryptographic obfuscation built from
current indistinguishability obfuscation candidates [13,20].

In this paper we investigate the possibility of using masking schemes in the
white-box setting. We restrict our analysis to implementations in the form of
Boolean circuits. Our contribution splits into three parts:

1. Attacks on Masked White-Box Implementations. In Section 3 we de-
velop a more generic DCA framework and describe multiple generic attacks
against masked implementations. The attacks show that the classic Boolean
masking (XOR-sharing) is inherently weak. Previous and new attacks are
summarized in Table 1. We remark that conditions for different attacks vary
significantly and the attacks should not be compared solely by time com-
plexity. For example, the fault-based attacks are quite powerful, but it is
relatively easy to protect an implementation from these attacks. From our
attacks we conclude that more general nonlinear encodings are needed and
we deduce constraints that a secure implementation must satisfy. We believe
that our results provide new insights on the design of white-box implementa-
tions. We note that a basic variant of the (generalized) linear algebra attack
was independently discovered by Goubin et al. [23].

2. Components of Protection. We propose in Section 4 a general method
for designing a secure white-box implementation. The idea is to split the pro-
tection into two independent components: value hiding and structure hiding.
The value hiding component must provide protection against passive DCA-
style attacks - attacks that rely solely on analysis of computed values. In
particular, it must provide security against the correlation attack and the
algebraic attack. We suggest that security against these two attacks can be
achieved by applying a classic linear masking scheme on top of a nonlin-
ear masking scheme protecting against the algebraic attack. The structure
hiding component must secure the implementation against circuit analysis
attacks. The component must protect against circuit minimization, pattern
recognition, pseudorandomness removal, fault injections, etc. Possibly this
component may be splitted into more sub-components (e.g. an integrity pro-
tection). Development of a structure hiding protection is left as a future
work.

3. Provably Secure Construction. Classic t-th order masking schemes pro-
tect against adversaries that are allowed to probe t intermediate values com-
puted by the implementation. The complexity of the attack grows fast when
t increases. In the new algebraic attack the adversary is allowed to probe
all intermediate values but she can combine them only with a function of
low algebraic degree d. Similarly, the attack complexity grows fast when d
increases and also when the circuit size increases. We develop a framework
for securing an implementation against the algebraic attack. We describe a
formal security model and prove composability of first-order secure circuits.
Finally, we propose a first-order secure masking scheme implementing XOR
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and AND operations. As a result, our framework provides provable security
against the first-order algebraic attack. We derive concrete security bounds
for our construction. Finally, we implement the AES-128 block cipher pro-
tected using our new masking scheme.

Table 1: Attacks on masked white-box implementations.

Attack Ref. Data Time

Correlation [7],Sec. 3.1 O(2t) O(ntk22t)

Time-Memory Tradeoff Sec. 3.1 O(1) O(nds/2e + nbs/2ck)

Linear Algebra [23],Sec. 3.2 O(n) O(nω + n2k)

Generalized Lin. Alg. [23],Sec. 3.2 O(σ(n, d))) O(σ(n, d)ω + σ(n, d)2k)

LPN-based Gen. Lin. Alg. Sec. 3.2 DLPN (r, σ(n, d)) TLPN (r, σ(n, d))

1-Share Fault Injection Sec. 3.3 O(n) O(n2)

2-Share Fault Injection Sec. 3.3 O(n2) O(n3)

Notations: n denotes size of the obfuscated circuit or its part selected for the attack;
s is the number of shares in the masking scheme; k is the number of key candidates
required to compute a particular intermediate value in the circuit; t denotes the cor-
relation order (t ≤ s); ω is the matrix multiplication exponent (e.g. ω = 2.8074 for
Strassen algorithm); d is the algebraic degree of the masking decoder (see Section 3);
σ(n, d) =

∑d
i=0

(
n
i

)
is the number of monomials of n bit variables of degree at most d;

r is the noise ratio in the system of equations, TLPN (r,m), DLPN (r,m) are time and
data complexities of solving an LPN instance with noise ratio r and m variables.

A code implementing the described attacks, verification of the algebraic
masking schemes and the masked AES-128 implementation is publicly available
at [6]:

https://github.com/cryptolu/whitebox

Outline We provide the notations in Section 2. The general attack setting and
attacks are described in Section 3. We discuss a general method for securing a
white-box design in Section 4. In Section 5 we develop countermeasures against
the algebraic attack. Finally, we conclude and suggest future work in Section 6.

2 Notations and Definitions

Throughout the paper, we use the following notations and definitions.

– ∧,∨,⊕ denote Boolean AND, OR and XOR respectively.
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– F2 is the finite field of size 2 and Fn
2 is the vector space over F2 of dimension

n.
– Elements in vectors are indexed starting from 1. For a vector v from Fn

2 we
write v = (v1, . . . , vn).

– |X| denotes the size of the vector/set X. If X is a circuit, |X| denotes the
number of nodes in it.

– The Weight of a vector v is the number or nonzero entries in it and is denoted
wt(v). Weight of a Boolean function is the weight of its truth table.

– The Bias of a Boolean function f : Fn
2 → F2 is denoted E(f) and is equal to

|1/2− wt(f)/2n|.
– The Correlation of two n-bit vectors v1 and v2 is defined as

cor(v1, v2) =
n11n00 − n01n10√

(n00 + n01)(n00 + n10)(n11 + n01)(n11 + n10)
,

where nij denotes the number of positions where v1 equals to i and v2 equals
to j. If the denominator is zero then the correlation is set to zero. cor is the
sample Pearson correlation coefficient of two binary variables, also known as
the Phi coefficient. Other correlation coefficients may be used, see e.g. [32].

– 0,1 denote the two constant functions.
– Any Boolean function f with n-bit input has unique representation of the

form f(x) =
⊕

u∈Fn
2
aux

u called the algebraic normal form (ANF). Here xu

is a shorthand for xu1
1 . . . xun

n and such products are called monomials.
– The algebraic degree of a Boolean function f is the maximum Hamming

weight of all u such that au = 1. Equivalently, it is the maximum degree of
a monomial in the ANF of f . It is denoted deg f .

– σ(n, d) =
∑d

i=0

(
n
i

)
is the number of monomials of n bit variables from F2 of

degree at most d.
– Let V be a set of Boolean functions with the same domain Fn

2 . Define the
d-th order closure of V (denoted V(d)) to be the vector space of all functions
obtained by composing any function of degree at most d with functions from
V:

V(d) = {f ◦ (g1, . . . , g|V|) | ∀f : F|V|2 → F2,deg f ≤ d, gi ∈ V},
where gi : Fn

2 → F2 and h = f ◦ (g1, . . . , g|V|), h : Fn
2 → F2 is such that

h(x) = f(g1(x), . . . , g|V|(x)). For example,
• V(1) is spanned by {1} ∪ {gi | gi ∈ V},
• V(2) is spanned by {1} ∪ {gigj | gi, gj ∈ V}, etc. (includes V(1) as i = j

is allowed).

3 Attacks On Masked Implementations

We describe the general setting for our attacks. We consider a keyed symmetric
primitive, e.g. a block cipher. A white-box designer takes a naive implementation
with a hardcoded secret key and obfuscates it producing a white-box implemen-
tation. An adversary receives the white-box implementation and her goal is to
recover the secret key or a part of it. We restrict our analysis to implementations
in the form of Boolean circuits.
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Definition 1. A Boolean circuit C is a directed acyclic graph where each node
with the indegree k > 0 has an associated k-ary symmetric Boolean function.
Nodes with the indegree equal to zero are called inputs of C and nodes with the
outdegree equal to zero are called outputs of C.

Let x = (x1, . . . , xn) (resp. y = (y1, . . . , ym)) be a vector of input (resp.
output) nodes in some fixed order. For each node v in C we say that it computes
a Boolean function fv : Fn

2 → F2 defined as follows:

– for all 1 ≤ i ≤ n set fxi
(z) = zi,

– for all non-input nodes v in C set fv(z) = g(fc1(z), . . . , fck(z)),
where c1, . . . , ck are nodes having an outgoing edge to v.

The set of fv for all nodes v in C is denoted F(C) and the set of fxi
for

all input nodes xi is denoted X (C). By an abuse of notation we also define the
function C : Fn

2 → Fm
2 as C = (fy1 , . . . , fym).

Masking. We assume that the white-box designer uses masking in some form,
but we do not restrict him from using other obfuscation techniques. The only
requirement is that there exists a relatively small set of nodes in the obfuscated
circuit (called shares) such that during a legitimate computation the values
computed in these nodes sum to a predictable value. We at least expect this to
happen with overwhelming probability. In a more general case, we allow arbitrary
functions to be used to compute the predictable value from the shares instead
of plain XOR. We call these functions decoders. The classic Boolean masking
technique is based on the XOR decoder. The number of shares is denoted by s.

A predictable value typically is a value computed in the beginning or in the
end of the reference algorithm such that it depends only on a few key bits and
on the plaintexts/ciphertexts. In such case the adversary makes a guess for the
key bits and computes the corresponding candidate for the predictable value.
The total number of candidates is denoted by k.

The obfuscation method may require random bits e.g. for splitting the se-
cret value into random shares. Even if the circuit may have input nodes for
random bits in order to achieve non-deterministic encryption, the adversary
can easily manipulate them. Therefore, the obfuscation method has to rely on
pseudorandomness computed solely from the input. Locating and manipulating
the pseudorandomness generation is a possible attack direction. However, as we
aim to study the applicability of masking schemes, we assume that the adver-
sary can not directly locate the pseudorandomness computations and remove
the corresponding nodes. Moreover, the adversary can not predict the generated
pseudorandom values with high probability, i.e. such values are not predictable
values.

Window coverage. In a typical case shares of a predictable value will be relatively
close in the circuit (for example, at the same circuit level or at a short distance in
the circuit graph). This fact can be exploited to improve efficiency of the attacks.
We cover the circuit by sets of closely located nodes. Any such set is called a
window (as in power analysis attack terminology e.g. from [9]). The described
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attacks can be applied to each window instead of the full circuit. By varying the
window size the attacks may become more efficient. Here we do not investigate
methods of choosing windows to cover a given circuit. One possible approach is
to assign each level or a sequence of adjacent levels in the circuit to a window.
Choosing the full circuit as a single window is also allowed. In our attacks we
assume that a coverage is already chosen. For simplicity, we describe how each
attack is applied to a single window. In case when multiple windows are chosen,
the attack has to be repeated for each window. The window size is denoted by
n. It is equal to the circuit size in the case of the single window coverage.

General DCA attack. We would like to note that the term “differential compu-
tation analysis” (DCA) is very general. In [7] the authors introduced it mainly
for the correlation-based attack. In fact our new attacks fit the term well and
provide new tools for the “analysis” stage of the attack. The first stage remains
the same except that we adapt the terminology for the case of Boolean circuits
instead of recording the memory access traces. Our view of the procedure of the
DCA attack on a white-box implementation C is given in Algorithm 1.

Algorithm 1 General procedure of DCA attacks on Boolean circuits.

1. Generate a random tuple of plaintexts P = (p1, p2, . . .).
2. For each plaintext pi from P :

(a) Compute the circuit C on input pi: ci = C(pi).
(b) For each node indexed j in the circuit:

i. Record the computed value as vj,i.
(c) For each predictable value indexed j:

i. Record the predictable value computed using plaintext pi (or ciphertext
ci) as ṽj,i.

3. Generate the bit-vector vj = (vj,1, . . . , vj,|P |) of computed bits for each node j in
the circuit. Denote by V the set of all vectors vj : V = {v1, . . . , v|C|}.

4. Generate the bit-vector ṽj = (ṽj,1, . . . , ṽj,|P |) for each predictable value j. Denote

by Ṽ the set of all predictable vectors ṽj : Ṽ = {ṽ1, . . . , ṽk}.
5. Choose a coverage of V by windows of size n.
6. For each window in the coverage:

(a) Perform analysis on the window W ⊆ V using the set of predictable vectors Ṽ .

We remark that the correlation-based DCA attack from [7] can be imple-
mented on-the-fly, without computing the full vectors vj . In contrast, most of
our attacks require full vectors.

In the following two sections we describe two classes of DCA attacks: combi-
natorial and algebraic. They both follow the procedure described above and differ
only in the analysis part (Step 6a). Afterwards, we describe two fault-injection
attacks which allow to find locations of shares efficiently.
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3.1 Combinatorial DCA attacks

The most straightforward way to attack a masked implementation is to guess
location of shares inside the current window. For each guess we need to check
if the shares match the predictable value. In the basic case of classic Boolean
masking where the decoder function is simply XOR of the shares the check is
trivial. If an unknown general decoder function has to be considered, the attack
becomes more difficult. One particularly interesting case is a basic XOR decoder
with added noise. The main attack method in such cases is correlation.

Correlation attack. The correlation DCA attack from [7] is based on correlation
between single bits. However, in the case of classic Boolean masking with strong
pseudorandom masks all s shares are required to perform a successful correlation
attack. In the case of a nonlinear decoder less shares may be enough: even a
single share correlation can break many schemes as demonstrated in [7]. Existing
higher-order power analysis attacks are directly applicable to memory or value
traces of white-box implementations. However, the values leaked in the white-
box setting are exact in contrast to side-channel setting and the attack may be
described in a simpler way. We reformulate the higher-order correlation attack
in our DCA framework.

Assume that locations of t shares are guessed and t vectors vj are selected. For
simplicity, we denote them by (v1, . . . , vt). For each t-bit vector m we compute
the t-bit um where

um,i = (v1,i = m1) ∧ . . . ∧ (vt,i = mt).

In other words, um,i is equal to 1 if and only if during encryption of the i-th
plaintext the shares took the value described by m . For each predictable vector ṽ
we compute the correlation cor(um, ṽ). If its absolute value is above a predefined
threshold, we conclude that the attack succeeded and possibly recover part of the
key from the predictable value ṽ. Furthermore, the entire vector of correlations
(cor(u(0,...,0), ṽ), cor(u(0,...,1), ṽ), . . .) may be used in analysis, e.g. the average or
the maximum value of its absolute entries.

We assume that the predictable value is not highly unbalanced. Then for the
attack to succeed we need the correlated shares to hit at least one combination m
a constant number of times (that is obtain wt(um) ≥ const). Therefore the data
complexity is |P | = O(2t). However, with larger number of shares the noise
increases and more data may be required. We estimate the time complexity of
the attack as O(ntk2t|P |) = O(ntk22t). Here nt corresponds to guessing location
of shares inside each window (we assume t� n); k corresponds to iterating over
all predictable values; 22t corresponds to iterating over all t-bit vectors m and
computing the correlations.

The main advantage of this attack is its generality. It works against general
decoder functions even with additional observable noise. In fact, the attack may
work even if we correlate less shares than the actual encoding requires. Indeed,
the attack from [7] relied on single-bit correlations and still was successfully
applied to break multiple whitebox designs. The generality of the attack makes
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it inefficient for some special cases, in particular for the classic Boolean masking.
We investigate this special case and describe more efficient attacks.

Time-Memory Trade-off. We now consider the case of XOR decoder and absence
of observable noise. That is, the decoder function must map the shares to the
correct predictable value for all recorded plaintexts. In such case we can use
extra memory to improve the attack. Consider two simple cases by the number
of shares:

1. Assume that the decoder uses a single share (i.e. unprotected implementa-
tion). We precompute all the predictable vectors and put them in a table.
Then we simply sweep through the circuit nodes and for each vector vi check
if it is in the table. For the right predictable vector ṽ we will have a match.

2. Assume that the decoder uses two shares (i.e. first-order protected imple-
mentation). We are looking for indices i, j such that vi ⊕ vj = ṽ for some
predictable vector ṽ. Equivalently, vi = ṽ ⊕ vj . We sweep through the win-
dow’s nodes and put all the node vectors in a table. Then we sweep again
and for each vector vj in the window and for each predictable vector ṽ we
check if vj ⊕ ṽ is in the table. For the right ṽ we will have a match and it
will reveal both shares.

This method easily generalizes for arbitrary number of shares. We put the
larger half of shares on the left side of the equation and put the corresponding
tuples of vectors in the table. Then we compute the tuples of vectors for the
smaller half of shares and look-up them in the table. We remark that this attack’s
complexity still has combinatorial explosion. However the time-memory trade-off
essentially allows to half the exponent in the complexity.

The attack effectively checks nsk sums of vectors to be equal to zero. To
avoid false positives, the data complexity should be set to O(s log2 n + log2 k).
We consider this data complexity negligible, especially because for large number
of shares the attack quickly becomes infeasible. For simplicity, we assume the
data complexity is O(1) and then the time complexity of the attack is O(nds/2e+
nbs/2ck).

The described attack is very efficient for unprotected or first-order masked
implementations. For small windows it can also be practical for higher-order
protections. In the following section we describe a more powerful attack whose
complexity is independent of the number of shares.

3.2 Algebraic DCA attacks

For the classic Boolean masking the problem of finding shares consists in find-
ing a subset of the window’s vectors which sums to one of predictable vectors.
Clearly, this is a basic linear algebra problem. Let M be the matrix that has
as columns vectors from the current window. For each predictable vector ṽ we
solve the equation M × x = ṽ. A solution vector x reveals shares locations. To
avoid false-positive solutions the number |P | of encryptions should be increased
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proportionally to the window size. For the same matrix M we need to check
all predictable vectors. Instead of solving the entire system each time, we pre-
compute the LU decomposition of the matrix and then use it for checking each
predictable vector much faster. We estimate the data complexity |P | = O(n) and
the time complexity O(nω+n2k), where ω is the matrix multiplication exponent.
This attack was independently discovered by the CryptoExperts team in [23] and
among other techniques was successfully applied [22] during the WhibOx 2017
competition [17] in order to break the winning challenge “Adoring Poitras”.

We conclude that classic Boolean masking is insecure regardless of the num-
ber of shares. The attack complexity is polynomial in the circuit size. Even
though it may not be highly practical to apply the attack to entire circuits con-
taining millions of nodes, good window coverage makes the attack much more
efficient. The attack becomes especially dangerous if a window containing all
shares may be located by analyzing the circuit. Indeed, this is how team Cryp-
toExperts attacked the main circuit of the winning challenge of the WhibOx
competition. They obtained a minimized circuit containing around 300000 nodes;
they draw the data dependency graph (DDG) of the top 5% nodes and visually
located several groups of 50 nodes and successfully mounted the described linear
attack on each of the groups.

Generalization through linearization. The described linear attack suggests that
a nonlinear masking scheme has to be used. We show that the attack can be gen-
eralized to nonlinear masking schemes as well. Of course, the complexity grows
faster. Still, the attack can be used to estimate the security of such implemen-
tations.

The generalization is based on the linearization technique. The idea is to com-
pute products of vectors (with bitwise AND) and include them as possible shares
of the predictable vector. Each such product corresponds to a possible monomial
in the algebraic normal form of the decoder function. The correct linear combi-
nation of monomials equals to the decoder function. The corresponding linear
combination of products of vectors equals to the correct predictable vector.

The set of products may be filtered. If a bound on the degree of the decoder
function is known, products with higher degrees are not included. For example,
for a quadratic decoder function only the vectors vi and all pairwise products
vivj should be included.

The data complexity is dependent on the number of possible monomials
in the decoder function. For simplicity, we consider an upper bound d on the
algebraic degree. Then the number of possible monomials is equal to σ(n, d) =∑d

i=0

(
n
i

)
. This generalized attack has the data complexity O(σ(n, d)) and the

time complexity O(σ(n, d)ω + σ(n, d)2k).
We remark that it is enough to consider only nonlinear (e.g. AND, OR) and

input nodes inside the current window. All other nodes are affine combinations
of these and are redundant. We formalize this fact in the following proposition.

Proposition 1. Let C be a Boolean circuit. Let N (C) be the set of all func-
tions computed in the circuit’s nonlinear nodes (i.e. any node except XOR, NOT,
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NXOR) together with functions returning input bits. Then for any integer d ≥ 1
the sets F (d)(C) and N (d)(C) are the equal.

Proof. Note that for any set V we have V(d) = (V(1))(d). Therefore, we only
need to prove that F (1)(C) = N (1)(C). It is sufficient to show that any function
from F belongs to N (1)(C). This can be easily proved by induction on circuit
levels. ut

We describe an interesting scenario where this generalized attack is highly
relevant. Assume that a white-box designer first applies classic Boolean masking
to the reference circuit. Afterwards, each intermediate bit is encoded by e.g. 8
bits using a random nonlinear encoding. The masked circuit then is transformed
into a network of lookup tables which perform operations on the encoded bits
without explicitly decoding them. The motivation for such scheme is that there
will be no correlation between a single 8-bit encoding and any predictable vector
because of the linear masking applied under the hood. For the generalized linear
attack the degree bound is equal to 8 and normally, the time complexity would
be impractical. However, in this case the lookup tables reveal the locations of
encodings, i.e. the 8-bit groups. Therefore, we include only 28 products from
each group and no products across the groups. The attack works because the
predictable value is a linear combination of XOR-shares which in turn are linear
combinations of products (monomials) from each group.

Value-restriction analysis. The described algebraic attack can be modified to
cover a broader range of masking schemes. Consider a low-degree combination
of vectors from the current window and assume that the function it computes
can be expressed as s∧ r, where s is the correct predictable value and r is some
uniform pseudorandom (unrelated) value. The basic algebraic attack will not
succeed because s ∧ r is not always equal to the predictable value s. However,
it is possible to extend the attack to exploit the leakage of s ∧ r. The adversary
chooses a set of inputs for which the predictable value s is equal to 0 and adds a
single random input for which the predictable value is equal to 1 (the adversary
may need to guess a part of the key to compute the predictable value). Then with
probability 1/2 he is expected to find a vector with all bits equal to 0 except the
last bit equal to 1. In case the predictable value is wrong, the chance of finding
such vector is exponentially small in the size of the plaintext set. The same
approach works for more complex leaked functions. In particular, the leaked
function may depend on multiple predictable values, e.g. on all output bits of an
S-Box. The only requirement is that the leaked function must be constant for at
least one assignment of the predictable values (except of course the case when
the leaked function is constant on all inputs). Note that the adversary must be
able to find the correct assignment of predictable values. As a conclusion, this
attack variant reveals a stronger constraint that a masking scheme must satisfy
in order to be secure.

Algebraic attack in the presence of noise. In spirit of the value-restriction analy-
sis, we continue to explore classes of exploitable leaking functions. Assume that
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a low-degree combination of vectors from the current window corresponds to a
function s⊕ e, where s is the correct predictable vector and e is a function with
a low Hamming weight. The function e may be unpredictable and we consider it
as noise. The problem of solving a noisy system of linear equations is well known
as Learning Parity with Noise (LPN). It is equivalent to the problem of decod-
ing random linear codes. The best known algorithms have exponential running
time. We refer to a recent result by Both et al. [8] where the authors propose
an algorithm with approximated complexity 21.3nr, where n is the number of
unknown variables and r is the noise ratio. Several algorithms with low memory
consumption were recently proposed by Esser et al. [18]. The best algorithm for
the problem depends on the exact instance parameters. The number of variables
in our case corresponds to the number of monomials considered, i.e. the window
size n in the linear attack and σ(n, d) in the generalized attack. For example, if
a linear combination of vectors from a 100-node window leaks s with noise ratio
1/4 then the LPN-based attack will take time 232.5 using the algorithm from [8].

3.3 Fault Attacks

Initially, we assumed that the adversary knows the obfuscated circuit and can
analyze it in an arbitrary way. Still, the attacks described in previous sections
were passive: they relied on analysis of computed intermediate values during
encryptions of random plaintexts. In this section we show that active attacks
(fault injections) can also be used to attack masked white-box implementations.
We assume that the classic Boolean masking is used. We also allow any form of
integrity protection which protects the values but does not protect the shares.

Two-Share Fault Injection. The main goal of a fault attack against masking is
to locate shares of the masked values. Observe that flipping two XOR-shares of
a value does not change the value. The attack follows:

1. Encrypt a random plaintext p and save the ciphertext E(p).

2. Choose two intermediate nodes ci, cj and flip them during encryption of p.
Denote the ciphertext by E′(p).

3. If E(p) = E′(p), conclude that ci, cj are shares of the same value (possibly
repeat check for other plaintexts). Otherwise try another two intermediate
nodes.

As shares of the same value should be placed closely in the circuit, a window
coverage can be used to improve efficiency of this attack too. The idea is to
choose two shares only inside each window and not across the windows.

The described attack allows to locate all shares of each value, independently
of the sharing degree. The attack performs O(n2) encryptions and has time
complexity O(|C|n2).
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One-Share Fault Injection. Recall that we allow an integrity protection on the
values but not on the shares. One possible way an integrity protection may be
implemented is to perform the computations twice and spread the difference
between the two results across the output in some deterministic way. In such
way small errors are amplified into random ciphertext differences. In case of
such protection or absence of any protection we can improve the efficiency of the
fault attack.

The main idea for improvements comes from the following observation: if
we flip any single share of the same value, the masked value will be flipped as
well. This results in a fault injected in the unmasked circuit. We assume that
the circuit output does not depend on which share was faulted. This observation
allows to split the two-share fault attack and perform fault injection only for
each node instead of each pair of nodes, at the cost of additional storage:

1. Encrypt a random plaintext p and save the ciphertext E(p).
2. For each intermediate node ci:

(a) Flip the value of ci during encryption of p. Denote the ciphertext by
E′i(p).

(b) Store E′i(p) in a table.
(c) If E′i(p) was already stored in the table as E′j(p) we learn that nodes ci

and cj are shares of the same value.

The attack performs O(n) encryptions, which requires O(|C|n) time. It pro-
vides substantial improvement over previous attack, though it requires stronger
assumption about the implementation. The most relevant counter-example is
when the integrity protection does not amplify the error but simply returns a
fixed output for any detected error. In a sense, such protection does not reveal
in the output any information about the fault. On the other hand, it may be
possible to locate the error checking part in the circuit and remove the protec-
tion.

The attacks can be adapted for nonlinear masking as well. In such case the
injected fault may leave the masked value unflipped. When a zero difference is ob-
served in the output, the fault injection should be repeated for other plaintexts.
As plaintext is the only source of pseudorandomness, changing the plaintext
should result in different values of shares. Flipping a share would result in flip-
ping the masked value with nonzero probability. The exact probability depends
on the decoder function.

Remark. The two described attacks perform faults on nodes of the circuit. In
some cases, a node value may be used as a share of multiple different values,
for example, if the same pseudorandom value is used to mask several values. A
more general variant of attacks would inject faults on wires. However, multiple
wires may need to be faulted in order to succeed. The goal is to get the same
faulted output by flipping different nodes or wires as such an event uncovers
important structural information about the white-box design (if the space of
faulted outputs is large enough).
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4 Countermeasures

The attacks described in the previous section significantly narrow down the space
of masking schemes useful for white-box obfuscation. We deduce the following
main constraints:

1. The number of shares should be high enough to avoid combinatorial attacks.
Moreover, the minimum number of shares that correlate with the reference
circuit values should be high as well.

2. There should be no low-degree decoders in order to prevent the algebraic
attack.

3. The circuit must not admit analysis that allows to locate shares of the same
values.

4. The integrity of pseudorandom shares must be protected.

The aim of this paper is to analyze the possibility of using masking schemes
with relatively small number of shares for white-box cryptography. The com-
plexity of combinatorial attacks splits into two parts: locating the shares and
correlating them. If the number of shares is very high then the correlation part
becomes infeasible. Possibly, in such case it is not even necessary to hide the
location of shares. The downside is that designing such masking schemes is quite
challenging and this direction leads into rather theoretical constructions like in-
distinguishability obfuscation [20] from fully homomorphic encryption and other
cryptographic primitives. We aim to find more practical obfuscation techniques.
Therefore, we study obfuscation methods relying on hardness of locating shares
inside the obfuscated circuit. Such obfuscation is a challenging problem. In the
light of described attacks, we suggest a modular approach to solve this problem.
We split the problem into two components:

1. (Value Hiding) Protection against generic passive attacks that do not rely
on the analysis of the circuit.

2. (Structure Hiding) Protection against circuit analysis and fault injections.

Value Hiding. The first component basically requires designing a proper mask-
ing scheme. As we have shown, the requirements are much stronger than for the
usual masking in the side-channel setting (e.g. the provably secure masking by
Ishai et al. [26]). To the best of our knowledge, this direction was not studied in
the literature. However, there is a closely related notion: fully homomorphic en-
cryption (FHE). Indeed, it can be seen as an extreme class of masking schemes.
FHE encryption is a process of creating shares of a secret value and the FHE’s
evaluation functions allow to perform arbitrary computations on the ciphertexts
(shares) without leaking the secret value. In fact, any secure FHE scheme would
solve the “Value Hiding” problem (even though the adversary may learn the key
from the decryption phase, the locations of intermediate shares are unknown
and the scheme may remain secure). However, this direction leads to very inef-
ficient schemes: typical FHE schemes have very large ciphertexts and complex
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circuits. This contradicts our goal to investigate schemes with reasonable number
of shares.

We suggest to further split the first component into two parts. The first
part is protection against algebraic attacks. It is a nonlinear masking scheme
without low-degree decoders. However, we allow the scheme to be imperfect: the
computed values may correlate with the secret values. Though one has to be
careful and avoid very strong correlation, otherwise the LPN-based variant of
the algebraic attack may be applicable. The second part is protection against
correlation attacks. It can be implemented using a provably secure linear masking
scheme on top of the nonlinear masking from the first part. The two parts may
be composed in the following way: the algebraically secure nonlinear masking
scheme is applied to the reference circuit and afterwards the linear masking
scheme is applied to the transformed circuit. We investigate possibilities for the
algebraically secure nonlinear masking in the next section.

Structure Hiding The second component resembles what is usually understood
by software obfuscation. Indeed, the usual software obfuscation aims to obfuscate
the control flow graph and hide important operations. Often such obfuscation
includes integrity protections to avoid patching. The computed values are not
hidden but merely blended among redundant values computed by dummy in-
structions. For circuits the problem is less obscure and ad hoc. In particular,
an integrity protection scheme for circuits was proposed by Ishai et al. in [25].
Though, formalizing the ”protection against analysis” is not trivial. Applying
structure hiding protection on top of value hiding protection should secure the
implementation from attacks described in Section 3. We do not investigate struc-
ture hiding further in this paper and leave it as future work.

We note that it is not possible to formally separate value hiding from struc-
ture hiding. If we give the adversary computed vectors of values even in shuffled
order, she can reconstruct the circuit in reasonable time and then analyze it.
One possible direction is to mix the value vectors linearly by a random linear
mapping before giving to the adversary. It may be a difficult problem for the ad-
versary to recover the circuit or its parts from such input. However, such model
makes the correlation DCA attack almost inapplicable, since a lot of values are
unnaturally mixed up and the correlations are not predictable, even though it is
perfectly possible that the original unmixed values have strong correlations with
secret variables.

5 Algebraically Secure Masking Schemes

The algebraic attack is very powerful and the classic XOR-sharing masking
schemes can not withstand it. Therefore, it is important to develop new masking
schemes which are secure against the algebraic attack. In this section we formal-
ize security against the algebraic attack and propose a provably first-order secure
construction.

We start by describing the attack model and formalizing security against
the algebraic attack in Section 5.1. Ways of proving security in the new model
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are developed in Section 5.2. Next, we analyze composability in Section 5.3. An
algorithm for checking security of gadgets is proposed in Section 5.4. Finally, we
propose a concrete secure gadget in Section 5.5.

5.1 Security Model

We extract a subproblem from the whitebox design problem. Recall that dur-
ing the algebraic attack, the adversary tries to find a function f of low degree
d such that when applied to values computed in the nodes of the obfuscated
circuit it would produce some predictable value. Typically, predictable value is
a value computed using the reference circuit and it depends on a small frac-
tion of the key. Our aim is to “hide” predictable values among unpredictable
values. The unpredictability of computed functions may only come from the se-
cret key/randomness used during the obfuscation process. In order to develop
a formal attack model we allow the obfuscated circuit to use random bits. We
underline that randomness here is merely an abstraction required for provable
security arguments.

In the real whitebox implementation the random bits may be implemented
as pseudorandom values computed from the input. Of course the pseudoran-
dom generation part has to be protected as well. However, the white-box de-
signer is free to choose arbitrary pseudorandom generator and its protection
is an easier task then obfuscating a general circuit. For example, the designer
can choose a random circuit satisfying some basic properties like computing a
balanced function. The resulting circuit protected against the algebraic attack
using pseudorandomly generated bits must further be obfuscated and protected
from removal of the pseudorandomness. This is type of protection that we called
structure hiding in Section 4 and it is out of scope of this paper.

We note a strong similarity between the algebraic attack and the side channel
probing attack. In the t-th order probing attack the adversary may observe t
intermediate values computed in the circuit. In the d-th order algebraic attack
the adversary may observe all intermediate values but she can combine them
only with a function of degree at most d.

The main idea of masking schemes is to hide the values computed in the
reference circuit using (pseudo)random masks. We assume that the adversary
knows the reference circuit. Given the inputs (e.g. a plaintext and a key) she
can compute all intermediate values. The final goal of the adversary is to re-
cover the key of an obfuscated implementation or, at least, learn some partial
information about it. To formalize this, we adapt classic semantic security and
indistinguishability ideas. The adversary may ask to encrypt two different vec-
tors of inputs. The challenger chooses randomly one of the vectors and provides
an oracle modelling the algebraic attack to the adversary. The goal of the adver-
sary is to decide which of the vectors was encrypted. If she can not do this, then
she can not learn any information about the hidden inputs (e.g. the plaintext
and the key). Note that in this model the adversary may choose many different
keys which is not possible in the white-box scenario. However, it leads to sim-
pler definitions since we do not have to distinguish plaintext and key and we
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just treat them as one input. It is possible to add a constraint allowing to choose
only a single key per input vector, but this would not lead to any improvement.

The oracle modelling the algebraic attack should not reveal too much infor-
mation about computed values. Otherwise, it may be possible for the adversary
to reconstruct the obfuscated circuit and then we would arrive in the general
white-box scenario. We model the attack as follows: the adversary chooses the
target function among linear (or higher-order) combinations of the intermediate
functions in the circuit and she tries to guess its values during encryptions of the
inputs from one of the two vectors. Note that some functions may have strong
correlation with some function of the input. For a small vector of inputs the
adversary may simply guess the value, ask the oracle a few times until the guess
is correct and then compute the correlations. However, in the real algebraic at-
tack this is not possible due to presence of ”noise” in the circuit. For a small
number of plaintexts there will be a lot of false matches for any ”predicted”
value, because there are many different functions computed in the circuit and it
is highly probable that there is a linear combination of them matching an arbi-
trary value. We take this into account and require that only the function chosen
by the adversary has to match the predicted value. As a result, the adversary
can not accurately predict values of any single function in the d-th order closure
of the circuit functions in order to run the linear algebra attack.

The circuit in the model can not take the input as it is, because these values
allow for a simple distinguisher. Since we are developing a masking scheme, we
assume that the inputs are already masked using random shares. This goes in
parallel with the classic Boolean masking scenarios. We would like to stress that
this is necessary in order to formally analyze the security of masked computa-
tions. Therefore, we do not consider the initial masking and the final un-masking
processes. Indeed, these procedures are not relevant for the algebraic attack since
they are not related to the reference circuit.

Taking into account the above discussions, we propose the following game-
based security definition:

Definition 2 (Prediction Security (d-PS)). Let C : FN ′

2 × FRC
2 → FM

2 be a

Boolean circuit, E : FN
2 × FRE

2 → FN ′

2 an arbitrary function, d ≥ 1 an integer
and A an adversary. Consider the following security game:

Experiment PSC,E,d(A, b):

(f̃ , x[0], x[1], ỹ)← A(C,E, d), where

f̃ ∈ F (d)(C), x[l] = (x
[l]
1 , . . . , x

[l]
Q ), x

[l]
i ∈ FN

2 , ỹ ∈ FQ
2

(r1, . . . , rQ)
$←− (FRE

2 )Q

(r̃1, . . . , r̃Q)
$←− (FRC

2 )Q

For any f ∈ F (d)(C) define

y(f) =
(
f
(
E(x

[b]
1 , r1), r̃1

)
, . . . , f

(
E(x

[b]
Q , rQ), r̃Q

))
F ← {f ∈ F (d)(C) | y(f) = ỹ}
return F = {f̃}
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In the above experiment,
$←− means sampling uniformly at random. Define the

advantage of an adversary A as

AdvPSC,E,d[A] =
∣∣∣Pr[PSC,E,d(A, 0) = 1]− Pr[PSC,E,d(A, 1) = 1]

∣∣∣.
The pair (C,E) is said to be d-th order prediction-secure (d-PS) if for any

adversary A the advantage is negligible.

Example. Consider a white-box AES implementation with a first-order Boolean
masking protection. Assume that there are two nodes in the circuit computing
two masks of an output bit of an S-Box in the first round. Denote the func-
tions computed by masks as f1, f2. The adversary finds these nodes and chooses
f̃ = f1 ⊕ f2 ∈ F (1)(C). She also chooses sufficiently large Q and random vec-
tors x[0] and x[1] of Q (plaintext, key) pairs. For example, the same key may
be used for all pairs in x[0] and another key for all pairs in x[1]. The adversary

computes ỹ = (s(x
[0]
1 ), ..., s(x

[0]
Q )) (where function s computes the output bit of

the attacked S-Box in the first round from the plaintext and the key). In this
case the adversary succeeds in the game with advantage close to 1 and the im-
plementation is not prediction-secure (indeed, the adversary easily distinguishes
the two keys). Note that we required the adversary to find the nodes in order
to choose the right function f̃ . Since the adversary is unbounded, this is just a
technical requirement. In the real attack the adversary does not need to guess
the function.

The function E in the definition should be referred to as an encoding function.
Though the definition allows the encoding function to be arbitrary, we are mainly
interested in the encodings with useful semantics, i.e. masking. Moreover, we
expect the encoding to be lightweight and universal: main computations should
be performed in the circuit C.

The circuit C can be completely unobfuscated but still prediction-secure,
because the adversary is forced to consider the whole vector space F (d)(C). In a
real white-box implementation this restriction is expected to be enforced by the
structure-hiding protection.

We now discuss possible attacks that are not covered by this definition. The
definition ensures that any single function from F (d)(C) is unpredictable. How-
ever, it may be possible that multiple functions jointly exhibit a behaviour that
leads to an attack. For example, the dimension of F (d)(C) may differ depending
on the input being encoded. The definition also does not cover the LPN-based
attack.

5.2 Security Analysis

In the experiment both the encoding function E and the circuit C use random-
ness. However, the d-th order closure is computed only using functions from
F(C). Still, the inputs of C include the outputs of E and that is how the ran-
domness used in E affects the computations in C. In other words, E generates
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some distribution in the inputs of C. Therefore, in order to study functions from
F (d)(C) we need to compose them with E.

It is crucial to study how functions from F (d)(C) composed with E behave
with a fixed input x. Consider a function f ∈ F (d)(C). If the function f(E(x, ·), ·)
is constant for some x and the function f(E(x′, ·), ·) is non-constant for some
x′ 6= x (or is constant but f(E(x, ·), ·) 6= f(E(x′, ·), ·), then these inputs are
distinguishable and the pair (C,E) is insecure3. More generally, if for some
f ∈ F (d)(C) \ {0,1} and for some x ∈ FN

2 the function f(E(x, ·), ·) is non-
constant but has a high bias (i.e. it has very low or very high weight), then the
adversary still may have high chances to predict its output. We conclude that
for all functions f ∈ F (d)(C)\{0,1} and for all x ∈ FN

2 the function f(E(x, ·), ·)
should have a low bias.

We now show that this requirement is enough to achieve d-th order prediction
security if there are enough random bits used in the main circuit. The following
proposition gives an upper bound on d-PS advantage from the maximum bias
and the number of random bits.

Definition 3. Let C,E be defined as above. For any function f ∈ F (d)(C) \
{0,1} and for any x ∈ FN

2 define fx : FRE
2 × FRC

2 → F2 given by fx(re, rc) =
f(E(x, re), rc) and denote the set of all such functions R:

R = {f(E(x, ·), ·) | f ∈ F (d)(C) \ {0,1}, x ∈ FN
2 }.

Proposition 2. Let ε be the maximum bias among all functions from R:

ε = max
fx∈R

E(fx).

Let e = − log2 (1/2 + ε). Then for any adversary A choosing vectors of size Q

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ). (1)

Proof. First, we prove that AdvPSC,E,d[A] ≤ 2Q−RC . If f̃ chosen by the adversary
is an affine function of random bits r (independent of x), then it is clear that
the advantage is zero. Otherwise, we compute the probability of the event when
the predicted value ỹ matches some linear function of random bits r. There are
RC independent uniformly distributed random vectors r1, . . . , rRC

from FQ
2 . Let

p be the probability of the event that they span the whole space FQ
2 . In this case

the experiment returns 0, because any ỹ matches a function different from the
one chosen by the adversary. The following holds (see e.g. [19]):

p =

Q−1∏
i=0

(
1− 2i−RC

)
, log2 (1− p) ≤ Q−RC .

We conclude that p ≥ 1−2Q−RC and the advantage is upper bounded by 2Q−RC .

3 Unless f(E(x′, ·), ·) has extremely high bias and is indistinguishable from the con-
stant function on practice.
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Now we prove that AdvPSC,E,d[A] ≤ 2−eQ. We simply bound the probability

that the adversary submits f̃ , ỹ such that y(f̃) = ỹ in the experiment. Since
elements of y(f̃) are independent, the probability to have y(f̃) = ỹ is maximized
when each bit of ỹ equals to the most probable value of the respective bit of
y(f̃) (the adversary would also need to use the least probable value at least once
to avoid matching with the constant functions). For each bit the probability is
bounded by 1/2 + ε, therefore for Q bits the bound is (1/2 + ε)Q = 2−eQ. ut

Note that the bounds are quite loose. The randomness-based term takes into
account only single random bits from rc. The randomness in the inputs of C
(generated from re in the encoding process) as well as all intermediate values
computed in the circuit add much more noise (note that we can not directly
include re since it is used in the encoding process and not in the main circuit).
The bias-based term bounds only the probability of predicting the output for
a single vector of inputs. It does not include the cost of distinguishing the two
vectors. We stick to these bounds as our current goal is to provide a simple and
sound provably secure protection.

Assume that we know the maximum bias ε in R and we want to achieve a
better security bound. We can always add ”dummy” random bits to the circuit.
Note that this leads to stronger requirements for the structure-hiding protection.
It follows that given the maximum bias, we can compute how many ”dummy”
random bits are needed to achieve any required security level:

Corollary 1. Let k be a positive integer. Then for any adversary A

AdvPSC,E,d[A] ≤ 2−k if

e > 0 and RC ≥ k · (1 +
1

e
).

Proof. Consider each term of the bound from Proposition 2:

Q−RC ≤ −k or − eQ ≤ −k.

The result follows from the second term if Q ≥ k
e . To cover all other Q we need

RC ≥ Q+ k ≥ k · (1 + 1
e ). ut

We remark that the advantage bound is information-theoretic as we do not
constraint the adversary’s powers. This is an effect of the attack formalization
given in Definition 2: the attack requires that the adversary predicts the chosen
function precisely. An unbounded adversary could simply iterate over all func-
tions f ∈ F (d)(C) and e.g. compute the bias. We argue that this kind of attack
is not the linear algebra attack that we consider. Furthermore, the attack model
restricts the adversary to use the full circuit C. Without this restriction it would
be possible to choose a part of the circuit (a window) to reduce the noise. In our
model we expect that a structure-hiding protection is used to prevent this.
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5.3 First-order Secure Construction

Given the notion of prediction security we are now interested in developing secure
constructions. A common strategy is to develop small secure circuits (called
gadgets) and compose them in a provably secure way. Our definition does not
immediately lead to composability, because it includes the encoding step which
is not expected to be present in the intermediate gadgets. In order to proceed,
we split up the prediction security into circuit security and encoding security.
The new notions are stronger in order to get proofs of secure composability. Note
that they are limited to the first-order security (d = 1) and it is not obvious how
to extend them to higher orders.

Definition 4 (Circuit Algebraic Security (ε-1-AS)). Let C(x, r) : FN ′

2 ×
FRC
2 → FM

2 be a Boolean circuit. Then C is called first-order algebraically ε-
secure (ε-1-AS) if for any f ∈ F (1)(C) \ {0,1} one of the following conditions
holds:

1. f is an affine function of x,
2. for any x ∈ FN ′

2 E(f(x, ·)) ≤ ε, where f(x, ·) : FRC
2 → F2

Definition 5 (Encoding Algebraic Security (ε-1-AS)). Let E(x, r) : FN
2 ×

FRE
2 → FN ′

2 be an arbitrary encoding function. Let Y be the set of the coordinate
functions of E (i.e. functions given by the outputs bits of E). The function E is
called a first-order algebraically ε-secure encoding (ε-1-AS) if for any function
f ∈ Y(1) \ {0,1} and any x ∈ FN

2 the bias of the function f(x, ·) : FRE
2 → F2 is

not greater than ε:
max

f∈Y(1)\{0,1},x∈FN
2

E(f(x, ·)) ≤ ε.

The following proposition shows that if both an encoding and a circuit are
algebraically secure, then their combination is prediction-secure:

Proposition 3. Let C : FN ′

2 × FRC
2 → FM

2 be a Boolean circuit and let E :

FN
2 × FRE

2 → FN ′

2 be an arbitrary encoding function.
If C is εC-1-AS circuit and E is εE-1-AS encoding, then

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ),

where e = − log2 (1/2 +max(εC , εE)).

Proof. If the function f̃ chosen by the adversary is an affine combination of the
input x of C, then the encoding security of E applies leading to the bound with
e = − log2 (1/2 + εE). Otherwise, εC-1-AS security of C provides the bound
with e = − log2 (1/2 + εC) (the bias bound applies for any fixed input x of C,
therefore it applies for any distribution of x generated by E as well). ut

Finally, we show that ε-1-AS circuits are composable, i.e. are secure gadgets.
We can compose gadgets in arbitrary ways and then join the final circuit with a
secure encoding function to obtain a prediction-secure construction.
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Proposition 4 (ε-1-AS Composability). Consider ε-1-AS circuits C1(x1, r1)
and C2(x2, r2). Let C be the circuit obtained by connecting the output of C1 to
the input x2 of C2 and letting the input r2 of C2 be the extra input of C:

C(x1, (r1, r2)) = C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also a ε-1-AS circuit.

Proof. Consider an arbitrary function f̃(x1, r1, r2) ∈ F (1)(C). By linearity, it
can be written as u⊕ v, where u ∈ F (1)(C1) and v is a function from F (1)(C2)
composed with C1 (by connecting the output of C1 to the input x2 of C2). Since
C2 is ε-1-AS, v is either an affine function of x2 (which belongs to F (1)(C1)) or
has a bias not greater than ε when x2 is fixed (i.e. when x1, r1 are fixed). In the
first case, we get that f̃ belongs to F (1)(C1) and security follows from ε-1-AS
security of C1. In the second case, observe that the bias of v can not exceed ε
for any fixed x2 and, therefore, it can not exceed ε for any distribution of x2.
Moreover, u is independent from r2. Therefore, the bias of f̃ = u ⊕ v is not
greater than the bias of v which is bounded by ε since C2 is a ε-1-AS circuit. ut

This result shows that due to frequent use of fresh randomness it is guaran-
teed that the maximum bias does not grow when we build large algebraically
secure circuits from smaller ones. It means that ε-1-AS circuits offer a solid pro-
tection against the LPN-based variant of the algebraic attack as well. The com-
plexity of LPN algorithms grows exponentially with the number of unknowns.
Therefore, increasing the number of random nodes as suggested by the Corol-
lary 1 allows to reach any required level of security against LPN attacks at the
same time. Exact required number of random nodes depends on the maximum
bias ε and chosen LPN algorithm.

5.4 Verifying Algebraic Security

Proposition 4 shows that we can compose algebraically secure circuits. Large
circuits can be constructed from a set of gadgets - small algebraically secure
circuits with some useful semantics. In order to design new gadgets we need
to be able to check their algebraic security. The simplest way to get a bound
on bias is based on looking at the algebraic degree of computed functions: the
minimum weight of a nonzero function of n bits of degree d is equal to 2n−d (see
e.g. [12]). Therefore, we can think about the following algorithm for checking
a circuit C(x, rC): for any fixed input x compute the ANFs of the functions
computed in C(x, ·) (functions of rC) and return the maximum observed degree.
The degree can not grow when functions are combined linearly. Therefore, the
bias bound can not grow as well, except when the resulting function is constant
in which case the bias is maximal and the gadget may be insecure. As a result,
our method for verifying algebraic security splits into two parts:

1. verify that there is no bias equal to 1/2 among restrictions of functions from
F (1)(C) except the constant functions and affine functions of x;
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2. compute the maximum degree among all restrictions of the intermediate
functions and compute the corresponding bias bound.

The second step is straight-forward. We describe an algorithm that solves
the first step.

Consider a circuit C(x, r) : FN
2 × FR

2 → FM
2 . For all c ∈ FN

2 let Lc be the
linear map that returns the restriction x = c of a function f from F (1)(C) (e.g. if
functions are represented as truth table vectors then Lc returns the truth table
entries corresponding to the case x = c). Note that the domain of Lc is defined
to be the subspace F (1)(C).

We now give an equivalent condition for the first part of the verification. It
serves as a basis for the verification algorithm given in Algorithm 2.

Proposition 5. The circuit C is ε-1-AS for some ε < 1/2 if and only if for all
c the following holds:

dim kerLc = N. (2)

Proof. For any c ∈ FN
2 let Fc be the subspace of F (1)(C) containing functions

that are constant when x is fixed to c. Also let F =
⋃

c Fc. ε < 1/2 requires that
any f ∈ F (1)(C) either belongs to X (1)(C) or is non-constant for any fixed x. It
is equivalent to require that F is equal to X (1)(C). Note that each Fc includes
X (1)(C) as a subset. Therefore, F =

⋃
c Fc is equal to X (1)(C) if and only if for

all c Fc = X (1)(C). Since these are linear subspaces then we can compare their
dimensions.
X (1)(C) is spanned by all xi and the constant-1 function:

dimX (1)(C) = N + 1; (3)

The constant-1 function always belongs to F (1)(C) and to any of the Fc. The
subspace of functions that are constant on the restriction can be obtained by
adding the constant-1 function to the subspace of functions that are equal to
zero on the restriction:

Fc = kerLc ⊕ {0,1}, (4)

dimFc = dim kerLc + 1. (5)

By comparing the dimensions obtained in Equations 3,5 we prove the propo-
sition. ut

The algorithm operates on functions using their truth tables. The truth tables
are obtained by evaluating the circuit on all possible inputs and recording the
values computed in each node. The set of computed truth tables corresponds
to F(C). By removing redundant vectors we can compute a basis B of F (1)(C)
(and also ensure presence of the constant-1 vector). Then, for each c we take the
part of each basis vector that corresponds to the fixed x = c (and r taking all
possible values). These parts form the subspace ImLc. We compute a basis Bc
of these parts. Finally, we verify that

dim kerLc = dimF (1)(C)− dim ImLc = |B| − |Bc| = N. (6)

The algorithm is implemented in SageMath [31] and publicly available in [6].
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Algorithm 2 Verification of Algebraic Security

Input: a Boolean circuit C(x, r) : FN
2 × FR

2 → FM
2 ;

Output: Secure if the circuit C is ε-1-AS for some ε < 0.5,
Insecure otherwise.

1: evaluate C on all possible inputs;
2: associate the vector of computed values to each node of C;
3: let V be the set of all associated vectors;
4: let B be a basis of V(1);
5: for all c ∈ FN

2 do
6: let Vc be the set of all vectors from B restricted to the case of x = c;
7: let Bc be a basis of V(1)

c ;
8: if |B| − |Bc| 6= N then
9: return Insecure;

10: return Secure.

Complexity analysis. The truth tables have size 2N+R bits. Computing the basis
of F (1)(C) takes time O(min(2N+R, |C|)ω). The same holds for ImLc except
that the vectors have size 2R and for small R this can be done more efficiently.
The total complexity is O(min(2N+R, |C|)ω + 2Nmin(2R, |C|)ω). Recall that by
proposition 1 we should consider only the nonlinear nodes of the circuit.

5.5 Algebraically Secure Gadgets

In this section we develop an algebraically secure masking scheme. First we give
a broad definition of a masking scheme which we will use further. Then we
describe concrete circuits which can be verified to be first-order algebraically
secure gadgets using Algorithm 2.

Definition 6 (Masking Scheme). An N -bit masking scheme is defined by an
encoding function Encode : F2 × FR

2 → FN
2 , a decoding function Decode : FN

2 →
F2 and a set of triplets {(�, Eval�, C�), . . .} where each triplet consists of:

1. a Boolean operator � : F2 × F2 → F2,
2. a circuit Eval� : FN

2 × FN
2 × FR′

2 → FN
2 .

For any r ∈ FR
2 and any x ∈ F2 it must hold that Decode(Encode(x, r)) = x.

Moreover, the following equation must be satisfied for all operators � and all
values r′ ∈ FR′

2 , x1 ∈ FN
2 , x2 ∈ FN

2 :

Decode(Eval�(x1, x2, r
′)) = Decode(x1)�Decode(x2).

The degree of the masking scheme is the algebraic degree of the Decode func-
tion. The masking scheme is called nonlinear if its degree is greater than 1.

Note that Eval� takes three arguments in our definition. The first two are
shares of the secret values and the third one is optional randomness that must
not change the secret values.
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Minimalist Quadratic Masking. Since the decoding function has to be at
least quadratic, we need at least two bits to encode a single bit. For two bits all
nonlinear decoding functions are linear equivalent to a quadratic monomial being
simply the product of the two input bits. Unfortunately, this decoding function is
vulnerable to the linear algebra attack. Any quadratic function with 2-bit input
is unbalanced. Therefore, one of the reference bit values can be encoded by 3
different values and the other value has only 1 possible encoding. For example,
if the value is equal to 1 and the decoding function is simply AND, the input
has to be equal to (1, 1). In this case there is no randomness involved and the
hidden value is leaked. The conclusion is that any value of the original bit should
include randomness in its encoding. In particular, the decoding function can not
be a point function.

We move on to 3-bit encodings. The simplest quadratic function using all 3
input bits a, b, c is ab⊕ c. Note the similarity with the broken 2-bit scheme: the
quadratic monomial ab is simply linearly masked by c. However, this linear mask
is enough to prevent the attack: in this case Decode(a, b, c) = 1 does not imply
a = 1 or b = 1. In fact, such Decode is balanced: both 0 and 1 have exactly 4
preimages. We first describe an insecure yet simple masking scheme based on this
decoding function in Figure 1. It is easy to verify that EvalXOR and EvalAND

satisfy the requirements from Definition 6. In addition, Refresh(a, r) returns
fresh random encoding of a, meaning that Decode(a) = Decode(Refresh(a, r))
for any r and new encoding reveals no information about the old encoding.

Fig. 1: An Insecure Quadratic Masking Scheme.

Encode(x, ra, rb) = (ra, rb, rarb ⊕ x), (7)

Decode(a, b, c) = ab⊕ c, (8)

EvalXOR((a, b, c), (d, e, f)) = (a⊕ d, b⊕ e, ae⊕ bd⊕ c⊕ f), (9)

EvalAND((a, b, c), (d, e, f)) = (ae, bd, (cd)e⊕ a(bf)⊕ cf), (10)

Refresh((a, b, c), (ra, rb)) = (a⊕ ra, b⊕ rb, c⊕ rab⊕ rba⊕ rarb). (11)

We now observe that Refresh is not ε-1-AS for any ε < 1/2: the computed
term rab is constant when b is fixed to 0 and equals to ra otherwise (leading to
ε = 1/2). This can be fixed by using an extra random bit rc to mask a, b through
the computations:

Refresh((a, b, c), (ra, rb, rc)) =(
a⊕ ra, b⊕ rb, c⊕ ra(b⊕ rc)⊕ rb(a⊕ rc)⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc

)
. (12)

The new Refresh function can be verified to be secure using the algorithm
from Section 5.4. Moreover, the circuit computing EvalXOR applied to refreshed
inputs is secure as well. However, EvalAND is not secure even if composed with
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the fixed Refresh gadget. Consider the linear combination of computed terms
a(bf) ⊕ cf = (ab ⊕ c)f . Here the variables are refreshed masks and can not be
fixed by the adversary. However, the refreshing function does not change the
hidden value. Therefore, ab ⊕ c would be equal to the value hidden by initial
non-refreshed shares which can be fixed. Fixing the hidden value to 0 makes the
combination f(ab⊕ c) equal to 0 and be equal to the random share f when the
hidden value is fixed to 1. We observe that it is possible to use a trick similar
to the one used to fix the Refresh function. In fact, the extra random shares
added to fix the Refresh function may be reused to fix the EvalAND function.
As a result, we obtain a fully secure masking scheme. The complete description
is given in Algorithm 3.

Algorithm 3 Minimalist Quadratic Masking Scheme.

1: function Encode(x, ra, rb)
2: return (ra, rb, rarb ⊕ x)

3: function Decode(a, b, c)
4: return ab⊕ c

5: function EvalXOR((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf ))
6: (a, b, c)← Refresh((a, b, c), (ra, rb, rc))
7: (d, e, f)← Refresh((d, e, f), (rd, re, rf ))
8: x← a⊕ d
9: y ← b⊕ e

10: z ← c⊕ f ⊕ ae⊕ bd
11: return (x, y, z)

12: function EvalAND((a, b, c), (d, e, f), (ra, rb, rc), (rd, re, rf ))
13: (a, b, c)← Refresh((a, b, c), (ra, rb, rc))
14: (d, e, f)← Refresh((d, e, f), (rd, re, rf ))
15: ma ← bf ⊕ rce
16: md ← ce⊕ rfb
17: x← ae⊕ rf
18: y ← bd⊕ rc
19: z ← ama ⊕ dmd ⊕ rcrf ⊕ cf
20: return (x, y, z)

21: function Refresh((a, b, c), (ra, rb, rc))
22: ma ← ra · (b⊕ rc)
23: mb ← rb · (a⊕ rc)
24: rc ← ma ⊕mb ⊕ (ra ⊕ rc)(rb ⊕ rc)⊕ rc
25: a← a⊕ ra
26: b← b⊕ rb
27: c← c⊕ rc
28: return (a, b, c)
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Security. First, we verify EvalXOR and EvalAND gadgets using Algorithm 2.
We obtain that they are ε-1-AS circuits for some ε < 1/2. Then we construct
the ANFs of intermediate functions. The maximum degree is equal to 4. It is
achieved for example in the term cf in the gadget EvalAND: its ANF contains
the term rarbrdre. Therefore, EvalAND is ε-1-AS with ε ≤ 1/2 − 2−4 = 7/16.
The gadget EvalXOR has degree 2 and is 1/4-1-AS. Unfortunately, we do not
have a pen-and-paper proof for security of the gadgets and rely solely on the
verification algorithm (which is able to spot the described weaknesses in the
insecure versions of the gadgets).

Verifying security of the encoding function Encode can be done in the same
way. Clearly, no linear combination of ra, rb, rarb⊕x is constant for any fixed x.
The coordinate rarb ⊕ x has degree 2 and its weight and bias are equal to 1/4.
Therefore, Encode is an ε-1-AS encoding with ε = 1/4.

By applying Proposition 3, we obtain that for any adversaryA, for any circuit
C build from the gadgets EvalXOR, EvalAND and for the described Encode
encoding we have:

AdvPSC,E,d[A] ≤ min(2Q−RC , 2−eQ), (13)

where e = − log2 (1/2 + 7/16) ≈ 0.093. According to Corollary 1, in order
to achieve provable 80-bit security we need to have RC ≥ 80(1 + 1/e) ≈ 940
random bits in the circuit. Note that it does not depend on the actual size of the
circuit, i.e. 940 random bits are enough for an arbitrary-sized circuit. However,
the adversary should not be able to shrink the window so that it contains less
than 940 random bits. This is expected to be guaranteed by a structure hiding
protection. Finally, we remark that the bounds are rather loose and more fine-
grained analysis should improve the bound significantly.

5.6 Implementation

We applied our masking scheme to an AES-128 implementation to estimate
the overhead. Our reference AES circuit contains 31,783 gates. It is based on
Canright’s S-Box implementation [11] and naive implementation of MixColumns.
After applying our nonlinear masking scheme and a first-order linear masking
scheme on top the circuit expands to 2,588,743 gates of which 409,664 gates are
special gates modeling external random bits. The circuit can be encoded in 16.5
MB. Extra RAM needed for computations is less than 1KB. On a common laptop
it takes 0.05 seconds to encrypt 1 block. Since the implementation is bitwise, 64
blocks can be done in parallel at the same time on 64-bit platforms. There is
still a large room for optimizations. We used the Daredevil CPA tool [24] to
test our implementation. Due to the first-order linear masking on top we did
not detect any leakage. Pure nonlinear masking scheme does leak the key so the
combination of both is needed as we suggested in Section 4. The implementation
code is publicly available [6]. We remark that it is a proof-of-concept and not a
secure white-box implementation; it can be broken in various ways.
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6 Conclusions

In this paper we investigated the possibility of using masking techniques for
white-box implementations. We presented several attacks applicable in differ-
ent scenarios. As a result we obtained requirements for a masking scheme to
be useful. We divided the requirements into value hiding and structure hiding
protections. Furthermore, we suggested that value hiding may be achieved using
an algebraically secure nonlinear masking scheme and a classic linear masking
scheme. We developed a framework for provable security against the algebraic at-
tack and proposed a concrete provably secure first-order masking scheme. There-
fore, a value hiding protection can be implemented.

We believe that our work opens new promising directions in obfuscation
and white-box design. In this paper we focused on value hiding protection and
developed a first-order protection against the algebraic attack. The natural open
question is developing higher-order countermeasures for the algebraic attack.
Another direction is to study structure hiding countermeasures. Finally, it seems
that pseudorandom generators play an important role in white-box obfuscation
and are useful at all layers of protection. Randomness helps to develop formal
security models and pseudorandom generators bridge the gap between theoretical
constructions and real world implementations. Therefore, designing an easy-to-
obfuscate pseudorandom generators is another important open problem.
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