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Abstract

Fuzzy extractors transform a noisy source e into a stable key which can be reproduced from a
nearby value e′. They are a fundamental tool for key derivation from biometric sources. This work in-
troduces code offset in the exponent and uses this construction to build the first reusable fuzzy extractor
that simultaneously supports structured, low entropy distributions with correlated symbols and confi-
dence information. These properties are specifically motivated by the most pertinent applications—key
derivation from biometrics and physical unclonable functions—which typically demonstrate low entropy
with additional statistical correlations and benefit from extractors that can leverage confidence infor-
mation for efficiency.

Code offset in the exponent is a group encoding of the code offset construction (Juels and Watten-
berg, CCS 1999) that stores the value e in a one-time pad which is sampled as a codeword, Ax, of a
linear error-correcting code: Ax+e. Rather than encoding Ax+e directly, code offset in the exponent
calls for encoding by exponentiation of a generator in a cryptographically strong group. We demon-
strate security of the construction in the generic group model, establishing security whenever the inner
product between the error distribution and all vectors in the null space of the code is unpredictable.
We show this condition includes distributions supported by multiple prior fuzzy extractors.

Our analysis also shows a prior construction of pattern matching obfuscation (Bishop et al., Crypto
2018) is secure for more distributions than previously known.

Keywords fuzzy extractors; code offset; learning with errors; error-correction; generic group model;

1 Introduction

Fuzzy extractors [DORS08] permit derivation of a stable key from a noisy source. Specifically, given a
reading e from the noisy source, the fuzzy extractor produces a pair (key, pub), consisting of a derived
key and a public value; the public value pub must then permit key to (only) be recovered from any e′

that is sufficiently close to e in Hamming distance. Fuzzy extractors are the emblematic technique for
robust, secure key derivation from biometrics and physical unclonable functions. These applications place
special emphasis on the source distribution and for this reason a principal goal of fuzzy extractor design
is to precisely identify those distributions over e for which extraction is possible and, moreover, produce
efficient constructions for these distributions.

Despite years of work, existing constructions do not simultaneously secure practical sources while
retaining efficient recovery. Canetti et al.’s construction [CFP+16, CFP+21] is secure for the widest
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variety of sources. However, Simhadri et al.’s [SSF19] implementation for the iris estimates only 32 bits
of security with algorithms that take ≈ 10 seconds on a 32-core machine.

The fuzzy extraction problem is well-understood in the information-theoretic setting, where the fun-
damental quantity of interest is the fuzzy min-entropy [FRS16, FRS20] of the distribution of e; this
measures the total weight of an arbitrarily centered ball of radius t in the probability distribution over e.
While this measure is sufficient for determining the feasibility of information-theoretic fuzzy extraction
for a distribution, it doesn’t indicate whether it is possible in polynomial time [FRS16, WCD+17]. In
the information-theoretic setting it is not possible to build an information-theoretic fuzzy extractor that
simultaneously works for all distributions [FRS16, FP19, FRS20]. That is, a fuzzy extractor exists for
each distribution with fuzzy min-entropy but no construction can secure all such distributions.

One can hope to sidestep these limitations by providing only computational security [FMR13, FMR20],
supporting broader families of source distributions. No universal theory has emerged without resorting to
general purpose obfuscation. Two known fuzzy extractors use “computational” tools1 to correct errors,
they are:

• Canetti et al.’s [CFP+16, CFP+21] construction explicitly places random subsets of e in a digital
locker [CD08] and records the indices used in each subset. To recover, one attempts to open each
digital locker with subsets of the value e′. Canetti et al.’s construction is secure when a random
subset of locations is hard to predict (Definition 5). However, Simhadri’s implementation for the
iris provides poor security (32 bits) in order to run in 10 seconds and still requires millions of digital
lockers [SSF19].

• Fuller et al. [FMR13, FMR20] modify the code-offset construction [JW99]. The code-offset construc-
tion construction is determined by a linear error-correcting code A ∈ Fn×kq and a secret, uniformly

random x ∈ Fkq ; given a sample e ∈ Fnq from the noisy source, the construction publishes the pair
pub = (A,Ax + e) . All operations are carried out over the field with q elements. To reproduce the
value e note that with a second sample e′ from the source—which we assume has small Hamming
distance from e2—the difference (Ax+e)−e′ = Ax+(e−e′) is evidently close to the codeword Ax.
By decoding the error correcting code one can recover x (and e).3 Security analysis of the code offset
treats Ax as a biased one time pad, proving that Ax+e leaks no more than (n−k) log q bits about
e. However, many real distributions have entropy less than (n− k) log q, which we call low entropy,
for which this analysis provides no security guarantee. To support low entropy distributions, Fuller
et al. instantiate this construction with A being randomly distributed and show security whenever
the distribution over e yields a secure learning with errors (LWE) instance. Known LWE error
distributions consider i.i.d. symbols (discretized Gaussian [Reg05] and uniform interval [DMQ13]).

The digital locker construction supports more distributions (i.i.d. symbols implies that all subsets have
entropy). Both constructions use information set decoding [Pra62], that is, repeated selection of random
subsets of coordinates with the hope to find a subset with no errors.

The digital locker construction comes with an important drawback. Many physical sources are sampled
along with correlated side information that is called confidence. Confidence information is a secondary
probability distribution z (correlated with the reading e) that can predict the error rate in a symbol ei.

1Multiple computational fuzzy extractors retain the information-theoretic core and analyze it using standard information-
theory techniques [WL18, WLG19]; these works are subject to the above limitations.

2It is also possible to consider other distances between e and e′. However the error correction techniques required are
different. We consider Hamming error in this work.

3Applying a randomness extractor [NZ93] on either x or e yields a uniform key.
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When zi is large this indicates that the symbol of ei is less likely to differ. Examples include the magnitude
of a convolution in the iris [SSF19] and the magnitude of the difference between two circuit delays in ring
oscillator PUFs [HRvD+16]. By considering bits with high confidence it is possible to reduce the effective
error rate from t = n/10 to t = 3n/106 [HRvD+16]. For a subset size of 128 and t = n/10 unlocking
with 95% probability requires testing approximately 2 · 106 subsets while t = 3n/106 requires testing a
single subset. This confidence information cannot be used in the digital locker construction as subsets
are specified at enrollment time whereas confidence information is determined when e is drawn. The
LWE construction can use this information [JHR+17] as it allows on-the-fly testing of all large enough
subsets. Confidence information is critical: fuzzy extractors that secure low entropy distributions do not
support t = Θ(n) which is demonstrated in practice, leading to inefficient implementations. Because
constructions are used with sources beyond their designed error tolerance any reduction in error rate has
a drastic impact on efficiency (see Section 3.2).

Our contributions. This work introduces code offset in the exponent. Code offset in the exponent is
the first reusable fuzzy extractor that simultaneously

• allows the symbols of e to be correlated,

• supports structured but low entropy distributions over e (less than (n− k) log q), and

• allows the use of confidence information for improved efficiency.

This work introduces the Code Offset in the Exponent problem:

Distinguish rAx+e, given (A, r), from a random tuple of group elements, where r is a random
generator of a prime order group, A is a suitable linear code, and x is a uniform.

A natural fuzzy extractor constructor exists when rAx+e has such pseudorandom properties. We show
that when the group effectively limits the adversary to linear operations—by adopting the generic group
model—the resulting fuzzy extractor is secure for many low entropy distributions while retaining the
ability to use confidence information. This allows code offset in the exponent to benefit from the efficiency
gains of using confidence information while remaining secure for a large family of distributions. Specifically,
we present three contributions:

Sec 1.1 We define the code offset in the exponent construction and show that it yields a reusable fuzzy
extractor if the distribution on e is good enough.

Sec 1.2 We establish an information-theoretic sufficient condition called MIPURS for good enough in the
generic group model. (MIPURS is described in Section 1.2.)

Sec 1.3 We characterize MIPURS, establishing containment relations between MIPURS and the secured
distributions in Canetti et al. [CFP+16] and Fuller et al. [FMR13] (see Figure 1).

In Section 1.4 we introduce a second application of code offset in the exponent to pattern matching obfus-
cation. We then review further related work and show that (very structured) distributions can be shown
secure assuming only discrete log (Sec 1.5). Section 2 covers definitions and preliminaries including the
MIPURS condition. Section 3 details the code offset in the exponent construction. Section 4 characterizes
MIPURS distributions. Section 5 a second application to pattern matching obfuscation [BKM+18].
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1.1 Code offset in the exponent

Code offset in the exponent is motivated by the observation that reproduction of e in the LWE construc-
tion uses only linear operations. Thus, we explore an adaptation of the code offset construction that
effectively limits the adversary to linear operations by translating all relevant arithmetic into a “hard”
group. Specifically, we introduce code offset in the exponent : If r is a random generator for a cyclic group
G of prime order q, we consider

pub = (A, r, rAx+e) ,

where we adopt the shorthand notation rv, for a vector v = (v1, . . . , vn)ᵀ ∈ (Zq)n, to indicate the
vector (rv1 , . . . , rvn)ᵀ. This construction possesses strong security properties under natural cryptographic
assumptions on the group G. We focus on code-offset in the exponent with a random linear code (given by
A) and adopt the generic group model [Sho97] to reflect the cryptographic properties of the underlying
group. As stated above, the goal is to characterize the distributions on e for which rAx+e|(A, r) is
pseudorandom. Pseudorandomness suffices to show security of a fuzzy extractor that leaks nothing about
e. Analysis of this construction is most natural when e has symbols over a large alphabet, but binary e
can be amplified (see Section 3.1).

Looking ahead, if one uses a random generator in each enrollment the construction allows multiple
(noisy) enrollments of e, known as a reusable fuzzy extractor [Boy04]. The reusability proof uses the details
of the generic group proof, while the one time analysis is just based on pseudorandomness (Section 3.3).

1.2 When is code offset in the exponent hard?

In the generic group model, we establish (Theorem 2) that distinguishing code offset in the exponent from
a random vector of group elements is hard for any error distribution e where the following game is hard
to win for any information-theoretic adversary A:4

Experiment EMIPURS
A,e (n, k):

ψ ← e; A
$← Fn×kq .

(b, g)← A(A).

If b ∈ null(A), b 6= ~0 and 〈b, ψ〉 = g output 1.
Output 0.

Observe that the role of the random matrix A in the game above is merely to define a random subspace
of (typical) dimension k.

We call this condition on an error distribution MIPURS or maximum inner product unpredictable over
random subspace. Specifically, a random variable e over Fnq is (k, β)–MIPURS if for all A (which knows

the distribution of e), Pr[EMIPURS
A,e (n, k) = 1] ≤ β.

When e is a (k − Θ(1), β)–MIPURS distribution for a code with dimension k and β = ngl(n) then
code-offset in the exponent yields a fuzzy extractor in the generic group model (Theorem 3). Showing
this requires one additional step of key extraction; we use a result of Akavia, Goldwasser, and Vaikun-
tanathan [AGV09, Lemma 2] which states that dimensions of x become hardcore once there are enough
dimensions for LWE to be indistinguishable. This reduction is entirely linear and holds in the generic
group setting.

4We use boldface to represent random variables, capitals to represent random variables over matrices, and plain letters
to represent samples. We use ψ to represent samples from e to avoid conflict with Euler’s number.
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MIPURS is necessary. When A is information theoretic, for all distributions e that are not MIPURS
one can find a nonzero vector b in the null space of A whose inner product with e is predictable, thus
predicting

〈b,Ax + e〉 = 〈b, e〉 ?
= g.

This is not the case for a uniform distribution, U: the value 〈b,U〉 is uniform (and thus is 〈b,U〉 = g with
small probability if the size of q is super polynomial). Thus b serves as a way to distinguish Ax + e from
U.

Beullens and Wee [BW19] recently introduced the KOALA assumption which roughly assumes that an
adversary’s only mechanism for distinguishing a vector from a subspace from random is by outputting a
vector that is likely to be the null space of the provided vector. (This can be seen as specializing [CRV10,
Assumption 5] that vectors can only be distinguished by fixed inner products.)

The adversary has more power in the MIPURS setting (than in KOALA) in three ways. First, the
distribution e and thus Ax + e is not linear, second the adversary doesn’t have to “nullify” the entire
space B—only a single vector, and third, the adversary can predict any inner product, not just 0. One
can view MIPURS as an assumption on a group: whenever an adversary can distinguish a (nonlinear)
vector v from uniform that there is another adversary that can choose some b and predict 〈b,v〉 (in our
setting this choice of b is after seeing A which is correlated to v). Theorem 2 can be interpreted as the
MIPURS “assumption” holding in the generic group model.

1.3 Supported Distributions

Our technical work characterizes the MIPURS property (summarized in Figure 1). The most involved
relationship is showing that all high entropy sources are MIPURS. To provide intuition for our results, we
summarize this result here.

For any d = poly(n) there is an efficiently constructible distribution e whose entropy is approximately
log(dqn−k−1) where the MIPURS game is winnable by an efficient adversary with noticeable probability:
For 1 ≤ i ≤ d, sample some d random linear spaces Bi of dimension n − k − 1 and define Ei to be all
points in a random coset gi of Bi. Consider the following distribution e:

1. Pick i← {1, ..., d} for some polynomial size d.

2. Output a random element of Ei.

The support size of this distribution is approximately dqn−k−1. Then since null(A) has dimension at
least n− k, ∃bi 6= ~0 such that bi ∈ null(A) ∩ null(Bi) (since dim(null(A)) + dim(null(Bi)) > n). The
adversary can calculate these bi’s. Then the adversary just picks a random i and predicts (bi, gi).

5 This
result is nearly tight: all distributions whose entropy is greater than log(poly(n)qn−k) are MIPURS. (Note
this is a factor of q away from matching the size of our counterexample for a random code.) Informally,
this yields the following (see Corollary 27):

Theorem 1 (Informal). Let n, k ∈ Z be parameters. Let q = q(n) be a large enough prime. For all
e ∈ Znq whose minentropy is at least ω(log n) + log(qn−k), there exists some β = ngl(n) for which e is
(k, β)–MIPURS.

As mentioned above, information theoretic analysis of code offset provides a key of length ω(log n) when
the initial entropy of e is at least ω(log n) + (n − k) log(q). However, information theoretic analysis of

5If A is some fixed code (chosen before adversary specifies e), then Ei can directly be a coset of A and one can increase
the size of E to dqn−k.
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Figure 1: Implications between different types of supported distributions for fuzzy extraction. Arrows
are implications. All shown implications are proper. Location sources are those that have random group
elements in some locations with zeroes in other locations but it is hard to find a subset of all zero locations.
A location source can be produced as the component wise product of a binary source where all subsets
have entropy and a random vector of group elements. We consider this type of distribution in Section 3.1.

code offset reduces the entropy of e which may allow prediction of sensitive attributes. In the generic
group analysis no predicate of e is leaked. The generic group analysis also allows the construction to be
safely reused multiple times (with independent generators).

Proof Intuition Suppose in the above game the adversary generated e as the span of a linear space E

with the goal that null(A) ∩ null(E) ⊃ {~0}. For a random, independent B
def
= null(A), the probability

of B and null(E) overlapping is noticeable only if the sum of the dimensions is more than n (Lemma 21).
This creates an upper bound on the dimension of E of n − k (ignoring the unlikely case when A is not
full rank).

Our proof is dedicated to showing that the general case (where E is not linear) does not provide the
adversary with more power. First we upper bound the size of a set E where each vector is predictable
in the MIPURS game. We show for a random sample from E to have a large intersection with a low
dimensional space requires E to have size at least that of the low dimensional space (Lemma 20). In
Lemma 22, we switch from measuring the size of intersection of a sample of E with respect to the worst
case subspace to how “linear” E is with respect to the worst vector in an average case subspace. This
result thus controls an “approximate” algebraic structure in the sense of additive combinatorics. We show
the adversary can’t do much better on a single vector b as long as it is chosen from a random B.

The above argument considers the event that the adversary correctly predicts an inner product of 0;
this can be transformed to an arbitrary inner product by a compactness argument which introduces a
modest loss in parameters (Theorem 24). Once we have a bound on how large a predictable set E can
be, another superlogarithmic factor guarantees that all distributions e with enough minentropy are not
predictable.
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1.4 Second Application: Pattern Matching Obfuscation

In addition to fuzzy extractors, we apply our techniques to pattern matching obfuscation. Bishop et
al. [BKM+18] show how to obfuscate a pattern v where each vi ∈ {0, 1,⊥} indicates that the bit vi
should match 0, 1 or either value. The goal is to allow a user to check for input string y, if y and v
are the same on all non-wildcard positions. Their construction was stated for Reed-Solomon codes but
works for any linear code. We state the construction for a random linear code: Let |v| = n and assume
A← (Fq)2n×n. Then for a random x the construction outputs the following obfuscation (for a group Gq

of prime order q):6

Ow =

oi =


(gA2ix, r2i+1), r2i+1 ← Gq vi = 1

(r2i, g
A2i+1x), r2i ← Gq vi = 0

(gA2ix, gA2i+1x) vi =⊥


|v|−1

i=0

.

In the above Aj is the jth row of A. Bishop et al. prove security of the scheme in the generic group
model. Their analysis focuses on allowing a large number of randomly placed wildcards with the uniform
distribution for nonwildcard bits of v. We show the same construction is secure for more structured dis-
tributions over v (also improving flexibility over concurrent work of Bartusek, Lepoint, Ma, and Zhandry
[BLMZ19]).

1.5 Further Related Work

We have already introduced the work of Canetti et al. [CFP+16] and Fuller et al. [FMR20]. Canetti et
al. [CFP+16] explicitly place some subsets into a digital locker, for security they require that an average
subset has average min-entropy, which we call average subsets have entropy.

Lemma 15 shows that the MIPURS condition is contained in average subsets have entropy. This
containment is proper, we actually show that there are distributions where all subsets have entropy that
are not MIPURS. Suppose that e is a Reed-Solomon code, then all subsets of e have entropy but as long
as the dimension of the code < n − k − 1 then the null space of e is likely to intersect with null(A)
(Prop. 18).

There are also MIPURS sources where not all subsets have entropy. Consider a uniform distribution
over n − k coordinates with a fixed value in the remaining k coordinates (Prop. 17). Since null(A)
is unlikely to have non zero coordinates only at these fixed k coordinates, predicting the inner product
remains difficult. Fortunately, multiplying a binary source where all subsets have entropy by a random
vector produces a location source which is contained in MIPURS. It is this transformation we recommend
for actual biometrics, see Section 3.1.

One can additionally build a good fuzzy extractor assuming a variant of multilinear maps [BCKP14].
Concurrent work of Galbraith and Zobernig [GZ19] introduces a new subset sum assumption to build a
secure sketch that is able to handle t = Θ(n) errors; they conjecture hardness for all securable distribu-
tions. A secure sketch is the error correction component in most fuzzy extractors. Their assumption is
security of the cryptographic object and deserves continued study. A line of works [WL18, WLG19] use
information-theoretic tools for error correction and computational tools to achieve additional properties.
Those constructions embed a variant of the code offset. Table 1 summarizes constructions that use com-
putational tools for the “correction” component and the traditional information theoretic analysis of the

6Bishop et al. state their construction where x0 = 0 to allow the user to check whether they matched the pattern. In this
description, we allow the user to get out a key contained in gx0 when they are correct.
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Construction Supported low entropy dist. Reuse Error rate Weakness

Code Offset [DORS08] - G# t = Θ(n)
LWE [ACEK17, FMR13] Independent G# t = o(n)
Subset sum [GZ19] Fuzzy min-ent. # t = Θ(n) Assumes security
Grey box obf. [BCKP14] Fuzzy min-ent. # t = Θ(n) Multilinear maps
Digital Locker [CFP+16] Average Subsets have Ent.  t = o(n) No confidence info
Code Offset in Exponent MIPURS  t = o(n)

Table 1: Comparison of computational techniques for fuzzy extractors. Many schemes [WL18, WLG19]
use information theoretic techniques for information reconciliation and these are grouped together. These
techniques all inherit the information theoretic analysis on the strength of information reconciliation.
Reuse is denoted as G# if reuse is supported with some assumption about how multiple readings are
correlated and  if no assumption is made. See Figure 1 for relations between supported distributions.
The LWE works considered the setting when k = Θ(n) which leads to t = Θ(log n). If one sets k = ω(log n)
one can achieve error tolerance of o(n) using the analysis in this work, we thus present the more favorable
regime for the above comparison.

code offset construction..

Connection to LWE The hardness of the code offset in the exponent problem is equivalent to asking
what error distributions make distinguishing LWE (learning with errors) hard in the generic group model,
though this is an unusual setting for LWE as it requires a super-polynomial-size field and the notion of
“small” is destroyed by the generic group model—in particular, “rounding” is not possible. Thus, we
refer to the construction as code offset rather than LWE. Despite this, some prior attacks on LWE can
be instantiated in the generic group model (with A provided in the clear). Arora and Ge’s attack [AG11]
distinguishes LWE samples from uniform. The complexity of the attack strongly depends on the number
of possible values for each dimension of the error distribution with polynomial efficiency for a constant
number of values. The attack works in two stages, linearizing polynomials whose degree depends on the
number of possible errors and then performing Gaussian elimination. Only the Gaussian elimination stage
requires Ax + e and can be done in a generic group (of known order). For binary errors, as considered
by Micciancio and Peikert [MP13], the attack works when n = Θ(k2). Thus, the generic group model
captures interesting LWE attacks. To the best of our knowledge this is first time this question has
been considered.7 Brakerski and Döttling [BD20] considered the question of distribution flexibility for x:
showing hardness when the conditional entropy of x conditioned on x + e is large for Gaussian e.

Decoding in the generic group model Peikert [Pei06] showed that when A is a Reed-Solomon code,
decoding “in the exponent” is hard in the generic group model. Specifically, Peikert’s result considers
a class of distributions e ∈ Fnq that are determined by placing α uniformly selected elements of Fq in
α randomly selected coordinates, while assigning other coordinates the value 0. The adversary can also
perform information test decoding, succeeding with noticeable probability if αk = O(n log n); recall that
k is the dimension of the code. Peikert’s results show that this is tight: no attacker can distinguish rAx+e

from uniform elements when αk = ω(n log n). The question of hardness for more general distributions on
e—essential in our setting—remained open.

7Dagdelan et al. [DGG15] consider a version of this problem where A is only provided in the group and show this problem
is hard assuming DDH. It is crucial in our applications that A is provided in the clear.
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In Appendix B, we consider the problem of decoding linear codes with independent, random errors in
the exponent assuming the hardness of discrete log. Prior work by Peikert showed such a result for Reed-
Solomon codes [Pei06, Theorem 3.1]. We quantitatively improve Peikert’s result for Reed-Solomon codes
(Theorem 33) and present a similar result for random linear codes (Theorem 31).8 Both results slightly
improve parameters over Peikert’s result [Pei06, Theorem 3.1]. These arguments require that a random
point lies close to a codeword with noticeable probability. As q increases this probability decreases but
discrete log becomes harder, creating a tension between these parameters. Peikert’s result requires that
q ≤

(
n
k+1

)
/n2. In an application to the fuzzy extractors reducing k leads to improved efficiency, meaning

the goal is to have small k for which k = ω(log n). This means that the upper bound on q may be just
superpolynomial. Our results allow q to grow more quickly, improving the bound by a modest factor of n2

(requiring that q ≤
(
n
k+1

)
). We note the wide gap between error distributions we can show in the generic

group model and assuming discrete log.

2 Preliminaries

We use boldface to represent random variables, capitals to represent random variables over matrices or
sets, and corresponding plain letters to represent samples. As one notable exception, we use ψ to represent
samples from e to avoid conflict with Euler’s number. We denote the exponential function with exp(·).
When defining ranges for parameters, we use [ and ] to indicate ranges inclusive of indicated values and
( and ) to indicate ranges exclusive of the indicated values. For random variables xi over some alphabet
Z we denote the tuple by x = (x1, ...,xn). For a vector v we denote the ith entry as vi. For a set of
indices J , xJ denotes the restriction of x to the indices in J . For m ∈ N, we let [m] = {1, . . . ,m}, so
that [0] = ∅. We use the notation span(S) to denote the linear span of a set S of vectors and apply
the notation to sequences of vectors without any special indication: if F = (f1, . . . , fm) is a sequence of
vectors, span(F ) = span({fi | i ∈ [m]}).

The min-entropy of a random variable x is H∞(x) = − log(maxx Pr[x = x]). The average (conditional)
min-entropy [DORS08, Section 2.4] of x given y is

H̃∞(x | y) = − log

(
E
y∈y

max
x

Pr[x = x | y = y]

)
.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y | dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we
denote by Vol(t) the size of a ball of radius t. We consider the Hamming metric. Let Z be a finite set
and consider elements of Zn; then we define dis(x, y) = |{i | xi 6= yi}|. For this metric, we denote volume
as Vol(n, t, |Z|) and Vol(n, t,Z) =

∑t
i=0

(
n
i

)
(|Z| − 1)i. For a vector in x ∈ Fnq let wt(x) = |{i|xi 6= 0}|.

Un denotes the uniformly distributed random variable on {0, 1}n. Logarithms are base 2. We denote the
vector of all zero elements as 0. We let ·c denote component-wise multiplication. In our theorems we
consider a security parameter γ, when we use the term negligible and super polynomial, we assume other
parameters are functions of γ. We elide this notation the dependence of other parameters on γ.

2.1 Fuzzy Extractors

Our motivating application is a new fuzzy extractor that performs error correction “in the exponent.” A
fuzzy extractor is a pair of algorithms designed to extract stable keys from a physical randomness source

8Both results require the error e to have independent symbols, with e possessing α randomly chosen nonzero positions.
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that has entropy but is noisy. If repeated readings are taken from the source one expects these readings
to be close in an appropriate distance metric but not identical. We consider a generic group version of
security (computational security is defined in [FMR13], information-theoretic security in [DORS08]).

Before introducing the definition, we review some notation from the generic group model; the model
is reviewed in detail in Appendix A. Let G be a group of prime order q. For each element r ∈ G in
the standard game, rather than receiving r, the adversary receives a handle σ(r) where σ is a random
function with a large range. The adversary is given access to an oracle, which we denote as OσG, which
given x = σ(r1), y = σ(r2) computes σ(σ−1(x) + σ−1(y)); when σ can be inferred from context, we write
OG. Since the adversary receives random handles they cannot infer anything about the underlying group
elements except using the group operation and testing equality. We assume throughout that the range of
σ is large enough that the probability of a collision is statistically insignificant (that is � 1/q).
Notation. We overload the notation σ() to apply to tuples and, furthermore, adopt the convention that
σ() is the identity on non-group elements; thus, it can be harmlessly applied to all inputs provided to the

adversary. Specifically, when z
def
= z1, . . . , zn then σ(z) only passes zi through σ if zi ∈ Gq. For example,

if z = (r,A, rAx+w), then σ(z) = (σ(r),A, σ(rAx+w)).

Definition 1. Let E be a family of probability distributions over the metric space (M, dis). A pair of
procedures (Gen :M→ {0, 1}κ × {0, 1}∗,Rep :M× {0, 1}∗ → {0, 1}κ) is an (M, E , κ, t)-fuzzy extractor
that is (εsec,m)-hard with error δ if Gen and Rep satisfy the following properties:

• Correctness: if dis(ψ,ψ′) ≤ t and (key, pub)← Gen(ψ), then

Pr[Rep(ψ′, pub) = key] ≥ 1− δ.

• Security: for any distribution e ∈ E, the string key is close to random conditioned on pub for all A
making at most m queries to the group oracle OG, that is∣∣∣∣∣∣∣∣ Pr

σ
$←Σ,

(Key,Pub)←Gen(e)

[AOG(σ(Key,Pub)) = 1]− Pr[AOG(σ(U,Pub)) = 1]

∣∣∣∣∣∣∣∣ ≤ εsec.
We also assume that the adversary receives σ(1). The errors are chosen before Pub: if the error pattern
between ψ and ψ′ depends on the output of Gen, then there is no guarantee about the probability of
correctness.

2.2 The MIPURS condition

In this section, we introduce the Maximum Inner Product Unpredictable over Random Subspace (MIPURS)
condition.

Definition 2. Let e be a random variable taking values in Fnq and let A be uniformly distributed over

Fn×kq and independent of e. We say that e is a (k, β) −MIPURS distribution if for all random variables
b ∈ Fnq ,g ∈ Fq independent of e (but depending arbitrarily on A and each other)

E
A

[
Pr
[
〈b, e〉 = g and b ∈ null(A) \~0

]]
≤ β .

10



To see the equivalence between this definition and the game presented in the introduction, the random
variables b and g can be seen as encoding the “adversary” and quantifying over all (b,g) is equivalent to
considering all information-theoretic adversaries.

Theorem 2. Let γ be a security parameter. Let q be a prime and n, k ∈ Z+ with k ≤ n ≤ q. Let
A ∈ Fn×kq and x ∈ Fkq be uniformly distributed. Let e be a (k, β) −MIPURS distribution. Let u ∈ (Fq)n
be uniformly distributed. Let Σ be the set of random functions with domain of size q and range of size q3.
Then for all adversaries D making at most m queries∣∣∣∣∣ Pr

σ
$←Σ

[DOG(A, σ(Ax + e)) = 1]− Pr[DOG(A, σ(u)) = 1]

∣∣∣∣∣ < µ

(
3

q
+ β

)

for µ = ((m+ n+ 2)(m+ n+ 1))2 /2. If 1/q = ngl(γ), n,m = poly(γ), and β = ngl(γ) then the
statistical distance between the two cases is ngl(γ).

In the above, the adversary is provided the code directly in the group, not its image in the handle space.
The proof of Theorem 2 is relatively straightforward and appears in Appendix A. Our proof uses the
simultaneous oracle game introduced by Bishop et al. [BKM+18, Section 4].

3 A Fuzzy Extractor from Hardness of Code Offset in the Exponent

One can directly build a fuzzy extractor out of any e that satisfies the MIPURS condition. To do so, one
instantiates the code-offset “in the exponent” and then uses hardcore elements of x as the key.

Construction 1. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+, ` ∈ Z+, let q be
a prime and let Gq be a cyclic group of order q. Let Fq be the field with q elements. Suppose that e and
e′ ∈ Fnq , and let dis be the Hamming metric. Define (Gen,Rep) as follows:

Gen (e = e1, ..., en)

1. Sample generator r of Gq.
2. Sample A← (Fq)n×(k+α), x← (Fq)k+α.

3. For i = 1, ..., n: set rci = rAi·x+ei .

4. Set key = rx0 , ..., rxα−1 .

5. Set pub = (r,A, {rci}ni=1).

6. Output (key, pub).

Rep (e′, pub = (r,A, rc1 . . . rcn))

1. For i = 1, ..., n, set rci = rci/re
′
i .

2. For i = 1, ..., `:

(i) Sample Ji ⊆ {1, ..., n} where |J | = k + α.

(ii) If A−1Ji does not exist go to 2.

(iii) Compute r~s = r
A−1
Ji

cJi .

(iv) Compute rc
′

= rA~s.

(v) If dis(rc, rc
′
) ≤ t, output r~s0 , ..., r~sα .

3. Output ⊥.

Theorem 3. Let c be a constant. Let all parameters be as in Construction 1. Let E be the set of all
(k, β)-MIPURS distributions. Suppose that

• k′
def
= k + α = o(n) and k′ = ω(log n),

• t is such that tk′ ≤ cn log n for some constant c, which with the above implies t = o(n),

• Let δ′ > 0 be some value,

11



• Let η > 0 be some constant and let ` = n2(1+η)c log 1
δ′ , and

• Let δ be some value such that δ ≤ δ′ + exp(−Ω(n)).

Then (Gen,Rep) is a (Fnq , E , |Fαq |, t)-fuzzy extractor that is (εsec,m)-hard that is correct with probability
1− δ for all adversaries in the generic group model (making at most m queries) where

εsec =

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
3

q
+ β

)
.

Proof. The security portion of Theorem 3 follows by combining Theorem 2 with a lemma that generalizes
Akavia, Goldwasser, and Vaikuntanathan’s result on hardcore elements of LWE [AGV09, Lemma 2]. Their
result is that if the decision version of LWE is hard for k dimensions than any additional α dimensions
are hardcore. The core idea of the proof is that if one distinguishes these “hardcore” dimensions then an
outer adversary could augment their LWE instance by just sampling these α new coordinates of x and
extending A accordingly. Note that this can all be done linearly. We restate this lemma for the generic
group setting here (the proof is identical to that of Akavia, Goldwasser, and Vaikuntanathan):

Lemma 4. For any integer n > 0, prime q ≥ 2, and let Gq be a group of order q, error-distribution e
over Znq , if for random A ∈ Fn×kq ,x ∈ Fkq ,U ∈ Fn uniformly distributed one has for all PPT A:∣∣∣∣∣ Pr

σ
$←Σ

[AOG(A, σ(Ax + e)) = 1]− Pr
σ

$←Σ

[AOG(A, σ(U)) = 1]

∣∣∣∣∣ < ε.

Then for A′ ∈ Fn×(k+α)
q ,x ∈ Fk+α

q ,v ∈ Fαq uniformly distributed one has that∣∣∣∣∣ Pr
σ

$←Σ

[AOG(σ(x0...α−1),A′, σ(A′x + e)) = 1] − Pr
σ

$←Σ

[AOG(σ(v),A′, σ(A′x + e)) = 1]

∣∣∣∣∣ < ε. (1)

We note that to apply this Lemma, the distribution e must be (k, β)−MIPURS while x is of length k+α.
To show that Rep has a high probability of outputting the correct key we consider two cases 1) when

Rep outputs an incorrect key and 2) when Rep terminates without finding a candidate key. We call these
properties Correctness and Efficiency respectively.

Correctness We consider two separate properties. First the probability that the algorithm finds some
codeword x′ 6= x and uses this to find s′0, ..., s

′
α. Second, we compute the probability that no value is found

after ` iterations and Rep outputs ⊥. For correctness it suffices to observe that the minimum distance of
the code exceeds the number of possible errors between e and e′. For this we use the following standard
theorem (which applies since k′, t = o(n)).

Lemma 5 ([Gur10, Theorem 8]). For prime q, δ ∈ [0, 1 − 1/q), 0 < ε < 1 −Hq(δ) and sufficiently large
n, the following holds for k′ = d(1−Hq(δ)− ε)ne . If A ∈ Zn×k′q is drawn uniformly at random, then the
linear code with A as a generator matrix has rate at least (1−Hq(δ)− ε) and relative distance at least δ
with probability at least 1− e−Ω(n).
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Efficiency We now turn to analyzing the probability that Rep outputs ⊥ after completing ` iterations.

Lemma 6. Let all parameters be as in Construction 1. Suppose that k + α = o(n) and t is such that
tk′ ≤ cn lnn for some constant c. Let δ′ > 0 and η > 0 be a constant, then for ` ≥ n2(1+η)c log 1

δ′ , Rep
when run for ` iterations outputs ⊥ with probability at most δ′.

Proof of Lemma 6. For any two ψ,ψ′ used as inputs to Gen and Rep respectively, we assume that
dis(ψ,ψ′) ≤ t Our analysis of running time is similar in spirit to that of Canetti et al. [CFP+16]. We
first consider the probability that an individual subset is correct. For any given i, the probability that
ψ′Ji = ψJi is at least(

1− t

n− k′

)k′
≥
(

1

4

)k′t/(n−k′)
≥
(

1

4

)cn logn/(n−k′)
≥
(

1

4

)(1+η)c logn

= n−2(1+η)c ,

where we have applied the inequality n− k′ ≥ n/(1 + η) for any constant η since k′ = o(n) and the fact
that (1 − α)` = [(1 − α)1/α]α` ≥ (1/4)α` for any 0 ≤ α ≤ 1/2 (with equality at α = 1/2) and ` ≥ 1. We
bound the probability of an error for each sample (without replacement) by the probability of the last
sample which is at most t

n−k′ . The probability that no iteration matches is at most(
1−

(
1− t

n− k′

)k′)`
.

Using the inequality 1 + x ≤ exp(x) we conclude(
1−

(
1− t

n− k′

)k′)`
≤
(

1− 1/n2(1+η)c
)`
≤ exp(−`/n2(1+η)c).

As ` ≥ n2(1+η)c log 1/δ′ the result follows. This completes the proof of Lemma 6.

This completes the proof of Theorem 3.

3.1 Handling binary e

In this section we show one way to transform binary values to a good MIPURS distribution and consider
the associated impact on correctness. Assume that the input value e is binary and all subsets of e are
hard to predict, one can form a MIPURS distribution by multiplying by an auxiliary random and uniform
random variable r ∈ Fnq . This has the effect of placing random errors in the locations where ei = 1. Since
decoding finds a subset without errors (it does not rely on the magnitude of errors) we can augment errors
into random errors. We prove that this augmented vector is MIPURS in Section 4.

However, this transform creates a problem with decoding. When bits of e are 1, denoted ej = 1 we
cannot use location j for decoding as it is a random value (even if e′j = 1 as well). When one amplifies a
binary e, we recommending using another uniform random variable y ∈ {0, 1}n and check when yi 6= ei to
indicate when to include a random error. Then in reproduction the algorithm should restrict to locations
where yi = ei. Using Chernoff bounds one can show this subset is big enough and the error rate in this
subset is not much higher than the overall error rate (except with negligible probability). If k + α is just
barely ω(log n) one can support error rates that are just barely o(n).
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Construction 2. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+, q be a prime and
let Gq be some cycle group of order q. Let Fq be the field with q elements. Let E ∈ {0, 1}n and let dis be
the Hamming metric. Let τ = max(0.01, t/n). Define (Gen,Rep) as follows:

Gen(e = e1, ..., en)

1. Sample random generator r of Gq.
2. Sample A← (Fq)n×(k+α),
3. Sample x← (Fq)k+α.

4. Sample y
$← {0, 1}n.

5. For i = 1, ..., n:

(i) If ei = yi, set rci = rAi·x.

(ii) Else set rci
$← Gq.

6. Set key = rx0...α−1 .

7. Set pub = (r,y,A, {rci}ni=1).

8. Output (key, pub).

Rep(e′, pub = (r,y,A, rc1 . . . rc`))

1. Let I = {i|e′i = yi}.
2. For i = 1, ..., `:

(i) Choose random Ji ⊆ I, with |Ji| = k.

(ii) If A−1Ji does not exist, output ⊥.

(iii) Compute r~s = r
A−1
Ji

cJi .

(iv) Compute rc
′

= r
A(A−1

Ji
cJi ).

(v) If dis(cI , c
′
I) ≤ 2|cI |τ , output r~s0 , ..., r~sα−1 .

3. Output ⊥.

Theorem 7. Let all parameters be as in Construction 2. Let γ ∈ N and let E be the set of all sources where
all (k − γ)-subsets have entropy β (Definition 3) over {0, 1}n. Then (Gen,Rep) is a ({0, 1}n, E , |Fαq |, t)-
fuzzy extractor that is (εsec,m)-hard for all adversaries in the generic group model (making at most m
queries) where

εsec =

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
4

q
+ 2−β +

(
(k − γ)

(
n

k−γ−1

)
qγ+1

))
.

Furthermore, suppose that

• k′
def
= k + α = o(n) and k′ = ω(log n),

• t is such that tk′ ≤ cn log n for some constant c, which with the above implies t = o(n),

• Let δ′ > 0 be some value.

• Let η > 0 be some constant.

• Let ` = n2(1+η)c log 1
δ′ , (if tk′ = o(n log n) setting ` = n log 1/δ′ suffices)

Then there is some function negligible ngl(n) such that the Rep is correct with probability 1− δ′−ngl(n).

We prove Theorem 7 by combining lemmata that argue the security (Lemma 8), correctness (Lemma 9),
and efficiency (Lemma 10) properties.

To show security we first need to formalize the required property of the distribution e. We introduce
a notion called all subsets have entropy :

Definition 3. Let a source e = e1, . . . , en consist of n-bit binary strings. For some parameters k, β we
say that the source e is a source where all k-subsets have entropy β if H∞(ej1 , . . . , ejk) ≥ β for any
1 ≤ j1, . . . , jk ≤ n, ja 6= jb for a 6= b.

14



We consider e′ given by the coordinatewise product of a uniform vector r ∈ Fnq and a “selection
vector” e ∈ {0, 1}n: that is, e′i = ri ·c ei where all large enough subsets of e are unpredictable (·c is
component-wise multiplication). We call such a source a location source. Lemma 14 shows that location
sources are MIPURS.

Lemma 8. Let all parameters be as in Construction 2. Let γ ∈ N, then for any distribution e where all
k− γ subsets have entropy β over {0, 1}n, (Gen,Rep) is is (εsec,m)-hard for all adversaries in the generic
group model (making at most m queries) where

εsec =

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
4

q
+ 2−β +

(
(k − γ)

(
n

k−γ−1

)
qγ+1

))
.

Proof of Lemma 8. Define the auxiliary indicator random variable 1e=y over {0, 1}n as follows:

1e=y,i =

{
1 ei = yi

0 otherwise.

Consider some fixed subset I of size k − γ. Conditioned on y,

max
x∈{0,1}k

Pr [1e=y,I = x|y, I] = max
x∈{0,1}k

Pr [eI = x] ≤ 2−β.

That is, for every value y it is true that 1e=y|y all k subsets have entropy β. Thus, defining e′|y as a
random value when 1e=y,i = 1 and 0 otherwise, we have that e′|y is a location source. Thus, applying
Lemma 14 one has that e′ is a (k, β′)−MIPURS distribution for

β′ =
1

q
+ 2−β +

(
(k − γ)

(
n

k−γ−1

)
qγ+1

)
.

Application of Lemma 4 completes the proof of Lemma 8.

We now show this construction is correct and efficient. Our correctness argument considers k′
def
= k+α =

Θ(n) and t = Θ(n). For the fuzzy extractor application, one would consider a smaller k′ and t. In
particular, for t = o(n) the theorem applies with overwhelming probability as long as k′ ≤ ((1− c)/3) · n
for a constant 0 < c < 1. We use the q-ary entropy function which is a generalization of the binary
entropy function to larger alphabets. Hq(x) is the q-ary entropy function defined as

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Lemma 9. Let parameters be as in Construction 2. Define τ = max(t/n, 0.01). Let 0 < δ < 1−Hq(4τ)
and suppose that k′ ≤ (1/3) · d1 − Hq(4τ) − δen. If Rep outputs a value other than ⊥ it is correct with
probability at least 1− e−Θ(n).

Proof of Lemma 9. We assume a fixed number of iterations in Rep denoted by `. For any two ψ,ψ′ used
as inputs to Gen and Rep respectively, we assume that dis(ψ,ψ′) ≤ t and that the value y is independent
of both values (by Def 1, any distribution over ψ′ does not depend on the public value).

We first show that with high probability the final check of dis(cI , c
′
I) ≤ 2|cI |τ to return correctly

if and only rx = r
A−1
Ji

cJi . We stress that this guarantee is independent of the chosen subset and only
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depends on A and y. We refer to the values in the exponent, but our argument directly applies to the
generated group elements. Define the matrix AI defined by the set I. By Chernoff bound,

Pr

[
|I| ≤

(
1− 1

3

)
E |I|

]
= Pr

[
|I| ≤

(
2

3

)
n

2

]
≤ e−

n
36 ≤ e−Θ(n).

Without loss of generality we assume that the size of I = n/3. Consider any fixed ψ,ψ′ such that
dis(ψ,ψ′) ≤ t. Note that the only way a random value is included in rcI is if ψ′i = yi but ψi 6= yi, that is
position i is erroneously thought to be without error. Define the random variable Z of length n where a
bit i of Z that indicates ψi 6= ψ′i, noting that |Z| = dis(ψ,ψ′) ≤ t. Thus, the number of random values

included in rcI is at most |I ∩Z|. Let S
def
= |I ∩Z|. Recall that I and Z are independent. Thus, we can

upper bound the CMF S by the CMF of the binomial distribution with n/3 flips and probability p ≤ τ .
Thus, E[S] ≤ τ ∗ n/3.

We now turn to measuring the probability that S is larger than its expectation. For the correctness

argument it suffices to consider t = Θ(n), if t = o(n) then τ
def
= t/n ≤ .01 as this case creates the highest

likelihood of recovering some wrong codeword.
By an additive Chernoff bound,

Pr [S − E[S] ≥ τn/3] ≤ 2e−2τ2/9n ≤ e−Θ(n).

To show correctness it remains to show that x is unique even when the code is restricted to I. We again
assume that I = n/3, all arguments proceed similarly when I > n/3. To show uniqueness of x suppose
that there exists two x1,x2 such that dis(AIx1, cI) ≤ 2|cI |τ and dis(AIx2, cI) ≤ 2|cI |τ . This means that
AI(x1 − x2) contains at most 4t/3 nonzero components. To complete the proof we use Lemma 5 which
bounds the minimum distance of a random code. Noting that by independence of A,y, and ψ′ that AI
is uniform.

Lemma 10. Let all parameters be as in Construction 2. Suppose that k + α = o(n) and t is such that
tk′ ≤ cn lnn for some constant c. Let η > 0 be some constant and let δ′ > 0 be some value, then for
` = n2(1+η)c log 1

δ′ , Rep when run for ` iterations outputs ⊥ with probability at most δ′. If tk′ = o(n log n)
setting ` = n log 1/δ′ suffices.

Proof of Lemma 10. Our analysis of running time is similar to Lemma 6 restricted to only positions in
I. It is more complicated because it must account for the chance that the error rate in I increases.
accounting for the smaller set S with a potentially higher error rate. For this analysis we consider the
setting of |I| = n/3. We use the notation from Lemma 9. We separate out two cases when tk′ = o(n log n)
and when tk′ = Ω(n log n).

Case 1: tk′ = o(log n): In this case we assume that all t errors are included in I. Then for any given
i, the probability that ψ′Ji = ψJi is at least(

1− 3t

n− 3k′

)k′
≥
(

1

4

)k′t/(n−k′)
≥
(

1

4

)3k′ logn/(n−k′)
≥
(

1

4

)6k′/n logn

= n−12k′/n ,

where we have applied the inequality n− 3k′ ≥ n/2 (since k′ = o(n)). The probability that no iteration
matches is at most (

1−
(

1− 3t

n− 3k′

)k′)`
.
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Using the inequality 1 + x ≤ exp(x) we conclude(
1−

(
1− 3t

n− 3k′

)k′)`
≤
(

1− 1/n12(k′/n)
)`
≤ exp(−`/n12k′/n).

When ` ≥ n log 1/δ′ the result follows.

Case 2: tk′ = Ω(n log n) Let η > 0 be a constant and define η′ = η/3. In this case we bound the
fraction of errors included in I. As in Lemma 9 we S denote the number of included errors. Note that in
this case since k′ = o(n) it must be true that t = ω(log n). By a multiplicative Chernoff bound:

Pr
[
S − E[S] ≥ η′ E[S]

]
≤ e−η′2 E[S]/(2+γ) = ngl(n).

Thus, with high probability we know that S ≤ (1 + η′)t/3. Conditioned on this event, we consider the
probability that an individual subset is correct. For any given i, the probability that ψ′Ji = ψJi is at least(

1− (1 + η1)t

n− 3k′

)k′
≥
(

1

4

)(1+η1)k′t/(n−k′)
≥
(

1

4

)(1+η′)cn logn/(n−k′)

≥
(

1

4

)(1+η2)(1+η′)c logn

= n−2(1+η′)(1+η′)c

≥ n−2(1+η)c ,

where we have applied the inequality n− 3k′ ≥ n/(1 + η′) for any constant η′ (since k′ = o(n)) and used
the fact that (1 + η′)(1 + η′) < 1 + η. The probability that no iteration matches is at most(

1−
(

1− 2t

n− 3k′

)k′)`
.

Using the inequality 1 + x ≤ exp(x) we conclude(
1−

(
1− (1 + η′)t

n− 3k′

)k′)`
≤
(

1− 1/n2(1+η)c
)`
≤ exp(−`/n2(1+η)c).

As ` ≥ n2(1+η)c log 1/δ′ the result follows. This completes the proof of Lemma 10.

3.2 The power of confidence information

Most PUFs and biometrics demonstrate a constant error rate τ = t/n. This is higher than the correction
capacity of our construction and Canetti et al.’s digital locker construction [CFP+16]. However, existing
fuzzy extractors that support constant τ do not support the low entropy distributions found in practice.

While code offset in the exponent is not designed for constant error rates it is efficient for small constant
τ . As described in the Introduction for the case of PUFs and biometrics, using confidence information
can lead to a multiplicative decrease in the effective error rate of bits chosen for information set decoding.
The important tradeoff is between the fractional error rate τ = t/n and the number of required iterations.
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Figure 2: Expected number of iterations ` to have Rep output a value with .95 probability across error
rate. Three lines represent original error rate t and two reduced error rates of t/2 and t/10 that may be
achievable by using confidence information. Note that the y-axis is in log scale.

We observe, for practical parameters, multiplicative changes in τ lead to exponential changes in the
required iterations `. To demonstrate we consider the following parameters: a source of length n = 1024
(common for the iris), a subset size of k = 128, and an output key of a single group element (α = 1).
Figure 2 shows how log ` increases for different τ . Three lines represent the original error rate and two
potential reduced error rates (multiplicative decreases of 2 and 10 respectively). Figure 2 considers τ
steps of .001. Between 0 and .06, each step of .001 increases log ` by .667 (r2 value of .999).

As mentioned in the introduction, Canetti et al. [CFP+16] digital locker 9 condition for security is
that average subsets have entropy. A distribution satisfying MIPURS implies that average subsets have
entropy (see Section 4.3). Since code offset in the exponent allows the adversary to test any subset,
average subsets having entropy does not suffice (see Section 1.5). Section 3.1 showed how to handle
distributions where all subsets have entropy by multiplying by a random error vector. Unfortunately, as
we show in Section 4.4, MIPURS and all subsets have entropy are incomparable notions creating a barrier
to removing this random vector in Construction 2.

3.3 Reusability

Reusability is the ability to support multiple independent enrollments of the same value, allowing users to
reuse the same biometric or PUF, for example, with multiple noncooperating providers. More precisely,
the algorithm Gen may be run multiple times on correlated readings e1, ..., eρ of a given source. Each
time, Gen will produce a different pair of values (key1, pub1), ..., (keyρ, pubρ). Security for each extracted
string keyi should hold even in the presence of all the helper strings pub1, . . . , pubρ (the reproduction
procedure Rep at the ith provider still obtains only a single e′ close to ei and uses a single helper string
pubi). Because providers may not trust each other keyi should be secure even when all keyj for j 6= i are
also given to the adversary.

9Intuitively, a digital locker is a symmetric encryption that is semantically secure even when instantiated with keys that
are correlated and only have entropy [CKVW10].
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Definition 4 (Reusable Fuzzy Extractor [CFP+16]). Let E be a family of distributions over M. Let
(Gen,Rep) be a (M, E , κ, t)-fuzzy extractor that is (εsec,m)-hard with error δ in the generic group model.
Let (e1, e2, . . . , eρ) be ρ correlated random variables such that each ej ∈ E. Let A be an adversary. Define
the following game for all j = 1, ..., ρ:

• Sampling The challenger samples u← Gα
q and σ

$← Σ.

• Generation For all 1 ≤ i ≤ ρ, the challenger computes (keyi, pubi)← Gen(ej).

• Distinguishing The advantage of A is

Adv(A)
def
= Pr[AOG(σ(key1, ..., keyj−1, keyj , keyj+1, ..., keyρ, pub1, ..., pubρ)) = 1]

−Pr[AOG(σ(key1, ..., keyj−1, u, keyj+1, ..., keyρ, pub1, ..., pubρ)) = 1].

(Gen,Rep) is (ρ, εsec,m)-reusable if for all A making at most m queries to OG and all j = 1, ..., ρ, the
advantage is at most εsec.

Theorem 11. Let c be a constant. Let all parameters be as in Construction 1. Let E be the set of
all (k, β)-MIPURS distributions. Then (Gen,Rep) is a (Fnq , E , |Fαq |, t)-fuzzy extractor for any t such that
t ≤ (cn lnn)/(k+α); moreover, (Gen,Rep) is (ρ, εsec,m)-reusable for all adversaries in the generic group
model making at most m queries where

εsec = 3ρ

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
3

q
+ β

)
.

Proof. Unfortunately, the proof of Theorem 11 needs to work directly with the generic group model. This
is because we have to first show that we can provide separate oracles for the different values of keyi, pubi

without any loss. From there the proof proceeds akin to Theorem 3. Without loss of generality, we assume
that the adversary is trying to learn information about the first key. Since we sample generators r1, ..., rρ

we can define s1, ..., sρ where si = logr1 r
i. For the construction to be reusable for all distinguishers, it

must be true that for uniform V ∈ Fαq :∣∣∣∣∣ Pr
σ

$←Σ

[AOG(σ(s1(x1
0...α−1)),A1, σ(s1(A1x1 + e1)), {σ(keyi, pubi)}ρi=2)) = 1]

− Pr
σ

$←Σ

[AOG(σ(V),A1, σ(s1(A1x1 + e1)), {σ(keyi, pubi)}ρi=2)) = 1]

∣∣∣∣∣ ≤ εsec.
where x1,A1 are values sampled in the invocation of Gen(e1).

As shown in Theorem 2, for a single oracle A has negligible probability of seeing a 0 response for any
nontrivial linear combination.

All dependence between the values x1 and keyi is contained in σ(pub1, pubi). We calculate the proba-
bility of an adversary making a query with nonzero elements from multiple generic group instances that
results in a zero value response. As long as this probability is small, one can provide separate oracles for
each σ. We now calculate this probability. The values contained in keyi, pubi are multiplied by si. So
finding some 0 response requires finding some

∑
j=1

∑
k αj,ks

jpubjk =
∑

k αks
ipubik. Since the value si
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starts as uniformly random from the adversary’s perspective this occurs with probability (see Lemma 30)
at most

((m+ n+ 2)(m+ n+ 1))2

4q
.

Thus, we can replace these coupled oracles in a hybrid fashion paying cost at most

ρ
((m+ n+ 2)(m+ n+ 1))2

4q
.

To show hardness in this separate oracle setting we follow a three step process. First we replace all
handles for pubi with uniform values. This again requires using the proof of Theorem 2 which argues
that with high probability no response from OG is useful and thus even when correlated values are in
independent oracle, the adversary never learns anything useful from any individual oracle. For this step,
we need a lemma similar to Lemma 4 that is proved analogously:

Lemma 12. For any integer n > 0, prime q ≥ 2, and let Gq be a group of order q, error-distribution e
over Fnq , if for random A ∈ Fn×kq ,x ∈ Fkq , and U ∈ Fn it is true for all PPT A that∣∣∣∣∣ Pr

σ
$←Σ

[AOG(A, σ(Ax + e)) = 1]− Pr
σ

$←Σ

[AOG(A, σ(U)) = 1]

∣∣∣∣∣ < ε,

then for uniformly distributed A′ ∈ Fn×(k+α)
q ,x ∈ Fk+α

q , and U ∈ Fnq it is true that∣∣∣ Pr
σ

$←Σ

[AOG(σ(x0...α−1),A′, σ(A′x + e)) = 1]

− Pr
σ

$←Σ

[AOG(σ(x0...α−1),A′, σ(U)) = 1]
∣∣∣ < ε.

Second, we replace the key for σ(x1
0,...,α−1) with a uniform value (using Theorem 2 and Lemma 4).

Finally, we repeat the first step now that the relevant key has been replaced with uniform. Together this
results in 2ρ+ 1 hybrids with distance between each one of at most(

((m+ n+ 2)(m+ n+ 1))2

2

)(
3

q
+ β

)
.

Together with the cost of ρ
(
((m+ n+ 2)(m+ n+ 1))2/4

)
(1/q + β), for replacing the oracles with sepa-

rate oracles yields an overall cost of at most

εsec = 3ρ

(
((m+ n+ 2)(m+ n+ 1))2

2

)(
3

q
+ β

)
.

4 Characterizing MIPURS

Definition 2 of MIPURS is admittedly unwieldy. It considers a property of a distribution e ∈ Fnq with
respect to a random matrix. We turn to characterizing distributions that satisfy MIPURS. We begin with
easier distributions and conclude with the general entropy case is in Section 4.5. Throughout, we consider

a prime order group G of prime size q, a random linear code A ∈ Fn×kq and the null space B
def
= null(A).
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4.1 Independent Sources ⊂ MIPURS

In most versions of LWE, each error coordinate is independently distributed and contributes entropy.
Examples include the discretized Gaussian introduced by Regev [Reg05, Reg10], and a uniform interval
introduced by Döttling and Müller-Quade [DMQ13]. We show that these distributions fit within our
MIPURS characterization.

Lemma 13. Let e = e1, . . . , en ∈ Fnq be a distribution where each ei is independently sampled. Let
α = min1≤i≤n H∞(ei). For any k ≤ n, e is a (k, β)−MIPURS distribution for β = 2−α.

Proof. Consider a fixed element b 6= 0 in B. Since the components of e are independent, predicting 〈b, e〉
is at least as hard as predicting ei for each i such that bi 6= 0. This can be seen by fixing b and ej for
j 6= i and noting that the value of ei then uniquely determines 〈b, e〉. Since b 6= 0 there exists at least one
such i. Thus,

Pr
B

[
max
g

max
b∈B\0

Pr
e

[〈b, e〉 = g]

]
≤ 2−α

def
= β.

4.2 Location Sources ⊂ MIPURS

Next, we consider e′ given by the coordinatewise product of a uniform vector r ∈ Fnq and a “selection
vector” e ∈ {0, 1}n: that is, e′i = ri ·c ei where all large enough subsets of e are unpredictable (·c is
component-wise multiplication). Location sources are important for applications (see Section 2.1 and
Section 5).

Lemma 14. Let γ ∈ N and k ∈ Z+. Let e ∈ {0, 1}n be a distribution where all (k − γ)-subsets have
entropy α. Define the distribution e′ as the coordinatewise product of a uniform vector r ∈ Fnq and e: that
is, e′i = ei ·c ri. Then the distribution e′ is a (k, β)-MIPURS distribution for

β =
1

q
+ 2−α +

(
(k − γ)

(
n

k−γ−1

)
qγ+1

)
.

Proof of Lemma 14. We use A ∈ Fn×kq to represent the random matrix from the definition of a MIPURS

distribution and let B ∈ Fn×n−kq represent its null space. We start by bounding the “minimum distance”
of B, that is, the minimum weight of a non-zero element of B = null(A). Observe that the number of
vectors in Fnq of weight less than k − γ is

k−γ−1∑
j=0

(
n

j

)
qj ≤ (k − γ)

(
n

k − γ − 1

)
qk−γ−1 .

The probability that any fixed, nonzero vector lies x in B is q−k, as it must annihilate k independent,
uniform linear equations. (That is,

∑
i xiAis = 0 for each 1 ≤ s ≤ k.) Thus

E[|{w ∈ null(A) \ 0 | wt(w) < k − γ}|] ≤ (k − γ)

(
n

k − γ − 1

)
q−γ−1 . (2)

By Markov’s inequality, the probability that there is at least one such small weight vector in null(A) is
no more than the expected number of such vectors. Hence

Pr[∃w ∈ null(A) \ 0,wt(w) < k − γ] ≤ (k − γ)

(
n

k − γ − 1

)
q−γ−1 .
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For some b in the span of B with weight at least k − γ, consider the product 〈b, e′〉 =
∑n

i=1 bi · ei · ri.
Define I as the set of nonzero coordinates in b. With probability at least 1− 2−α there is some nonzero
coordinate in eI . Conditioned on this fact this means that at least one value ri is included in the inner
product. Thus, the entropy of the inner product is bounded below by the entropy of ei · ri which since
ei 6= 0 is bounded by the entropy of ri. In this case, the prediction probability of an inner product (and
therefore a single element of F) is 1/q. The argument concludes by assuming perfect predictability when
there exists b in B with weight of at most k − γ − 1.

4.3 MIPURS ⊂ Average Subsets Have Entropy

As mentioned in the Introduction, Canetti et al. [CFP+16] showed a fuzzy extractor construction for all
sources where an average subset has entropy:10

Definition 5 ([CFP+16] average subset have entropy). Let the source e = e1, . . . , en consist of strings of
length n over some arbitrary alphabet Z. We say that the source e is a source with a k-average subsets
have entropy β if

E
j1,...,jk

$←[1,...,n],jα 6=jγ

(
max
z
{Pr[(ej1 , . . . , ejk) = z | j1, . . . , jk]}

)
≤ β.

We now show that all MIPURS distributions implies that average subsets have entropy.

Lemma 15. Let e = e1, . . . , en be a source over alphabet Z such that e is (k, β)−MIPURS. Then e has
(k′, β′)-entropy samples for any k′ and

β′ =
β(

1− (qk′−(k+1))
(2k′(nk′))

) .

Proof. We proceed by contradiction, that is suppose that e does not have k′, β′ entropy samples. That is,

E
j1,...,j′k

$←[1,...,n],jα 6=jγ

(
max
z

{
Pr[(ej1 , . . . , ejk) = z | j1, . . . , j′k]

})
> β′.

We consider the following definition of b,g in the MIPURS game:

1. Receive input A, compute B = null(A).

2. Select random b ∈ B such that wt(b) ≤ k′, b 6= 0. If no such b exists output b = 0,g = 0.

3. Define I as the set of nonzero locations in b. If |I| < k′ insert random distinct locations until
|I| = k′.

4. Compute z = arg maxz {Pr[eI = z | I]}.
5. Output g = 〈b, z〉.

10We make a small modification to their definition changing to sampling without replacement.
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If z is the correct prediction for eI then g = 〈b, z〉 = 〈b, e〉. As noted above, the probability of
any particular value nonzero b being in B is q−k. Thus, conditioned on finding a good b, the dis-
tribution of the random variable b is exactly that of a uniform weight k′ value. This implies that
Eb [maxz {Pr[(eI) = z | I}] > β′. It remains to analyze the probability that B contains no vectors of
weight k′. Here we derive an elementary bound, asymptotic formulations exist in the information theory
literature [HHLT20, Theorem 1.1].

Lemma 16. Let V denote a random subspace of Fnq of dimension κ. Let W` denote the subset of Fnq
consisting of all vectors with weight `, then

Pr[V ∩W` = 0] ≤ (qn − 1)((
n
`

)
(q − 1)`−1(qκ − 1)

) .
Proof of Lemma 16. We begin by noting that |W`| =

(
n
`

)
(q − 1)` For a vector ~v ∈W`, let

X~v =

{
1 if ~v ∈ V ,
0 otherwise.

Then

E

∑
~v∈W`

X~v

 =

(
n

`

)
(q − 1)`

qκ − 1

qn − 1
.

We wish to compute the second moment of the sum
∑
X~v. We have

E

 ∑
~v,~w∈W`

X~vX~w

 = E

 ∑
~v,~w∈W`

~v,~w independent

X~vX~w

+ E

 ∑
~v,~w∈W`

~v,~w dependent

X~vX~w


≤
(
n

`

)
(q − 1)`

((
n

`

)
(q − 1)` − (q − 1)

)
max

indep. ~v,~w
Pr[~v, ~w ∈ V ]

+

(
n

`

)
(q − 1)`+1 max

dependent ~v,~w
Pr[~v, ~w ∈ V ]

≤
((

n

`

)
(q − 1)`

)2 (qκ − 1)(qκ−1 − 1)

(qn − 1)(qn−1 − 1)︸ ︷︷ ︸
(‡)

+

(
n

`

)
(q − 1)`+1 q

κ − 1

qn − 1
.

Note that (m− t)/(n− t) < m/n assuming that t ≤ m < n and hence that that

(‡) =

((
n

`

)
(q − 1)`

)2 (qκ − 1)(qκ − q)
(qn − 1)(qn − q)

≤
((

n

`

)
(q − 1)`

)2 (qκ − 1)2

(qn − 1)2
≤ E

[∑
X~v

]2
.

It follows that

Var
[∑

X~v

]
= E

[(∑
X~v

)2
]
− E

[∑
X~v

]2
≤
(
n

`

)
(q − 1)`+1 q

κ − 1

qn − 1
.
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Then using Chebyshev’s inequality with a constant of

α =

√((
n

`

)
(q − 1)`

qκ − 1

qn − 1

)2/((n
`

)
(q − 1)`+1

qκ − 1

qn − 1

)
one finds:

Pr
[∑

X~v = 0
]
≤ Var[

∑
X~v]

E [
∑
X~v]

2

≤
((

n

`

)
(q − 1)`+1 q

κ − 1

qn − 1

)/((n
`

)
(q − 1)`

qκ − 1

qn − 1

)2

≤ (qn − 1)
/((n

`

)
(q − 1)`−1(qκ − 1)

)
.

This completes the proof of Lemma 16.

Thus, for dim(B) ≥ n− k it is true that for any k′:

Pr[B ∩Wk′ = 0] ≤ (qn − 1)
/((n

k′

)
(q − 1)k

′−1(qn−k − 1)

)
≤ qn

2k′
(
n
k′

)
qn−k+k′−1

=
qk
′−(k+1)

2k′
(
n
k′

) .

We note that the overall success of prediction of b,g in the MIPURS game is bounded below by Pr[B ∩
Wk′ = 0] ∗ 0 + (1− Pr[B ∩Wk′ = 0]) ∗ β′ = β. This completes the proof of Lemma 15.

4.4 MIPURS and all subsets have entropy

We now consider the relationship between MIPURS and all subsets have entropy. Recall, that we showed
that for a distribution e where all subsets have entropy multiplying by a random vector produced a
MIPURS distribution. With two simple examples, we show that MIPURS is not contained by all subsets
have entropy and all subsets have entropy is not contained by MIPURS.

Proposition 17 (MIPURS 6→ all subsets have entropy). Define e ∈ Fnq as the distribution that is fixed
in the first k positions and uniform in all other positions. Clearly for any β > 0 it does not hold that all
k-subsets have entropy. Furthermore, e is (k, β)−MIPURS for β ≥ (1− 1

qk
− k

qn−k
) log q.

To show the above proposition, assume perfect predictability in the MIPURS game in the case when A is
not full rank or when 1k||0n−k is in null(A). Otherwise, full entropy results from the same argument as
Lemma 13.

For the second direction we assume that e is a Reed-Solomon [RS60] code (the counterexample is
similar to the one presented in Section 1.3). For the field Fq of size q, a message length k, and code length
n, such that k ≤ n ≤ q, define the Vandermonde matrix V where the ith row, Vi = [i0, i1, ...., ik]. The
Reed Solomon Code RS(n, k, q) is the set of all points Vx where x ∈ Fkq .

Proposition 18 (all subsets have entropy 6→ MIPURS). Let k < n/2 and let e be the uniform distribution
over RS(n, n−k−1, q) then all k subsets of e have entropy k log q. Furthermore, e is not (k, β)−MIPURS
for any β < 1.

Note dim(null(A)) ≥ n− k and thus null(A) and null(RS(n, n− k− 1, q)| are guaranteed to a have
a nontrivial intersection. The result follows by picking some b in this intersection and setting g = 0.
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4.5 High entropy ⊂ MIPURS

We now turn to the general entropy condition: MIPURS is hard for all distribution where the min-entropy

exceeds log qn−k (by a super logarithmic amount). For conciseness, we introduce κ
def
= n− k.

The adversary is given a generating matrix of the code, A; this determines B = null(A). Our proof
is divided into three parts. Denote by E a set of possible error vectors.

1. Theorem 19: We show that the number of vectors ψ ∈ E that are likely to have 0 inner product
with an adversarially chosen vector in B is small. Intuitively, we show that this set is “not much
larger than a κ-dimensional subspace.”

2. Theorem 24: We then show it is difficult to predict the value of the inner product: even if the
adversary may select arbitrarily coupled b and g, it is difficult to achieve 〈b, ψ〉 = g.

3. Lemma 26: We show that any distribution e with sufficient entropy cannot lie in the set of predictable
error vectors E with high probability.

We codify the set of possible adversarial strategies by introducing a notion of κ-induced random variables.
For the moment, we assume that B is a uniformly selected subspace of dimension exactly κ; at the end of
the proof we remove this restriction to apply these results when B has the distribution given by null(A)
(Corollary 27).

Definition 6. Let b be a random variable taking values in Fnq . We say that b is κ-induced if there exists
a (typically dependent) random variable B, uniform on the collection of κ-dimensional subspaces of Fnq ,

so that b ∈ B and b 6= ~0 with certainty: Pr[b ∈ B ∧ b 6= ~0] = 1. Note, in fact, that the random variables
B and b are necessarily dependent unless n = κ.

It suffices to consider the maximum probability in Definition 2 with respect to κ-induced random
variables. This is because for any b that is not κ-induced we can find another b that is κ induced that
does no worse in the game in Definition 2. For example when b is not in B or is the zero vector, one can
replace b with a random element in the span of B.

We now show that if the set E is large enough there is no strategy for b that guarantees 〈b, ψ〉 = 0
with significant probability. The next theorem (Thm. 24) will, more generally, consider prediction of the
inner product itself. For a κ induced random variable b, define

E(b,0)
ε =

{
f ∈ Fnp

∣∣∣∣ Pr
b

[〈b, f〉 = 0] ≥ ε
}
.

When b can be inferred from context, we simply refer to this set as Eε. Then define Pκ,ε = max
b
|E(b,0)

ε |
where the maximum is over all κ-induced random variables in Fnq .

Theorem 19. Let q be a prime and let d > 1, κ,m, η ∈ Z+ be parameters for which κ ≤ n. Then
assuming Pκ,ε > d · qκ we must have

ε ≤
(
κ+ η

m

)
+

(
m

κ

)((
m

η

)(
1

d

)η
+

(
2

q

))
.

Before proving Theorem 19, we introduce and prove two combinatorial lemmas (20 and 22). We then
proceed with the proof of Theorem 19. The major challenge is that the set Eε (for a particular b) is
typically not a linear subspace; these results show that is has reasonable “approximate linear” structure.
We begin with the notion of linear density to measure, intuitively, how close the set is to linear.
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Definition 7. The `-linear density of a sequence of vectors F = (f1, . . . , fm), with each f i ∈ Fnq , is the
maximum number of entries that are covered by a subspace of dimension `. Formally,

∆`(F ) = max
V,dim(V )=`

|{i | f i ∈ V }|.

Lemma 20. Let q be a prime and let n, ` ∈ Z+ satisfy ` ≤ n. Let E ⊂ Fnq satisfy |E| ≥ q` and let
F = (f1, . . . , fm) be a sequence of uniformly and independently chosen elements of E. Define d so that
|E| = dq`; then for any η ≥ 0,

Pr
F

[∆`(F) ≥ `+ η] ≤
(
m

`

)(
m− `
η

)(
1

d

)η
.

Proof. By the definition of linear density, if ∆`(F) ≥ ` + η there must be at least one subset of ` + η
indices I ⊂ [m] so that {f i | i ∈ I} is contained in a subspace of dimension `. In order for a subset I to
have this property, there must be a partition of I into a disjoint union S ∪ L, where S has cardinality `
and T indexes the remaining η “lucky” vectors that lie in the span of the vectors given by S. Formally,
∀t ∈ T, f t ∈ span({f s | s ∈ S}).

Fix, for the moment, ` indices of F to identify a candidate subset of vectors to play the role of S and
η indices of F to identify a candidate set T . The probability that each of the η vectors indexed by T lie
in the space spanned by S is clearly no more than (q`/|E|)η ≤ (1/d)η. Taking the union bound over these
choices of indices completes the argument: the probability of a sequence is no more than(

m

`

)(
m− `
η

)
d−η,

as desired.

Before introducing our second combinatorial lemma (Lem 22), we need a Lemma bounding the prob-
ability of a fixed subspace having a nontrivial intersection with a random subspace.

Lemma 21. Let q be a prime and κ, n ∈ N with κ ≤ n. Let V be a random variable uniform on the set
of all κ-dimensional subspaces of Fnq . Let W be a fixed subspace of dimension `. Then

Pr[V ∩W 6= {0}] ≤ qκ+`−(n+1) ·
(

q

q − 1

)
.

Proof. Let L denote the set of all 1-dimensional subspaces in W . Each 1-dimensional subspace is described
by an equivalence class of q − 1 vectors under the relation x ∼ y ⇔ ∃λ ∈ F∗q , λx = y. Thus |L| =

(q` − 1)/(q − 1) ≤ q`−1(q/(q − 1)). Then

Pr[V ∩W 6= {~0}] = Pr[∃L ∈ L, L ⊂ V] ≤
∑
L∈L

Pr[L ⊂ V]

≤ |L| max
v∈Fnq \{~0}

Pr[v ∈ V] ≤ qκ+`−(n+1)

(
q

q − 1

)
,

where we recall the fact that for any particular fixed nonzero vector v,

Pr[v ∈ V] =
qκ − 1

qn − 1
≤ qκ−n .
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Lemma 22. Let q be a prime, let `, κ, n ∈ Z+ satisfy `, κ ≤ n. Let F = (f1, . . . , fm) be a sequence of
elements of Fnq with dim(span(F )) ≥ `. Then, for any κ-induced random variable b taking values in Fnq ,

Pr
b

[
|{i | 〈b, f i〉 = 0}| ≥ ∆`(F )

]
≤
(
m

`

)
qκ−`−1

(
q

q − 1

)
≤ 2

(
m

`

)
qκ−`−1 .

Proof. Let VF denote the collection of all `-dimensional subspaces of Fnq spanned by subsets of elements
in the sequence F . That is,

VF = {V | V = span({f i | i ∈ I}), I ⊂ [m], dim(V ) = `} .

Then |VF | ≤
(
m
`

)
, as each such subspace is spanned by at least one subset of F of size `. As dim(span(F )) ≥

`, the set VF is nonempty.
Observe that if I ⊂ [m] has cardinality at least ∆`(F ) then, by definition, dim(span({f i | i ∈ I})) ≥ `;

otherwise, an additional element of F could be added to the set indexed by I to yield a set of size exceeding
∆`(F ) which still lies in a subspace of dimension ` (contradicting the definition of ∆`). Note in the case
that m = ` (and there is no element to add) then ∆`(F ) = ` = dim(span({f i | i ∈ I})). Thus, if I ⊂ [m]
has cardinality at least ∆`(F ), there must be some V ∈ VF for which V ⊂ span({f i | i ∈ I}). In particular

Pr
b

[
|{f i ∈ F | 〈b, f i〉 = 0}| ≥ ∆`(F )

]
≤ Pr

b

[
∃V ∈ VF ,∀v ∈ V, 〈v,b〉 = 0

]
≤
∑
V ∈VF

Pr
b

[
∀v ∈ V, 〈v,b〉 = 0

]
=
∑
V ∈VF

Pr
b

[
b ∈ V ⊥] ,

where we have adopted the notation V ⊥ = {w | ∀v ∈ V, 〈v, w〉 = 0}. Recall that when V is a subspace of
dimension `, V ⊥ is a subspace of dimension n− `. To complete the proof, we recall that b is κ-induced,
so that there is an associated random variable B, uniform on dimension κ subspaces, for which b ∈ B
with certainty; applying Lemma 21 we may then conclude∑

V ∈VF

Pr
b

[
b ∈ V ⊥] ≤

∑
V ∈VF

Pr
B

[
B ∩ V ⊥ 6= {~0}] ≤

(
m

`

)
qκ+(n−`)−(n+1) q

q − 1

=

(
m

`

)
qκ−`−1

(
q

q − 1

)
.

Proof of Theorem 19. Now we analyze the relationship between our two paramenters of interest: ε and d.

Fix some ε > 0. Let b be a κ-induced random variable for which |E(b,0)
ε | = Pκ,ε and let B be the coupled

variable, uniform on subspaces, for which b ∈ B.
For the purposes of analysis we consider a sequence of m vectors chosen independently and uniformly

from Eε = E
(b,0)
ε with replacement; we let F = (f1, . . . , fm) denote the set of vectors so chosen. We study

the expectation of the number of vectors in F that are orthogonal to b. We first give an immediate lower
bound by linearity of expectation and the definition of Eε:

E
b,F

[|{f i ∈ F | 〈b, f i〉 = 0}|] ≥ ε ·m.

We now infer an upper bound on this expectation using Lemmas 20 and 22. We say that the samples
F from Eε are bad if ∆κ(F) ≥ κ+ η. The probability of this bad event is no more than(

m

κ

)(
m− κ
η

)(
1

d

)η
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by Lemma 20. For bad selections, we crudely upper bound the expectation by m; for good selections
we further split the expectation based on the random variable B. We say that B is terrible (for a fixed
F = (f1, ..., fm)) if there exists some b ∈ B such that |{f i ∈ F | 〈b, f i〉 = 0}| ≥ ∆κ(F ). Otherwise, B
is great. The probability of a terrible selection of B is bounded above by (2/q)

(
m
κ

)
in light of Lemma 22

(applied with ` = κ). In this pessimistic case (that B is terrible), we again upper bound the expectation
by m. Then if the experiment is neither bad nor terrible, we may clearly upper bound the expectation by
κ+ η. So, for any η > 0 we conclude that

E
b,B,F

[|{fi ∈ F | 〈b, fi〉 = 0}|] ≤ (κ+ η) +m

((
m

κ

)(
m− κ
η

)(
1

d

)η
+

2

q

(
m

κ

))
and hence that

ε ≤
(
κ+ η

m

)
+

(
m

κ

)((
m

η

)(
1

d

)η
+

2

q

)
.

Corollary 23. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such that q ≥ 24κ.
Then for ε ≥ 5eq−1/(2(κ+1)) we have Pκ,ε ≤ 5eqκ/ε. In particular, for such ε and any κ-induced b, the set

|E(b,0)
ε | ≤ 5eqκ/ε.

Proof. Consider parameters for Theorem 19 that satisfy the following:

1 < d ≤ q1/(2(κ+1)), m =
dη

2e
, and η = log q .

First note that κ < 4κ ≤ log q = η (as q ≥ 24κ). Then, consider a set E
(b,0)
ε for some b. We have

ε ≤
(
κ+ η

m

)
+

(
m

κ

)((
me

ηd

)η
+

2

q

)
≤
(

2η

m

)
+ 3

(
m

κ

)
q−1

≤
(

4e

d

)
+ 3

(
dη/2e

κ

)
q−1 ≤

(
4e

d

)
+ 3

(
dη

2κ

)κ
q−1︸ ︷︷ ︸

(†)

.

Since q ≥ 24κ, we may write q = 22ακ for some α ≥ 2 and it follows that(
log q

κ

)κ
= (2α)κ ≤ (2α)κ =

√
q

because 2α ≤ 2α for all α ≥ 2. In light of this, consider the second term in the expression (†) above:

3

(
dη

2κ

)κ
q−1 ≤ 3

2

(
dη

κ

)κ
q−1 ≤ 3

2

(
dκ
√
q

)
·
((

log q

κ

)κ 1
√
q

)
≤ 3

2d
≤ e

d
.

We conclude that for any 1 < d ≤ q1/(2(κ+1)), Pκ,ε ≥ dqk =⇒ ε ≤ 5e/d. Observe then that for any
ε > 5e/q1/(2(κ+1)) we may apply the argument above to Pκ,ε with d = 5e/ε and conclude that Pκ,ε ≤
5eqκ/ε.
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Predicting Arbitrary Values. We now show that the adversary cannot due much better than Theo-
rem 19 even if the task is predicting the value 〈b, ·〉.

Theorem 24. Let b be a κ-induced random variable in Fnq and let g be a random variable over Fq
(arbitrarily dependent on b). For ε > 0 we generalize the notation above so that

E(b,g)
ε =

{
f ∈ Fnq

∣∣∣∣ Pr
b,g

[〈b, f〉 = g] ≥ ε
}
.

Then |E(b,0)
ε2/8
| ≥ ε2

8 |E
(b,g)
ε |.

Proof. For an element ψ ∈ E(b,g)
ε , define Fψ = {(x, 〈x, ψ〉) | x ∈ Fnp}. Note that Prb,g[(b,g) ∈ Fψ] ≥ ε

by assumption. For any δ < ε, there is a subset F ∗ ⊂ E
(b,g)
ε for which (i.) |F ∗| ≤ 1/δ, and (ii.) for any

ψ ∈ E(b,g)
ε ,

Pr
b,g

(b,g) ∈

Fψ ∩
 ⋃
f ′∈F ∗

Ff ′

 ≥ ε− δ .
To see this, consider incrementally adding elements of E

(b,g)
ε into F ∗ so as to greedily increase

Pr
b,g

(b,g) ∈
⋃

f ′∈F ∗
Ff ′

 .
If this is process is carried out until no ψ ∈ E(b,g)

ε increases the total probability by more than δ, then it
follows that every Fψ intersects with the set with probability mass at least ε − δ, as desired. Note also
that this termination condition is achieved after including no more than 1/δ sets. It follows that for any

ψ ∈ E(b,g)
ε ,

E
f ′∈F ∗

Pr
b

[〈b, ψ〉 = 〈b, f ′〉] ≥ (ε− δ)δ

and hence
E

f ′∈F ∗
E

ψ∈E(b,g)
ε

Pr
b

[〈b, ψ〉 = 〈b, f ′〉] ≥ (ε− δ)δ .

Then there exists an f∗ for which

E
ψ∈E(b,g)

ε

Pr[〈b, ψ〉 = 〈b, f∗〉] ≥ (ε− δ)δ .

Setting δ = ε/2 and we see that

E
ψ∈E(b,g)

ε

Pr[〈b, ψ〉 = 〈b, f∗〉] = Pr
b,ψ∈E(b,g)

ε

[〈b, ψ〉 = 〈b, f∗〉] ≥ ε2

4
.

Using this expectation (of a probability), we bound the probability it is greater than 1/2 its mean. As
the inner product is bi-linear,

Pr
ψ∈E(b,g)

ε

[
Pr
b

[〈b, ψ − f∗〉 = 0] ≥ ε2

8

]
≥ ε2

8
.

Thus, an ε2/8 fraction of the set {ψ−f∗ | ψ ∈ E(b,g)
ε } must be a subset of E

(b,0)
ε2/8

: the claim of the theorem

follows, that |E(b,0)
ε2/8
| ≥ (ε2/8)|E(b,g)

ε | .
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With the language and settings of this last Theorem, applying Corollary 23 to appropriately control

|E(b,0)
ε2/8
| yields the following bound on |E(b,g)

ε |.

Corollary 25. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such that q ≥ 24κ.
Let b be any κ-induced random variable in Fnq and g any random variable in Fq. Then for any ε ≥
11q−1/(4(κ+1)) it holds that

|E(b,g)
ε | ≤ 8

ε2
5eqκ

ε2/8
=

320eqκ

ε4
.

This implies all high min-entropy distributions are not predictable in the above game.

Lemma 26. Let b be a κ-induced random variable in Fnq . Let g be an arbitrary random variable in Fq.
Let e be a random variable with H∞(e) = s. Let E

(b,g)
ε be as defined in Theorem 24. Then for ε > 0,

Pr
ψ←e,b,g

[〈b, ψ〉 = g] ≤ 2−s|E(b,g)
ε |+ ε .

Proof. Our predictable set Eε = E
(b,g)
ε gives us no guarantee on the instability of the inner product. If

ψ ∈ Eε then we upper bound the probability by 1. Because e has min-entropy s, we know that no element
is selected with probability greater than 2−s, thus the probability of a lying inside a set of size |Eε| is
at most |Eε|/2s. Outside of our predictable set, we know that the probability of a stable inner product
cannot be greater than ε by definition of Eε. Therefore if ψ does not fall in the predictable set we bound
the probability by ε (for simplicity, we ignore the multiplicative term less than 1).

Corollary 27. Let k and n be parameters with n > k and let q be a prime such that q ≥ 24(n−k). Let
ε ≥ 11q−1/(4(n−k+1)) be a parameter. Then for all distributions e ∈ Fnq such that

H∞(e) ≥ log

(
320eqn−k

ε5

)
,

it holds that (for any b and g above) Pr
b,g,e

[〈b, e〉 = g] ≤ 2ε + k/qn−k and thus e is (k, 2ε + k/qn−k) −
MIPURS.

The additional k/qn−k term is due to the probability that A may not be full rank, all of the above analysis
was conditioned on A being full rank. The corollary then follows by replacing κ = n− k.

5 Pattern Matching Obfuscation from Code Offset in the Exponent

In this section we introduce a second application for our main theorem. This application is known as
pattern matching obfuscation. The goal is to obfuscate a string v of length n which consists of (0, 1,⊥)
where ⊥ is a wildcard. The obfuscated program on input x ∈ {0, 1}n should output 1 if and only
if ∀i, xi = vi ∨ vi = ⊥. Roughly, the wildcard positions are matched automatically. We directly use
definitions and the construction from the recent work of Bishop et al. [BKM+18]. Our improvement is in
analysis, showing security for more distributions V . We start by introducing a definition of security:

Definition 8. Let Cn be a family of circuits that take inputs of length n and let O be a PPT algorithm
taking n ∈ N and C ∈ Cn outputting a new circuit C ′. Let Dn be an ensemble of distribution families
where each D ∈ Dn is a distribution over circuits in Cn. O is a distributional VBB obfuscator for Dn
over Cn if:
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1. Functionality: For each n,C ∈ Cn and x ∈ {0, 1}n, PrO,C′ [C
′(x) = C(x)] ≥ 1− ngl(n).

2. Slowdown: For each n,C ∈ Cn, the resulting C ′ can be evaluated in time poly(|C|, n).

3. Security: For each generic adversary A making at most m queries, there is a polynomial time
simulator S such that ∀n ∈ N, and each D ∈ Dn and each predicate P∣∣∣∣∣∣∣ Pr

C←Dn,
OG ,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)]

∣∣∣∣∣∣∣ ≤ ngl(n).

Construction 3. We now reiterate the construction from Bishop et al. adapted to use a random linear
code for some prime q = q(n).

O(v ∈ {0, 1,⊥}n, q, g):
where g is a generator of a group Gq.

1. Sample A ∈ (Fq)2n×n,
x0 = 0,x1,...,n−1 ← (Fq)n−1.

2. Sample e ∈ Z2n
q uniformly.

3. For i = 0 to n− 1:

(a) If vi = 1 set e2i = 0.

(b) If vi = 0 set e2i+1 = 0.

(c) If vi =⊥ set e2i = 0, e2i+1 = 0.

4. Compute y = Ax + e.

5. Output gy,A.

Eval(gy,A, ψ ∈ {0, 1}n):

1. Define I as
{i ∈ [1...2n] | ψbi/2c = (i mod 2)}.

2. Compute A−1I . If none exists output ⊥.

3. Output gA
−1
I,1·y ?

= g.

To state our security theorem we need to map strings v over {0, 1,⊥} to binary strings.

Bin(v) = s where


si = 10 if vi = 1,

si = 01 if vi = 0,

si = 00 if vi =⊥ .

Lastly, define the distribution e′ = r ·c Bin(v)i for uniform distributed r ∈ F2n
q .

Theorem 28. Let ` ∈ Z+ be a free parameter. Define V as the set of all distributions V such that
E′ = UnFq ·c Bin(V ) is a distribution that is (n, β) − MIPURS. Then Construction 3 is VBB secure for
generic D making at most m queries with distinguishing probability at most

((m+ n+ 2)(m+ n+ 1))2

2

(
3

q
+ β

)
.

Proof. Like the work of Bishop et al. [BKM+18, Theorem 16] the VBB security of the theorem follows by
noting for any adversary A there exists a simulator S that initializes A, provides them with 2n random
handles (and simulates the interaction with Or) and outputs their output. By Theorem 2, the output of
this simulator differs from the adversary in the real game by at most the above probability.

31



Acknowledgements

The authors give special thanks to reviewer comments and feedback. The authors thank James Bartusek,
Ryann Cartor, Fermi Ma, and Mark Zhandry and their helpful discussions of their work. The work of
Benjamin Fuller is funded in part by NSF Grants No. 1849904 and 1547399. This material is based upon
work supported by the National Science Foundation under Grant No. 1801487.

This research is based upon work supported in part by the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-19020700008.
The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

References

[ACEK17] Daniel Apon, Chongwon Cho, Karim Eldefrawy, and Jonathan Katz. Efficient, reusable
fuzzy extractors from LWE. In International Conference on Cyber Security Cryptography
and Machine Learning, pages 1–18. Springer, 2017.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 403–415. Springer,
2011.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, Theory of Cryptography,
volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer Berlin Heidel-
berg, 2009.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II,
2014.
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A Generic Group Formalism and Analysis

A.1 The Generic Group Model and the Simultaneous Oracle Game

The focus of this section is on proving Theorem 2. Our proof uses the simultaneous oracle game introduced
by Bishop et al. [BKM+18, Section 4]. In this game, the adversary is given two oracles O1 and a second
oracle O∗ that is either O1 or O2 with probability 1/2. If O∗ = O1 it is sampled with independent
randomness from the first copy. Bishop et al. show that if an adversary cannot distinguish in this
game, they cannot distinguish the two oracles O1 and O2. Since the adversary has access to two oracles
simultaneously it is easier to formalize when the adversary can distinguish: The adversary’s distinguishing
ability arises directly from repeated responses. The adversary can only notice inconsistency when (i.) one
oracle returns a new response and the other does not or (ii.) if both responses are repeated but not
consistent with the same prior query.

Definition 9 (Generic Group Model (GGM) [Sho97]). An application in the generic group model is
defined as an interaction between a m-attacker A and a challenger C. For a cyclic group GN of order N
with fixed generator g, a uniformly random function σ : [N ]→ [M ] is sampled, mapping group exponents
in ZN to a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx. We consider M
large enough that the probability of a collision between group elements under σ is negligible so we assume
that σ is injective.

Based on internal randomness, C initializes A with some set of labels L = {σ(xi)}ni=0. It then imple-
ments the group operation oracle OG(·, ·), which on inputs σ1, σ2 ∈ [M ] does the following:

1. if either σ1 or σ2 are not in L, return ⊥.
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2. Otherwise, set x = σ−1(σ1) and y = σ−1(σ2) compute x+ y ∈ ZN and return σ(x+ y), add σ(x+ y)
to L.

A is allowed at most m queries to the oracle, after A outputs a bit which is sent to C which outputs a bit
indicating whether A was successful.

The above structure captures distinguishing games. Search games can be defined similarly. Bishop et. al.
formalized the simultaneous oracle game [BKM+18]. The formal structure is as follows.

Definition 10 (Simultaneous Oracle Game [BKM+18] definition 6). An adversary is given access to a
pair of oracles (OM ,O∗) where O∗ is drawn from the same distribution as OM with probability 1/2 (with
independent internal randomness) and is OS with probability 1/2. In each round, the adversary asks the
same query to both oracles. The adversary wins the game if they guess correctly the identity of O∗.

We note that even if the oracles are drawn from the same distribution their handle mapping functions
σ, using their independent internal randomness, will respond with distinct handles with overwhelming
probability even if their responses represent the same underlying group element. The distributions that the
oracles are drawn from represent any internal randomness used to implement the oracle by the challenger
in the definition of the generic group model.

In [BKM+18], Bishop et. al. also define two sets HtS and HtM which are the sets of handles returned
by the two oracles after t query rounds. They use these sets to define a function Φ : HtS → HtM . Initially

the adversary sets Φ(ht,iS ) = ht,iM for each element indexed by i in the initial sets given by the oracles. The
adversary can only distinguish if (i.) one oracle returns a new handle, while the other is repeated or (ii.)
the two oracles both return old handles that are not consistent under Φ. Hardness of the simultaneous
oracle game is sufficient to show that the two games cannot be distinguished. We state a lemma from
Bishop et al.:

Lemma 29 ([BKM+18] Lemma 7). Suppose there exists an algorithm A such that

|Pr[AGM(OGM) = 1]− Pr[AGS (OGS ) = 1]| ≥ δ.

Then an adversary can win the simultaneous oracle game with probability at least 1
2 + δ

2 for any pair of
oracles (OM,O∗ = OM/OS).

In the above AGM(OGM) corresponds to an adversary being initialized with handles from GM and
having an oracle to GM. AGS (OGS ) is defined similarly.

Remark 1. It is convenient for us to change the query capability of the adversary in the simultaneous
oracle game. Rather than single group operation queries we allow the adversary to make queries in the
form of a vector representing a linear combination of the initial set of handles given by the pair of oracles.
Specifically, a query X = (c0, . . . , cn) is given to both OM and O∗ where they compute and return their
responses. Each query to this interface can be simulated using a polynomial number of queries to the
traditional group oracle.

Proof of Theorem 2. We begin by noting that since the output range of σ is q3 the probability of σ(x) =
σ(y) when x 6= y is at most 1/q2 so taking a union bound over all q elements, the probability of some
collision existing is at most 1/q. Thus, for the remainder of the proof we restrict to the case when σ is a
1-1 function.

We begin the proof by describing the two oracles we use in the simultaneous oracle game called the
Code and Random Oracles.
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Code Oracle. We define a code oracle that responds to queries faithfully. We denote this oracle Oc
(and particular sampled function as σc). This oracle picks a message x, uses the generating matrix A
and the error vector e which is a (k, β)−MIPURS distribution.

The oracle begins by calculating the noisy codeword b1, ...,bn as b = Ax+e. The oracle prepends b0 =
1 (to allow the adversary constant calculations) and sends (σc(b0), . . . , σc(bn)) to D. When queried with
a vector ~χ = (χ0, χ1, . . . , χn) ∈ Zn+1

q the oracle answers with an encoded group element σc(
∑n

i=0 χi · bi).

Random Oracle. We also define an oracle Or that creates n + 1 random initial encodings and re-
sponds to all distinct requests for linear combinations with distinct random elements. For a sequence of
indeterminates y = (y0, y1, . . . , yn), this oracle can be described as a table where the left side is a vector
representing a linear combination of the indeterminates and the right side is a handle associated with
each vector.

When presented a query, if the vector is in the oracle’s table, it responds with the handle on the right
side of the table. When the query is a new linear combination, it generates a distinct, random handle.
The adversary then stores the vector and the handle in the table and sends the handle to D. We denote
the handles τi to distinguish them from the encoded group elements of the code oracle.

Lemma 30. In a simultaneous oracle game, the probability that any adversary D, when interacting with
group oracles (Oc,O∗ = Oc/Or) succeeds after m queries is at most

|Pr[D(Oc) = 1]− Pr[D(O∗) = 1]| ≤ γ
(

1

q
+ β

)
for γ = ((m+ n+ 2)(m+ n+ 1))2/4.

Proof. We examine the simultaneous oracle game that the adversary plays between Oc and O∗. The
adversary maintains its function Φ as it makes queries. We also analyze the underlying structure of
Oc. Denote the adversary’s linear combination as γ||χ1, ..., χn. We distinguish the first element as it is
multiplied by 1 leading to an offset in the resulting product. We do this by noticing that for i ≥ 1, the
group element bi is Aix + ei (we use Ai to denote the ith row of a matrix A):

n∑
i=1

χibi + γ =
n∑
i=1

χi(Ai · x) +
n∑
i=1

χi(ei) + γ = 〈χ,Ax〉+ 〈χ, e〉 + γ.

Again, Or responds to each distinct query with a new handle. This means that there is exactly one
occasion to distinguish when O∗ = Oc or Or. This is when the handle returned by Oc is known and Or
is new. We divide our cases with respect to the linear combination query χ. If χ is not in the null space
of the code A, we call this case 1. If χ is in the null space of A we call this case 2.

Case 1. Initially, x is both uniform and private. We can write the product of χ and our noisy code
word b as χ(b) = χ(Ax + e) = (χA)x + χ(e). Since χ /∈ null(A) then for at least one index i there is a
χi ·Ai 6= 0. Since x has full entropy, then (χiAi)xi also has full entropy and the sum of the terms has full
entropy. After the first query, x is no longer uniform. With each query, the adversary learns a predicate
about the difference of all previous queries, simply that they do not produce the same element. After m
queries (and n+ 1 starting handles) there are η = (m+ n+ 1)(m+ n+ 2)/2 query differences, giving the
same number of these equality predicates. Note that the adversary wins if a single of these predicates is
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1 meaning we can consider η total values for the random variable, denoted EQ representing the equality
predicate pattern. Then, using a standard conditional min-entropy argument [DORS08, Lemma 2.2b].
Thus,

∀i, H̃∞(xi | EQ,A) ≥ log q − log η.

Thus, it follows that after m queries,

H̃∞(χ(Ax) | EQ,A) ≥ log q − log η.

Thus, the probability that this linear combination represents a known value (on average across a) is:

E
A,EQ

[
max
z

Pr[(χ(Ax) = z | A, EQ]
]
≤ η

q
.

Case 2. Decomposing the linear combination of the codeword into χ(Ax+e) since χ is in the null space
of A then the linear combination is just ~0 + 〈χ, e〉. Since e is a (k, β) −MIPURS distribution, then an
upper bound for the power of the adversary to predict the outcome of the linear combination (and thus
the outcome of 〈χ, e〉 + γ) is β. In this case we also lose entropy due to the linear predicates. After m
queries, we pay the same log η bits so the probability is increased to ηβ.

These two cases are mutually exclusive. Thus, to calculate the probability of either of these cases
occurring after m queries (and n+ 1 starting handles) we take the sum. There are only q distinct group
elements, and therefore handles. Even a handle with full entropy will collide with a known handle with
probability equal to the number of known handles over the size of the group. Since each query can only
produce one handle, we have η distinct pairs of handles after m queries. So taking a union bound over
each query, we upper bound the distinguishing probability for the adversary by

η

(
η

q
+ ηβ

)
= η2

(
1

q
+ β

)
.

This completes the proof of Lemma 30 by setting γ = η2.

This lemma gives us the distinguishing power of an adversary interacting with our code oracle and
our random oracle. Our random oracle never has collisions because it creates fresh handles every time.
We now create an oracle that represents a distribution over uniform elements as claimed in Theorem 2.
Note that this oracle is different than Or which responded to all distinct queries with distinct handles.
This third handle initializes n random elements and faithfully represents the group operation. For a fresh
query this oracle has probability 1/q of returning a previously seen handle. We call this last oracle the
uniform oracle. In this case the adversary only distinguishes by seeing a repeated query handle. This
probability is at most η/q. To simplify the final result we know this value is at most γ/q since γ = η2.

Taking the result of this Lemma 30, we can prove Theorem 2 using Lemma 29 (and the modification
to the uniform oracle) where

δ/2
def
= γ

(
2

q
+ β

)
.

Since the probability of an adversary winning the simultaneous oracle game is bounded above by

1/2 + δ/2 = 1/2 + γ

(
2

q
+ β

)
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then

Pr[A(Oc) = 1]− Pr[A(Or) = 1] < 2γ

(
2

q
+ β

)
,

for γ = ((m + n + 1)(m + n + 2)/2)2. Because Or represents the oracle for uniform randomness and Oc
is the oracle for Ax + e, this gives us the result for generic adversaries.

B Hardness of Decoding in the Standard Model

In this section we ask, “for which e is code offset in the exponent secure assuming only assuming the
hardness of discrete log?” We use this as a comparison to the distributions that are secure in the generic
group model. In this section, we consider hardness of random linear codes in the exponent. We first
consider random linear codes and then Reed-Solomon codes. Both results follow a three part outline:

1. A theorem of Brands [Bra93] which says that if an adversary A given a uniformly distributed gy

can find z such that g〈y,z〉 = 1 or equivalently that a vector z such that 〈y, z〉 = 0 then one can
solve discrete log with the same probability. For a vector of length n and prime q, this problem is
known as the FIND− REP(n, q) problem.

2. A combinatorial lemma which shows conditions for a random gy to be within some distance param-
eter c of a codeword with noticeable probability. That is, ∃z ∈ C such that dis(gy, gz) ≤ c (for the
codeword space C).

3. Let O be an oracle for bounded distance decoding. That is, given gy, O returns some gz where
dis(gz, gy) ≤ c and z ∈ C. Recall that linear codes have known null spaces. Thus, if two vectors gz

and gy match in more positions than the dimension of the code it is possible to compute a vector ~γ
that is only nonzero in positions where gzi = gyi and 〈~γ,x〉 = 〈~γ,y〉 = 0. If O works on a random
point gy it is possible to compute a vector ~γ in the null space of y. This serves as an algorithm to
solve the FIND− REP and completes the connection to hardness of discrete log.

Notation and Definitions. We will consider noise vectors e ∈ Fq where the Hamming weight of e
denoted wt(e) = t and the nonzero entries of e are uniformly distributed. That is, we consider y = Ax+e.
Usually in coding theory the goal is unique decoding. That is, given some y, if there exists some z ∈ C
such that dis(y, z) ≤ t, the algorithm is guaranteed to return y and z is uniquely defined. Our results
consider algorithms that perform bounded distance decoding. Bounded distance decoding is a relaxation
of unique decoding. For a distance c and a point y ∈ Znq a bounded distance decoding algorithm returns
some z ∈ C such that dis(y, z) ≤ c. There is no guarantee that z is unique or is the point in the code
closest to y.

Problem BDDE− RL(n, k, q, c, g), or Bounded Distance Decoding (exponent) of Random Linear Codes.

Instance Known generator g of Fq. Define e as a random vector of weight c in Fq. Define gy = gAx+e

where A,x are uniformly distributed. Input is gy,A.

Output Any codeword gz where ∃x ∈ Zkq such that z = Ax and dis(x, z) ≤ c.

For a code C we define the distance between a point y and the code as the minimum distance between y
and any codeword c in C. Formally, dis(y,C) = minc∈C dis(y, c). Consider some point y in the codespace
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and a radius r. The thickness of a point is the number of Hamming balls (of radius r) inflated around all
codewords that cover y. Specifically, define the set of points contained in a Hamming ball of radius r as
Φ(r, z) for each codeword z in the code C. Then define random variable ϕ(r, z,y) for each Φ(r, z) where
ϕ(r, z,y) = 1 if y ∈ Φ(r, i) and 0 otherwise. Then the thickness of y is

Thick(r,C,y) =
∑
z∈C

ϕ(r, z,y).

B.1 Random Linear Codes

In this section we focus on a combinatorial lemma how frequently a random point will be close to some
codeword of a random linear code. In the next subsection (Appendix B.2), we present a similar result for
Reed-Solomon codes improving prior work of Peikert [Pei06]. We now present the theorem of this section
and our key technical lemma (Lemma 32), then prove the lemma and finally the theorem.

Theorem 31. For positive integers n, k, c and prime q where k < n ≤ q and let g be a generator of Gq.
If an efficient algorithm exists to solve BDDE− RL(n, k, q, n− k − c, g) with probability ε, then an efficient
randomized algorithm exists to solve the discrete log problem in the same group with probability at least

ε′ = ε

(
1−

(
qn−k

Vol(n, n− k − c, q)
+

k

qn−k

))
.

In particular, using a volume bound Vol(n, r, q) ≥
(
n
k

)
qr(1− n/q),

ε′ = ε

(
1−

(
qc(

n
k+c

)
(1− n

q )
+

k

qn−k

))
.

Lemma 32. Let a random code be defined by matrix A ∈ Zn×kq , then

Pr
y∈Fnq ,A

[dis(y,A) > n− k − c] ≤ qn−k

Vol(n, n− k − c, q)
+

k

qn−k
.

Proof of Lemma 32. A has qk codewords in a qn sized codespace as long as A is full rank. The probability
of A being full rank is at least 1 − k/qn−k [FMR13, Lemma A.3]. The expected thickness of a code or
Ey Thick(r,A,y) is the average thickness over all points in the space. Expected thickness is the ratio of
the sum of the volume of the balls and the size of the space itself. Note that this value can be greater
than 1. A Hamming ball in this space can only be defined up to radius n. We give denote the expected
thickness of the code as follows:

Ey(Thick(r,A,y)) =
Vol(n, r, q) · qk

qn
= Vol(n, r, q) · qk−n

Ey(Thick(n− k − c,A,y)) ≥ Vol(n, n− k − c, q) · qk−n

Where the last equation follows by setting For r = n−k− c. For a point to have Hamming distance from
our code greater than n − k − c, its thickness must be 0. For the thickness of a point to be 0, it must
deviate from the expected thickness by the expected thickness. We use this fact to bound the probability
that a point is distance at least n−k−c. We require that each codeword is pairwise independent (that is,
PrA[c ∈ A|c′ ∈ A] = PrA[c ∈ A]). In random linear codes, only generating matrices with dimension 1 are
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not pairwise independent. We have already restricted our discussion to full rank A. Define an indicator
random variable that is 1 when a point c is in the code. The pairwise independence of the code implies
pairwise independence of these indicator random variables. With pairwise independent codewords, we use
Chebyshev’s Inequality to bound the probability of a random point being remote from a random code.
We upper bound the variance of Thick by its expectation (since the random variable is nonnegative). In
the below equations we only consider A where Rank(A) = k but do not write this to simplify notation.
Let t = n− k − c, then

E
A

Pr
y

[dis(y,A) > t] = E
A

Pr
y

[Thick(t,A,y) = 0]

≤ E
A

(
Pr
y

[|Thick(t,A,y)− E(Thick(t,A,y))| > E(Thick(t,A,y))]

)
≤ E

A

(
Vary(Thick(t,A,y))

Ey(Thick(t,A,y))2

)
≤ E

A

(
1

Ey(Thick(t,A,y))

)
=

qn−k

Vol(n, n− k − c, q)
.

Proof of Theorem 31. Suppose an algorithm F solves BDDE− RL(n, k, q, n − k − c, g) with probability ε.
F can be used to construct an O that solves FIND− REP.
O works as follows:

1. Input y = (y1, . . . , yn) (where y is uniform over Znq ).

2. Generate A← Zn×kq .

3. Run z← F(y,A).

4. If dis(y, z) > n− k − c output ⊥.

5. Let I = {i|yi = zi}.
6. Construct parity check matrix of AI , denoted HI .

7. Find some nonzero row of HI , denoted B = (b1, . . . , bk+c) with associated indices I.

8. Output ~γ where ~γi = Bi′ for i ∈ I where i′ represents the location of i in a sorted list with the same
elements as I and 0 otherwise.

By Lemma 32, (y,A) is a uniform instance of BDDE− RL(n, k, q, n − k − c, g) with probability at least
1− (qn−k/Vol(n, n− k − c, q) + k · q−(n−k)). This means that I ≥ k + c. Note for z to be a codeword it
must be that there exists some x such that z = Ax and thus, the parity check matrix restricted to I is
defined and there is some nonzero row.

B.2 Decoding Reed Solomon Codes in the Exponent

The Reed-Solomon family of error correcting codes [RS60] have extensive applications in cryptography.
Recall, that the Reed Solomon Code RS(n, k, q) is the set of all points Vx where x ∈ Fkq where where the

ith row of Vi = [i0, i1, ...., ik]. Reed-Solomon Codes have known efficient algorithms for correcting errors.
We note that for a particular vector x the generated vector Vx is a degree k polynomial with coefficients
x evaluated at points 1, ..., n.
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The Berlekamp-Welch algorithm [WB86] corrects up to (n − k + 1)/2 errors in any codeword in
the code. List decoding provides a weaker guarantee. The algorithm instead vectors a list containing
codewords within a given distance to a point, the algorithm may return 0, 1 or many codewords [Eli57].
The list decoding algorithm of Guruswami and Sudan [GS98] can find all codewords within Hamming
distance n−

√
nk of a given word. Importantly, algorithms to correct errors in Reed-Solomon codes rely

on nonlinear operations. Like with Random Linear Codes we consider hardness of constructing an oracle
that performs bounded distance decoding.

Problem BDDE− RS(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Reed Solomon codes.

Instance A known generator g of Z∗q . Define e as a random vector of weight c in Z∗q . Define gy = gVx+e

where x is uniformly distributed. Input is gy.

Output Any codeword gz where z ∈ RS(n, k, q) such that dis(gy, gz) ≤ c.

Theorem 33. For any positive integers n, k, c, and q such that q ≥ n2/4, c ≤ n + k, k ≤ n and a
generator g of the group Gq, if an efficient algorithm exists to solve BDDE− RS(n, q, k, n − k − c, g) with
probability ε (over a uniform instance and the randomness of the algorithm), then an efficient randomized
algorithm exists to solve the discrete log problem in Gq with probability

ε′ ≥


ε

(
1− 2qc

( n
k+c)

)
n2

2 ≤ q

ε

(
1− cqc

( n
k+c)

)
n2

4 ≤ q <
n2

2

.

Proof. Like Theorem 31 the core of our theorem is a bound on the probability that a random point is
close to a Reed-Solomon code.

Lemma 34. For any positive integer c ≤ n− k, define α = 4q
n2 , and any Reed-Solomon Code RS(n, k, q),

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] ≤ qc(
n
k+c

)α−c c∑
c′=0

αc
′

where the probability is taken over the uniform choice of y from Gn.

Proof of Lemma 34. A vector y has distance at most n−k− c from a Reed-Solomon code if there is some
subset of indices of size k+ c whose distance from a polynomial is at most k− 1. To codify this notion we
define a predicate which we call low degree. A set S consisting of ordered pairs {αi, xi}i is low degree if the
points {(αi, logg xi)}i∈S lie on a polynomial of degree at most k − 1. Define S = {S ⊆ [n] : |S| = k + c}.
For every S ∈ S, define YS to be the indicator random variable for if S satisfies the low degree condition
taken over the random choice of y. Let Y =

∑
S∈S YS .

For all S ∈ S,Pr[YS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S define a unique polynomial
of degree at most k. The remaining c points independently lie on that polynomial with probability 1/q.
The size of S is |S| =

(
n
k+c

)
. Then by linearity of expectation, E[Y ] =

(
n
k+c

)
/qc. Now we use Chebyshev’s

inequality,

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] = Pr[Y = 0]

≤ Pr
[
|Y − E[Y ]| ≥ E[Y ]

]
≤ Var(Y )

E[Y ]2
.
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It remains to analyze Var(Y ) = E[Y 2]−E[Y ]2. To analyze this variance we split into cases where the
intersection of YS and YS′ is small and large. Consider two sets S and S′ and the corresponding indicator
random variables YS and YS′ . If |S ∩ S′| < k then E[YS |YS′ ] = E[YS ] and E[YSYS′ ] = E[YS ]E[YS′ ]. This
observation is crucial for security of Shamir’s secret sharing [Sha79]. For pairs S, S′ where |S ∩ S′| ≥ k,
we introduce a variable c′ between 0 and c to denote c′ = |S∩S′|−k. For such S, S′ instead of computing
E[Y 2] − E[Y ]2 we just compute E[Y 2] and use this as a bound. For each c′ we calculate E[YSYS′ ] where
|S ∩ S| = k + c′. The number of pairs can be counted as follows:

(
n
k+c

)
choices for S, then

(
k+c
c−c′
)

choices
for the elements of S not in S′ which determines the k+ c′ elements that are in both S and S′, and finally(
n−k−c
c−c′

)
to pick the remaining elements of S′ that are not in S. So the total number of pairs is(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
.

Using these observations, we can upper bound the variance Var(Y ) for our random variable Y :

Var(Y ) =
∑

S,S′∈S
(E[YSYS′ ]− E[YS ]E[YS′ ])

=
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]− E[YS ]E[YS′ ])

≤
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]) =

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(
1

q2c−c′ )

Here the last line follows by observing that for both YS and YS′ to be 1 they must both define the same
polynomial. Since S and S′ share k + c′ points, there are (k + c) + (k + c)− (k + c′) = k + 2c− c′ points
that must lie on the at most k − 1 degree polynomial, and any k points determine the polynomial, and
the remaining 2c−c′ points independently lie on the polynomial with probability 1/q then the probability
that this occurs is 1/q2c−c′ . Continuing one has that,

Var(Y ) ≤ 1

q2c

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(qc
′
)

=
1

q2c

c∑
c′=0

(
qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

))

=

[(
n

k + c

)
1

qc

]
1

qc

c∑
c′=0

(
qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

))

=
E[Y ]

qc

c∑
c′=0

(
qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

))

We bound the size of
(
k+c
c−c′
)(
n−k−c
c−c′

)
by observing that the sum of the top terms of the choose functions

is n and the product of two values with a known sum is bounded by the product of their average, in this
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case n/2. We also use the upper bound of the choose function where
(
a
b

)
≤ ab to arrive at the bound that

q−c
c∑

c′=0

(
qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

))
≤ 1

qc

c∑
c′=0

(qc
′
(n/2)2c−2c′)

=

(
(n/2)2

q

)c c∑
c′=0

( q

(n/2)2

)c′
.

The proof then follows using our bound for variance by defining α = 4q/n2. This completes the proof of
Lemma 34.

The remainder of the proof is similar to the proof of Theorem 31. A works as follows: on input uniform y
run D(g,y) which is a good list decoder for Reed Solomon (note the code no longer needs to be provided).
By Lemma 34, (g,v) is an instance of BDDE− RSq,E,k,n−k−c with probability at least

1− qc(
n
k+c

)α−c c∑
c′=0

αc
′
.

Then conditioned on this event, the instance is uniform, and D (with probability ε) outputs some z where
dis(z,y) ≤ n−k−c. Define the set E ⊆ [n] as the set of indices i such that yi = zi. Note that |E| ≥ k+1.
From any subset E of size k it is possible given {yi}i∈I it is possible to linearly interpolate any yj for
1 ≤ j ≤ n. Thus for any k + 1 positions, it is possible to find γi1 , ..., γik+1

such that for any codeword z,∑
ij

zijγij = 0. Define γi = 0 when i 6∈ E. Then one has that∏
ij∈E

v
γij
i = g

∑
ij∈E

yij γij = g
∑
ij∈E

zij γij = 1.

That is, (γ1, . . . , γn) is a solution to FIND− REP. The parameters in the Theorem follow when 1 ≤ α < 2
by noting that

α−c
c∑

c′=0

αc
′ ≤ α−c(c · αc) = c.

Parameters in Theorem 33 follow in the case when α = 4q/n2 ≥ 2 by noting that:

α−c
c∑

c′=0

αc
′

= α−c
(αc+1 − 1

α− 1

)
=
(α− α−c
α− 1

)
≤ 2.
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