
Adaptively Simulation-Secure Attribute-Hiding Predicate
Encryption

Pratish Datta1, Tatsuaki Okamoto1, and Katsuyuki Takashima2

1 NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

pratish.datta.yg@hco.ntt.co.jp, tatsuaki.okamoto@gmail.com
2 Mitsubishi Electric

5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

November 12, 2018

Abstract

This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive ad-
versaries for predicate encryption (PE) schemes supporting expressive predicate families under standard
computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly
partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on
public attributes, followed by an inner-product predicate on private attributes. This simultaneously gen-
eralizes attribute-based encryption (ABE) for boolean formulas and ABP’s as well as strongly attribute-
hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded
number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best pos-
sible in the simulation-based adaptive security framework. This directly implies that our construction
also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an
unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme
is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work
resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive
setting. Moreover, our result advances the current state of the art in both the fields of simulation-based
and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies
in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012,
ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.

Keywords: predicate encryption, partially-hiding, simulation-based adaptive security, arithmetic branch-
ing programs, inner products

1 Introduction

Functional encryption (FE) is a new vision of modern cryptography that aims to overcome the
potential limitation of the traditional encryption schemes, namely, the all or nothing control
over decryption capabilities. FE supports restricted decryption keys which enable decrypters to
learn specific functions of encrypted messages, and nothing else. More precisely, a (public-key)
FE scheme for a function family ℱ involves a setup authority which holds a master secret key
and publishes public system parameters. An encrypter uses the public parameters to encrypt its
message 𝑀 belonging to some supported message space 𝕄, creating a ciphertext ct. A decrypter
may obtain a private decryption key sk(𝐹 ) for some function 𝐹 ∈ ℱ from the setup authority,
provided the authority deems that the decrypter is entitled for that key. Such a decryption key
sk(𝐹 ) can be used to decrypt ct to recover 𝐹 (𝑀), but nothing more about 𝑀 .

The most intuitive security requirement for an FE scheme is collusion resistance, i.e., a group
of decrypters cannot jointly retrieve any more information about an encrypted message beyond
the union of what each of them is allowed to learn individually. This intuitive notion has been
formalized by Boneh et al. [BSW11] and O’Neill [O’N10] in two distinct frameworks, namely, (a)
indistinguishability-based security and (b) simulation-based security. The former stipulates that

* This is the full version of an extended abstract that will appear in the proceedings of ASIACRYPT 2018.
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distinguishing encryptions of any two messages is infeasible for a group of colluders which do not
have a decryption key that decrypts the ciphertext to distinct values. The latter, on the other
hand, stipulates the existence of a polynomial-time simulator that given 𝐹1(𝑀), . . . , 𝐹𝑞key(𝑀)
for any message 𝑀 ∈𝕄 and functions 𝐹1, . . . , 𝐹𝑞key ∈ ℱ , outputs the view of the colluders which
are given an encryption of 𝑀 together with decryption keys for 𝐹1, . . . , 𝐹𝑞key . Both of the above
notions can be further refined, depending on how the queries of the adversary to the decryption
key generation and encryption oracles depend on one another as well as on the public parameters
of the system, as adaptive vs semi-adaptive vs selective. Boneh et al. [BSW11] and O’Neill
[O’N10] showed that in general, simulation-based security provides a stronger guarantee than
indistinguishability-based security, i.e., simulation-based security of some kind, e.g., adaptive,
semi-adaptive, or selective, implies indistinguishability-based security of the same kind; but the
converse does not hold in general. In fact, Boneh et al. pointed out that indistinguishability-based
security is vacuous for certain circuit families, which indicates that we should opt for simulation-
based security whenever possible. On the other hand, it is known that while security for single and
multiple ciphertexts are equivalent in the indistinguishability-based setting [BSW11], this is not
the case in the simulation-based setting [BSW11,BO13,AGVW13,DCIJ+13]. In particular, it has
been demonstrated by Boneh et al. [BSW11] that in the adaptive or semi-adaptive simulation-
based setting, where the adversary is allowed to make decryption key queries even after receiving
the queried ciphertexts, achieving security for an unbounded number of ciphertexts is impossible.

An important subclass of FE is predicate encryption (PE). In recent years, with the rapid
advancement of Internet communication and cloud technology, there has been an emerging trend
among individuals and organizations to outsource potentially sensitive private data to external
untrusted servers, and to perform selective computations on the outsourced data by remotely
querying the server at some later point in time, or to share specific portions of the outsourced
data to other parties of choice. PE is an indispensable tool for performing such operations on
outsourced sensitive data without compromising the confidentiality of the data.

Consider a predicate family 𝑅 = {𝑅(𝑌, ·) : 𝒳 → {0, 1} | 𝑌 ∈ 𝒴}, where 𝒳 and 𝒴 are two
collections of indices or attributes. In a PE scheme for some predicate family 𝑅, the associated
message space 𝕄 is of the form 𝒳 ×ℳ, whereℳ contains the actual payloads. The functionality
𝐹𝑅𝑌 associated with a predicate 𝑅(𝑌, ·) ∈ 𝑅 is defined as 𝐹𝑅𝑌 (𝑋,msg) = msg, if 𝑅(𝑌,𝑋) = 1,
or in other words, 𝑌 is authorized for 𝑋, and 𝐹𝑅𝑌 (𝑋,msg) = ⊥ (a special empty string), if
𝑅(𝑌,𝑋) = 0, or in other words, 𝑌 is not authorized for 𝑋 for all (𝑋,msg) ∈𝕄 = 𝒳 ×ℳ.

The standard security notion for FE described above, when adopted in the context of PE,
stipulates that recovering the payload from a ciphertext generated with respect to some attribute
𝑋 ∈ 𝒳 should be infeasible for a group of colluders none of which possesses a decryption key
corresponding to an attribute authorized for 𝑋, also referred to as an authorized decryption
key; and moreover, the ciphertext should conceal 𝑋 from any group of colluders, even those in
possession of authorized decryption keys. In the context of PE, this security notion is referred to as
strongly attribute-hiding security. A weakening of the above notion, called weakly attribute-hiding
security requires that 𝑋 should only remain hidden to colluders in possession of unauthorized
keys. An even weaker notion, which only demands the payload to remain hidden to colluders
with unauthorized keys, is known as payload-hiding security, and a payload-hiding PE scheme is
often referred to as an attribute-based encryption (ABE) scheme in the literature.

Over the last decade, a long sequence of works have developed extremely powerful techniques
for realizing indistinguishability-based ABE and weakly attribute-hiding PE schemes supporting
more and more expressive predicate families under well-studied computational assumptions in
bilinear groups and lattices, culminating into schemes that can now support general polynomial-
size circuits [GPSW06, LOS+10, OT10, OT12b, IW14, LW12, Wee14, Att14, CGW15, GVW15a,
BGG+14, GVW15b]. However, very little is known for strongly attribute-hiding PE schemes,
even in the indistinguishability-based setting. The situation is even worse when security against
an unbounded (polynomial) number of authorized-key-possessing colluders under standard com-



Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 3

putational assumption is considered. In fact, until very recently, the known candidates were
restricted to only inner products or even simpler predicates [BW07, KSW08, OT12a, OT12b,
OT13,DCIJ+13], out of which the schemes designed in the more efficient and secure prime order
bilinear groups being only the works of Okamoto and Takashima [OT12a, OT12b, OT13]. One
big reason for this state of the art is that unlike payload-hiding or weakly attribute-hiding, for
proving strongly attribute-hiding security, one must argue about an adversary that gets hold
of authorized decryption keys, something cryptographers do not have a good understanding of
so far. Moreover, there are indeed reasons to believe that constructing strongly attribute-hiding
PE schemes for sufficiently expressive predicate classes such as NC1 under standard computa-
tional assumptions could be very difficult. In fact, it is known that a strongly attribute-hiding
PE scheme for NC1 predicates, even in the weakest selective setting, can lead all the way to
indistinguishability obfuscation (IO) for general circuits, the new holy grail of modern cryptog-
raphy [AJ15, BV15, AJS15]. In view of this state of affairs, it is natural to ask the following
important question:
Can we realize “the best of both worlds”, i.e., can we design PE scheme for some sufficiently
expressive predicate family (e.g., NC1) that is secure against an unbounded (polynomial) num-
ber of colluders under standard computational assumptions (without IO), such that the strongly
attribute-hiding guarantee holds for a limited segment (e.g., one belonging to some subclass of
NC1) of each predicate in the predicate family?

Towards answering this question, in TCC 2017, Wee [Wee17] put forward a new PE scheme
for an NC1 predicate family in bilinear groups of prime order that is secure against an unbounded
(polynomial) number of colluders under the well-studied 𝑘-linear (𝑘-LIN) assumption, where the
strongly attribute-hiding property is achieved only for an inner product evaluating segment of
each predicate of the predicate class. More precisely, in his proposed PE system, the ciphertext
attribute set 𝒳 is given by 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 for some finite field 𝔽𝑞 and 𝑛′, 𝑛 ∈ ℕ, while the decryption

key attribute set 𝒴 is given by the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip . Any function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip operates
on a pair (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 by first computing 𝑛 arithmetic branching programs (ABP) 𝑓1, . . . , 𝑓𝑛 :

𝔽𝑛′
𝑞 → 𝔽𝑞 on 𝑥⃗ to obtain a vector (𝑓1(𝑥⃗), . . . , 𝑓𝑛(𝑥⃗)) ∈ 𝔽𝑛

𝑞 , and then evaluating the inner product of
the computed vector and 𝑧⃗. The predicate family 𝑅abp∘ip associated with the PE scheme is defined
as 𝑅abp∘ip = {𝑅abp∘ip(𝑓, (·, ·)) : 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 → {0, 1} | 𝑓 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip }, where 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 1, if

𝑓(𝑥⃗, 𝑧⃗) = 0, and 0, if 𝑓(𝑥⃗, 𝑧⃗) ̸= 0 for any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip and (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 . The security property

of Wee’s PE scheme guarantees that other than hiding the payload, a ciphertext generated for
some attribute pair (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 also conceals the attribute 𝑧⃗ (but not the attribute 𝑥⃗).

Moreover, the concealment of the attribute 𝑧⃗ is strong, i.e., even against colluders possessing
authorized keys. Wee termed this security notion as strongly partially-hiding security, while the
attributes 𝑥⃗ ∈ 𝔽𝑛′

𝑞 and 𝑧⃗ ∈ 𝔽𝑛
𝑞 as the public and private attributes respectively.

This PE scheme simultaneously generalizes ABE for boolean formulas and ABP’s, as well
as strongly attribute-hiding inner-product PE (IPE). For instance, unlike standard IPE schemes,
where an inner-product predicate is evaluated between the (private) attribute vector 𝑧⃗ associated
with a ciphertext and the attribute vector 𝑦⃗ hardwired within a decryption key, this PE scheme
evaluates inner-product predicate between 𝑧⃗ and 𝑦⃗ obtained as the result of complicated ABP
computations on a public attribute string 𝑥⃗, which is now associated in addition to the private
attribute vector 𝑧⃗ with the ciphertext. This in turn means that this PE scheme can be deployed
in richer variants of the applications captured by IPE schemes. For example, it is well-known
that inner-product predicates can be used to evaluate conjunctive comparison predicates of the
form 𝑅comp((𝑐1, . . . , 𝑐𝑛), (𝑧1, . . . , 𝑧𝑛)) =

⋀︀
𝑗∈[𝑛][𝑧𝑗 ≥ 𝑐𝑗 ], where 𝑐𝑗 ’s and 𝑧𝑗 ’s lie in polynomial-

size domains [BW07]. In case of standard IPE schemes, 𝑐1, . . . , 𝑐𝑛 are fixed constants which are
specified within the decryption key. On the contrary, in case of a PE scheme for 𝑅abp∘ip, we
can carry out more complex computation, where instead of being fixed constants, 𝑐1, . . . , 𝑐𝑛
can be derived as the outputs of ABP evaluations on public ciphertext attributes. Of course,
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fixed 𝑐1, . . . , 𝑐𝑛 is a special case of this more expressive computation, since one can have ABP’s
that ignore the public ciphertext attributes, and simply output hardwired constants. Similarly,
standard IPE schemes can be employed for evaluating polynomials with constant coefficients,
where the coefficients are specified within the decryption keys [KSW08]. In contrast, in case
of a PE scheme for 𝑅abp∘ip, the polynomial coefficients can be generated as outputs of ABP
computations on public ciphertext attributes.

Partially-hiding PE (PHPE) schemes for similar type of predicate families were considered
in [GVW15b, Agr17] in the lattice setting, and those PHPE schemes are in fact capable of
evaluating general polynomial-size circuits, as opposed to ABP’s in Wee’s construction, over
public ciphertext attributes prior to evaluating inner-product predicates over private cipher-
text attributes. However, those constructions are either only weakly partially-hiding, i.e., the
security of the private attributes of the ciphertexts are only guaranteed against unauthorized
colluders [GVW15b], or strongly partially-hiding against a priori bounded number of autho-
rized colluders [Agr17]. In contrast, Wee’s PHPE scheme is strongly partially-hiding against an
unbounded (polynomial) number of authorized colluders. Another strong aspect of the PHPE
construction of Wee is that its security is proven in the (unbounded) simulation-based frame-
work [AGVW13], while except [DCIJ+13], all prior PE constructions with strongly attribute-
hiding security against an unbounded (polynomial) number of authorized colluders were proven
in the weaker indistinguishability-based framework.

However, the PHPE scheme proposed by Wee [Wee17] only achieves semi-adaptive security
[CW14], i.e., against an adversary that is restricted to submit its ciphertext queries immediately
after viewing the public parameters, and can make decryption key queries only after that. While
semi-adaptive security seems somewhat stronger, it has recently been shown by Goyal et al.
[GKW16] that it is essentially equivalent to the selective security, the weakest notion of security
in which the adversary is bound to declare its ciphertext queries even before the system is
setup. Their result also indicates that the gap between semi-adaptive and adaptive security, the
strongest and most reasonable notion in which the adversary is allowed to make ciphertext and
decryption key queries at any point during the security experiment, is in fact much wider than
was previously thought. While Ananth et al. [ABSV15] have demonstrated how to generically
transform an FE scheme that supports arbitrary polynomial-size circuits from selective security
to one that achieves adaptive security, their conversion does not work for ABE or PE schemes
which fall below this threshold in functionality. In view of this state of affairs, it is interesting
to explore whether it is possible to construct an efficient adaptively simulation-secure strongly
partially-hiding PE scheme for the predicate family 𝑅abp∘ip that is secure against an unbounded
(polynomial) number of colluders under well-studied computational assumption. Note that while
several impossibility results exist against the achievability of simulation-based security in certain
settings [BSW11,BO13,AGVW13,DCIJ+13], those results do not overrule the existence of such
a construction, provided of course we bound the number of allowed ciphertext queries by the
adversary. In fact, Wee has posed the realization of such a PHPE construction as an open problem
in his paper [Wee17].

Our Contributions

In this paper, we resolve the above open problem. Specifically, our main result is a PE scheme for
the predicate family 𝑅abp∘ip that achieves simulation-based adaptively strongly partially hiding
security against adversaries making any a priori bounded number of ciphertext queries while
requesting an unbounded (polynomial) number of decryption keys both before and after the
ciphertext queries, which is the best one could hope for in the simulation-based framework
when the adversary is allowed to make decryption key queries even after making the cipher-
text queries [BSW11]. From the relation between simulation-based and indistinguishability-based
security as well as that between single and multiple ciphertext security in the indistinguishability-
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based setting as mentioned above, it is immediate that the proposed scheme is also adaptively
strongly partially-hiding in the indistinguishability-based framework against adversaries making
an unbounded number of queries to both the encryption and the decryption key generation
oracles. Thus, our work advances the state of the art in both the fields of simulation-based
and indistinguishability-based strongly attribute-hiding PE schemes. Our construction is built in
asymmetric bilinear groups of prime order. The security of our PHPE scheme is derived under
the simultaneous external decisional linear (SXDLIN) assumption [ACD+12,TAO16], which is a
natural extension of the well-studied decisional linear (DLIN) assumption in asymmetric bilin-
ear group setting, and as noted in [ACD+12], the two assumptions are in fact equivalent in the
generic bilinear group model. Nevertheless, our scheme can be readily generalized to one that is
secure under the 𝑘-LIN assumption.

Similar to [Wee17], we only consider security against a single ciphertext query for the con-
struction presented in this paper to keep the exposition simple. However, we explain in Re-
mark 3.1 how our techniques can be readily extended to design a PHPE scheme that is secure
for any a priori bounded number of ciphertexts. Following [DCIJ+13], we present our main con-
struction in the attribute-only mode (i.e., without any actual payload). However, in Section 4
we also provide a key-encapsulation mechanism (KEM) version (i.e., one that uses a symmetric
session key as the payload) of our scheme similar to [Wee17]. For the attribute-only version, we
design a simulator that runs in polynomial time, and thus this version of our scheme is secure
in the standard simulation-based security framework. On the other hand, for the KEM version,
similar to Wee [Wee17], our simulator needs to perform a brute force discrete log computation,
and thus requires super-polynomial (e.g., sub-exponential) computational power. Nonetheless,
this is still stronger than the indistinguishability-based framework [AGVW13,Wee17].

In terms of efficiency, our PHPE scheme is fairly practical. The length of ciphertexts and
decryption keys of our scheme grow linearly with the total length of the associated attribute
strings and the ABP-size of the associated functions respectively. This is the same as that
of [Wee17] except for a constant blow-up, which is common in the literature for semi-adaptive
vs adaptive security. Moreover, asymmetric bilinear groups of prime order, which are used for
implementing our scheme, are now considered to be both faster and more secure in the cryp-
tographic community following the recent progress in analysing bilinear groups of composite
order [Fre10, Gui13] and symmetric bilinear groups instantiated with elliptic curves of small
characteristics [BGJT14,GGMZ13,Jou13a,Jou13b].

As a byproduct of our main result, we also obtain the first simulation-based adaptively
strongly attribute-hiding IPE scheme in asymmetric bilinear groups of prime order under the
SXDLIN assumption. The only prior simulation-based strongly attribute-hiding IPE scheme, also
due to Wee [Wee17], only achieves semi-adaptive security.

On the technical side, our approach is completely different from that of Wee [Wee17]. More
precisely, Wee’s technique consists of two steps, namely, first building a private-key scheme, and
then bootstrapping it to a public-key one by applying a private-key to public-key compiler similar
to [Wee14,CGW15], built on Water’s dual system encryption methodology [Wat09]. In contrast,
we directly construct our scheme in the public-key setting by extending the technique of Okamoto
and Takashima [OT12a,OT12b,OT13], a more sophisticated methodology than the dual system
encryption originally developed for designing adaptively strongly attribute-hiding IPE schemes
in the indistinguishability-based setting, to the scenario of simulation-based adaptively strongly
attribute-hiding security for a much expressive predicate class. Also, in order to incorporate the
information of the session keys within the ciphertexts in the KEM version of our scheme, we
adopt an idea along the lines of the works of Okamoto and Takashima [OT12a,OT12b,OT13],
that deviates from that of Wee [Wee17]. Thus, our work further demonstrates the power of the
technique introduced by Okamoto and Takashima [OT12a,OT12b,OT13] in achieving very strong
security for highly expressive predicate families. We also believe that our work will shed further
light on one of the longstanding questions of modern cryptography:
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What is the most expressive function or predicate family for which it is possible to construct
FE or strongly attribute-hiding PE schemes with adaptive security against adversaries making
an unbounded (polynomial) number of decryption key queries under standard computational as-
sumptions?

Table 1.1: Current State of the Art in Attribute-Hiding PE

Schemes Supported
Predicates

IND SIM Attribute
Hiding

Computational
Assumptions

[OT10] IP∘SP (poly, poly, poly)-AD × Weak
(IP-part) DLIN

[OT12a] IP (poly, poly, poly)-AD × Strong DLIN

[Agr17] GC∘IP (–, poly, bdd)-S-AD (–, 1, bdd)-S-AD
Strong

(IP-part) LWE

[Wee17] ABP∘IP (–, poly, poly)-S-AD (–, 1, poly)-S-AD
Strong

(IP-part) 𝑘-LIN

Ours ABP∘IP (poly, poly, poly)-AD (poly, bdd, poly)-AD
Strong

(IP-part) SXDLIN

The notations used in this table have the following meanings:
– SP: Boolean span programs
– IP: Inner products
– ABP: Arithmetic branching programs
– GC: General polynomial-size circuits
– IND: Indistinguishability-based security
– SIM: Simulation-based security
– AD: Adaptive security
– S-AD: Semi-adaptive security
– poly: Arbitrary polynomial in the security parameter
– bdd: A priori bounded by the public parameters
In this table, (𝐴,𝐵,𝐶) signifies that the adversary is allowed to make 𝐵 number of
ciphertext queries in the relevant security experiment, while 𝐴 and 𝐶 number of decryption
key queries in the pre- and post-ciphertext phases respectively.

Overview of Our Techniques

We now proceed to explain the key technical ideas underlying our construction. For simplicity,
here we will only deal with the IPE scheme, which is a special case of our PHPE construction for
𝑅abp∘ip. The proposed PHPE scheme for 𝑅abp∘ip is obtained via a more sophisticated application
of the techniques described in this section, and is formally presented in full details in the sequel.

In this overview, we will consider IPE in the attribute-only mode. For IPE, the ciphertext
attribute set 𝒳 = 𝔽𝑛

𝑞 , the decryption key attribute set 𝒴 = 𝔽𝑛
𝑞 for some finite field 𝔽𝑞 and 𝑛 ∈ ℕ,

and the predicate family is given by 𝑅ip = {𝑅ip(𝑦⃗, ·) : 𝔽𝑛
𝑞 → {0, 1} | 𝑦⃗ ∈ 𝔽𝑛

𝑞 }, where 𝑅ip(𝑦⃗, 𝑧⃗) = 1,
if 𝑧⃗ · 𝑦⃗ = 0, and 0, if 𝑧⃗ · 𝑦⃗ ̸= 0 for any 𝑧⃗, 𝑦⃗ ∈ 𝔽𝑛

𝑞 . Observe that the predicate family 𝑅ip is subclass
of the predicate family 𝑅abp∘ip, where we set 𝑛′ = 0, and the component ABP’s 𝑓1, . . . , 𝑓𝑛 of
a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip to simply output hardwired constants. In the attribute-only mode, a
ciphertext is associated with only a vector 𝑧⃗ ∈ 𝔽𝑛

𝑞 but no payload, and decryption with a key for
some vector 𝑦⃗ ∈ 𝔽𝑛

𝑞 only reveals the predicate, i.e., whether 𝑧⃗ · 𝑦⃗ = 0 or not, but not the exact
value of 𝑧⃗ · 𝑦⃗.

Just like [OT12a, OT12b, OT13], we make use of the machinery of the dual pairing vector
spaces (DPVS) [OT09,OT10]. A highly powerful feature of DPVS is that one can completely or
partially hide a linear subspace of the whole vector space by concealing the basis of that subspace
or the basis of its dual from the public parameters respectively. In DPVS-based constructions, a
pair of mutually dual vector spaces 𝕍1 and 𝕍2, along with a bilinear pairing 𝑒 : 𝕍1 × 𝕍2 → 𝔾𝑇
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constructed from a standard bilinear group (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of prime order 𝑞 is used.
Typically a pair of dual orthonormal bases (𝔹,𝔹*) of the vector spaces (𝕍1,𝕍2) are generated
during setup, using random linear transformations, and a portion of 𝔹, say ̂︀𝔹, is used as the
public parameters. Thus, the corresponding segment of 𝔹*, say ̂︀𝔹* remains partially hidden (its
dual subspace is disclosed), while the part 𝔹∖̂︀𝔹 of the basis 𝔹 and the corresponding portion
𝔹*∖̂︀𝔹* of the basis 𝔹* remain completely hidden to an adversary that is given the public pa-
rameters, ciphertexts, and decryption keys. This provides a strong framework for various kinds
of information-theoretic tricks in the public-key setting by exploiting various nice properties of
linear transformations.

In the proposed IPE scheme, we consider a (4𝑛 + 1)-dimensional DPVS. During setup, we
generate a random pair of dual orthonormal bases (𝔹,𝔹*), and use as the public parameters the
subset ̂︀𝔹 consisting of the first 𝑛 and the last 𝑛 + 1 vectors of the basis 𝔹, while as the master
secret key the corresponding portion of the dual basis 𝔹*. Thus, the linear subspaces spanned
by the remaining 2𝑛 vectors of the bases 𝔹 and 𝔹* are kept completely hidden. Intuitively, we
will use the first 𝑛-dimensional subspaces of these 2𝑛-dimensional subspaces for simulating the
post-ciphertext decryption key queries, while the latter 𝑛-dimensional subspaces for simulating
the pre-ciphertext decryption key queries in the ideal experiment. A ciphertext for some vector
𝑧⃗ ∈ 𝔽𝑛

𝑞 in the proposed scheme has the form ct = 𝒄 such that

𝒄 = (𝜔𝑧⃗, 0⃗𝑛, 0⃗𝑛, 0⃗𝑛, 𝜙)𝔹,

where 𝜔, 𝜙
U←− 𝔽𝑞, and (𝑣⃗)𝕎 represents the linear combination of the elements of 𝕎 with the

entries of 𝑣⃗ as coefficients for any 𝑣⃗ ∈ 𝔽𝑛
𝑞 and any basis 𝕎 of DPVS. Similarly, a decryption key

corresponding to some vector 𝑦⃗ ∈ 𝔽𝑛
𝑞 is given by sk(𝑦⃗) = (𝑦⃗,𝒌) such that

𝒌 = (𝜁𝑦⃗, 0⃗𝑛, 0⃗𝑛, 𝜅⃗, 0)𝔹* ,

where 𝜁
U←− 𝔽𝑞 and 𝜅⃗

U←− 𝔽𝑛
𝑞 . Decryption computes 𝑒(𝒄,𝒌) to obtain 𝑔

𝜔𝜁(𝑧⃗·𝑦⃗)
𝑇 ∈ 𝔾𝑇 , which equals

to the identity element of the group 𝔾𝑇 , if 𝑧⃗ · 𝑦⃗ = 0, and a uniformly random element of 𝔾𝑇 , if
𝑧⃗ · 𝑦⃗ ̸= 0. Observe that this IPE construction is essentially the same as that presented by Okamoto
and Takashima in [OT12a]. However, they only proved the strongly attribute-hiding security of
this construction in the indistinguishability-based framework, while we prove this construction to
be strongly attribute-hiding in the simulation-based framework, by extending their techniques.
Let us start with describing our simulation strategy.

In the semi-adaptive case, as considered in [Wee17], the simulation strategy is relatively
simple. In fact, for designing an IPE in the semi-adaptive setting, only a (3𝑛 + 1)-dimensional
DPVS with 𝑛-dimensional hidden subspace would suffice. Note that in the semi-adaptive setting,
the adversary is restricted to make the ciphertext query immediately after seeing the public
parameters, and there is no pre-ciphertext decryption key query. So, in the semi-adaptive setting,
when the adversary makes a ciphertext query, the simulator has no constraint arising from the
pre-ciphertext queries of the adversary, and can simply simulate the ciphertext as ct = 𝒄 such
that

𝒄 = (⃗0𝑛, (⃗0𝑛−1, 𝜏), 0⃗𝑛, 𝜙)𝔹,

where 𝜏, 𝜙
U←− 𝔽𝑞, i.e., the simulator puts nothing in the subspace spanned by the public segment

of the basis 𝔹, and merely puts a random value in a one-dimensional subspace spanned by the
hidden segment of the basis. Later, when the adversary queries a decryption key for some vector
𝑦⃗ ∈ 𝔽𝑛

𝑞 , the simulator gets 𝑦⃗ along with the inner product relation of 𝑦⃗ with 𝑧⃗, and the simulator
can simply hardwire this information in the corresponding hidden subspace of the decryption
key. More precisely, it can simply generate the decryption key as sk(𝑦⃗) = (𝑦⃗,𝒌) such that

𝒌 = (𝜁𝑦⃗, (𝜂⃗, 𝜈), 𝜅⃗, 0)𝔹* ,
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where 𝜁
U←− 𝔽𝑞, 𝜂⃗

U←− 𝔽𝑛−1
𝑞 , 𝜅⃗ U←− 𝔽𝑛

𝑞 , and 𝜈 = 0, if 𝑧⃗ · 𝑦⃗ = 0, and 𝜈
U←− 𝔽𝑞, if 𝑧⃗ · 𝑦⃗ ̸= 0. Observe

that when the simulated ciphertext is decrypted using this simulated decryption key, one obtains
the identity element of 𝔾𝑇 , or a random element of 𝔾𝑇 according as the inner product relation
is satisfied or not, i.e., decryption correctness clearly holds. At this point, please note that the
simulator cannot put anything in the subspace of the ciphertext corresponding to the public
segment of 𝔹, since it must put the actual attribute vectors in the corresponding dual subspace
of the decryption keys to ensure correct decryption with other honestly generated ciphertexts.

In the adaptive setting, the situation is much more complex, and we need a (4𝑛 + 1)-
dimensional DPVS with 2𝑛-dimensional hidden subspace. Now, the simulator should also cor-
rectly simulate the pre-ciphertext decryption key queries of the adversary. The difference between
the pre-ciphertext and post-ciphertext decryption key queries is that unlike the post-ciphertext
ones, the information about whether the inner product relation between the associated attribute
vector and the attribute vector 𝑧⃗ corresponding to the ciphertext query of the adversary is not
supplied when the decryption key is queried. In fact, 𝑧⃗ is not even declared at that time. On the
contrary, the information about predicate satisfaction for all the pre-ciphertext decryption key
vectors become available to the simulator when the ciphertext query is made by the adversary.
The main hurdle for the simulator is to compactly embed this huge amount of information (note
that we are considering an unbounded number of pre-ciphertext decryption key queries) in the
simulated ciphertext, so that when the simulated ciphertext is decrypted using any pre-ciphertext
decryption key, one should get the proper information about predicate satisfaction.

Towards overcoming this difficulty, we observe that it has already been demonstrated by
O’Neill [O’N10] that the inner-product predicate family is pre-image samplable, i.e., given a
set of vectors and their inner-product relation with another fixed vector (but not the vector
itself), one can efficiently sample a vector that satisfies all those inner-product relations with
high probability. To simulate the ciphertext queried by the adversary, our simulator does exactly
this, i.e., it samples a vector 𝑠⃗ ∈ 𝔽𝑛

𝑞 that has the same inner-product relations as the original
queried ciphertext attribute vector 𝑧⃗ with all the attribute vectors corresponding to the pre-
ciphertext decryption key queries of the adversary. However, 𝑠⃗ may not have the same inner-
product relation as 𝑧⃗ with the attribute vectors corresponding to the post-ciphertext decryption
key queries. Therefore, it cannot be embedded in the hidden subspace of the ciphertext devoted
for handling the post-ciphertext decryption key queries. Therefore, the simulator needs another
𝑛-dimensional subspace to embed 𝑠⃗. Thus, the simulator simulates the queried ciphertext as
ct = 𝒄 such that

𝒄 = (⃗0𝑛, (⃗0𝑛−1, 𝜏), 𝜃𝑠⃗, 0⃗𝑛, 𝜙)𝔹,

where 𝜃
U←− 𝔽𝑞. On the other hand, it simulates a decryption key corresponding to some vector

𝑦⃗ ∈ 𝔽𝑛
𝑞 as sk(𝑦⃗) = (𝑦⃗,𝒌) such that

𝒌 =

{︂
(𝜁𝑦⃗, 0⃗𝑛, ̂︀𝜁𝑦⃗, 𝜅⃗, 0)𝔹* (pre-ciphertext),
(𝜁𝑦⃗, (𝜂⃗, 𝜈), 0⃗𝑛, 𝜅⃗, 0)𝔹* (post-ciphertext),

where 𝜁, ̂︀𝜁 U←− 𝔽𝑞.
Here, we would like to emphasize that while we make use of the pre-image samplability

property introduced by O’Neill [O’N10] to design our simulator, our result is not a mere spe-
cial case of the result that O’Neill obtained using that property. Specifically, O’Neill showed
that indistinguishability-based and simulation-based security notions are equivalent in case of
FE schemes for function families which are pre-image samplable, provided the adversary is con-
strained from making any decryption key query after making a ciphertext query. His result does
not apply if the adversary is allowed to make decryption key queries even after making cipher-
text queries, as is the case in this paper. Moreover, note that there is no known PE scheme for
the predicate family 𝑅abp∘ip, the actual focus of this paper, even with indistinguishability-based
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strongly partially-hiding security against adversaries that are allowed to make decryption key
queries prior to making ciphertext queries.

Let us continue with the technical overview. It remains to argue that the above simulated
forms of ciphertexts and decryption keys are indistinguishable from their real forms. In order to
accomplish these changes, we design elaborate hybrid transitions over different forms of ciphertext
and decryption keys. In fact, the 2𝑛-dimensional hidden subspace not only allows us to simulate
the pre-ciphertext and post-ciphertext queries differently, but are also crucially leveraged to
realize the various forms of ciphertext and decryption keys throughout our hybrid transitions.
The hybrid transitions are alternatively computational and information-theoretic. Also, note that
not only our simulation strategy for pre-ciphertext and post-ciphertext decryption key queries
are different, rather in our hybrid transitions, we handle the pre-ciphertext and post-ciphertext
decryption key queries differently, and thereby achieve a security loss that is only proportional
to the number of pre-ciphertext decryption key queries.

We start by changing the pre-ciphertext decryption keys to their simulated form. For making
these changes, we use the first 𝑛-dimensional subspace of the 2𝑛-dimensional hidden subspace as
the working space, where we generate the simulated components, and the next 𝑛-dimensional
subspace as the storing space, where we transfer and store the simulated components once
they are generated. Note that in the simulated pre-ciphertext decryption keys, the additional
simulated components are placed in the second 𝑛-dimensions subspace of the 2𝑛-dimensional
hidden subspace. For the hybrid transitions of this part, we make use of the first two of the
three types of information-theoretic tricks, namely, Type I, Type II, and Type III introduced
in [OT12a, OT12b, OT13], in conjunction with the three types of computational tricks based
on the SXDLIN assumption also used in those works. The Type I trick is to apply a linear trans-
formation inside a hidden subspace on the ciphertext side, while the more complex Type II trick
is to apply a linear transformation inside a hidden subspace on the ciphertext side preserving the
predicate relation with the entries in the corresponding dual subspace of a specific decryption
key.

After the transformation of the pre-ciphertext queries is completed, we turn our attention
to vanish the component of the ciphertext in the subspace spanned by the public portion of the
basis 𝔹. For doing this, we apply one of the three computational tricks followed by a Type III
information-theoretic trick, which amounts to applying a linear transformation across a hidden
and a partially public subspace on both the ciphertext and decryption key sides. While, this
enables us to achieve our target for the ciphertext, the forms of the pre-ciphertext decryption
keys get distorted. To bring the pre-ciphertext decryption keys to their correct simulated form,
we then apply an extension of one of the computational tricks mentioned above.

Once the component in the public subspace of the ciphertext is vanished and pre-ciphertext
decryption keys are brought back to their correct simulated form, we turn our attention to
the post-cipertext decryption keys. Note that the Type III trick applied for the ciphertext, has
already altered the forms of the post-ciphertext queries to something else. Starting with these
modified forms, we apply a more carefully crafted variant of the Type II information-theoretic
trick, followed by another computational trick based on the SXDLIN assumption to alter the
post-ciphertext decryption keys to their simulated forms. This step is reminiscent of the one-
dimensional localization of the inner-product values used in [OT13]. This step also alters the
ciphertext to its simulated form. At this point we arrive at the simulated experiment, and our
security analysis gets complete.

2 Preliminaries

In this section we present the backgrounds required for the rest of this paper.
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2.1 Notations

Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let 𝔽𝑞 for any prime
𝑞 ∈ ℕ, denotes the finite field of integers modulo 𝑞. For 𝑑 ∈ ℕ and 𝑐 ∈ ℕ ∪ {0} (with 𝑐 < 𝑑),
we let [𝑑] = {1, . . . , 𝑑} and [𝑐, 𝑑] = {𝑐, . . . , 𝑑}. For any set 𝑍, 𝑧 U←− 𝑍 represents the process of
uniformly sampling an element 𝑧 from the set 𝑍, and ♯𝑍 signifies the size or cardinality of 𝑍.
For a probabilistic algorithm 𝒰 , we denote by 𝛱 = 𝒰(𝛩;𝛷) the output of 𝒰 on input 𝛩 with the
content of the random tape being 𝛷, while by 𝛱

R←− 𝒰(𝛩) the process of sampling 𝛱 from the
output distribution of 𝒰 with a uniform random tape on input 𝛩. Similarly, for any deterministic
algorithm 𝒱, we write 𝛱 = 𝒱(𝛩) to denote the output of 𝒱 on input 𝛩. We use the abbreviation
PPT to mean probabilistic polynomial-time. We assume that all the algorithms are given the
unary representation 1𝜆 of the security parameter 𝜆 as input and will not write 1𝜆 explicitly as
input of the algorithms when it is clear from the context. For any finite field 𝔽𝑞 and 𝑑 ∈ ℕ, let
𝑣⃗ denotes the (row) vector (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 , where 𝑣𝑖 ∈ 𝔽𝑞 for all 𝑖 ∈ [𝑑]. The all zero vectors in
𝔽𝑑
𝑞 will be denoted by 0⃗𝑑. For any two vectors 𝑣⃗, 𝑤⃗ ∈ 𝔽𝑑

𝑞 , 𝑣⃗ · 𝑤⃗ stands for the inner product of
the vectors 𝑣⃗ and 𝑤⃗, i.e., 𝑣⃗ · 𝑤⃗ =

∑︀
𝑖∈[𝑑]

𝑣𝑖𝑤𝑖 ∈ 𝔽𝑞. For any multiplicative cyclic group 𝔾 of order 𝑞

and any generator 𝑔 ∈ 𝔾, let 𝒗 represents a 𝑑-dimensional (row) vector of group elements, i.e.,
𝒗 = (𝑔𝑣1 , . . . , 𝑔𝑣𝑑) ∈ 𝔾𝑑 for some 𝑑 ∈ ℕ, where 𝑣⃗ = (𝑣1, . . . , 𝑣𝑑) ∈ 𝔽𝑑

𝑞 . We use 𝑴 = (𝑚𝑖,𝑘) to
represent a matrix with entries 𝑚𝑖,𝑘 ∈ 𝔽𝑞. By 𝑴⊺ we will signify the transpose of the matrix
𝑴 . The determinant of a matrix 𝑴 is denoted by det(𝑴). Let GL(𝑑,𝔽𝑞) denotes the set of all
𝑑 × 𝑑 invertible matrices over 𝔽𝑞. A function negl : ℕ → ℝ+ is said to be negligible if for every
𝑐 ∈ ℕ, there exists 𝑇 ∈ ℕ such that for all 𝜆 ∈ ℕ with 𝜆 > 𝑇 , |negl(𝜆)| < 1/𝜆𝑐.

2.2 Arithmetic Branching Programs

A branching program (BP) 𝛤 is defined by a 5-tuple 𝛤 = (𝑉,𝐸, 𝑣0, 𝑣1, 𝜑), where (𝑉,𝐸) is a
directed acyclic graph, 𝑣0, 𝑣1 ∈ 𝑉 are two special vertices called the source and the sink respec-
tively, and 𝜑 is a labeling function for the edges in 𝐸. An arithmetic branching program (ABP) 𝛤
over a finite field 𝔽𝑞 computes a function 𝑓 : 𝔽𝑑

𝑞 → 𝔽𝑞 for some 𝑑 ∈ ℕ. In this case, the labeling
function 𝜑 assigns to each edge in 𝐸 either a degree one polynomial function in one of the input
variables with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞. Let ℘ be the set of all 𝑣0-𝑣1 paths in 𝛤 . The
output of the function 𝑓 computed by the ABP 𝛤 on some input 𝑤⃗ = (𝑤1, . . . , 𝑤𝑑) ∈ 𝔽𝑑

𝑞 is defined

as 𝑓(𝑤⃗) =
∑︀
𝑃∈℘

[︂ ∏︀
𝑒∈𝑃

𝜑(𝑒)|𝑤⃗
]︂
, where for any 𝑒 ∈ 𝐸, 𝜑(𝑒)|𝑤⃗ represents the evaluation of the function

𝜑(𝑒) at 𝑤⃗. We refer to ♯𝑉 +♯𝐸 as the size of the ABP 𝛤 . Ishai and Kushilevitz [IK97,IK02] showed
how to relate the computation performed by an ABP to the computation of the determinant of
a matrix.

Lemma 2.1 ( [IK02]): Given an ABP 𝛤 = (𝑉,𝐸, 𝑣0, 𝑣1, 𝜑) computing a function 𝑓 : 𝔽𝑑
𝑞 → 𝔽𝑞,

we can efficiently and deterministically compute a function 𝑳 mapping an input 𝑤⃗ ∈ 𝔽𝑑
𝑞 to a

(♯𝑉 − 1)× (♯𝑉 − 1) matrix 𝑳(𝑤⃗) over 𝔽𝑞 such that the following holds:

– det(𝑳(𝑤⃗)) = 𝑓(𝑤⃗).
– Each entry of 𝑳(𝑤⃗) is either a degree one polynomial in a single input variable 𝑤𝑖 (𝑖 ∈ [𝑑])

with coefficients in 𝔽𝑞 or a constant in 𝔽𝑞.
– 𝑳(𝑤⃗) contains only −1’s in the second diagonal, i.e., the diagonal just below the main diagonal,

and 0’s below the second diagonal.

Specifically, 𝑳 is obtained by removing the column corresponding to 𝑣0 and the row corresponding
to 𝑣1 in the matrix 𝑨𝛤 −𝑰, where 𝑨𝛤 is the adjacency matrix for 𝛤 and 𝑰 is the identity matrix.

Note that there is a linear-time algorithm that converts any Boolean formula, Boolean branch-
ing program, or arithmetic formula to an ABP with a constant blow-up in the representation size.
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Thus, ABP’s can be viewed as a stronger computational model than all the others mentioned
above.

2.3 The Function Family F (𝒒,𝒏′,𝒏)
ABP◦IP and the Algorithm PGB

Here, we formally describe the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip which our PHPE scheme supports, and an

algorithm PGB for this function class that will be used as a sub-routine in our PHPE construction.
Parts of this section is taken verbatim from [IW14,Wee17].

■ The Function Family F(𝒒,𝒏′,𝒏)
ABP◦IP

The function class ℱ (𝑞,𝑛′,𝑛)
abp∘ip , parameterized by a prime 𝑞 and 𝑛′, 𝑛 ∈ ℕ, contains functions of

the form 𝑓 : 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 → 𝔽𝑞 defined by 𝑓(𝑥⃗, 𝑧⃗) =
∑︀
𝑗∈[𝑛]

𝑓𝑗(𝑥⃗)𝑧𝑗 for all 𝑥⃗ = (𝑥1, . . . , 𝑥𝑛′) ∈ 𝔽𝑛′
𝑞

and 𝑧⃗ = (𝑧1, . . . , 𝑧𝑛) ∈ 𝔽𝑛
𝑞 , where 𝑓1, . . . , 𝑓𝑛 : 𝔽𝑛′

𝑞 → 𝔽𝑞 are functions computed by some ABP’s
𝛤1, . . . , 𝛤𝑛 respectively. We will view the input 𝑥⃗ = (𝑥1, . . . , 𝑥𝑛′) as the public attribute string,
while 𝑧⃗ = (𝑧1, . . . , 𝑧𝑛) as the private attribute string. Please refer to [Wee17] for some illustrative
examples. A simple but crucial property of the function 𝑓 is that for any 𝜁 ∈ 𝔽𝑞 and any
(𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , we have 𝑓(𝑥⃗, 𝜁𝑧⃗) = 𝜁𝑓(𝑥⃗, 𝑧⃗).

Observe that the function 𝑓 can itself be realized by an ABP 𝛤 constructed as follows: First,
marge the source vertices of all the component ABP’s {𝛤𝑗}𝑗∈[𝑛] together to form a single vertex,
and designate it as the source vertex of the ABP 𝛤 . Next, generate a new sink vertex for 𝛤 , and
for each 𝑗 ∈ [𝑛], connect the sink vertex of the component ABP 𝛤𝑗 to that newly formed sink
vertex with a directed edge labeled with 𝑧𝑗 . For ease of notations, we will denote the size of the
ABP 𝛤 computing the function 𝑓 as 𝑚+ 𝑛+ 1, where 1 corresponds to the sink vertex of 𝛤 , 𝑛
accounts for the number of edges directed to that sink vertex, and 𝑚 accounts for the number
of other vertices and edges in 𝛤 . Also, note that the ABP 𝛤 can be further modified to another
ABP 𝛤 ′ in which each vertex has at most one outgoing edge having a label of degree one, by
replacing each edge 𝑒 in 𝛤 with a pair of edges labeled 1 and 𝜑(𝑒) respectively, where 𝜑 is the
labeling function of the ABP 𝛤 . It is clear that the number of vertices in this modified ABP 𝛤 ′ is
𝑚+𝑛+1, since 𝛤 ′ is obtained by adding a fresh vertex for each edge in 𝛤 as a result of replacing
each edge in 𝛤 with a pair of edges. Throughout this paper, whenever we will talk about the ABP
computing the function 𝑓 , we will refer to the ABP 𝛤 ′ just described, unless otherwise specified.

■ The Algorithm PGB

� Syntax and Properties:

PGB(𝑓 ; 𝑟⃗): PGB is a PPT algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , uses randomness

𝑟⃗ ∈ 𝔽𝑚+𝑛−1
𝑞 , and outputs a collection of constants ({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]) ∈ 𝔽𝑛

𝑞 × (𝔽2
𝑞)

𝑚

along with a function 𝜌 : [𝑚]→ [𝑛′]. Together with some 𝑥⃗ ∈ 𝔽𝑛′
𝑞 and 𝑧⃗ ∈ 𝔽𝑛

𝑞 , this specifies a
collection of 𝑛+𝑚 shares

({𝑧𝑗 + 𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′}𝑗′∈[𝑚]). (2.1)

Here, 𝑚+ 𝑛+ 1 is the number of vertices in the ABP computing 𝑓 and 𝜌 is deterministically
derived from 𝑓 .

The algorithm PGB satisfies the following properties:

∙ Linearity: For a fixed 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , PGB(𝑓 ; ·) computes a linear function of its randomness

over 𝔽𝑞.
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∙ Reconstruction: There exists a deterministic polynomial-time algorithm REC that on input
any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip and any 𝑥⃗ ∈ 𝔽𝑛′
𝑞 , outputs a collection of coefficients ({𝛺𝑗}𝑗∈[𝑛], {𝛺′

𝑗′}𝑗′∈[𝑚]) ∈
𝔽𝑛
𝑞 × 𝔽𝑛′

𝑞 . These coefficients can be used in combination with any set of shares of the form as
in Eq. (2.1), computed by combining the output of PGB(𝑓) with 𝑥⃗ and any 𝑧⃗ ∈ 𝔽𝑛

𝑞 , to recover
𝑓(𝑥⃗, 𝑧⃗). Moreover, the recovery procedure is linear in the shares used.

∙ Privacy: There exists a PPT simulator SIM such that for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , 𝑥⃗ ∈ 𝔽𝑛′

𝑞 , 𝑧⃗ ∈ 𝔽𝑛
𝑞 ,

the output of SIM on input 𝑓 , 𝑥⃗, and 𝑓(𝑥⃗, 𝑧⃗) is identically distributed to the shares obtained
by combining the output of PGB(𝑓 ; 𝑟⃗) for uniformly random 𝑟⃗, with 𝑥⃗ and 𝑧⃗ as in Eq. (2.1).

� Instantiation of the Algorithm: We now sketch an instantiation of the algorithm PGB
following [IW14,Wee17]. This instantiation will be utilized in our PHPE construction.

PGB(𝑓): The algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , and proceeds as follows:

1. Let 𝛤 ′ denotes the ABP computing 𝑓 as described above. Recall that in the ABP 𝛤 ′, there
are 𝑚+𝑛+1 vertices, the variables 𝑧𝑗 ’s only appear on edges leading into the sink vertex,
and any vertex has at most one outgoing edge with a label of degree one. It first computes
the matrix representation 𝑳 ∈ 𝔽(𝑚+𝑛)×(𝑚+𝑛)

𝑞 of the ABP 𝛤 ′ using the efficient algorithm of
Lemma 2.1. Then as per Lemma 2.1, the matrix 𝑳 satisfies the following properties:
– det(𝑳(𝑥⃗, 𝑧⃗)) = 𝑓(𝑥⃗, 𝑧⃗) for all (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 .

– For 𝑗′ ∈ [𝑚], each entry in the 𝑗′th row of 𝑳 is either a degree one polynomial function
in one (and the same) input variable 𝑥𝜄′ (𝜄′ ∈ [𝑛′]), with coefficients in 𝔽𝑞 or a constant
in 𝔽𝑞.

– 𝑳 contains only −1’s in the second diagonal, and 0’s below the second diagonal.
– The last column of 𝑳 is (0, . . . , 0, 𝑧1, . . . , 𝑧𝑛)

⊺.
– 𝑳 has 0’s everywhere else in the last 𝑛 rows.

It defines the function 𝜌 : [𝑚]→ [𝑛′] as 𝜌(𝑗′) = 𝜄′ if the entries of the 𝑗′th row of 𝑳 involves
the variable 𝑥𝜄′ for 𝑗′ ∈ [𝑚].

2. Next, it chooses 𝑟⃗
U←− 𝔽𝑚+𝑛−1

𝑞 , and computes

𝑳

(︂
𝑟⃗⊺

1

)︂
= (𝛼1𝑥𝜌(1) + 𝛾1, . . . , 𝛼𝑚𝑥𝜌(𝑚) + 𝛾𝑚, 𝑧1 + 𝜎1, . . . , 𝑧𝑛 + 𝜎𝑛)

⊺.

3. It outputs
(︀
({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
.

It is straightforward to verify that each of {𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚] are indeed linear functions
of the randomness 𝑟⃗.

REC(𝑓, 𝑥⃗): This algorithm takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip and a vector 𝑥⃗ ∈ 𝔽𝑛′

𝑞 . It
proceeds as follows:
1. It first executes Step 1 of the algorithm PGB described above to generate the matrix

representation 𝑳 of 𝑓 .
2. After that, it computes the cofactors of each entry in the last column of 𝑳. Let ({𝛺′

𝑗′}𝑗′∈[𝑚],

{𝛺𝑗}𝑗∈[𝑛]) ∈ 𝔽𝑚+𝑛
𝑞 be the collection of all the cofactors in the order of the entries. Note

that the first 𝑚 + 𝑛 − 1 columns of 𝑳 involve only the variables {𝑥𝜄′}𝜄′∈[𝑛′]. Hence, it can
compute all the cofactors using the input 𝑥⃗.

3. It outputs ({𝛺𝑗}𝑗∈[𝑛], {𝛺′
𝑗′}𝑗′∈[𝑚]).

The output of REC(𝑓, 𝑥⃗) can be used in conjunction with a collection of shares ({𝑧𝑗 +
𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′}𝑗′∈[𝑚]) for any 𝑧⃗ ∈ 𝔽𝑛

𝑞 , to compute 𝑓(𝑥⃗, 𝑧⃗) as

𝑓(𝑥⃗, 𝑧⃗) =
∑︁

𝑗′∈[𝑚]

𝛺′
𝑗′(𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝑧𝑗 + 𝜎𝑗). (2.2)

Observe that the RHS of Eq. (2.2) corresponds to computing det(𝑳′(𝑥⃗, 𝑧⃗)), where the matrix
𝑳′ is obtained by replacing the last column of the matrix 𝑳 with the column (𝛼1𝑥𝜌(1) +
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𝛾1, . . . , 𝛼𝑚𝑥𝜌(𝑚)+𝛾𝑚, 𝑧1+𝜎1, . . . , 𝑧𝑛+𝜎𝑛)
⊺, where 𝑳 is the matrix representation of the ABP

𝛤 ′ computing the function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , obtained by applying the algorithm of Lemma 2.1.

Hence, the correctness of Eq. (2.2) follows from the fact that

det(𝑳′(𝑥⃗, 𝑧⃗)) = det(𝑳(𝑥⃗, 𝑧⃗))

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1 𝑟1

. . .
...

1 𝑟𝑚+𝑛−1

1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = det(𝑳(𝑥⃗, 𝑧⃗)) · 1 = 𝑓(𝑥⃗, 𝑧⃗).

Here, 𝑟⃗ = (𝑟1, . . . , 𝑟𝑚+𝑛−1) ∈ 𝔽𝑚+𝑛−1
𝑞 is the randomness used by PGB while generating the

constants ({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]). In fact, an augmented version of Eq. (2.2) also holds.
More precisely, for any 𝛶, ̃︀𝛶 ∈ 𝔽𝑞, we have

𝛶𝑓(𝑥⃗, 𝑧⃗) =
∑︁

𝑗′∈[𝑚]

𝛺′
𝑗′
̃︀𝛶 (𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝛶𝑧𝑗 + ̃︀𝛶𝜎𝑗). (2.3)

This follows by observing that

det(𝑳(𝑥⃗, 𝑧⃗)) =
∑︁
𝑗∈[𝑛]

𝛺𝑗𝑧𝑗 , (since the first 𝑚 entries in the last column is 0)

and hence, the RHS of Eq. (2.3) can be written as

̃︀𝛶[︁ ∑︁
𝑗′∈[𝑚]

𝛺′
𝑗′(𝛼𝑗′𝑥𝜌(𝑗′) + 𝛾𝑗′) +

∑︁
𝑗∈[𝑛]

𝛺𝑗(𝑧𝑗 + 𝜎𝑗)
]︁
+ (𝛶 − ̃︀𝛶 ) ∑︁

𝑗∈[𝑛]

𝛺𝑗𝑧𝑗

= ̃︀𝛶 det(𝑳′(𝑥⃗, 𝑧⃗)) + (𝛶 − ̃︀𝛶 ) det(𝑳(𝑥⃗, 𝑧⃗)) = 𝛶 det(𝑳(𝑥⃗, 𝑧⃗)),

as det(𝑳′(𝑥⃗, 𝑧⃗)) = det(𝑳(𝑥⃗, 𝑧⃗)). This fact will be used to justify the correctness of our PHPE
construction.

SIM(𝑓, 𝑥⃗, 𝜖): The simulator takes as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , a vector 𝑥⃗ ∈ 𝔽𝑛′

𝑞 , and a value
𝜖 ∈ 𝔽𝑞. It proceeds as follows:

1. At first, it executes Step 1 of the algorithm PGB described above to obtain the matrix
representation 𝑳 of 𝑓 together with the function 𝜌 : [𝑚]→ [𝑛′].

2. Next, it constructs a matrix ̂︀𝑳 from the matrix 𝑳 by replacing its last column with
(𝜖, 0, . . . , 0)⊺.

3. Next, it samples 𝑟⃗
U←− 𝔽𝑚+𝑛−1

𝑞 , and computes

̂︀𝑳(︂𝑟⃗⊺
1

)︂
= (𝜇1, . . . , 𝜇𝑚, 𝜈1, . . . , 𝜈𝑛)

⊺.

4. It outputs
(︀
({𝜈𝑗}𝑗∈[𝑛], {𝜇𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀
.

It readily follows from Theorem 3, Corollary 1 of [IW14] that for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , 𝑥⃗ ∈ 𝔽𝑛′

𝑞 , and
𝑧⃗ ∈ 𝔽𝑛

𝑞 , the output of SIM(𝑓, 𝑥⃗, 𝑓(𝑥⃗, 𝑧⃗)) is identically distributed to the shares obtained by
combining with (𝑥⃗, 𝑧⃗) the output of PGB(𝑓) with uniform randomness, thereby establishing
the privacy property of the algorithm PGB described above. We omit the details here. Clearly
the determinant value of the matrix ̂︀𝑳(𝑥⃗, 𝑧⃗) generated by SIM on input any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip ,
𝑥⃗ ∈ 𝔽𝑛′

𝑞 , and 𝑓(𝑥⃗, 𝑧⃗) for any 𝑧⃗ ∈ 𝔽𝑛
𝑞 is 𝑓(𝑥⃗, 𝑧⃗).
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2.4 Bilinear Groups and Dual Pairing Vector Spaces

In this section, we will provide the necessary backgrounds on bilinear groups and dual pairing
vector spaces, which are the primary building blocks of our PHPE construction.

Definition 2.1 (Bilinear Group): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2, 𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a
tuple of a prime integer 𝑞 ∈ ℕ; cyclic multiplicative groups 𝔾1,𝔾2,𝔾𝑇 of order 𝑞 each with
polynomial-time computable group operations; generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-
time computable non-degenerate bilinear map 𝑒 : 𝔾1 × 𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following
two properties:

– Bilinearity : 𝑒(𝑔𝛿1, 𝑔𝛿2) = 𝑒(𝑔1, 𝑔2)
𝛿𝛿 for all 𝛿, 𝛿 ∈ 𝔽𝑞.

– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇 , where 1𝔾𝑇 denotes the identity element of the group 𝔾𝑇 .

A bilinear group is said to be asymmetric if no efficiently computable isomorphism exists between
𝔾1 and 𝔾2. Let 𝒢bpg be an algorithm that on input the unary encoding 1𝜆 of the security
parameter 𝜆, outputs a description params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of a bilinear group.

Definition 2.2 (Dual Pairing Vector Spaces: DPVS [OT09,OT10]): A dual pairing vec-
tor space (DPVS) params𝕍 = (𝑞,𝕍1,𝕍2, 𝔾𝑇 ,𝔸1,𝔸2, 𝑒) formed by the direct product of a bilinear
group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a prime integer 𝑞; 𝑑-dimensional vector
spaces 𝕍𝑡 = 𝔾𝑑

𝑡 over 𝔽𝑞 for 𝑡 ∈ [2] under vector addition and scalar multiplication defined compo-

nentwise in the usual manner; canonical bases 𝔸𝑡 = {𝒂(𝑡,ℓ) = (

ℓ−1⏞  ⏟  
1𝔾𝑡 , . . . , 1𝔾𝑡 , 𝑔𝑡,

𝑑−ℓ⏞  ⏟  
1𝔾𝑡 , . . . , 1𝔾𝑡)}ℓ∈[𝑑]

of 𝕍𝑡 for 𝑡 ∈ [2], where 1𝔾𝑡 is the identity element of the group 𝔾𝑡 for 𝑡 ∈ [2]; and a pairing
𝑒 : 𝕍1 × 𝕍2 → 𝔾𝑇 defined by 𝑒(𝒗,𝒘) =

∏︀
ℓ∈[𝑑]

𝑒(𝑔𝑣ℓ1 , 𝑔𝑤ℓ2 ) ∈ 𝔾𝑇 for all 𝒗 = (𝑔𝑣11 , . . . , 𝑔𝑣𝑑1 ) ∈ 𝕍1,

𝒘 = (𝑔𝑤1
2 , . . . , 𝑔𝑤𝑑2 ) ∈ 𝕍2. Observe that the newly defined map 𝑒 is also non-degenerate bilinear,

i.e., 𝑒 also satisfies the following two properties:

– Bilinearity : 𝑒(𝛿𝒗, ̂︀𝛿𝒘) = 𝑒(𝒗,𝒘)𝛿𝛿 for all 𝛿, ̂︀𝛿 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍1, and 𝒘 ∈ 𝕍2.

– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇 for all 𝒘 ∈ 𝕍2, then 𝒗 = (

𝑑⏞  ⏟  
1𝔾1 , . . . , 1𝔾1). Similar statement

also holds with the vectors 𝒗 and 𝒘 interchanged.

For any ordered basis 𝕎 = {𝒘(1), . . . ,𝒘(𝑑)} of 𝕍𝑡 for 𝑡 ∈ [2], and any vector 𝑣⃗ ∈ 𝔽𝑑
𝑞 , let

(𝑣⃗)𝕎 represents the vector in 𝕍𝑡 formed by the linear combination of the members of 𝕎 with the
components of 𝑣⃗ as the coefficients, i.e., (𝑣⃗)𝕎 =

∑︀
ℓ∈[𝑑]

𝑣ℓ𝒘
(ℓ) ∈ 𝕍𝑡. The DPVS generation algorithm

𝒢dpvs takes as input the unary encoded security parameter 1𝜆, a dimension value 𝑑 ∈ ℕ, along
with a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(), and outputs a description
params𝕍 = (𝑞,𝕍1, 𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒) of DPVS with 𝑑-dimensional 𝕍1 and 𝕍2.

We now describe random dual orthonormal basis generator 𝒢ob [OT09,OT10] in Fig. 2.1. This
algorithm will be utilized as a sub-routine in our PHPE construction.

2.5 Complexity Assumption

For realizing our PHPE construction in asymmetric bilinear groups, we rely on the natural ex-
tension of the well-studied decisional linear (DLIN) assumption to the asymmetric bilinear group
setting, called the external decisional linear (XDLIN) assumption.

Assumption (External Decisional Linear: XDLIN [ACD+12,TAO16]): For 𝑡 ∈ [2], the
XDLIN𝑡 problem is to guess the bit ̂︀𝛽 U←− {0, 1} given 𝜚XDLIN𝑡̂︀𝛽 = (params𝔾, 𝑔𝜛1 , 𝑔𝜉1, 𝑔

𝜘𝜛
1 , 𝑔𝜍𝜉1 , 𝑔𝜛2 , 𝑔𝜉2,
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𝒢ob(𝑁, (𝑑0, . . . , 𝑑𝑁 )): This algorithm takes as input the unary encoded security parameter 1𝜆, a number
𝑁 ∈ ℕ, and the respective dimensions 𝑑0, . . . , 𝑑𝑁 ∈ ℕ of the 𝑁 +1 pairs of bases to be generated. It executes
the following operations:

1. It first generates params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg().

2. Next, it samples 𝜓 U←− 𝔽𝑞∖{0} and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜓.

3. Then, for 𝚤 ∈ [0, 𝑁 ], it performs the following:
(a) It constructs params𝕍𝚤

= (𝑞,𝕍𝚤,1,𝕍𝚤,2,𝔾𝑇 ,𝔸𝚤,1,𝔸𝚤,2, 𝑒)
R←− 𝒢dpvs(𝑑𝚤, params𝔾).

(b) It samples 𝑩(𝚤) = (𝑏
(𝚤)
ℓ,𝑘)

U←− GL(𝑑𝚤,𝔽𝑞).
(c) It computes 𝑩*(𝚤) = (𝑏

*(𝚤)
ℓ,𝑘 ) = 𝜓((𝑩(𝚤))−1)⊺.

(d) For all ℓ ∈ [𝑑𝚤], let 𝑏⃗(𝚤,ℓ) and 𝑏⃗*(𝚤,ℓ) represent the ℓth rows of 𝑩(𝚤) and 𝑩*(𝚤) respectively. It computes
𝒃(𝚤,ℓ) = (⃗𝑏(𝚤,ℓ))𝔸𝚤,1 , 𝒃

*(𝚤,ℓ) = (⃗𝑏*(𝚤,ℓ))𝔸𝚤,2 for ℓ ∈ [𝑑𝚤], and sets

𝔹𝚤 = {𝒃(𝚤,1), . . . , 𝒃(𝚤,𝑑𝚤)},𝔹*
𝚤 = {𝒃*(𝚤,1), . . . , 𝒃*(𝚤,𝑑𝚤)}.

Clearly 𝔹𝚤 and 𝔹*
𝚤 form bases of the vector spaces 𝕍𝚤,1 and 𝕍𝚤,2 respectively. Also, note that 𝔹𝚤 and

𝔹*
𝚤 are dual orthonormal in the sense that for all ℓ, ℓ′ ∈ [𝑑𝚤],

𝑒(𝒃(𝚤,ℓ), 𝒃*(𝚤,ℓ
′)) =

{︂
𝑔𝑇 , if ℓ = ℓ′,
1𝔾𝑇 , otherwise.

4. Next, it sets params = ({params𝕍𝚤
}𝚤∈[0,𝑁 ], 𝑔𝑇 ).

5. It returns (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑁 ]).

Fig. 2.1: Dual Orthonormal Basis Generator 𝒢ob

𝑔𝜘𝜛2 , 𝑔𝜍𝜉2 ,ℜ
𝑡,̂︀𝛽), where

params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg();

𝜛, 𝜉,𝜘, 𝜍, 𝜀 U←− 𝔽𝑞;

ℜ𝑡,0 = 𝑔
(𝜘+𝜍)
𝑡 ,ℜ𝑡,1 = 𝑔

(𝜘+𝜍)+𝜀
𝑡 .

The XDLIN𝑡 assumption states that for any PPT algorithm ℰ , for any security parameter 𝜆, the
advantage of ℰ in deciding the XDLIN𝑡 problem, defined as

AdvXDLIN𝑡
ℰ (𝜆) = |Pr[1 R←− ℰ(𝜚XDLIN𝑡

0 )]− Pr[1 R←− ℰ(𝜚XDLIN𝑡
1 )]|,

is negligible in 𝜆, i.e., AdvXDLIN𝑡
ℰ (𝜆) ≤ negl(𝜆), where negl is some negligible function. The simul-

taneous XDLIN (SXDLIN) assumption states that both XDLIN1 and XDLIN2 assumptions hold
at the same time. For any security parameter 𝜆, we denote the advantage of any probabilistic
algorithm ℰ against SXDLIN as AdvSXDLIN

ℰ (𝜆).

2.6 The Notion of Partially-Hiding Predicate Encryption

Here, we formally present the syntax and simulation-based security notion of a partially-hiding
predicate encryption (PHPE) scheme for the function family ℱ (𝑞,𝑛′,𝑛)

abp∘ip for some prime 𝑞 and
𝑛′, 𝑛 ∈ ℕ. Following [Wee17], we define the ABP∘IP predicate family 𝑅abp∘ip as 𝑅abp∘ip =

{𝑅abp∘ip(𝑓, (·, ·)) : 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 → {0, 1} | 𝑓 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip }, where 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 1, if 𝑓(𝑥⃗, 𝑧⃗) = 0,

and 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 0, if 𝑓(𝑥⃗, 𝑧⃗) ̸= 0 for all 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip and (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 .

� Syntax: An attribute-only/key-encapsulation mechanism (KEM) partially-hiding predicate
encryption (PHPE) scheme for the function family ℱ (𝑞,𝑛′,𝑛)

abp∘ip consists of the following polynomial-
time algorithms:
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PHPE.Setup(1𝑛
′
, 1𝑛): The setup algorithm takes as input the security parameter 𝜆 along with the

public and private attribute lengths 𝑛′ and 𝑛 respectively (all encoded in unary). It outputs
the public parameters mpk and the master secret key msk.

PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗)): The encryption algorithm takes as input the public parameters mpk,
a pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 . It outputs a ciphertext ct. In the

KEM mode, it additionally outputs a session key kem.

PHPE.KeyGen(mpk,msk, 𝑓): On input the public parameters mpk, the master secret key msk,
along with a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , the key generation algorithm outputs a decryption key
sk(𝑓).

PHPE.Decrypt(mpk, (𝑓, sk(𝑓)), (𝑥⃗,ct)): The decryption algorithm takes as input the public
parameters mpk, a pair of a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip and a decryption key sk(𝑓) for 𝑓 , along
with a pair of a public attribute 𝑥⃗ ∈ 𝔽𝑛′

𝑞 and a ciphertext ct associated with 𝑥⃗ and some
private attribute string. In the attribute-only mode, it outputs either 1 or 0, while in the
KEM mode, it outputs a session key ̃︂kem. For notational convenience, we will think of 𝑓 and
𝑥⃗ as parts of sk(𝑓) and ct respectively, and will not write them explicitly in the argument
of PHPE.Decrypt.

The algorithm PHPE.Decrypt is deterministic, while all the others are probabilistic.

� Correctness: A PHPE scheme for the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip is said to be correct if

for any security parameter 𝜆, any (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 , any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , any (mpk,msk) R←−

PHPE.Setup(1𝑛
′
, 1𝑛), and any sk(𝑓) R←− PHPE.KeyGen(mpk, msk, 𝑓), the following holds:

– (Authorized) If 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 1, then

Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = 1 : ct R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗))]

≥ 1− negl(𝜆) (attribute-only mode),

Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = kem : (ct,kem)
R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗))]

≥ 1− negl(𝜆) (KEM mode).

– (Unauthorized) If 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 0, then

Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) = 0 : ct R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗))]

≥ 1− negl(𝜆) (attribute-only mode),

Pr[PHPE.Decrypt(mpk, sk(𝑓),ct) ̸= kem : (ct,kem)
R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗))]

≥ 1− negl(𝜆) (KEM mode).

Here, negl is some negligible function, and the probabilities are taken over the random coins of
PHPE.Encrypt.

� Simulation-Based Security: The simulation-based adaptively strongly partially-hiding
security notion for a PHPE scheme is formulated by considering the following two experiments
involving a stateful probabilistic adversary 𝒜 and a stateful probabilistic simulator 𝒮:

ExpPHPE,REAL
𝒜 (𝜆):

1. (mpk,msk) R←− PHPE.Setup(1𝑛
′
, 1𝑛).

2. {(𝑥⃗(𝑖), 𝑧⃗(𝑖))}𝑖∈[𝑞ct]
R←− 𝒜PHPE.KeyGen(msk,·)(mpk).

3. (a) (attribute-only case) ct(𝑖) R←− PHPE.Encrypt(mpk, (𝑥⃗(𝑖), 𝑧⃗(𝑖))) for 𝑖 ∈ [𝑞ct].



Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 17

(b) (KEM case) (ct(𝑖),kem(𝑖))
R←− PHPE.Encrypt(mpk, (𝑥⃗(𝑖), 𝑧⃗(𝑖))) for 𝑖 ∈ [𝑞ct].

4. (a) (attribute-only case) ℑ R←− 𝒜PHPE.KeyGen(msk,·)(mpk, {ct(𝑖)}𝑖∈[𝑞ct]).
(b) (KEM case) ℑ R←− 𝒜PHPE.KeyGen(msk,·)(mpk, {(ct(𝑖),kem(𝑖))}𝑖∈[𝑞ct]).

5. Output 𝜚PHPE,REAL
𝒜 =

(︀
mpk, {(𝑥⃗(𝑖), 𝑧⃗(𝑖))}𝑖∈[𝑞ct],ℑ

)︀
.

ExpPHPE,IDEAL
𝒜,𝒮 (𝜆):

1. mpk R←− 𝒮(1𝑛′
, 1𝑛).

2. {(𝑥⃗(𝑖), 𝑧⃗(𝑖))}𝑖∈[𝑞ct]
R←− 𝒜𝒮(·)(mpk).

3. (a) (attribute-only case) {ct(𝑖)}𝑖∈[𝑞ct]
R←− 𝒮(𝑞ct, {(𝑥⃗(𝑖), 𝑅abp∘ip(𝑓𝑕, (𝑥⃗

(𝑖), 𝑧⃗(𝑖))))}𝑖∈[𝑞ct],𝑕∈[𝑞key-pre]).

(b) (KEM case) {kem(𝑖)}𝑖∈[𝑞ct]
U←− 𝕂, where 𝕂 = session key space {ct(𝑖)}𝑖∈[𝑞ct]

R←− 𝒮(𝑞ct,
{(𝑥⃗(𝑖),kem(𝑖,𝑕))}𝑖∈[𝑞ct],𝑕∈[𝑞key-pre]), where for all 𝑖 ∈ [𝑞ct], 𝑕 ∈ [𝑞key-pre], kem(𝑖,𝑕) =

kem(𝑖), if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗
(𝑖), 𝑧⃗(𝑖))) = 1, and ⊥, if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗

(𝑖), 𝑧⃗(𝑖))) = 0.

4. (a) (attribute-only case) ℑ R←− 𝒜𝒮𝒪𝑅abp∘ip ({(𝑥⃗(𝑖),𝑧⃗(𝑖))}𝑖∈[𝑞ct],·)(·)(mpk, {ct(𝑖)}𝑖∈[𝑞ct]).

(b) (KEM case) ℑ R←− 𝒜𝒮𝒪𝑅abp∘ip ({((𝑥⃗(𝑖),𝑧⃗(𝑖)),kem(𝑖))}𝑖∈[𝑞ct],·)(·)(mpk, {(ct(𝑖), kem(𝑖))}𝑖∈[𝑞ct]).
5. Output 𝜚PHPE,IDEAL

𝒜,𝒮 =
(︀
mpk, {(𝑥⃗(𝑖), 𝑧⃗(𝑖))}𝑖∈[𝑞ct],ℑ

)︀
.

Here, the simulator 𝒮 accepts as input a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip when it acts as an oracle

to 𝒜. Also, 𝑞ct and 𝑞key-pre respectively denotes the number of ciphertext queries made
by 𝒜 and number of decryption key queries made by 𝒜 prior to submitting the ciphertext
queries. Further, in the attribute-only case, the oracle 𝒪𝑅abp∘ip receives as its second argument
a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , and outputs {𝑅abp∘ip(𝑓, (𝑥⃗(𝑖), 𝑧⃗(𝑖)))}𝑖∈[𝑞ct]. On the other hand, in
the KEM case, the oracle 𝒪𝑅abp∘ip takes as its second argument a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , and
outputs kem(𝑖), if 𝑅abp∘ip(𝑓, (𝑥⃗(𝑖), 𝑧⃗(𝑖))) = 1, and ⊥, if 𝑅abp∘ip(𝑓, (𝑥⃗(𝑖), 𝑧⃗(𝑖))) = 0 for 𝑖 ∈ [𝑞ct].
A simulator 𝒮 is said to be admissible if on each decryption key query 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip of 𝒜 in
the post-ciphertext query phase, 𝒮 makes just a single query to the oracle 𝒪𝑅abp∘ip on 𝑓 itself.
Let the number of decryption key queries made by 𝒜 after receiving the queried ciphertexts
be 𝑞key-post.

For any security parameter 𝜆, for any probabilistic distinguisher 𝒟, the advantage of 𝒟 in dis-
tinguishing the above two experiments is defined as

AdvPHPE,SIM-AH
𝒟 (𝜆) = |Pr[1 R←− 𝒟(𝜚PHPE,REAL

𝒜 )]− Pr[1 R←− 𝒟(𝜚PHPE,IDEAL
𝒜,𝒮 )]|.

Definition 2.3: A PHPE scheme is called (𝑞key-pre, 𝑞ct, 𝑞key-post)-simulation-based adaptively
strongly partially hiding if there exists an admissible stateful PPT simulator 𝒮 such that for any
stateful PPT adversary 𝒜 making at most 𝑞ct ciphertext queries, 𝑞key-pre decryption key queries
in the pre-ciphertext query phase, while 𝑞key-post decryption key queries in the post-ciphertext
query phase, any PPT distinguisher 𝒟, and any security parameter 𝜆, AdvPHPE,SIM-AH

𝒟 (𝜆) ≤
negl(𝜆), where negl is some negligible function. Also, a PHPE scheme is said to be (poly, 𝑞ct, poly)-
simulation-based adaptively strongly partially hiding if it is (𝑞key-pre, 𝑞ct, 𝑞key-post)-simulation-
based adaptively strongly partially hiding as well as 𝑞key-pre and 𝑞key-post are unbounded poly-
nomials in the security parameter 𝜆.

Remark 2.1: Consider an adversary ℋ that first invokes 𝒜 and then invokes 𝒟 once the
transcript (𝜚PHPE,REAL

𝒜 or 𝜚PHPE,IDEAL
𝒜,𝒮 ) of the experiment is obtained. Consider the experiments

ExpPHPE,REAL
ℋ (𝜆) and ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) which are obtained from the experiments ExpPHPE,REAL
𝒜 (𝜆)

and ExpPHPE,IDEAL
𝒜,𝒮 (𝜆) respectively by applying the corresponding augmentations. Let us define
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the outputs of the augmented experiments as the output of ℋ in those experiments, and the
advantage of ℋ as

AdvPHPE,SIM-AH
ℋ (𝜆) = |Pr[1 R←− ExpPHPE,REAL

ℋ (𝜆)]− Pr[1 R←− ExpPHPE,IDEAL
ℋ,𝒮 (𝜆)]|.

Then, clearly AdvPHPE,SIM-AH
ℋ (𝜆) = AdvPHPE,SIM-AH

𝒟 (𝜆). We make use of this combined adversary
ℋ as well as the associated augmented experiments ExpPHPE,REAL

ℋ (𝜆) and ExpPHPE,IDEAL
ℋ,𝒮 (𝜆) in

the security proof of our PHPE construction, both the attribute-only and KEM versions.

� Indistinguishability-Based Security: The indistinguishability-based adaptively strongly
partially hiding security of a PHPE scheme is formalized through the experiment ExpPHPE,IND-AH

𝒜 (𝜆)
between a stateful probabilistic adversary 𝒜 and a stateful probabilistic challenger ℬ described
below:

1. ℬ generates (mpk,msk) R←− PHPE.Setup(1𝑛
′
, 1𝑛), and provides mpk to 𝒜.

2. 𝒜 is allowed to adaptively request any polynomial number of decryption keys to ℬ. In re-
sponse to a decryption key query of 𝒜 for some function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , ℬ forms corresponding
decryption key sk(𝑓) R←− PHPE.KeyGen(mpk, msk, 𝑓) and hands it to 𝒜.

3. 𝒜 submits to ℬ a public challenge attribute 𝑥⃗ ∈ 𝔽𝑛′
𝑞 and a pair of private challenge at-

tributes (𝑧⃗(0), 𝑧⃗(1)) ∈ (𝔽𝑛
𝑞 )

2 of its choice, subject to the restriction that 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(0))) =

𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(1))) for all the functions 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip for which 𝒜 has queried decryption

keys so far, i.e., in other words, for all the functions 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip for which 𝒜 has queried

decryption keys so far, one of the following holds:
– 𝑓(𝑥⃗, 𝑧⃗(0)) ̸= 0 and 𝑓(𝑥⃗, 𝑧⃗(1)) ̸= 0
– 𝑓(𝑥⃗, 𝑧⃗(0)) = 0 and 𝑓(𝑥⃗, 𝑧⃗(1)) = 0

In the attribute-only case, ℬ selects a random bit 𝛽
U←− {0, 1}, and gives 𝒜 the ciphertext

ct R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗(𝛽))).
On the other hand, in the KEM case, 𝒜 additionally submits an indicator bit 𝛽 ∈ {0, 1}. If
𝛽 = 0, and 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(0))) = 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(1))) = 1 for the function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip cor-
responding to one of the decryption key queries that 𝒜 has made so far, ℬ aborts, and
in that case the output of the experiment is defined to be 0. Otherwise, if 𝛽 = 0 and
𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(0))) = 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(1))) = 0 for the functions 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip correspond-
ing to all the decryption key queries of 𝒜 so far, then ℬ samples a random bit 𝛽

U←− {0, 1},
generates (ct,kem)

R←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗(𝛽))), and also samples another random ses-
sion key ̂︂kem from the session key space. If 𝛽 = 0, then ℬ hands (ct,kem) to 𝒜, while if
𝛽 = 1, ℬ gives (ct, ̂︂kem) to 𝒜. Else, if 𝛽 = 1, then ℬ selects a random bit 𝛽

U←− {0, 1}, and
provides 𝒜 with (ct,kem)

U←− PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗(𝛽)).
4. 𝒜 may continue adaptively to request any polynomial number of additional decryption keys

for functions in ℱ (𝑞,𝑛′,𝑛)
abp∘ip subject to the same restriction as above. In the attribute-only case, ℬ

simply gives the corresponding decryption keys to 𝒜. On the other hand, in the KEM case, if
the indicator bit 𝛽 ∈ {0, 1} submitted by𝒜 in Step 3 above is 𝛽 = 0, and 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(0))) =

𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗(1))) = 1 for the function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip that 𝒜 queries decryption key for, then

ℬ aborts, and the output of the experiment is defined to be 0 in such situation. Otherwise, ℬ
provides 𝒜 with the corresponding decryption key.

5. Eventually, 𝒜 outputs a guess bit 𝛽′. The output of the experiment is defined to be 1, if
𝛽′ = 𝛽, and 0, otherwise.

For any security parameter 𝜆, the advantage of any probabilistic adversary𝒜 in ExpPHPE,IND-AH
𝒜 (𝜆)

is defined by
AdvPHPE,IND-AH

𝒜 (𝜆) = |Pr[1 R←− ExpPHPE,IND-AH
𝒜 (𝜆)]− 1/2|.
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Definition 2.4: A PHPE scheme is said to be (poly, 1, poly)-indistinguishability-based adap-
tively strongly partially hiding if for any stateful PPT adversary 𝒜, for any security parameter
𝜆, AdvPHPE,IND-AH

𝒜 (𝜆) ≤ negl(𝜆), where negl is some negligible function, and (poly, 1, poly) refers
to the fact that the adversary 𝒜 can make a single ciphertext query, but is allowed to make any
polynomial number of decryption key queries both before and after the ciphertext query during
the above experiment. If the adversary is allowed to make any polynomial number of cipher-
text queries in the above experiment, the resulting security would be called (poly, poly, poly)-
indistinguishability-based adaptively strongly partially-hiding security.

Remark 2.2: It follows from existing results on indistinguishability-based security for FE, e.g.,
[BSW11], that (poly, 1, poly) and (poly, poly, poly) security notions are in fact equivalent in the
indistinguishability-based setting.

3 The Proposed PHPE Scheme

3.1 Construction

In this section, we will present our PHPE scheme for the function family ℱ (𝑞,𝑛′,𝑛)
abp∘ip . This construc-

tion is presented in the attribute-only mode, i.e., without any actual payload. A key-encapsulation
mechanism (KEM) version of this construction is presented in Section 4. In the proposed scheme,
we assume that the function 𝜌 outputted by PGB(𝑓) for any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is injective. This re-
striction can be readily overcome using standard techniques along the lines of [LOS+10,OT12b].

PHPE.Setup(1𝑛
′
, 1𝑛): The setup algorithm takes as input the security parameter 𝜆 together with

the lengths 𝑛′ and 𝑛 of the public and private attribute strings respectively. It proceeds as
follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. For 𝚤 ∈ [𝑛′ + 𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}, ̂︀𝔹*
𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,7), 𝒃*(𝚤,8)}.

3. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[𝑛′+𝑛]) and the master secret key
msk = {̂︀𝔹*

𝚤 }𝚤∈[𝑛′+𝑛].

PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗)): The encryption algorithm takes as input the public parameters mpk
and a pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 . It executes the following:

1. First, it samples 𝜔
U←− 𝔽𝑞.

2. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 0⃗

4, 0⃗2, 𝜙′
𝜄′)𝔹𝜄′ .

3. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 0⃗
4, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 .

4. It outputs the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).

PHPE.KeyGen(mpk,msk, 𝑓): The key generation algorithm takes as input the public parameters
mpk, the master secret key msk, along with a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip . It operates as follows:
1. It first generates

(︀
({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←− PGB(𝑓).

2. Next, it samples 𝜁
U←− 𝔽𝑞.
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3. Then, for 𝑗′ ∈ [𝑚], it samples 𝜅⃗′(𝑗
′) U←− 𝔽2

𝑞 , and computes

𝒌′(𝑗′) = ((𝛾𝑗′ , 𝛼𝑗′), 0⃗
4, 𝜅⃗′(𝑗

′), 0)𝔹*
𝜌(𝑗′)

.

4. Then, for 𝑗 ∈ [𝑛], it samples 𝜅⃗(𝑗)
U←− 𝔽2

𝑞 , and computes

𝒌(𝑗) = ((𝜎𝑗 , 𝜁), 0⃗
4, 𝜅⃗(𝑗), 0)𝔹*

𝑛′+𝑗
.

5. It outputs the decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛]).
PHPE.Decrypt(mpk, sk(𝑓),ct): The decryption algorithm takes in the public parameters mpk,

a decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛]), and a ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′],

{𝒄(𝜄)}𝜄∈[𝑛]). It proceeds as follows:
1. It first computes 𝛬′

𝑗′ = 𝑒(𝒄′(𝜌(𝑗
′)),𝒌′(𝑗′)) for 𝑗′ ∈ [𝑚], and 𝛬𝑗 = 𝑒(𝒄(𝑗),𝒌(𝑗)) for 𝑗 ∈ [𝑛].

2. Next, it determines the coefficients ({𝛺𝑗}𝑗∈[𝑛], {𝛺′
𝑗′}𝑗′∈[𝑚]) = REC(𝑓, 𝑥⃗).

3. Then, it computes 𝛬 =

(︃ ∏︀
𝑗′∈[𝑚]

𝛬
′𝛺′
𝑗′

𝑗′

)︃(︃ ∏︀
𝑗∈[𝑛]

𝛬
𝛺𝑗
𝑗

)︃
.

4. It outputs 1, if 𝛬 = 1𝔾𝑇 , and 0, otherwise, where 1𝔾𝑇 is the identity element in 𝔾𝑇 .

� Correctness: For any decryption key sk(𝑓) = (𝑓, {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛]) for a function
𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip , and any ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) encrypting a pair of public-
private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , we have

𝛬′
𝑗′ = 𝑔

𝜔(𝛼𝑗′𝑥𝜌(𝑗′)+𝛾𝑗′ )

𝑇 for 𝑗′ ∈ [𝑚],

𝛬𝑗 = 𝑔
𝜔(𝜁𝑧𝑗+𝜎𝑗)
𝑇 for 𝑗 ∈ [𝑛].

The above follows from the expressions of {𝒌′(𝑗′)}𝑗′∈[𝑚], {𝒌(𝑗)}𝑗∈[𝑛], {𝒄′(𝜄
′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛], and

the dual orthonormality property of {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛]. Hence, from Eq. (2.3) it follows that

𝛬 = 𝑔
𝜔𝜁𝑓(𝑥⃗,𝑧⃗)
𝑇 .

Therefore, if 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓(𝑥⃗, 𝑧⃗) = 0, then 𝛬 = 1𝔾𝑇 , while if 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 0,
i.e., 𝑓(𝑥⃗, 𝑧⃗) ̸= 0, then 𝛬 ̸= 1𝔾𝑇 with all but negligible probability 2/𝑞, i.e., except when 𝜔 = 0 or
𝜁 = 0.

Remark 3.1 (On Multi-Ciphertext Scheme): The PHPE scheme described above is only
secure against adversaries that are allowed to make a single ciphertext query. However, we can
readily extend the above scheme to one that is secure for any a priori bounded number of
ciphertext queries of the adversary. The extension is as follows: Suppose we want to design a
scheme that is secure for 𝑞ct number of ciphertext queries. Then, we would introduce a 4𝑞ct-
dimensional hidden subspace on each of the ciphertext and the decryption key sides, where each
4-dimensional hidden subspace on the ciphertext side and its corresponding 4-dimensional dual
subspace on the decryption key side will be used to handle each ciphertext query in the security
reduction. Clearly the size of ciphertexts, decryption keys, and public parameters would scale
linearly with 𝑞ct.

3.2 Security

We now present our main theorem:

Theorem 3.1: The proposed PHPE scheme is (poly, 1, poly)-simulation-based adaptively strongly
partially hiding (as per the security model described in Section 2.6) under the SXDLIN assump-
tion.
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The following corollary is immediate from the relation between indistinguishability-based and
simulation-based security for FE, as mentioned in the Introduction as well as the equivalence of
the single- and multi-ciphertext security in the indistinguishability-based setting for FE:

Corollary 3.1: The proposed PHPE scheme is (poly, poly, poly)-indistinguishability-based adap-
tively strongly partially hiding (as per the security model described in Section 2.6) under the
SXDLIN assumption.

■ Proof Outline of Theorem 3.1

In order to prove Theorem 3.1, we apply an extended and more sophisticated version of the strong
attribute hiding technique introduced by Okamoto and Takashima [OT12a,OT12b,OT13]. We
consider a sequence of hybrid experiments which differ from one another in the construction of
the ciphertext and/or the decryption keys queried by the augmented adversary ℋ (described
in Remark 2.1). The first hybrid corresponds to the experiment ExpPHPE,REAL

ℋ (𝜆) (described in
Section 2.6), while the last one corresponds to the experiment ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) (also described in
Section 2.6) with the simulator 𝒮 described below. We argue that ℋ’s probability of outputting
1 changes only by a negligible amount in each successive hybrid experiment, thereby establishing
Theorem 3.1. Note that we are considering only one ciphertext query made by the adversary ℋ.
Let, 𝑞key-pre, 𝑞key-post be respectively the number of decryption key queries made by ℋ before
and after making the ciphertext query, and 𝑞key = 𝑞key-pre + 𝑞key-post. Note that we consider
𝑞key-pre and 𝑞key-post to be arbitrary polynomials in the security parameter 𝜆.

Our simulator 𝒮 adopts a different strategy for simulating the pre-ciphertext and post-
ciphertext decryption keys. Accordingly, we design a different hybrid sequence for the pre-
ciphertext and post-ciphertext decryption keys. Our approach for handling pre-ciphertext and
post-ciphertext decryption keys is somewhat similar in spirit to that used in [LW12,Att14,OT13].
As a result of this approach, we are also able to achieve a security loss that is proportional to
only the number of pre-ciphertext decryption key queries. In our hybrid transitions, we consider
5 different forms for the ciphertext queried by ℋ, namely, Normal, Temporal 0, Temporal 1, Tem-
poral 2, and Simulated, while 4 different forms for the decryption keys queried by ℋ, namely,
Normal, Temporal 1, Temporal 2, and Simulated. However, the Temporal 2 and Simulated forms
of the pre-ciphertext and post-ciphertext decryption keys are different. In ExpPHPE,REAL

ℋ (𝜆), the
Normal forms of ciphertext and decryption keys are used, whereas other forms of ciphertext and
decryption keys are used in various intermediate hybrid experiments as well as in the final hybrid
experiment, which corresponds to ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) and uses the Simulated forms for both the
ciphertext and the decryption keys.

The overall structure of our security reduction is demonstrated in Fig. 3.1. We employ the
sequence of hybrid experiments Hyb0 through Hyb8, which are formally described below after
the description of our simulator. We start with Hyb0, which is the real experiment. Hence, in
this hybrid, the ciphertext queried by ℋ is in its Normal form (Eq. (3.1)) and all the decryption
keys queried by ℋ are also in their Normal forms (Eq. (3.2)). First, in Hyb1, we change the
ciphertext queried by ℋ to the Temporal 0 form (Eq. (3.3)). From Hyb1 ≡ Hyb2-0-4, we perform
a sequence of 4𝑞key-pre hybrid transitions, namely, {Hyb2-𝜒-1, . . . ,Hyb2-𝜒-4}𝜒∈[𝑞key-pre], where for
each 𝜒 ∈ [𝑞key-pre], the sequence of 4 hybrid transitions, namely, Hyb2-𝜒-1, . . . ,Hyb2-𝜒-4 are de-
voted for changing the 𝜒th pre-ciphertext decryption key queried by ℋ to its Simulated form.
In Hyb2-𝜒-1, the ciphertext is changed to its Temporal 1 form (Eq. (3.4)), while for 𝑕 ∈ [𝑞key],
the 𝑕th decryption key is in its Simulated form (Eq. (3.7)), if 𝑕 < 𝜒, and in its Normal form
(Eq. (3.2)), if 𝑕 ≥ 𝜒. Next, in Hyb2-𝜒-2, the 𝜒th decryption key is altered to its Temporal 1
form (Eq. (3.5)). After that, in the ciphertext is modified to its Temporal 2 form (Eq. (3.6)) in
Hyb2-𝜒-3. Then, in Hyb2-𝜒-4, we change the 𝜒th decryption key to its Simulated form (Eq. (3.7)).
This process is repeated for all 𝜒 ∈ [𝑞key-pre]. In the last hybrid Hyb2-𝑞key-pre-4 of this sequence,
we get the ciphertext in its Temporal 2 form (Eq. (3.6)), all the pre-ciphertext decryption keys in
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their Simulated forms (Eq. (3.7)), while all the post-ciphertext decryption keys in their Normal
forms (Eq. (3.2)). Upto this point, we follow a similar top level hybrid transition strategy as
that employed in [OT12a,OT12b,OT13], although our analysis of the hybrid transitions is much
more sophisticated compared to those works.

Hyb0 Hyb1 Hyb2-1-1
b b Hyb2-(χ−1)-4

=c≈

Hyb2-χ-1 Hyb2-χ-2 Hyb2-χ-3 Hyb2-χ-4

Hyb2-(χ+1)-1 Hyb2-qkey-pre-4

=

c≈ c≈

c≈

Problem 1 Problem 3

Hyb2-0-4
≡

SXDLIN

Hyb3 Hyb4 Hyb5 Hyb6 Hyb7 Hyb8

c≈ = c≈=

Problem 2 Problem 4

c≈

Exp
phpe,real
H ≡

b

b

= =

Exp
phpe,ideal
H,S≡

=c≈

b b b

bb

b b b

Fig. 3.1: Structure of the Hybrid Reduction for the Proof of Theorem 3.1

After this point, we perform a transition to Hyb3, where we alter the form of the ciphertext
again to its Temporal 1 form (Eq. (3.4)), the pre-ciphertext decryption keys to their Temporal 2
forms (Eq. (3.8), while the post-ciphertext decryption keys to their Temporal 1 forms (Eq. (3.8)).
Next, in Hyb4, the ciphertext is modified to its Temporal 3 form (Eq. (3.9)). After that the pre-
ciphertext decryption keys are brought back to their Simulated forms (Eq. (3.7)) by executing
a transition to Hyb5. At this point the alteration of pre-ciphertext decryption keys becomes
complete.

After that, we change the ciphertext to its Simulated form (Eq. (3.10)), while the post-
ciphertext decryption keys to their Temporal 2 forms (Eq. (3.11)) in Hyb6. At this point the
modification of the ciphertext is finished. Finally, using the transition to Hyb7 followed by
the transition to Hyb8, we alter the post-ciphertext decryption keys to their Simulated forms
(Eq. (3.13)). Now, we arrive at the ideal experiment, and our hybrid transition gets complete.

For the rest of this section, by saying ‘some quantity 𝐴 is bounded by another quantity
𝐵’, we mean that 𝐴 ≤ 𝐵 + negl(𝜆), where negl is some negligible function. We prove that the
advantage gap of ℋ between Hyb0 and Hyb1 is bounded by the advantage of any algorithm in
solving Problem 1 (Definition A.1). For this, in the usual way, we construct an algorithm that
given a Problem 1 instance simulates the view of ℋ in Hyb0 or that in Hyb1 depending on whether
the challenge bit ̂︀𝛽 ∈ {0, 1} of the given Problem 1 instance is ̂︀𝛽 = 0 or 1 (Lemma B.1). The
advantage in solving Problem 1 is already known to be bounded by that in solving the SXDLIN
problem (Lemma A.1).

We show that Hyb2-(𝜒−1)-4 can be information-theoretically changed to Hyb2-𝜒-1 for all 𝜒 ∈
[𝑞key-pre] (Lemma B.2) with the help of a Type I information-theoretic trick using the fact that
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for all 𝚤 ∈ [𝑛′ + 𝑛], the portion {𝒃(𝚤,3), . . . , 𝒃(𝚤,6)} of the basis 𝔹𝚤 and the corresponding segment
{𝒃*(𝚤,3), . . . , 𝒃*(𝚤,6)} of the basis 𝔹*

𝚤 are completely unknown to ℋ. In particular, when 𝜒 = 1, it
means that Hyb1 can be conceptually changed to Hyb2-1-1.

The advantage gap of ℋ between Hyb2-𝜒-1 and Hyb2-𝜒-2 is shown to be bounded by the advan-
tage of any algorithm in solving Problem 2 (Definition A.2) for all 𝜒 ∈ [𝑞key-pre] (Lemma B.3),
i.e., the advantage of any algorithm in solving the SXDLIN problem (Lemma A.2). Here, we
crucially rely on the linearity property of PGB, as described in Section 2.3.

We demonstrate that Hyb2-𝜒-2 can be information-theoretically changed to Hyb2-𝜒-3 for all
𝜒 ∈ [𝑞key-pre] (Lemma B.4), with the help of a Type II conceptual trick that uses the fact that for
all 𝚤 ∈ [𝑛′+𝑛], the part {𝒃(𝚤,3), 𝒃(𝚤,4)} of the basis 𝔹𝚤 and the corresponding portion {𝒃*(𝚤,3), 𝒃*(𝚤,4)}
of the basis 𝔹*

𝚤 is unknown to ℋ. Here, we crucially employ the statistical indistinguishability
lemma due to Okamoto and Takashima [OT10] (Lemma B.5). This information-theoretic step is
central towards changing the pre-ciphertext decryption keys to their Simulated forms. We achieve
this step by a sophisticated analysis of the various nice linear algebraic properties of the matrix
representation 𝑳(𝜒) (obtained by applying the algorithm of Lemma 2.1) of the ABP computing
the function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip associated with the 𝜒th decryption key queried by ℋ. We perform
a case analysis depending on whether 𝑓𝜒 satisfies the 𝑅abp∘ip relation with the public-private
attribute pair (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 associated with the ciphertext query of ℋ. Our analysis of this

step may be useful in other similar applications of the matrix representation of specific forms of
ABP’s.

We argue that the advantage difference of ℋ between Hyb2-𝜒-3 and Hyb2-𝜒-4 is bounded by
the advantage of any algorithm in solving Problem 3 (Definition A.3), i.e., that of any algorithm
in solving the SXDLIN problem (Lemma A.3), for all 𝜒 ∈ [𝑞key-pre] (Lemma B.6). Here again we
make use of the linearity property of PGB.

We achieve the transition from Hyb2-𝑞key-pre-4 to Hyb3 by applying a Type I information-
theoretic trick similar to that used in the transition from Hyb2-(𝜒−1)-4 to Hyb2-𝜒-1, followed by
a computational change with the help of Problem 2 similar to that used for the transition from
Hyb2-𝜒-1 to Hyb2-𝜒-2 (Lemma B.7).

We demonstrate that Hyb3 can be information-theoretically changed to Hyb4 (Lemma B.8)
with the help of a Type III information-theoretic change that uses the fact that for all 𝚤 ∈ [𝑛′+𝑛],
the segment {𝒃*(𝚤,1), 𝒃*(𝚤,2)} of the basis 𝔹*

𝚤 is partially hidden from ℋ (note that its dual basis
elements are parts of the public parameters), as well as the part {𝒃(𝚤,3), 𝒃(𝚤,4)} of the basis 𝔹𝚤 and
the corresponding portion {𝒃*(𝚤,3), 𝒃*(𝚤,4)} of the basis 𝔹*

𝚤 are completely hidden from ℋ.
The transition from Hyb4 to Hyb5 is shown to be achievable by a more sophisticated com-

putational trick using Problem 2 (Lemma B.9), and thus the advantage gap of ℋ between these
two hybrids is bounded by the advantage of any algorithm in solving the SXDLIN problem. Here,
we crucially make use of the pre-image samplability property [O’N10], which is satisfied by the
predicate family 𝑅abp∘ip, as argued below in the description of our simulator. We rely on the
linearity property of PGB as well to achieve this transition.

The transformation from Hyb5 to Hyb6 is again accomplished applying a Type II information-
theoretic trick (Lemma B.10), where we again use the fact that for all 𝚤 ∈ [𝑛′ + 𝑛], the part
{𝒃(𝚤,3), 𝒃(𝚤,4)} of the basis 𝔹𝚤 and the corresponding segment {𝒃*(𝚤,3), 𝒃*(𝚤,4)} of the basis 𝔹*

𝚤 are
completely unknown to ℋ. The linear transformations used for realizing the Type II information-
theoretic trick are carefully selected keeping in view the specific forms of ciphertext and post-
ciphertext decryption keys in Hyb6, rather than being random ones as usually used in application
of the Type II trick.

The difference in the advantage of ℋ between Hyb6 and Hyb7 is proven (Lemma B.11) to be
bounded by the advantage of any algorithm in solving Problem 4 (Definition A.4), i.e., that of
any algorithm in solving the SXDLIN problem (Lemma A.4).

Finally, we prove that the view of ℋ in Hyb7 and that in Hyb8 are identically distributed
(Lemma B.12) using the privacy property of the algorithm PGB, as described in Section 2.3.
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■ Description of the Simulator

The simulator 𝒮 is described below.

∙ In order to generate the public parameters, 𝒮 proceeds as follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. For 𝚤 ∈ [𝑛′ + 𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}.
3. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[𝑛′+𝑛]).

∙ For 𝑕 ∈ [𝑞key-pre], 𝒮 simulates the 𝑕th decryption key queried by ℋ corresponding to some
function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip as follows:

1. At first, it generates
(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀
,
(︀
({̂︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̂︀𝛼𝑕,𝑗′ ,̂︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− PGB(𝑓𝑕).

2. Next, it samples 𝜁𝑕, ̂︀𝜁𝑕 U←− 𝔽𝑞.
3. Then, for 𝑗′ ∈ [𝑚𝑕], it samples 𝜅⃗′(𝑕,𝑗

′) U←− 𝔽2
𝑞 , and computes

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)
.

4. Then, for 𝑗 ∈ [𝑛], it samples 𝜅⃗(𝑕,𝑗)
U←− 𝔽2

𝑞 , and computes

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
.

5. It outputs sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]).

∙ When ℋ queries a ciphertext for some pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 ×𝔽𝑛

𝑞 ,
𝒮 receives 𝑥⃗ and {𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗))}𝑕∈[𝑞key-pre]. It simulates the ciphertext as follows:

1. At first, it samples 𝑠⃗
U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛

𝑞 | 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗))∀𝑕 ∈
[𝑞key-pre]}. Note that the set 𝑆 is exactly identical to the set ̃︀𝑆 = {𝑠⃗ ∈ 𝔽𝑛

𝑞 | 𝑅ip((𝑓𝑕,1(𝑥⃗), . . . ,
𝑓𝑕,𝑛(𝑥⃗)), 𝑠⃗) = 𝑅ip((𝑓𝑕,1(𝑥⃗), . . . , 𝑓𝑕,𝑛(𝑥⃗)), 𝑧⃗)∀𝑕 ∈ [𝑞key-pre]}, where 𝑅ip represents the inner-
product predicate family defined as 𝑅ip = {𝑅ip(𝑤⃗, ·) : 𝔽𝑛

𝑞 → {0, 1} | 𝑤⃗ ∈ 𝔽𝑛
𝑞 } such that

𝑅ip(𝑤⃗, 𝑣⃗) = 1, if 𝑣⃗ · 𝑤⃗ = 0, and 0, if 𝑣⃗ · 𝑤⃗ ̸= 0 for 𝑣⃗, 𝑤⃗ ∈ 𝔽𝑛
𝑞 , and 𝑓𝑕,𝑗 is the 𝑗th component

ABP of 𝑓𝑕 for 𝑕 ∈ [𝑞key-pre], 𝑗 ∈ [𝑛]. It has already been demonstrated by O’Neill [O’N10]
that the inner-product predicate family 𝑅ip is pre-image-samplable, which essentially means
that we can efficiently sample from the set ̃︀𝑆. In fact, he provided an explicit algorithm
for doing this. Thus, given {𝑓𝑕}𝑕∈[𝑞key-pre] and 𝑥⃗, 𝒮 can efficiently sample from 𝑆 by first
determining the vectors {(𝑓𝑕,1(𝑥⃗), . . . , 𝑓𝑕,𝑛(𝑥⃗))}𝑕∈[𝑞key-pre] and then sampling from the set̃︀𝑆 using the algorithm described in [O’N10].

2. Then, it samples 𝜏, 𝜃,
U←− 𝔽𝑞.

3. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes

𝒄′(𝜄
′) = (⃗03, 𝜏, 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ .

4. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (⃗03, 𝜏, 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 .

5. It outputs the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
∙ For 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], in response to the 𝑕th decryption key query of ℋ corresponding

to some function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip , 𝒮 executes the following steps:
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1. It first generates
(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− PGB(𝑓𝑕).

2. Next, it samples 𝜁𝑕
U←− 𝔽𝑞.

3. Then, it queries its oracle𝒪𝑅abp∘ip((𝑥⃗, 𝑧⃗), ·) with the function 𝑓𝑕, and receives back 𝑅abp∘ip(𝑓𝑕,
(𝑥⃗, 𝑧⃗)). If 𝑅abp∘ip(𝑓𝑕(𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓𝑕(𝑥⃗, 𝑧⃗) = 0, it forms

(︀
({𝜈𝑕,𝑗}𝑗∈[𝑛], {𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 :

[𝑚𝑕] → [𝑛′]
)︀ R←− SIM(𝑓𝑕, 𝑥⃗, 0). Otherwise, if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0, i.e., 𝑓𝑕(𝑥⃗, 𝑧⃗) ̸= 0,

then it samples 𝜁𝑕
U←− 𝔽𝑞, and generates

(︀
({𝜈𝑕,𝑗}𝑗∈[𝑛], {𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕] → [𝑛′]

)︀ R←−
SIM(𝑓𝑕, 𝑥⃗, 𝜁𝑕).

4. Next, for 𝑗′ ∈ [𝑚𝑕], it samples 𝜂′𝑕,𝑗′
U←− 𝔽𝑞, 𝜅⃗

′(𝑕,𝑗′) U←− 𝔽2
𝑞 , and computes

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (𝜂
′
𝑕,𝑗′ , 𝜇𝑕,𝑗′), 0⃗

2, 𝜅⃗′(𝑕,𝑗
′), 0)𝔹*

𝜌𝑕(𝑗
′)
.

5. Then, for 𝑗 ∈ [𝑛], it samples 𝜂𝑕,𝑗
U←− 𝔽𝑞, 𝜅⃗

(𝑕,𝑗) U←− 𝔽2
𝑞 , and computes

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (𝜂𝑕,𝑗 , 𝜈𝑕,𝑗), 0⃗
2, 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
.

6. It outputs sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]).

■ Sequence of Hybrid Experiments

The hybrid experiments are described below. In the description of these hybrids, a part framed
by a box indicates coefficients that are altered in a transition from its previous hybrid.

Hyb0: This experiment corresponds to the experiment ExpPHPE,REAL
ℋ (𝜆) defined in Section 2.6.

Thus, in this experiment, the ciphertext queried by ℋ corresponding to a pair of public-private
attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 0⃗

2, 0⃗2, 0⃗2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 0⃗
2, 0⃗2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(3.1)

where 𝜔, {𝜙′
𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, while for 𝑕 ∈ [𝑞key], the 𝑕th decryption key queried byℋ cor-
responding to the function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip is formed as sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛])
such that

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(3.2)

where 𝜁𝑕
U←− 𝔽𝑞, {𝜅⃗′(𝑕,𝑗

′)}𝑗′∈[𝑚𝑕], {𝜅⃗
(𝑕,𝑗)}𝑗∈[𝑛]

U←− 𝔽2
𝑞 , 𝑚𝑕+𝑛+1 is the number of vertices in the ABP

𝛤 ′
𝑕 computing the function 𝑓𝑕 as described in Section 2.3, and

(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]),

𝜌𝑕 : [𝑚𝑕] → [𝑛′]
)︀ R←− PGB(𝑓𝑕). Here, {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] is the collection of dual orthonormal bases

generated by executing 𝒢ob(𝑛
′ + 𝑛, (0,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)) during setup.

Hyb1: This experiment is analogous to Hyb0 except that in this experiment, the ciphertext
queried by ℋ corresponding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is

generated as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), ( 𝜗 , 0), 0⃗2, 0⃗2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), ( 𝜗 , 0), 0⃗2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],
(3.3)

where 𝜗
U←− 𝔽𝑞, and all the other variables are generated as in Hyb0.
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Hyb2-𝝌-1 (𝝌 ∈ [𝒒key-pre]): The experiment Hyb2-0-4 coincides with Hyb1. This experiment
is analogous to Hyb2-(𝜒−1)-4 except that in this experiment, the ciphertext queried by ℋ cor-
responding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as

ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′) , 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄) , 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(3.4)

where 𝜏, 𝜃
U←− 𝔽𝑞, 𝑠⃗

U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛
𝑞 | 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗))∀𝑕 ∈ [𝑞key-pre]}, and

all the other variables are generated as in Hyb2-(𝜒−1)-4.

Hyb2-𝝌-2 (𝝌 ∈ [𝒒key-pre]): This experiment is the same as Hyb2-𝜒-1 with the only exception
that the 𝜒th decryption key queried by ℋ corresponding to the function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is formed
as sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), (̃︀𝛾𝜒,𝑗′ , ̃︀𝛼𝜒,𝑗′) , 0⃗
2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), (̃︀𝜎𝜒,𝑗 , ̃︀𝜁𝜒) , 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],
(3.5)

where ̃︀𝜁𝜒 U←− 𝔽𝑞,
(︀
({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒]→ [𝑛′]

)︀ R←− PGB(𝑓𝜒), and all the
other variables are generated as in Hyb2-𝜒-1.

Hyb2-𝝌-3 (𝝌 ∈ [𝒒key-pre]): This experiment is analogous to Hyb2-𝜒-2 except that in this experi-
ment, the ciphertext queried by ℋ for the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞

is formed as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that {𝒄′(𝜄′)}𝜄′∈[𝑛′] are given by Eq. (3.4) and

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑠𝜄 ), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛], (3.6)

where all the variables are generated as in Hyb2-𝜒-2.

Hyb2-𝝌-4 (𝝌 ∈ [𝒒key-pre]): This experiment is identical to Hyb2-𝜒-3 except that the 𝜒th de-
cryption key queried by ℋ corresponding to the function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is generated as sk(𝑓𝜒) =
(𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗2, (̂︀𝛾𝜒,𝑗′ , ̂︀𝛼𝜒,𝑗′) , 𝜅⃗
′(𝜒,𝑗′), 0)𝔹*

𝜌𝜒(𝑗′)
for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗2, (̂︀𝜎𝜒,𝑗 , ̂︀𝜁𝜒) , 𝜅⃗(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],
(3.7)

where ̂︀𝜁𝜒 U←− 𝔽𝑞,
(︀
({̂︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̂︀𝛼𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒]→ [𝑛′]

)︀ R←− PGB(𝑓𝜒), and all the
other variables are generated in the same manner as that in Hyb2-𝜒-3.

Hyb3: This experiment is analogous to Hyb2-𝑞key-pre-4 except that in this experiment, the cipher-
text queried by ℋ for the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is formed as

ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]), where {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛] are given by Eq. (3.4), while for
𝑕 ∈ [𝑞key], the 𝑕th decryption key queried by ℋ for 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip is generated as sk(𝑓𝑕) = (𝑓𝑕,
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{𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,𝑗′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′) , (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)

for 𝑗′ ∈ [𝑚𝑕], if 𝑕 ∈ [𝑞key-pre],

((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′) , 0⃗
2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)

for 𝑗′ ∈ [𝑚𝑕], if 𝑕 ∈ [𝑞key-pre + 1, 𝑞key],

𝒌(𝑕,𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕) , (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗

for 𝑗 ∈ [𝑛], if 𝑕 ∈ [𝑞key-pre],

((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕) , 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛], if 𝑕 ∈ [𝑞key-pre + 1, 𝑞key],

(3.8)

where {̃︀𝜁𝑕}𝑕∈[𝑞key] U←− 𝔽𝑞,
(︀
({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− PGB(𝑓𝑕) for 𝑕 ∈
[𝑞key], and all the other variables are formed as in Hyb2-𝑞key-pre-4.

Hyb4: This experiment is analogous to Hyb3 except that in this experiment, the ciphertext
queried by ℋ for the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as

ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = ( 0⃗2 , 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = ( 0⃗2 , 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(3.9)

where all the variables are generated as in Hyb3.

Hyb5: This experiment is identical to Hyb4 except that in this experiment, for 𝑕 ∈ [𝑞key-pre],
the 𝑕th decryption key queried by ℋ corresponding to the function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip is generated as

sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) such that {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] are given

by Eq. (3.7).

Hyb6: This experiment is the same as Hyb5 except that in this experiment, the ciphertext
queried by ℋ for the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as

ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (⃗02, (0, 𝜏) , 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, (0, 𝜏) , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(3.10)

while for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], the 𝑕th decryption key queried by ℋ for 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip is

generated as sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′)𝑼
′(𝜌𝑕(𝑗′)) , 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕)𝑼 (𝑗) , 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(3.11)

where 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞) | (1, 𝑥𝜄′)𝒁 = 𝑒⃗(2) = (0, 1)}, 𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺ for 𝜄′ ∈ [𝑛′],
𝒁(𝜄) U←− {𝒁 ∈ GL(2,𝔽𝑞 | (1, 𝑧𝜄)𝒁 = 𝑒⃗(2) = (0, 1)}, 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛], and all the other
variables are generated as in Hyb5.
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Hyb7: This experiment is identical to Hyb6 with the only exception that for 𝑕 ∈ [𝑞key-pre +

1, 𝑞key], the 𝑕th decryption key queried by ℋ corresponding to the function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip is

generated as sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (𝜂′𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′𝑥𝜌𝑕(𝑗′) + ̃︀𝛾𝑕,𝑗′) , 0⃗2, 𝜅⃗′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (𝜂𝑕,𝑗 , ̃︀𝜁𝑕𝑧𝑗 + ̃︀𝜎𝑕,𝑗) , 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],
(3.12)

where {𝜂′𝑕,𝑗′}𝑕∈[𝑞key-pre+1,𝑞key],𝑗′∈[𝑚𝑕], {𝜂𝑕,𝑗}𝑕∈[𝑞key-pre+1,𝑞key],𝑗∈[𝑛]
U←− 𝔽𝑞, and all the other variables

are generated as in Hyb6.

Hyb8: This experiment is analogous to Hyb7 with the only exception that for 𝑕 ∈ [𝑞key-pre +

1, 𝑞key], the 𝑕th decryption key queried by ℋ corresponding to the function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip is

formed as sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (𝜂
′
𝑕,𝑗′ , 𝜇𝑕,𝑗′ ), 0⃗

2, 𝜅⃗′(𝑕,𝑗
′), 0)𝔹*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (𝜂𝑕,𝑗 , 𝜈𝑕,𝑗 ), 0⃗
2, 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(3.13)

where {̃︀𝜁𝑕}𝑕∈[𝑞key-pre+1,𝑞key]
U←− 𝔽𝑞,

(︀
({𝜈𝑕,𝑗}𝑗∈[𝑛], {𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− SIM(𝑓𝑕, 𝑥⃗,

𝑓𝑕(𝑥⃗, ̃︀𝜁𝑕𝑧⃗)) for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], and all the other variables are generated as in Hyb7.
Observe that for any 𝑕 ∈ [𝑞key-pre] + 1, 𝑞key], if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓𝑕(𝑥⃗, 𝑧⃗) = 0, then
𝑓𝑕(𝑥⃗, ̃︀𝜁𝑕𝑧⃗) = ̃︀𝜁𝑕𝑓𝑕(𝑥⃗, 𝑧⃗) = 0, while if 𝑅abp∘ip(𝑓𝑕(𝑥⃗, 𝑧⃗)) = 0, i.e., 𝑓𝑕(𝑥⃗, 𝑧⃗) ̸= 0, then due to the uni-
form and independent (of the other variables) choice of ̃︀𝜁𝑕, it follows that 𝑓𝑕(𝑥⃗, ̃︀𝜁𝑕𝑧⃗) = ̃︀𝜁𝑕𝑓𝑕(𝑥⃗, 𝑧⃗)
is uniformly and independently (of the other variables) distributed in 𝔽𝑞. Thus, this experiment
coincides with the experiment ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) with the simulator 𝒮 as described above.

■ Analysis

Let us now denote by Adv(𝚥)ℋ (𝜆) the probability that ℋ outputs 1 in Hyb𝚥 for
𝚥 ∈ {0, 1, {2-𝜒-𝑘}𝜒∈[𝑞key-pre],𝑘∈[4], 3, . . . , 8}. By definition of the hybrids, we clearly have
AdvPHPE,SIM-AH

ℋ (𝜆) = |Adv(0)ℋ (𝜆)− Adv(8)ℋ (𝜆)|. Hence, we have

AdvPHPE,SIM-AH
ℋ (𝜆) ≤ |Adv(0)ℋ (𝜆)− Adv(1)ℋ (𝜆)|+∑︁

𝜒∈[𝑞key-pre]

[︁
|Adv(2-(𝜒−1)-4)

ℋ (𝜆)− Adv(2-𝜒-1)
ℋ (𝜆)|+

∑︁
𝑘∈[3]

|Adv(2-𝜒-𝑘)
ℋ (𝜆)− Adv(2-𝜒-(𝑘+1))

ℋ (𝜆)|
]︁
+

|Adv(2-𝑞key-pre-4)
ℋ (𝜆)− Adv(3)ℋ (𝜆)|+

∑︁
𝚥∈[3,7]

|Adv(𝚥)ℋ (𝜆)− Adv(𝚥+1)
ℋ (𝜆)|.

Then, Theorem 3.1 follows from Lemmas B.1–B.12 presented in Appendix B, in conjunction with
Lemmas A.1–A.4 presented in Appendix A.

4 KEM Version of the Proposed PHPE Scheme

In this section, we will present the key-encapsulation mechanism (KEM) version of our PHPE
scheme for the function family ℱ (𝑞,𝑛′,𝑛)

abp∘ip . This scheme is an augmentation of our attribute-only
scheme presented in Section 3. Similar to our attribute-only construction, we assume that the
function 𝜌 outputted by PGB(𝑓) for any 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip is injective.
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PHPE.Setup(1𝑛
′
, 1𝑛): The setup algorithm takes as input the security parameter 𝜆 together with

the lengths 𝑛′ and 𝑛 of the public and private attribute strings respectively. It proceeds as
follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛+ 1, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. It sets ̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4), 𝒃(0,6)}, ̂︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,4), 𝒃*(0,5)}.

3. For 𝚤 ∈ [𝑛′ + 𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}, ̂︀𝔹*
𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,7), 𝒃*(𝚤,8)}.

4. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[0,𝑛′+𝑛]) and the master secret key
msk = {̂︀𝔹*

𝚤 }𝚤∈[0,𝑛′+𝑛].
PHPE.Encrypt(mpk, (𝑥⃗, 𝑧⃗)): The encryption algorithm takes as input the public parameters mpk

and a pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 . It executes the following:
1. First, it samples 𝜔, 𝜉, 𝜙′

0
U←− 𝔽𝑞, and computes

𝒄′(0) = (𝜔, 0⃗2, 𝜉, 0, 𝜙′
0)𝔹0 ,kem = 𝑔𝜉𝑇 .

2. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 0⃗

4, 0⃗2, 𝜙′
𝜄′)𝔹𝜄′ .

3. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 0⃗
4, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 .

4. It outputs the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]), and the session key kem.
PHPE.KeyGen(mpk,msk, 𝑓): The key generation algorithm takes as input the public parameters

mpk, the master secret key msk, along with a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip . It operates as follows:

1. It first generates
(︀
({𝜎𝑗}𝑗∈[𝑛], {𝛼𝑗′ , 𝛾𝑗′}𝑗′∈[𝑚]), 𝜌 : [𝑚]→ [𝑛′]

)︀ R←− PGB(𝑓).

2. Then, it samples 𝑟0, 𝜅
′
0, 𝜁

U←− 𝔽𝑞, and computes

𝒌′(0) = (−𝑟0, 0⃗2, 1, 𝜅′0, 0)𝔹*
0
.

3. Then, for 𝑗′ ∈ [𝑚], it samples 𝑏′𝑗′
U←− 𝔽𝑞, 𝜅⃗′(𝑗

′) U←− 𝔽2
𝑞 , and computes 𝛾+𝑗′ = 𝛾𝑗′ + 𝑏′𝑗′𝑟0 for

𝑗′ ∈ [𝑚], followed by
𝒌′(𝑗′) = ((𝛾+𝑗′ , 𝛼𝑗′), 0⃗

4, 𝜅⃗′(𝑗
′), 0)𝔹*

𝜌(𝑗′)
.

4. Then, for 𝑗 ∈ [𝑛], it samples 𝑏𝑗
U←− 𝔽𝑞, 𝜅⃗(𝑗)

U←− 𝔽2
𝑞 , and computes 𝜎+

𝑗 = 𝜎𝑗 + 𝑏𝑗𝑟0, followed
by

𝒌(𝑗) = ((𝜎+
𝑗 , 𝜁), 0⃗

4, 𝜅⃗(𝑗), 0)𝔹*
𝑛′+𝑗

.

5. It outputs decryption key sk(𝑓) = (𝑓, {𝑏′𝑗′}𝑗′∈[𝑚], {𝑏𝑗}𝑗∈[𝑛], {𝒌′(𝑗′)}𝑗′∈[0,𝑚], {𝒌(𝑗)}𝑗∈[𝑛]).
PHPE.Decrypt(mpk, sk(𝑓),ct): The decryption algorithm takes as input the public parameters

mpk, a decryption key sk(𝑓) = (𝑓, {𝑏′𝑗′}𝑗′∈[𝑚], {𝑏𝑗}𝑗∈[𝑛], {𝒌′(𝑗′)}𝑗′∈[0,𝑚], {𝒌(𝑗)}𝑗∈[𝑛]), and a
ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]). It proceeds as follows:
1. It first computes 𝛬′

0 = 𝑒(𝒄′(0),𝒌′(0)), 𝛬′
𝑗′ = 𝑒(𝒄′(𝜌(𝑗

′)),𝒌′(𝑗′)) for 𝑗′ ∈ [𝑚], and 𝛬𝑗 =

𝑒(𝒄(𝑗),𝒌(𝑗)) for 𝑗 ∈ [𝑛].
2. Next, it determines the coefficients ({𝛺𝑗}𝑗∈[𝑛], {𝛺′

𝑗′}𝑗′∈[𝑚]) = REC(𝑓, 𝑥⃗).
3. Then, it computes

𝛬 =

⎡⎣⎛⎝ ∏︁
𝑗′∈[𝑚]

𝛬
′𝛺′
𝑗′

𝑗′

⎞⎠⎛⎝∏︁
𝑗∈[𝑛]

𝛬
𝛺𝑗
𝑗

⎞⎠⎤⎦
1∑︀

𝑗′∈[𝑚] 𝛺
′
𝑗′𝑏

′
𝑗′+

∑︀
𝑗∈[𝑛] 𝛺𝑗𝑏𝑗

.

4. It outputs ̃︂kem = 𝛬𝛬′
0.
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� Correctness: Note that for any decryption key sk(𝑓) = (𝑓, {𝑏′𝑗′}𝑗′∈[𝑚], {𝑏𝑗}𝑗∈[𝑛], {𝒌′(𝑗′)}𝑗′∈[0,𝑚],

{𝒌(𝑗)}𝑗∈[𝑛]) for a function 𝑓 ∈ ℱ (𝑞,𝑛′,𝑛)
abp∘ip , and any ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛])

associated with a pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 , we have

𝛬′
0 = 𝑔−𝜔𝑟0+𝜉

𝑇 ,

𝛬′
𝑗′ = 𝑔

𝜔(𝛼𝑗′𝑥𝜌(𝑗′)+𝛾𝑗′+𝑏′
𝑗′𝑟0)

𝑇 for 𝑗′ ∈ [𝑚],

𝛬𝑗 = 𝑔
𝜔(𝜁𝑧𝑗+𝜎𝑗+𝑏𝑗𝑟0)
𝑇 for 𝑗 ∈ [𝑛].

This follows from the expressions of {𝒌′(𝑗′)}𝑗′∈[0,𝑚], {𝒌(𝑗)}𝑗∈[𝑛], {𝒄′(𝜄
′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛], and the

dual orthonormality property of {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛]. Hence, from Eq. (2.3) it follows that

𝛬 = 𝑔

[︁
𝜔𝜁𝑓(𝑥⃗,𝑧⃗)+𝜔𝑟0[

∑︀
𝑗′∈[𝑚] 𝛺

′
𝑗′𝑏

′
𝑗′+

∑︀
𝑗∈[𝑛] 𝛺𝑗𝑏𝑗 ]

]︁
/
[︁∑︀

𝑗′∈[𝑚] 𝛺
′
𝑗′𝑏

′
𝑗′+

∑︀
𝑗∈[𝑛] 𝛺𝑗𝑏𝑗

]︁
𝑇 .

Thus, if 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓(𝑥⃗, 𝑧⃗) = 0, then 𝛬 = 𝑔𝜔𝑟0𝑇 , and hence, ̃︂kem = 𝑔𝜉𝑇 = kem with
all but negligible probability 1/𝑞, i.e., except when

∑︀
𝑗′∈[𝑚]

𝛺′
𝑗′𝑏

′
𝑗′ +

∑︀
𝑗∈[𝑛]

𝛺𝑗𝑏𝑗 = 0. On the other

hand, if 𝑅abp∘ip(𝑓, (𝑥⃗, 𝑧⃗)) = 0, i.e., 𝑓(𝑥⃗, 𝑧⃗) ̸= 0, then 𝛬 ̸= 𝑔𝜔𝑟0𝑇 , and hence, ̃︂kem ̸= 𝑔𝜉𝑇 = kem
with all but negligible probability 1/𝑞 + 1/𝑞(1 − 1/𝑞), i.e., except when 𝜔 = 0 or 𝜁 = 0 but∑︀
𝑗′∈[𝑚]

𝛺′
𝑗′𝑏

′
𝑗′ +

∑︀
𝑗∈[𝑛]

𝛺𝑗𝑏𝑗 ̸= 0.

� Security:

Theorem 4.1: The proposed KEM version of our PHPE scheme is (poly, 1, poly)-simulation-
based adaptively strongly partially hiding (as per the security model described in Section 2.6) with
respect to a simulator that runs in super-polynomial time under the SXDLIN assumption.

The proof sketch of Theorem 4.1 is presented in Appendix C. The following corollary is also
immediate from the relation between indistinguishability-based and simulation-based security
with respect to super-polynomial simulators [AGVW13], as well as that between single- and
multi-ciphertext security in the indistinguishability-based setting for FE.

Corollary 4.1: The proposed KEM version of our PHPE scheme is (poly, poly, poly)-
indistinguishability-based adaptively strongly partially hiding (as per the security model described
in Section 2.6) under the SXDLIN assumption.
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Appendix

A Some Necessary Computational Problems Derived from the
SXDLIN Problem

In this section, we define some decisional problems. We rely on the hardness of these decisional
problems for deriving security of our PHPE construction. The hardness of these decisional prob-
lems can be reduced to that of the SXDLIN problem, as shown in Lemmas A.1–A.4 below.

Definition A.1 (Problem 1): Problem 1 is to guess the bit ̂︀𝛽 U←− {0, 1}, given 𝜚P1̂︀𝛽 = (params,

{𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒇

(0,̂︀𝛽), {𝒇 (𝚤,1,̂︀𝛽),𝒇 (𝚤,2)}𝚤∈[𝑛′+𝑛]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜔, ̃︀𝜙, ̃︀𝜗 U←− 𝔽𝑞;̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), . . . , 𝒃*(0,6);

𝒇 (0,0) = (̃︀𝜔, 0, 0, 0, 0, ̃︀𝜙)𝔹0 ,𝒇
(0,1) = (̃︀𝜔, ̃︀𝜗, 0, 0, 0, ̃︀𝜙)𝔹0 ;̃︀𝔹*

𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,4), . . . , 𝒃*(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0) ∈ 𝔽2
𝑞 ;

𝒇 (𝚤,1,0) = (̃︀𝜔𝑒⃗(1), 0⃗2, 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤
𝒇 (𝚤,1,1) = (̃︀𝜔𝑒⃗(1), ̃︀𝜗𝑒⃗(1), 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤
𝒇 (𝚤,2) = ̃︀𝜔𝒃(𝚤,2)

⎫⎬⎭ for 𝚤 ∈ [𝑛′ + 𝑛].

For any security parameter 𝜆, the advantage of any probabilistic algorithm ℬ in deciding Problem
1 is defined as

AdvP1
ℬ (𝜆) = |Pr[1 R←− ℬ(𝜚P1

0 )]− Pr[1 R←− ℬ(𝜚P1
1 )]|.

Lemma A.1: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm ℰ, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆,
AdvP1

ℬ (𝜆) ≤ AdvSXDLIN
ℰ (𝜆) + 6/𝑞.

Proof: Problem 1 is essentially the same as the Basic Problem 1 of [OT10] with some specific
choice of the number of bases and their dimension. Thus, Lemma A.1 can be proven in an
analogous fashion to Lemmas 15 and 16 of [OT10], which reduce the hardness of the Basic
Problem 1 to that of the DLIN problem in symmetric bilinear group setting. ⊓⊔



Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption 33

Definition A.2 (Problem 2): Problem 2 is to guess the bit ̂︀𝛽 U←− {0, 1}, given 𝜚P2̂︀𝛽 = (params,

{̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒚

(0,̂︀𝛽),𝒇 (0), {𝒚(𝚤,ℓ,̂︀𝛽),𝒇 (𝚤,ℓ)}𝚤∈[𝑛′+𝑛],ℓ∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));̃︀𝛿, ̃︀𝜅, ̃︀𝜋, ̃︀𝜔, ̃︀𝜏 U←− 𝔽𝑞;̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), . . . , 𝒃(0,6)};

𝒚(0,0) = (̃︀𝛿, 0, 0, 0, ̃︀𝜅, 0)𝔹*
0
,𝒚(0,1) = (̃︀𝛿, ̃︀𝜋, 0, 0, ̃︀𝜅, 0)𝔹*

0
;

𝒇 (0) = (̃︀𝜔, ̃︀𝜏 , 0, 0, 0, 0)𝔹0 ;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,5), . . . , 𝒃(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0), 𝑒⃗(2) = (0, 1) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,ℓ,0) = (̃︀𝛿𝑒⃗(ℓ), 0⃗2, 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒚(𝚤,ℓ,1) = (̃︀𝛿𝑒⃗(ℓ), ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒇 (𝚤,ℓ) = (̃︀𝜔𝑒⃗(ℓ), ̃︀𝜏 𝑒⃗(ℓ), 0⃗2, 0⃗2, 0)𝔹𝚤
⎫⎪⎬⎪⎭ for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2].

For any security parameter 𝜆, the advantage of any probabilistic algorithm ℬ in deciding Problem
2 is defined as

AdvP2
ℬ (𝜆) = |Pr[1 R←− ℬ(𝜚P2

0 )]− Pr[1 R←− ℬ(𝜚P2
1 )]|.

Lemma A.2: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm ℰ, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆,
AdvP2

ℬ (𝜆) ≤ AdvSXDLIN
ℰ (𝜆) + 8/𝑞.

Proof: Problem 2 is essentially the same as the Basic Problem 2 of [OT10] with some specific
choice of the number of bases and their dimension. Thus, Lemma A.2 can be proven in a similar
manner to Lemmas 15 and 18 in [OT10], which reduce the hardness of the Basic Problem 2 to
that of the DLIN problem in symmetric bilinear group setting. ⊓⊔

Definition A.3 (Problem 3): Problem 3 is to guess the bit ̂︀𝛽 U←− {0, 1}, given 𝜚P3̂︀𝛽 = (params,

{̃︀𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒚

(0,̂︀𝛽),𝒇 (0), {𝒚(𝚤,ℓ,̂︀𝛽),𝒇 (𝚤,ℓ)}𝚤∈[𝑛′+𝑛],ℓ∈[2]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜋, ̃︀𝜋′, ̃︀𝜅, ̃︀𝜏 , ̃︀𝜃 U←− 𝔽𝑞;̃︀𝔹0 = {𝒃(0,1), 𝒃(0,4), . . . , 𝒃(0,6)}, ̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), . . . , 𝒃*(0,6)};

𝒚(0,0) = (0, ̃︀𝜋, 0, 0, ̃︀𝜅, 0)𝔹*
0
,𝒚(0,1) = (0, 0, ̃︀𝜋′, 0, ̃︀𝜅, 0)𝔹*

0
;

𝒇 (0) = (0, ̃︀𝜏 , ̃︀𝜃, 0, 0, 0)𝔹0 ;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,7), . . . , 𝒃(𝚤,9)}̃︀𝔹*
𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,5), . . . , 𝒃*(𝚤,9)}

}︃
for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0), 𝑒⃗(2) = (0, 1) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,ℓ,0) = (⃗02, ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒚(𝚤,ℓ,1) = (⃗02, 0⃗2, ̃︀𝜋′𝑒⃗(ℓ), ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒇 (𝚤,ℓ) = (⃗02, ̃︀𝜏 𝑒⃗(ℓ), ̃︀𝜃𝑒⃗(ℓ), 0⃗2, 0)𝔹𝚤
⎫⎬⎭ for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2].
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For any security parameter 𝜆, the advantage of any probabilistic algorithm ℬ in deciding Problem
3 is defined as

AdvP3
ℬ (𝜆) = |Pr[1 R←− ℬ(𝜚P3

0 )]− Pr[1 R←− ℬ(𝜚P3
1 )]|.

Lemma A.3: For any probabilistic algorithm ℬ, there exists a probabilistic algorithm ℰ, whose
running time is essentially the same as that of ℰ, such that for any security parameter 𝜆,
AdvP3

ℬ (𝜆) ≤ AdvSXDLIN
ℰ (𝜆) + 9/𝑞.

Proof: Problem 3 is essentially the same as the multi-basis version of the Problem 3 of [OT12a]
with some specific choice of the dimension of the bases. Thus, Lemma A.3 can be proven in an
analogous fashion to that of Lemma 4 of [OT12a]. ⊓⊔

Definition A.4 (Problem 4): Problem 4 is to guess the bit ̂︀𝛽 U←− {0, 1} given 𝜚P4̂︀𝛽 = (params,

𝔹0,𝔹*
0, {̃︀𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛], {𝒚(𝚤,1,̂︀𝛽)}𝚤∈[𝑛′+𝑛]), where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜋, ̃︀𝜅1, ̃︀𝜅2 U←− 𝔽𝑞;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,4), . . . , 𝒃(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,1,0) = (⃗02, 0⃗2, 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

𝒚(𝚤,1,1) = (⃗02, ̃︀𝜋𝑒⃗(1), 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

}︂
for 𝚤 ∈ [𝑛′ + 𝑛].

For any security parameter 𝜆, the advantage of any probabilistic algorithm ℬ in deciding Problem
4 is defined as

AdvP4
ℬ (𝜆) = |Pr[1 R←− ℬ(𝜚P4

0 )]− Pr[1 R←− ℬ(𝜚P4
1 )]|.

Lemma A.4: For any probabilistic algorithm ℬ, there exists a probabilistic machine ℰ, whose
running time is essentially the same as that of ℬ, such that for any security parameter 𝜆,
AdvP4

ℬ (𝜆) ≤ AdvSXDLIN
ℰ (𝜆) + 6/𝑞.

Proof: Observe that Problem 4 is essentially the same as Problem 1 (Definition A.1) considered
in 𝕍2 with some re-ordering of the vectors of the dual orthogonal bases. Thus, the proof of
Lemma A.4 is the same as that of Lemma A.1 with certain appropriate changes that are easy to
figure out. ⊓⊔

B Lemmas for the Proof of Theorem 3.1

Lemma B.1: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ1, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(0)ℋ (𝜆)− Adv(1)ℋ (𝜆)| ≤ AdvP1

ℬ1
(𝜆).

Proof: In order to prove Lemma B.1, we construct below a probabilistic algorithm ℬ1 against
Problem 1 using a stateful probabilistic adversary ℋ for distinguishing between Hyb0 and Hyb1
as a black-box sub-routine. Suppose ℬ1 is given an instance of Problem 1,

𝜚P1̂︀𝛽 = (params, {𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒇

(0,̂︀𝛽), {𝒇 (𝚤,1,̂︀𝛽),𝒇 (𝚤,2)}𝚤∈[𝑛′+𝑛]),
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where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜔, ̃︀𝜙, ̃︀𝜗 U←− 𝔽𝑞;̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), . . . , 𝒃*(0,6);

𝒇 (0,0) = (̃︀𝜔, 0, 0, 0, 0, ̃︀𝜙)𝔹0 ,𝒇
(0,1) = (̃︀𝜔, ̃︀𝜗, 0, 0, 0, ̃︀𝜙)𝔹0 ;̃︀𝔹*

𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,4), . . . , 𝒃*(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0) ∈ 𝔽2
𝑞 ;

𝒇 (𝚤,1,0) = (̃︀𝜔𝑒⃗(1), 0⃗2, 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤
𝒇 (𝚤,1,1) = (̃︀𝜔𝑒⃗(1), ̃︀𝜗𝑒⃗(1), 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤
𝒇 (𝚤,2) = ̃︀𝜔𝒃(𝚤,2)

⎫⎬⎭ for 𝚤 ∈ [𝑛′ + 𝑛].

ℬ1 interacts with ℋ as follows:

1. First, ℬ1 gives ℋ the public parameters mpk = (params, {̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}}𝚤∈[𝑛′+𝑛]),
all of which are taken from the given Problem 1 instance.

2. For all 𝑕 ∈ [𝑞key], in response to a decryption key query of ℋ for some function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip ,

ℬ1 provides ℋ with a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]), whose

components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛] are generated as in Eq. (3.2) using {̃︀𝔹*

𝚤 }𝚤∈[𝑛′+𝑛]

included within the given Problem 1 instance.
3. When ℬ1 receives the ciphertext query fromℋ for some pair of public-private attribute strings

(𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 , ℬ1 samples {̂︀𝜙′
𝜄′}𝜄′∈[𝑛′], {̂︀𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, computes

𝒄′(𝜄
′) = 𝒇 (𝜄′,1,̂︀𝛽) + 𝑥𝜄′𝒇

(𝜄′,2) + ̂︀𝜙′
𝜄′𝒃

(𝜄′,9) for 𝜄′ ∈ [𝑛′],

𝒄𝜄) = 𝒇 (𝑛′+𝜄,1,̂︀𝛽) + 𝑧𝜄𝒇
(𝑛′+𝜄,2) + ̂︀𝜙𝜄𝒃

(𝑛′+𝜄,9) for 𝜄 ∈ [𝑛],

and hands ℋ the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
4. ℋ eventually outputs a bit 𝛽 ∈ {0, 1}. ℬ1 outputs ̂︀𝛽′ = 𝛽 as its guess bit in its Problem 1

challenge.

Observe that when ̂︀𝛽 = 0, i.e., 𝒇 (𝚤,1,̂︀𝛽) = 𝒇 (𝚤,1,0) = (̃︀𝜔𝑒⃗(1), 0⃗2, 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤 for 𝚤 ∈ [𝑛′ + 𝑛], the
components of the ciphertext ct returned by ℬ1 to ℋ take the form

𝒄′(𝜄
′) = (̃︀𝜔(1, 𝑥𝜄′), 0⃗2, 0⃗2, 0⃗2, ̃︀𝜙+ ̂︀𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (̃︀𝜔(1, 𝑧𝜄), 0⃗2, 0⃗2, 0⃗2, ̃︀𝜙+ ̂︀𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

which coincides with that in Hyb0 (Eq. (3.1)), where we have 𝜔 = ̃︀𝜔, 𝜙′
𝜄′ = ̃︀𝜙 + ̂︀𝜙′

𝜄′ for 𝜄′ ∈
[𝑛′], and 𝜙𝜄 = ̃︀𝜙 + ̂︀𝜙𝜄 for 𝜄 ∈ [𝑛]. On the other hand, if ̂︀𝛽 = 1, i.e., 𝒇 (𝚤,1,̂︀𝛽) = 𝒇 (𝚤,1,1) =
(̃︀𝜔𝑒⃗(1), ̃︀𝜗𝑒⃗(1), 0⃗2, 0⃗2, ̃︀𝜙)𝔹𝚤 for 𝚤 ∈ [𝑛′ + 𝑛], then the components of the ciphertext ct given by ℬ1
to ℋ take the form

𝒄′(𝜄
′) = (̃︀𝜔(1, 𝑥𝜄′), (̃︀𝜗, 0), 0⃗2, 0⃗2, ̃︀𝜙+ ̂︀𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (̃︀𝜔(1, 𝑧𝜄), (̃︀𝜗, 0), 0⃗2, 0⃗2, ̃︀𝜙+ ̂︀𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

which is identical to the one in Hyb1 (Eq. (3.3)), where we have 𝜔 = ̃︀𝜔, 𝜗 = ̃︀𝜗, 𝜙′
𝜄′ = ̃︀𝜙+ ̂︀𝜙′

𝜄′ for
𝜄′ ∈ [𝑛′], and 𝜙𝜄 = ̃︀𝜙 + ̂︀𝜙𝜄 for 𝜄 ∈ [𝑛]. Clearly, the variables 𝜔, 𝜗, {𝜙′

𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛] simulated
by ℬ1 are uniformly and independently (of the other variables) distributed in 𝔽𝑞. Moreover, for
all 𝑕 ∈ [𝑞key], the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛] of the 𝑕th decryption key sk(𝑓𝑕)
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returned by ℬ1 are generated as in Eq. (3.2), which is their proper forms in both Hyb0 and
Hyb1. Also, the public parameters mpk given to ℋ by ℬ1 have the same distribution as in both
Hyb0 and Hyb1. Hence, it is clear that the distribution of the view of ℋ simulated by ℬ1 given a
Problem 1 instance 𝜚P1̂︀𝛽 for ̂︀𝛽 ∈ {0, 1}, coincides with that in Hyb0 or that in Hyb1 according aŝ︀𝛽 = 0 or 1. Hence the lemma follows. ⊓⊔

Lemma B.2: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
|Adv(2-(𝜒−1)-4)

ℋ (𝜆)− Adv(2-𝜒-1)
ℋ (𝜆)| ≤ 2/𝑞 for all 𝜒 ∈ [𝑞key-pre].

Proof: We will consider the following two cases separately:

� Case (I) (𝝌 = 1, i.e., proof for |Adv(1)H (𝝀) − Adv(2-1-1)H (𝝀)| ≤ 2/𝒒)

In order to prove Lemma B.2 in this case, we first introduce the intermediate hybrid Hyb1′
described below. Next, we show the equivalence of the distribution of the view of ℋ, i.e., the
distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb1 and that in Hyb1′ (Claim B.1), as well as those
in Hyb2-1-1 and in Hyb1′ (Claim B.2).

Hyb1′ : This experiment is the same as Hyb1 except that in this experiment the ciphertext
queried by ℋ corresponding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is

generated as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝑎⃗′(𝜄

′) , 0⃗2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝑎⃗(𝜄) , 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],
(B.1)

where ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛])
U←− (𝔽4

𝑞∖{⃗04})𝑛
′ × (𝔽4

𝑞∖{⃗04})𝑛, and all the other variables are
generated as in Hyb1.

Claim B.1: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb1 and that in Hyb1′ are equivalent
except with probability 1/𝑞.

Proof: Consider the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb1. Let us define new set of
dual orthonormal bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] from the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] used in

Hyb1 as follows: Generate matrices {𝒁 ′(𝜄′)}𝜄′∈[𝑛′], {𝒁(𝜄)}𝜄∈[𝑛]
U←− GL(4,𝔽𝑞), compute the vectors⎛⎜⎝𝒅(𝜄′,3)

...
𝒅(𝜄′,6)

⎞⎟⎠ = (𝒁 ′(𝜄′))−1

⎛⎜⎝𝒃(𝜄
′,3)

...
𝒃(𝜄

′,6)

⎞⎟⎠ ,

⎛⎜⎝𝒅*(𝜄′,3)

...
𝒅*(𝜄′,6)

⎞⎟⎠ = (𝒁 ′(𝜄′))⊺

⎛⎜⎝𝒃*(𝜄
′,3)

...
𝒃*(𝜄

′,6)

⎞⎟⎠ for 𝜄′ ∈ [𝑛′],

⎛⎜⎝𝒅(𝑛′+𝜄,3)

...
𝒅(𝑛′+𝜄,6)

⎞⎟⎠ = (𝒁(𝜄))−1

⎛⎜⎝𝒃(𝑛
′+𝜄,3)

...
𝒃(𝑛

′+𝜄,6)

⎞⎟⎠ ,

⎛⎜⎝𝒅*(𝑛′+𝜄,3)

...
𝒅*(𝑛′+𝜄,6)

⎞⎟⎠ = (𝒁(𝜄))⊺

⎛⎜⎝𝒃*(𝑛
′+𝜄,3)

...
𝒃*(𝑛

′+𝜄,6)

⎞⎟⎠ for 𝜄 ∈ [𝑛],

and set

𝔻𝜄′ = {𝒃(𝜄
′,1), 𝒃(𝜄

′,2),𝒅(𝜄′,3), . . . ,𝒅(𝜄′,6), 𝒃(𝜄
′,7), . . . , 𝒃(𝜄

′,9)}
𝔻*
𝜄′ = {𝒃*(𝜄

′,1), 𝒃*(𝜄
′,2),𝒅*(𝜄′,3), . . . ,𝒅*(𝜄′,6), 𝒃*(𝜄

′,7), . . . , 𝒃*(𝜄
′,9)}

}︂
for 𝜄′ ∈ [𝑛′],

𝔻𝑛′+𝜄 = {𝒃(𝑛
′+𝜄,1), 𝒃(𝑛

′+𝜄,2),𝒅(𝑛′+𝜄,3), . . . ,𝒅(𝑛′+𝜄,6), 𝒃(𝑛
′+𝜄,7), . . . , 𝒃(𝑛

′+𝜄,9)}
𝔻*
𝑛′+𝜄 = {𝒃*(𝑛

′+𝜄,1), 𝒃*(𝑛
′+𝜄,2),𝒅*(𝑛′+𝜄,3), . . . ,𝒅*(𝑛′+𝜄,6), 𝒃*(𝑛

′+𝜄,7), . . . , 𝒃*(𝑛
′+𝜄,9)}

}︂
for 𝜄 ∈ [𝑛].

(B.2)
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It can be readily observed that the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthonormal,

and are distributed the same as the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛].

Now, notice that the components of the ciphertext ct returned to ℋ in Hyb1 can be expressed
in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), (𝜗, 0), 0⃗

2, 0⃗2, 𝜙′
𝜄′)𝔹𝜄′

= (𝜔(1, 𝑥𝜄′), 𝑎⃗
′(𝜄′), 0⃗2, 𝜙′

𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), (𝜗, 0), 0⃗
2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄

= (𝜔(1, 𝑧𝜄), 𝑎⃗
(𝜄), 0⃗2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.3)

where 𝑎⃗′(𝜄
′) = ((𝜗, 0), 0⃗2)𝒁 ′(𝜄′) for 𝜄′ ∈ [𝑛′], 𝑎⃗(𝜄) = ((𝜗, 0), 0⃗2)𝒁(𝜄) for 𝜄 ∈ [𝑛], and all the other

variables are generated as in Hyb1. Clearly, the vector ((𝜗, 0), 0⃗2) ̸= 0⃗4 with all but negligible
probability 1/𝑞, i.e., except when 𝜗 = 0. Then, ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛]) is uniformly distributed
in (𝔽4

𝑞∖{⃗04})𝑛
′ × (𝔽4

𝑞∖{⃗04})𝑛 with all but negligible probability 1/𝑞, and are independent of all
the other variables.

Also, for all 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) provided to ℋ in
Hyb1 can be expressed in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.4)

where all the variables are generated as in Hyb1.
Now, note that in the view of ℋ, both the original sets of bases {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] and the
transformed set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk. Further,
for all 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) returned to ℋ preserve their
forms as in Eq. (3.2), which are their proper forms in Hyb1′ , under the basis transformation.
Finally, since the RHS of Eq. (B.3) and that in Eq. (B.1) have the same form except with
probability 1/𝑞, it follows that the components of the ciphertext ct returned to ℋ in Hyb1 can
be conceptually changed to those in Hyb1′ except with probability 1/𝑞. Hence the claim follows.

⊓⊔

Claim B.2: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-1-1 and that in Hyb1′ are equiv-
alent except with probability 1/𝑞2.

Proof: Consider the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-1-1. Let us define new set
of dual orthonormal bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] from the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] used

in Hyb2-1-1 just as in Eq. (B.2) in the proof of Claim B.1. Observe that the components of
the ciphertext ct returned to ℋ in Hyb2-1-1 can be expressed in terms of the new set of bases
{𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′

= (𝜔(1, 𝑥𝜄′), 𝑎⃗
′(𝜄′), 0⃗2, 𝜙′

𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

= (𝜔(1, 𝑧𝜄), 𝑎⃗
(𝜄), 0⃗2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.5)

where 𝑎⃗′(𝜄
′) = (𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′))𝒁

′(𝜄′) for 𝜄′ ∈ [𝑛′], 𝑎⃗(𝜄) = (𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄))𝒁
(𝜄) for 𝜄 ∈ [𝑛], and all

the other variables are formed as in Hyb2-1-1. Clearly, the vectors (𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′)) ̸= 0⃗4 for all
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𝜄′ ∈ [𝑛′] and the vectors (𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄)) ̸= 0⃗4 for all 𝜄 ∈ [𝑛] with all but negligible probability
1/𝑞2, i.e., except when 𝜏 = 0 and 𝜃 = 0. Then, ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛]) is uniformly distributed
in (𝔽4

𝑞∖{⃗04})𝑛
′ × (𝔽4

𝑞∖{⃗04})𝑛 with all but negligible probability 1/𝑞2, and are independent of all
the other variables.

Also, for all 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) provided to ℋ in
Hyb2-1-1 can be expressed in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] in the same fashion as
in Eq. (B.4).

As in the proof of Claim B.1, in the view of ℋ, both the original sets of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛]

and the transformed set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk.

Further, similar to the proof of Claim B.1, for all 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption
key sk(𝑓𝑕) returned to ℋ preserve their forms as in Eq. (3.2), which is their proper forms in
Hyb1′ , under the basis transformation. Finally, since the RHS of Eq. (B.5) and that in Eq. (B.1)
have the same form, it follows that the components of the ciphertext ct returned to ℋ in Hyb2-1-1
can be conceptually changed to those in Hyb1′ except with probability 1/𝑞2. Hence the claim
follows. ⊓⊔

� Case (II) (𝝌 ≥ 2, i.e., proof for |Adv(2-(𝝌−1)-4)
H (𝝀) − Adv(2-𝝌-1)

H (𝝀)| ≤ 2/𝒒 for 𝝌 ∈
[2, 𝒒key-pre])

In order to prove Lemma B.2 in this case, we first introduce the intermediate hybrid Hyb2-(𝜒−1)-4′

below. Next, we show the equivalence of the distribution of the view of ℋ, i.e., the distribution
(mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-(𝜒−1)-4 and that in Hyb2-(𝜒−1)-4′ (Claim B.3), as well as those
in Hyb2-𝜒-1 and in Hyb2-(𝜒−1)-4′ (Claim B.4).

Hyb2-(𝝌−1)-4′ (𝝌 ∈ [2, 𝒒key-pre]): This experiment is the same as Hyb2-(𝜒−1)-4 except that in
this experiment the ciphertext queried by ℋ corresponding to the pair of public-private attribute
strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝑎⃗′(𝜄

′) , 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝑎⃗(𝜄) , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.6)

where ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛])
U←− (𝔽2

𝑞∖{⃗02})𝑛
′ × (𝔽2

𝑞∖{⃗02})𝑛, and all the other variables are
generated as in Hyb2-(𝜒−1)-4.

Claim B.3: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-(𝜒−1)-4 and that in Hyb2-(𝜒−1)-4′

are equivalent except with probability 1/𝑞.

Proof: Consider the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-(𝜒−1)-4. Let us define new
set of dual orthonormal bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] from the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛]

used in Hyb2-(𝜒−1)-4 as follows: Generate matrices {𝒁 ′(𝜄′)}𝜄′∈[𝑛′], {𝒁(𝜄)}𝜄∈[𝑛]
U←− GL(2,𝔽𝑞), define
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𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺ for 𝜄′ ∈ [𝑛′], 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛], compute the vectors(︂
𝒅(𝜄′,3)

𝒅(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))−1

(︂
𝒃(𝜄

′,3)

𝒃(𝜄
′,4)

)︂
,

(︂
𝒅*(𝜄′,3)

𝒅*(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))⊺

(︂
𝒃*(𝜄

′,3)

𝒃*(𝜄
′,4)

)︂
for 𝜄′ ∈ [𝑛′],

(︂
𝒅(𝑛′+𝜄,3)

𝒅(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))−1

(︂
𝒃(𝑛

′+𝜄,3)

𝒃(𝑛
′+𝜄,4)

)︂
,

(︂
𝒅*(𝑛′+𝜄,3)

𝒅*(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))⊺

(︂
𝒃*(𝑛

′+𝜄,3)

𝒃*(𝑛
′+𝜄,4)

)︂
for 𝜄 ∈ [𝑛],

and set

𝔻𝜄′ = {𝒃(𝜄
′,1), 𝒃(𝜄

′,2),𝒅(𝜄′,3),𝒅(𝜄′,4), 𝒃(𝜄
′,5), . . . , 𝒃(𝜄

′,9)}
𝔻*
𝜄′ = {𝒃*(𝜄

′,1), 𝒃*(𝜄
′,2),𝒅*(𝜄′,3),𝒅*(𝜄′,4), 𝒃*(𝜄

′,5), . . . , 𝒃*(𝜄
′,9)}

}︂
for 𝜄′ ∈ [𝑛′],

𝔻𝑛′+𝜄 = {𝒃(𝑛
′+𝜄,1), 𝒃(𝑛

′+𝜄,2),𝒅(𝑛′+𝜄,3),𝒅(𝑛′+𝜄,4), 𝒃(𝑛
′+𝜄,5), . . . , 𝒃(𝑛

′+𝜄,9)}
𝔻*
𝑛′+𝜄 = {𝒃*(𝑛

′+𝜄,1), 𝒃*(𝑛
′+𝜄,2),𝒅*(𝑛′+𝜄,3),𝒅*(𝑛′+𝜄,4), 𝒃*(𝑛

′+𝜄,5), . . . , 𝒃*(𝑛
′+𝜄,9)}

}︂
for 𝜄 ∈ [𝑛].

(B.7)

It can be readily observed that the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthonormal,

and are distributed the same as the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛].

Now, notice that the components of the ciphertext ct returned to ℋ in Hyb2-(𝜒−1)-4 can be
expressed in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′

= (𝜔(1, 𝑥𝜄′), 𝑎⃗
′(𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑠𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

= (𝜔(1, 𝑧𝜄), 𝑎⃗
(𝜄), 𝜃(1, 𝑠𝜄), 0⃗

2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.8)

where 𝑎⃗′(𝜄
′) = 𝜏(1, 𝑥𝜄′)𝒁

′(𝜄′) for 𝜄′ ∈ [𝑛′], 𝑎⃗(𝜄) = 𝜏(1, 𝑠𝜄)𝒁
(𝜄) for 𝜄 ∈ [𝑛], and all the other vari-

ables are generated as in Hyb2-(𝜒−1)-4. Clearly, the vectors 𝜏(1, 𝑥𝜄′) ̸= 0⃗2 for all 𝜄′ ∈ [𝑛′] and
𝜏(1, 𝑠𝜄) ̸= 0⃗2 for all 𝜄 ∈ [𝑛] with all but negligible probability 1/𝑞, i.e., except when 𝜏 = 0.
Then, ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛]) is uniformly distributed in (𝔽2

𝑞∖{⃗02})𝑛
′ × (𝔽2

𝑞∖{⃗02})𝑛 with all but
negligible probability 1/𝑞, and are independent of all the other variables.

Also, for 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) provided to ℋ in
Hyb2-(𝜒−1)-4 can be expressed in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

(a) (𝑕 < 𝜒)

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛].

(B.9)

(b) (𝑕 ≥ 𝜒)

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.10)

where all the variables are generated as in Hyb2-(𝜒−1)-4.
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Now, note that in the view of ℋ, both the original sets of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] and the

transformed set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk. Further,

for 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) returned to ℋ preserve their
forms as in Eq. (3.7), if 𝑕 < 𝜒, and as in Eq. (3.2), if 𝑕 ≥ 𝜒, which are their proper forms in
the respective cases in Hyb2-(𝜒−1)-4′ , under the basis transformation. Finally, since the RHS of
Eq. (B.8) and that of Eq. (B.6) have the same form except with probability 1/𝑞, it follows that
the components of the ciphertext ct returned to ℋ in Hyb2-(𝜒−1)-4 can be conceptually changed
to those in Hyb2-(𝜒−1)-4′ except with probability 1/𝑞. Hence the claim follows. ⊓⊔

Claim B.4: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-𝜒-1 and that in Hyb2-(𝜒−1)-4′

are equivalent except with probability 1/𝑞.

Proof: The proof of Claim B.4 is similar to that of Claim B.3. We omit the details to avoid
repetition. ⊓⊔

⊓⊔

Lemma B.3: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ2-1, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(2-𝜒-1)

ℋ (𝜆) − Adv(2-𝜒-2)
ℋ (𝜆)| ≤ AdvP2

ℬ2-𝜒-1
(𝜆) + 1/𝑞 for all 𝜒 ∈ [𝑞key-pre], where ℬ2-𝜒-1(·) =

ℬ2-1(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: In order to prove Lemma B.3, we construct below a probabilistic algorithm ℬ2-1 against
Problem 2 using a stateful probabilistic adversary ℋ for distinguishing between Hyb2-𝜒-1 and
Hyb2-𝜒-2 as a black-box sub-routine. Suppose ℬ2-1 is given 𝜒 ∈ ℕ and an instance of Problem 2,

𝜚P2̂︀𝛽 = (params, {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒚

(0,̂︀𝛽),𝒇 (0), {𝒚(𝚤,ℓ,̂︀𝛽),𝒇 (𝚤,ℓ)}𝚤∈[𝑛′+𝑛],ℓ∈[2]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));̃︀𝛿, ̃︀𝜅, ̃︀𝜋, ̃︀𝜔, ̃︀𝜏 U←− 𝔽𝑞;̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), . . . , 𝒃(0,6)};

𝒚(0,0) = (̃︀𝛿, 0, 0, 0, ̃︀𝜅, 0)𝔹*
0
,𝒚(0,1) = (̃︀𝛿, ̃︀𝜋, 0, 0, ̃︀𝜅, 0)𝔹*

0
;

𝒇 (0) = (̃︀𝜔, ̃︀𝜏 , 0, 0, 0, 0)𝔹0 ;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,5), . . . , 𝒃(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0), 𝑒⃗(2) = (0, 1) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,ℓ,0) = (̃︀𝛿𝑒⃗(ℓ), 0⃗2, 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒚(𝚤,ℓ,1) = (̃︀𝛿𝑒⃗(ℓ), ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒇 (𝚤,ℓ) = (̃︀𝜔𝑒⃗(ℓ), ̃︀𝜏 𝑒⃗(ℓ), 0⃗2, 0⃗2, 0)𝔹𝚤
⎫⎪⎬⎪⎭ for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2].

ℬ2-1 interacts with ℋ as follows:

1. First, ℬ2-1 provides the public parameters mpk = (params, {̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}}𝚤∈[𝑛′+𝑛]),
all of which are taken from the given Problem 2 instance.

2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th decryption key query of ℋ for some function 𝑓𝑕 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip , ℬ2-1 proceeds as follows:
(a) (𝑕 < 𝜒) ℬ2-1 gives ℋ a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]), the
components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are generated as in Eq. (3.7) using
the bases {𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] included within the given Problem 2 instance.
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(b) (𝑕 = 𝜒) ℬ2-1 forms
(︀
({𝜎̆𝜒,𝑗}𝑗∈[𝑛], {𝛼̆𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒]→ [𝑛′]

)︀
,
(︀
({𝜎𝜒,𝑗}𝑗∈[𝑛],

{𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒] → [𝑛′]
)︀ R←− PGB(𝑓𝜒), samples 𝜁𝜒, 𝜁𝜒, {̂︀𝜅′𝜒,𝑗′,1, ̂︀𝜅′𝜒,𝑗′,2}𝑗′∈[𝑚𝜒],

{̂︀𝜅𝜒,𝑗,1, ̂︀𝜅𝜒,𝑗,2}𝑗∈[𝑛] U←− 𝔽𝑞, computes

𝒌′(𝜒,𝑗′) = 𝛾𝜒,𝑗′𝒚
(𝜌𝜒(𝑗′),1,̂︀𝛽) + 𝛼̆𝜒,𝑗′𝒚

(𝜌𝜒(𝑗′),2,̂︀𝛽) + 𝛾𝜒,𝑗′𝒃
*(𝜌𝜒(𝑗′),1)+

𝛼𝜒,𝑗′𝒃
*(𝜌𝜒(𝑗′),2) + ̂︀𝜅′𝜒,𝑗′,1𝒃*(𝜌𝜒(𝑗′),7) + ̂︀𝜅′𝜒,𝑗′,2𝒃(𝜌𝜒(𝑗′),8) for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = 𝜎̆𝜒,𝑗𝒚
(𝑛′+𝑗,1,̂︀𝛽) + 𝜁𝜒𝒚

(𝑛′+𝑗,2,̂︀𝛽) + 𝜎𝜒,𝑗𝒃
*(𝑛′+𝑗,1) + 𝜁𝜒𝒃

*(𝑛′+𝑗,2)+̂︀𝜅𝜒,𝑗,1𝒃*(𝑛′+𝑗,7) + ̂︀𝜅𝜒,𝑗,2𝒃*(𝑛′+𝑗,8) for 𝑗 ∈ [𝑛],

and returns decryption key sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) to ℋ.
(c) (𝑕 > 𝜒) ℬ2-1 gives ℋ a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]), the
components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are generated as in Eq. (3.2) using
the bases {𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] of the given Problem 2 instance.
3. When ℬ2-1 receives the ciphertext query from ℋ for some pair of public-private attribute

strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 , ℬ2-1 samples 𝑠⃗
U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛

𝑞 |𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 𝑅abp∘ip(𝑓𝑕,

(𝑥⃗, 𝑧⃗))∀𝑕 ∈ [𝑞key-pre]}, samples 𝜃, {𝜙′
𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, computes

𝒄′(𝜄
′) = 𝒇 (𝜄′,1) + 𝑥𝜄′𝒇

(𝜄′,2) + 𝜃𝒃(𝜄
′,5) + 𝜃𝑥𝜄′𝒃

(𝜄′,6) + 𝜙′
𝜄′𝒃

(𝜄′,9) for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = 𝒇 (𝑛′+𝜄,1) + 𝑧𝜄𝒇
(𝑛′+𝜄,2) + 𝜃𝒃(𝑛

′+𝜄,5) + 𝜃𝑠𝜄𝒃
(𝑛′+𝜄,6) + 𝜙𝜄𝒃

(𝑛′+𝜄,9) for 𝜄 ∈ [𝑛],

and hands ℋ the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
4. ℋ eventually outputs a bit 𝛽 ∈ {0, 1}. ℬ2-1 outputs ̂︀𝛽′ = 𝛽 as its guess bit in its Problem 2

challenge.

Observe that when ̂︀𝛽 = 0, i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,0) = (̃︀𝛿𝑒⃗(ℓ), 0⃗2, 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈
[2], the components of the 𝜒th decryption key sk(𝑓𝜒) returned by ℬ2-1 to ℋ take the forms

𝒌′(𝜒,𝑗′) = ((̃︀𝛿𝛾𝜒,𝑗′ + 𝛾𝜒,𝑗′ , ̃︀𝛿𝛼̆𝜒,𝑗′ + 𝛼𝜒,𝑗′), 0⃗
2, 0⃗2,

(̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((̃︀𝛿𝜎̆𝜒,𝑗 + 𝜎𝜒,𝑗 , ̃︀𝛿𝜁𝜒 + 𝜁𝜒), 0⃗
2, 0⃗2,

(̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅̃︀𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

which coincides with those in Hyb2-𝜒-1 (Eq. (3.2)), where we have 𝛼𝜒,𝑗′ = ̃︀𝛿𝛼̆𝜒,𝑗′ + 𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′ =̃︀𝛿𝛾𝜒,𝑗′ + 𝛾𝜒,𝑗′ for 𝑗′ ∈ [𝑚𝜒], 𝜎𝜒,𝑗 = ̃︀𝛿𝜎̆𝜒,𝑗 + 𝜎𝜒,𝑗 for 𝑗 ∈ [𝑛], 𝜁𝜒 = ̃︀𝛿𝜁𝜒 + 𝜁𝜒, 𝜅⃗′(𝜒,𝑗′) = (̃︀𝜅𝛾𝜒,𝑗′ +̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2) for 𝑗′ ∈ [𝑚𝜒], and 𝜅⃗(𝜒,𝑗) = (̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2) for 𝑗 ∈ [𝑛]. On the

other hand, in case ̂︀𝛽 = 1, i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,1) = (̃︀𝛿𝑒⃗(ℓ), ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′+𝑛], ℓ ∈ [2],
the components of the 𝜒th decryption key sk(𝑓𝜒) given by ℬ2-1 to ℋ take the forms

𝒌′(𝜒,𝑗′) = ((̃︀𝛿𝛾𝜒,𝑗′ + 𝛾𝜒,𝑗′ , ̃︀𝛿𝛼̆𝜒,𝑗′ + 𝛼𝜒,𝑗′), (̃︀𝜋𝛾𝜒,𝑗′ , ̃︀𝜋𝛼̆𝜒,𝑗′), 0⃗
2,

(̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((̃︀𝛿𝜎̆𝜒,𝑗 + 𝜎𝜒,𝑗 , ̃︀𝛿𝜁𝜒 + 𝜁𝜒), (̃︀𝜋𝜎̆𝜒,𝑗 , ̃︀𝜋𝜁𝜒), 0⃗2,
(̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

which coincides with that in Hyb2-𝜒-2 (Eq. (3.5)), where we have 𝛼𝜒,𝑗′ = ̃︀𝛿𝛼̆𝜒,𝑗′ + 𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′ =̃︀𝛿𝛾𝜒,𝑗′ + 𝛾𝜒,𝑗′ , ̃︀𝛼𝜒,𝑗′ = ̃︀𝜋𝛼̆𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′ = ̃︀𝜋𝛾𝜒,𝑗′ for 𝑗′ ∈ [𝑚𝜒], 𝜎𝜒,𝑗 = ̃︀𝛿𝜎̆𝜒,𝑗 + 𝜎𝜒,𝑗 , ̃︀𝜎𝜒,𝑗 = ̃︀𝜋𝜎̆𝜒,𝑗 for
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𝑗 ∈ [𝑛], 𝜁𝜒 = ̃︀𝛿𝜁𝜒 + 𝜁𝜒, ̃︀𝜁𝜒 = ̃︀𝜋𝜁𝜒, 𝜅⃗′(𝜒,𝑗′) = (̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2) for 𝑗′ ∈ [𝑚𝜒], and
𝜅⃗(𝜒,𝑗) = (̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2) for 𝑗 ∈ [𝑛].

Clearly, 𝜁𝜒 is uniformly and independently (of the other variables) distributed in 𝔽𝑞, and
so is ̃︀𝜁𝜒 except when ̃︀𝜋 = 0. This is because 𝜁𝜒 and 𝜁𝜒 are sampled uniformly and inde-
pendently (of the other variables) from 𝔽𝑞. For similar reason, each of {𝜅⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒] and
{𝜅⃗(𝜒,𝑗)}𝑗∈[𝑛] is uniformly and independently (of the other variables) distributed in 𝔽2

𝑞 . In or-
der to see that ({𝜎𝜒,𝑗}𝑗∈[𝑛], {𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) and ({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) simulated
by ℬ2-1 have the desired distribution in Hyb2-𝜒-1 and Hyb2-𝜒-2, i.e., their distribution coin-
cides with the output distribution of PGB(𝑓𝜒) with uniform and independent randomness, let
𝑟⃗(𝜒,1)

U←− 𝔽𝑚𝜒+𝑛−1
𝑞 and 𝑟⃗(𝜒,2)

U←− 𝔽𝑚𝜒+𝑛−1
𝑞 be the random vectors used while generating the con-

stants ({𝜎̆𝜒,𝑗}𝑗∈[𝑛], {𝛼̆𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) and ({𝜎𝜒,𝑗}𝑗∈[𝑛], {𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) respectively. Then,
by the linearity property of PGB (as described in Section 2.3), it follows that the constants
({𝜎𝜒,𝑗}𝑗∈[𝑛], {𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) and ({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) respectively are the out-
puts of PGB(𝑓𝜒) with randomness 𝑟⃗(𝜒) = ̃︀𝛿𝑟⃗(𝜒,1) + 𝑟⃗(𝜒,2) and 𝑟⃗′(𝜒) = ̃︀𝜋𝑟⃗(𝜒,1). Since, 𝑟⃗(𝜒,1) and
𝑟⃗(𝜒,2) are uniformly and independently sampled from 𝔽𝑚𝜒+𝑛−1

𝑞 , it follows that 𝑟⃗(𝜒) is uni-
formly distributed in 𝔽𝑚𝜒+𝑛−1

𝑞 and so is 𝑟⃗′(𝜒) except when ̃︀𝜋 = 0, as well as they are inde-
pendent of one another and of all the other variables. Thus, ({𝜎𝜒,𝑗}𝑗∈[𝑛], {𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) and
({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) simulated by ℬ2-1 have the desired distributions except wheñ︀𝜋 = 0.

Also, the components of the ciphertext ct returned to ℋ by ℬ2-1 have the form

𝒄′(𝜄
′) = (̃︀𝜔(1, 𝑥𝜄′), ̃︀𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (̃︀𝜔(1, 𝑧𝜄), ̃︀𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

which coincides with those in Eq. (3.4) corresponding to both Hyb2-𝜒-1 and Hyb2-𝜒-2, where 𝜔 = ̃︀𝜔
and 𝜏 = ̃︀𝜏 are uniformly and independently (of the other variables) distributed in 𝔽𝑞. Moreover,
for all 𝑕 ∈ [𝑞key]∖{𝜒}, the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌𝑕,𝑗}𝑗∈[𝑛] of the 𝑕th decryption key
sk(𝑓𝑕) given to ℋ by ℬ2-1 are generated the same as in Eq. (3.7), if 𝑕 < 𝜒, and as in Eq. (3.2),
if 𝑕 > 𝜒, which are their proper forms in the respective cases both in Hyb2-𝜒-1 and in Hyb2-𝜒-2.
Finally, the public parameters mpk provided to ℋ by ℬ2-1 are clearly distributed identically to
those in both Hyb2-𝜒-1 and Hyb2-𝜒-2. Therefore, it follows that the view of ℋ simulated by ℬ2-1
given 𝜒 and a Problem 2 instance 𝜚P2̂︀𝛽 for ̂︀𝛽 ∈ {0, 1}, coincides with that in Hyb2-𝜒-1, if ̂︀𝛽 = 0,

while that in Hyb2-𝜒-2 except with probability 1/𝑞, if ̂︀𝛽 = 1. Hence the lemma follows. ⊓⊔

Lemma B.4: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
|Adv(2-𝜒-2)

ℋ (𝜆)− Adv(2-𝜒-3)
ℋ (𝜆)| ≤ 4/𝑞 for all 𝜒 ∈ [𝑞key-pre].

Proof: The proof of Lemma B.4 utilizes the following result:

Lemma B.5 (Lemma 3 in [OT10]): For any 𝑝 ∈ 𝔽𝑞 and 𝑑 ∈ ℕ, let ℂ𝑝 = {(𝑣⃗, 𝑤⃗) ∈ (𝔽𝑑
𝑞 ×

𝔽𝑑
𝑞)∖{(⃗0𝑑, 0⃗𝑑)}|𝑣⃗ · 𝑤⃗ = 𝑝}. For all (𝑣⃗, 𝑤⃗) ∈ ℂ𝑝, for all (𝑐⃗, 𝑘⃗) ∈ ℂ𝑝, we have

Pr[𝑣⃗𝑭 = 𝑐⃗
⋀︁

𝑤⃗(𝑭−1)⊺ = 𝑘⃗] = Pr[𝑣⃗(𝑭−1)⊺ = 𝑐⃗
⋀︁

𝑤⃗𝑭 = 𝑘⃗] = 1/♯ℂ𝑝,

where 𝑭
U←− GL(𝑑,𝔽𝑞).

To prove Lemma B.4, we first define below the intermediate hybrid Hyb2-𝜒-2′ . Next, we show
the equivalence of the distribution of the view of ℋ, i.e., the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],
ct) in Hyb2-𝜒-2 and that in Hyb2-𝜒-2′ (Claim B.5), as well as those in Hyb2-𝜒-2′ and in Hyb2-𝜒-3
(Claim B.6).
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Hyb2-𝝌-2′ (𝝌 ∈ [𝒒key-pre]): This experiment is the same as Hyb2-𝜒-2 except that in this exper-
iment the ciphertext queried by ℋ corresponding to the pair of public-private attribute strings
(𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is generated as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝑎⃗′(𝜄

′) , 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝑎⃗(𝜄) , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.11)

while the 𝜒th decryption key queried by ℋ corresponding to the function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip is gener-

ated as sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 𝑢⃗′(𝜒,𝑗
′) , 0⃗2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 𝑢⃗(𝜒,𝑗) , 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(B.12)

where ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛], {𝑢⃗′(𝜒,𝑗
′)}𝑗′∈[𝑚𝜒], {𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛])

U←− (𝔽2
𝑞)

𝑛′×(𝔽2
𝑞)

𝑛×(𝔽2
𝑞)

𝑚𝜒×(𝔽2
𝑞)

𝑛, if

𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 0, whereas ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛], {𝑢⃗′(𝜒,𝑗
′)}𝑗′∈[𝑚𝜒], {𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛])

U←− (𝔽2
𝑞)

𝑛′×
(𝔽2

𝑞)
𝑛×(𝔽2

𝑞)
𝑚𝜒×(𝔽2

𝑞)
𝑛 subject to the restriction that

∑︀
𝑗′∈[𝑚𝜒]

𝛺′
𝜒,𝑗′ (⃗𝑎

′(𝜌𝜒(𝑗′))·𝑢⃗′(𝜒,𝑗′))+
∑︀
𝑗∈[𝑛]

𝛺𝜒,𝑗 (⃗𝑎
(𝑗)·

𝑢⃗(𝜒,𝑗)) = 0, if 𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 1, and all the other variables are generated as in Hyb2-𝜒-2.
Here, ({𝛺𝜒,𝑗}𝑗∈[𝑛], {𝛺′

𝜒,𝑗′}𝑗′∈[𝑚𝜒]) = REC(𝑓𝜒, 𝑥⃗).

Claim B.5: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-𝜒-2 and that in Hyb2-𝜒-2′ are
equivalent except with probability 2/𝑞.

Proof: Consider the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-𝜒-2. Let us define new set
of dual orthonormal bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] from the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] used

in Hyb2-𝜒-2 as follows: Generate matrices {𝒁 ′(𝜄′)}𝜄′∈[𝑛′], {𝒁(𝜄)}𝜄∈[𝑛]
U←− GL(2,𝔽𝑞), define 𝑼 ′(𝜄′) =

((𝒁 ′(𝜄′))−1)⊺ for 𝜄′ ∈ [𝑛′], 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛], compute the vectors(︂
𝒅(𝜄′,3)

𝒅(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))−1

(︂
𝒃(𝜄

′,3)

𝒃(𝜄
′,4)

)︂
,

(︂
𝒅*(𝜄′,3)

𝒅*(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))⊺

(︂
𝒃*(𝜄

′,3)

𝒃*(𝜄
′,4)

)︂
for 𝜄′ ∈ [𝑛′],

(︂
𝒅(𝑛′+𝜄,3)

𝒅(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))−1

(︂
𝒃(𝑛

′+𝜄,3)

𝒃(𝑛
′+𝜄,4)

)︂
,

(︂
𝒅*(𝑛′+𝜄,3)

𝒅*(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))⊺

(︂
𝒃*(𝑛

′+𝜄,3)

𝒃*(𝑛
′+𝜄,4)

)︂
for 𝜄 ∈ [𝑛],

and set

𝔻𝜄′ = {𝒃(𝜄
′,1), 𝒃(𝜄

′,2),𝒅(𝜄′,3),𝒅(𝜄′,4), 𝒃(𝜄
′,5), . . . , 𝒃(𝜄

′,9)}
𝔻*
𝜄′ = {𝒃*(𝜄

′,1), 𝒃*(𝜄
′,2),𝒅*(𝜄′,3),𝒅*(𝜄′,4), 𝒃*(𝜄

′,5), . . . , 𝒃*(𝜄
′,9)}

}︂
for 𝜄′ ∈ [𝑛′],

𝔻𝑛′+𝜄 = {𝒃(𝑛
′+𝜄,1), 𝒃(𝑛

′+𝜄,2),𝒅(𝑛′+𝜄,3),𝒅(𝑛′+𝜄,4), 𝒃(𝑛
′+𝜄,5), . . . , 𝒃(𝑛

′+𝜄,9)}
𝔻*
𝑛′+𝜄 = {𝒃*(𝑛

′+𝜄,1), 𝒃*(𝑛
′+𝜄,2),𝒅*(𝑛′+𝜄,3),𝒅*(𝑛′+𝜄,4), 𝒃*(𝑛

′+𝜄,5), . . . , 𝒃*(𝑛
′+𝜄,9)}

}︂
for 𝜄 ∈ [𝑛].

(B.13)

It can be readily observed that the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthonormal,

and are distributed the same as the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛].

Observe that the components of the 𝜒th decryption key sk(𝑓𝜒) returned to ℋ in Hyb2-𝜒-2 can
be expressed in terms of the bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), (̃︀𝛾𝜒,𝑗′ , ̃︀𝛼𝜒,𝑗′), 0⃗
2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔹*
𝜌𝜒(𝑗′)

= ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 𝑢⃗
′(𝜒,𝑗′), 0⃗2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔻*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), (̃︀𝜎𝜒,𝑗 , ̃︀𝜁𝜒), 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔹*
𝑛′+𝑗

= ((𝜎𝜒,𝑗 , 𝜁𝜒), 𝑢⃗
(𝜒,𝑗), 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.14)
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where 𝑢⃗′(𝜒,𝑗
′) = (̃︀𝛾𝜒,𝑗′ , ̃︀𝛼𝜒,𝑗′)𝑼

′(𝜌𝜒(𝑗′)) for 𝑗′ ∈ [𝑚𝜒], 𝑢⃗(𝜒,𝑗) = (̃︀𝜎𝜒,𝑗 , ̃︀𝜁𝜒)𝑼 (𝑗) for 𝑗 ∈ [𝑛], and all the
other variables are generated as in Hyb2-𝜒-2. Also, note that the components of the ciphertext ct
returned to ℋ in Hyb2-𝜒-2 can be expressed in terms of the bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′

= (𝜔(1, 𝑥𝜄′), 𝑎⃗
′(𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

= (𝜔(1, 𝑧𝜄), 𝑎⃗
(𝜄), 𝜃(1, 𝑠𝜄), 0⃗

2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.15)

where 𝑎⃗′(𝜄
′) = 𝜏(1, 𝑥𝜄′)𝒁

′(𝜄′) for 𝜄′ ∈ [𝑛′], 𝑎⃗(𝜄) = 𝜏(1, 𝑧𝜄)𝒁
(𝜄) for 𝜄 ∈ [𝑛], and all the other variables

are generated as in Hyb2-𝜒-2.
We argue that ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛], {𝑢⃗′(𝜒,𝑗

′)}𝑗′∈[𝑚𝜒], {𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]) ∈ (𝔽2
𝑞)

𝑛′ × (𝔽2
𝑞)

𝑛×
(𝔽2

𝑞)
𝑚𝜒 × (𝔽2

𝑞)
𝑛 are jointly distributed as in Hyb2-𝜒-2′ in the view of ℋ. Let us observe the

following two facts:

(A) From Lemma B.5 it follows that for each 𝑗′ ∈ [𝑚𝜒], the pair of vectors (⃗𝑎′(𝜌𝜒(𝑗
′)), 𝑢⃗′(𝜒,𝑗

′)) is
uniformly distributed in ℂ

𝑎⃗′(𝜌𝜒(𝑗′))·𝑢⃗′(𝜒,𝑗′) , and similarly, for each 𝑗 ∈ [𝑛], the pair of vectors
(⃗𝑎(𝑗), 𝑢⃗(𝜒,𝑗)) is uniformly distributed in ℂ𝑎⃗(𝑗)·𝑢⃗(𝜒,𝑗) .

(B) Observe that⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎⃗′(𝜌𝜒(1)) · 𝑢⃗′(𝜒,1)
...

𝑎⃗′(𝜌𝜒(𝑚𝜒)) · 𝑢⃗′(𝜒,𝑚𝜒)

𝑎⃗(1) · 𝑢⃗(𝜒,1)
...

𝑎⃗(𝑛) · 𝑢⃗(𝜒,𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜏(̃︀𝛼𝜒,1𝑥𝜌𝜒(1) + ̃︀𝛾𝜒,1)
...

𝜏(̃︀𝛼𝜒,𝑚𝜒𝑥𝜌𝜒(𝑚𝜒) + ̃︀𝛾𝜒,𝑚𝜒)

𝜏(̃︀𝜁𝜒𝑧1 + ̃︀𝜎𝜒,1)
...

𝜏(̃︀𝜁𝜒𝑧𝑛 + ̃︀𝜎𝜒,𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)

(︂
(𝑟⃗′(𝜒))⊺̃︀𝜁𝜒

)︂
, (B.16)

where 𝑳(𝜒) ∈ 𝔽(𝑚𝜒+𝑛)×(𝑚𝜒+𝑛)
𝑞 is the matrix representation of the ABP 𝛤 ′

𝜒 computing 𝑓𝜒, as

computed by PGB described in Section 2.3, and 𝑟⃗′(𝜒)
U←− 𝔽𝑚𝜒+𝑛−1

𝑞 is the random vector used
by PGB when run on input 𝑓𝜒 to generate the constants ({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) ∈
𝔽𝑛
𝑞 × (𝔽2

𝑞)
𝑚𝜒 . Now, we have the following two possibilities:

(I) (𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 0, i.e., 𝑓𝜒(𝑥⃗, 𝑧⃗) ̸= 0) From Lemma 2.1, we have det(𝑳(𝜒)(𝑥⃗, 𝑧⃗)) =
𝑓𝜒(𝑥⃗, 𝑧⃗). Hence, det(𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = 𝜏𝑚𝜒+𝑛 det(𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = 𝜏𝑚𝜒+𝑛𝑓𝜒(𝑥⃗, 𝑧⃗). As 𝑓𝜒(𝑥⃗, 𝑧⃗) ̸= 0
in this case, it follows that in this case det(𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)) ̸= 0, or in other words, the matrix
𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) is invertible with all but negligible probability 1/𝑞, i.e., except when 𝜏 = 0.
Therefore, the image of the linear transformation defined by the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) is
𝔽𝑚𝜒+𝑛
𝑞 .

Hence, it follows from Eq. (B.16) that since (𝑟⃗′(𝜒), ̃︀𝜁𝜒) are sampled uniformly from
𝔽𝑚𝜒+𝑛−1
𝑞 × 𝔽𝑞, the variables ({𝑎⃗′(𝜌𝜒(𝑗′)) · 𝑢⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]) are jointly dis-

tributed uniformly in 𝔽𝑚𝜒
𝑞 × 𝔽𝑛

𝑞 as well. Also, since fresh variables (𝑟⃗′(𝜒), ̃︀𝜁𝜒) appear only
in ({𝑎⃗′𝜌𝜒(𝑗′) · 𝑢⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]), the variables ({𝑎⃗′(𝜌𝜒(𝑗′) · 𝑢⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒],

{𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]) are also fresh, i.e., independent of all the other variables in the view
of ℋ.

(II) (𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓𝜒(𝑥⃗, 𝑧⃗) = 0) Here, the rank of the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) is
𝑚𝜒 + 𝑛 − 1 with all but negligible probability 1/𝑞, i.e., except when 𝜏 = 0. In order to
see this, first notice that since 𝑓𝜒(𝑥⃗, 𝑧⃗) = 0 in this case, again from Lemma 2.1 it follows
that det(𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = 𝜏𝑚𝜒+𝑛 det(𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = 𝜏𝑚𝜒+𝑛𝑓𝜒(𝑥⃗, 𝑧⃗) = 0. Hence, the rank of
the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) is at most 𝑚𝜒 + 𝑛 − 1. Also, note that according to Lemma 2.1,
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the matrix 𝑳(𝜒)(𝑥⃗, 𝑧⃗) contains only −1’s in the second diagonal, and 0’s below the second
diagonal, and hence, the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) possesses only −𝜏 ’s in the second diagonal, and
0’s below the second diagonal. Therefore, the (𝑚𝜒 + 𝑛− 1)× (𝑚𝜒 + 𝑛− 1) sub-matrix of
the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) obtained by removing its first row and last column clearly has full
rank 𝑚𝜒 + 𝑛 − 1 except when 𝜏 = 0, as this sub-matrix is in upper-triangular form with
−𝜏 as its diagonal entries. Since the rank of a matrix cannot be smaller than the rank of
any of its sub-matrix, it follows that the rank of the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) cannot be smaller
than 𝑚𝜒 + 𝑛− 1. Consequently, it follows that the rank of the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) must be
𝑚𝜒 + 𝑛− 1 in this case.

Also, in this case, it holds that ((𝛺′
𝜒,𝑗′)𝑗′∈[𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])𝜏𝑳

(𝜒)(𝑥⃗, 𝑧⃗) = 0⃗𝑚𝜒+𝑛, where
({𝛺𝜒,𝑗}𝑗∈[𝑛], {𝛺′

𝜒,𝑗′}𝑗′∈[𝑚𝜒]) = REC(𝑓𝜒, 𝑥⃗). In order to see this, recall from the description of
the algorithm REC presented in Section 2.3 that ((𝛺′

𝜒,𝑗′)𝑗′∈[𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛]) are the cofactors
of the entries of the last column of the matrix 𝑳(𝜒)(𝑥⃗, 𝑧⃗) in the order from top to bottom.
Hence, if we add up the products of the entries in the last column of the matrix 𝑳(𝜒)(𝑥⃗, 𝑧⃗)
with the corresponding cofactors in ({𝛺′

𝜒,𝑗′}𝑗′∈[𝑚𝜒], {𝛺𝜒,𝑗}𝑗∈[𝑛]), we obtain det(𝑳(𝜒)(𝑥⃗, 𝑧⃗))
which, as already noted above, is 0 in this case. Also, it is a standard result in linear
algebra that the sum of the products of the cofactors of any column of a matrix with
the corresponding entries of another column of that matrix is 0. Therefore, it follows that
((𝛺′

𝜒,𝑗′)𝑗′∈[𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])𝑳
(𝜒)(𝑥⃗, 𝑧⃗) = 0⃗𝑚𝜒+𝑛. Since, each entry of the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)

is merely 𝜏 times the corresponding entry of the matrix 𝑳(𝜒)(𝑥⃗, 𝑧⃗), the same holds for the
matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) as well.

From the above two observations, it follows that the image of the linear transforma-
tion defined by the matrix 𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗) is given by the (𝑚𝜒 + 𝑛 − 1)-dimensional sub-
space Im(𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = {𝑣⃗ = (𝑣1, . . . , 𝑣𝑚𝜒+𝑛) ∈ 𝔽𝑚𝜒+𝑛

𝑞 |((𝛺′
𝜒,𝑗′)𝑗′∈[𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛]) · 𝑣⃗ =∑︀

𝑗′∈[𝑚𝜒]

𝛺′
𝜒,𝑗′𝑣𝑗′ +

∑︀
𝑗∈[𝑛]

𝛺𝜒,𝑗𝑣𝑛′+𝑗 = 0} ⊂ 𝔽𝑚𝜒+𝑛
𝑞 .

Hence, it follows from Eq. (B.16) that since (𝑟⃗′(𝜒), ̃︀𝜁𝜒) are sampled uniformly from
𝔽𝑚𝜒+𝑛−1
𝑞 × 𝔽𝑞, the variables ({𝑎⃗′(𝜌𝜒(𝑗′)) · 𝑢⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]) are jointly dis-

tributed uniformly in Im(𝜏𝑳(𝜒)(𝑥⃗, 𝑧⃗)), i.e., those variables are jointly distributed uniformly
in 𝔽𝑚𝜒

𝑞 ×𝔽𝑛
𝑞 subject to the relation

∑︀
𝑗′∈[𝑚𝜒]

𝛺′
𝜒,𝑗′ (⃗𝑎

′(𝜌𝜒(𝑗′)) · 𝑢⃗′(𝜒,𝑗′))+
∑︀
𝑗∈[𝑛]

𝛺𝜒,𝑗 (⃗𝑎
(𝑗) · 𝑢⃗(𝜒,𝑗)) =

0. Also, just as in Case (I), since fresh variables (𝑟⃗′(𝜒), ̃︀𝜁𝜒) appear only in ({𝑎⃗′(𝜌𝜒(𝑗′)) ·
𝑢⃗′(𝜒,𝑗

′)}𝑗′∈[𝑚𝜒], {𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]), the variables ({𝑎⃗′(𝜌𝜒(𝑗′)) · 𝑢⃗(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝑎⃗(𝑗) · 𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛])
are also fresh, i.e., independent of all the other variables in the view of ℋ in this case as
well.

From (A) and (B) above, it follows that the variables ({𝑎⃗′(𝜄′)}𝜄′∈[𝑛′], {𝑎⃗(𝜄)}𝜄∈[𝑛], {𝑢⃗′(𝜒,𝑗
′)}𝑗′∈[𝑚𝜒],

{𝑢⃗(𝜒,𝑗)}𝑗∈[𝑛]) are jointly distributed uniformly in (𝔽2
𝑞)

𝑛′ × (𝔽2
𝑞)

𝑛 × (𝔽2
𝑞)

𝑚𝜒 × (𝔽2
𝑞)

𝑛, if 𝑅abp∘ip(𝑓𝜒,

(𝑥⃗, 𝑧⃗)) = 0, where as these variables are jointly distributed uniformly in (𝔽2
𝑞)

𝑛′×(𝔽2
𝑞)

𝑛×(𝔽2
𝑞)

𝑚𝜒×
(𝔽2

𝑞)
𝑛 subject to the relation

∑︀
𝑗′∈[𝑚𝜒]

𝛺′
𝜒,𝑗′ (⃗𝑎

′(𝜌𝜒(𝑗′)) · 𝑢⃗′(𝜒,𝑗′)) +
∑︀
𝑗∈[𝑛]

𝛺𝜒,𝑗 (⃗𝑎
(𝑗) · 𝑢⃗(𝜒,𝑗)) = 0, in case

𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 1, as well as these variables are independent of all the other variables in the
view of ℋ.

Moreover, for 𝑕 ∈ [𝑞key]∖{𝜒}, the components of the 𝑕th decryption key sk(𝑓𝑕) returned to
ℋ in Hyb2-𝜒-2 can be expressed in terms of {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as
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(a) (𝑕 < 𝜒)

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗
2, (̂︀𝛾𝜒,𝑗′ , ̂︀𝛼𝜒,𝑗′), 𝜅⃗

′(𝜒,𝑗′), 0)𝔹*
𝜌𝜒(𝑗′)

= ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗
2, (̂︀𝛾𝜒,𝑗′ , ̂︀𝛼𝜒,𝑗′), 𝜅⃗

′(𝜒,𝑗′), 0)𝔻*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗
2, (̂︀𝜎𝜒,𝑗 , ̂︀𝜁𝜒), 𝜅⃗(𝜒,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗
2, (̂︀𝜎𝜒,𝑗 , ̂︀𝜁𝜒), 𝜅⃗(𝜒,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.17)

(b) (𝑕 > 𝜒)

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔹*
𝜌𝜒(𝑗′)

= ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗
2, 0⃗2, 𝜅⃗′(𝜒,𝑗

′), 0)𝔻*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗
2, 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗
2, 0⃗2, 𝜅⃗(𝜒,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.18)

where all the variables are generated as in Hyb2-𝜒-2.
Now, note that in the view of ℋ, both the original sets of bases {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] and the trans-
formed set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk. Moreover,
for 𝑕 ∈ [𝑞key]∖{𝜒}, the components of the 𝑕th decryption key sk(𝑓𝑕) returned to ℋ preserve
their forms as in Eq. (3.7), if 𝑕 < 𝜒, and as in Eq. (3.2), if 𝑕 > 𝜒, which are their proper forms
in Hyb2-𝜒-2′ , under the basis transformation. Finally, since the RHS of Eq. (B.14) (respectively
Eq. (B.15)) and that of Eq. (B.12) (Eq. (B.11)) have the same form except with probability 2/𝑞,
the components of the 𝜒th decryption key sk(𝑓𝜒) and those of the ciphertext ct returned to ℋ
in Hyb2-𝜒-2 can be conceptually changed to those in Hyb2-𝜒-2′ except with probability 2/𝑞. Hence
the claim follows. ⊓⊔

Claim B.6: The distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb2-𝜒-3 and that in Hyb2-𝜒-2′ are
equivalent except with probability 2/𝑞.

Proof: The proof of Claim B.6 is similar to that of Claim B.5. We omit the details to avoid
repetition. ⊓⊔

⊓⊔

Lemma B.6: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ2-2, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(2-𝜒-3)

ℋ (𝜆) − Adv(2-𝜒-4)
ℋ (𝜆)| ≤ AdvP3

ℬ2-𝜒-2
(𝜆) + 2/𝑞 for all 𝜒 ∈ [𝑞key-pre], where ℬ2-𝜒-2(·) =

ℬ2-2(𝜒, ·) for any 𝜒 ∈ ℕ.

Proof: In order to prove Lemma B.5, we construct below a probabilistic algorithm ℬ2-2 against
Problem 3 using a stateful probabilistic adversary ℋ for distinguishing between Hyb2-𝜒-3 and
Hyb2-𝜒-4 as a black-box sub-routine. Suppose ℬ2-2 is given 𝜒 ∈ ℕ and an instance of Problem 3,

𝜚P3̂︀𝛽 = (params, {̃︀𝔹𝚤, ̃︀𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒚

(0,̂︀𝛽),𝒇 (0), {𝒚(𝚤,ℓ,̂︀𝛽),𝒇 (𝚤,ℓ)}𝚤∈[𝑛′+𝑛],ℓ∈[2]),
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where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜋, ̃︀𝜋′, ̃︀𝜅, ̃︀𝜏 , ̃︀𝜃 U←− 𝔽𝑞;̃︀𝔹0 = {𝒃(0,1), 𝒃(0,4), . . . , 𝒃(0,6)}, ̃︀𝔹*
0 = {𝒃*(0,1), 𝒃*(0,3), . . . , 𝒃*(0,6)};

𝒚(0,0) = (0, ̃︀𝜋, 0, 0, ̃︀𝜅, 0)𝔹*
0
,𝒚(0,1) = (0, 0, ̃︀𝜋′, 0, ̃︀𝜅, 0)𝔹*

0
;

𝒇 (0) = (0, ̃︀𝜏 , ̃︀𝜃, 0, 0, 0)𝔹0 ;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,7), . . . , 𝒃(𝚤,9)}̃︀𝔹*
𝚤 = {𝒃*(𝚤,1), 𝒃*(𝚤,2), 𝒃*(𝚤,5), . . . , 𝒃*(𝚤,9)}

}︃
for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0), 𝑒⃗(2) = (0, 1) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,ℓ,0) = (⃗02, ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒚(𝚤,ℓ,1) = (⃗02, 0⃗2, ̃︀𝜋′𝑒⃗(ℓ), ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒇 (𝚤,ℓ) = (⃗02, ̃︀𝜏 𝑒⃗(ℓ), ̃︀𝜃𝑒⃗(ℓ), 0⃗2, 0)𝔹𝚤
⎫⎬⎭ for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2].

ℬ2-2 interacts with ℋ as follows:

1. First, ℬ2-2 provides the public parameters mpk = (params, {̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}}𝚤∈[𝑛′+𝑛]),
all of which are taken from the given Problem 3 instance.

2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th decryption key query of ℋ for some function 𝑓𝑕 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip , ℬ2-2 proceeds as follows:
(a) (𝑕 < 𝜒) ℬ2-2 gives ℋ a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]), the
components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are generated as in Eq. (3.7) using
the partial bases {̃︀𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] included within the given Problem 3 instance.
(b) (𝑕 = 𝜒) ℬ2-2 forms

(︀
({𝜎𝜒,𝑗}𝑗∈[𝑛], {𝛼𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒] → [𝑛′]

)︀
,
(︀
({𝜎̆𝜒,𝑗}𝑗∈[𝑛],

{𝛼̆𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]), 𝜌𝜒 : [𝑚𝜒] → [𝑛′]
)︀ R←− PGB(𝑓𝜒), samples 𝜁𝜒, 𝜁𝜒, {̂︀𝜅′𝜒,𝑗′,1, ̂︀𝜅′𝜒,𝑗′,2}𝑗′∈[𝑚𝜒],

{̂︀𝜅𝜒,𝑗,1, ̂︀𝜅𝜒,𝑗,2}𝑗∈[𝑛] U←− 𝔽𝑞, computes

𝒌′(𝜒,𝑗′) = 𝛾𝜒,𝑗′𝒚
(𝜌𝜒(𝑗′),1,̂︀𝛽) + 𝛼̆𝜒,𝑗′𝒚

(𝜌𝜒(𝑗′),2,̂︀𝛽) + 𝛾𝜒,𝑗′𝒃
*(𝜌𝜒(𝑗′),1)+

𝛼𝜒,𝑗′𝒃
*(𝜌𝜒(𝑗′),2) + ̂︀𝜅′𝜒,𝑗′,1𝒃*(𝜌𝜒(𝑗′),7) + ̂︀𝜅′𝜒,𝑗′,2𝒃(𝜌𝜒(𝑗′),8) for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = 𝜎̆𝜒,𝑗𝒚
(𝑛′+𝑗,1,̂︀𝛽) + 𝜁𝜒𝒚

(𝑛′+𝑗,2,̂︀𝛽) + 𝜎𝜒,𝑗𝒃
*(𝑛′+𝑗,1) + 𝜁𝜒𝒃

*(𝑛′+𝑗,2)+̂︀𝜅𝜒,𝑗,1𝒃*(𝑛′+𝑗,7) + ̂︀𝜅𝜒,𝑗,2𝒃*(𝑛′+𝑗,8) for 𝑗 ∈ [𝑛],

and returns the decryption key sk(𝑓𝜒) = (𝑓𝜒, {𝒌′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒], {𝒌(𝜒,𝑗)}𝑗∈[𝑛]) to ℋ.
(c) (𝑕 > 𝜒) ℬ2-2 gives ℋ a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]), the
components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are generated as in Eq. (3.2) using
the partial bases {̃︀𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] of the given Problem 3 instance.
3. When ℬ2-2 receives the ciphertext query from ℋ for some pair of public-private attribute

strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′
𝑞 × 𝔽𝑛

𝑞 , ℬ2-2 samples 𝑠⃗
U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛

𝑞 |𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 𝑅abp∘ip(𝑓𝑕,

(𝑥⃗, 𝑧⃗))∀𝑕 ∈ [𝑞key-pre]}, samples 𝜔, {𝜙′
𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, computes

𝒄′(𝜄
′) = 𝒇 (𝜄′,1) + 𝑥𝜄′𝒇

(𝜄′,2) + 𝜔𝒃(𝜄
′,1) + 𝜔𝑥𝜄′𝒃

(𝜄′,2) + 𝜙′
𝜄′𝒃

(𝜄′,9) for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = 𝒇 (𝑛′+𝜄,1) + 𝑠𝜄𝒇
(𝑛′+𝜄,2) + 𝜔𝒃(𝑛

′+𝜄,1) + 𝜔𝑧𝜄𝒃
(𝑛′+𝜄,2) + 𝜙𝜄𝒃

(𝑛′+𝜄,9) for 𝜄 ∈ [𝑛],

and hands ℋ the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
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4. ℋ eventually outputs a bit 𝛽 ∈ {0, 1}. ℬ2-2 outputs ̂︀𝛽′ = 𝛽 as its guess bit in its Problem 3
challenge.

Observe that when ̂︀𝛽 = 0, i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,0) = (⃗02, ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈
[2], the components of the 𝜒th decryption key sk(𝑓𝜒) returned by ℬ2-2 to ℋ take the form

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), (̃︀𝜋𝛾𝜒,𝑗′ , ̃︀𝜋𝛼̆𝜒,𝑗′), 0⃗
2,

(̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), (̃︀𝜋𝜎̆𝜒,𝑗 , ̃︀𝜋𝜁𝜒), 0⃗2,
(̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

which coincides with those in Hyb2-𝜒-3 (Eq. (3.5)), where we have ̃︀𝛼𝜒,𝑗′ = ̃︀𝜋𝛼̆𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′ = ̃︀𝜋𝛾𝜒,𝑗′
for 𝑗′ ∈ [𝑚𝜒], ̃︀𝜎𝜒,𝑗 = ̃︀𝜋𝜎̆𝜒,𝑗 for 𝑗 ∈ [𝑛], ̃︀𝜁𝜒 = ̃︀𝜋𝜁𝜒, 𝜅⃗′(𝜒,𝑗′) = (̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2) for
𝑗′ ∈ [𝑚𝜒], and 𝜅⃗(𝜒,𝑗) = (̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2) for 𝑗 ∈ [𝑛]. On the other hand, in case ̂︀𝛽 = 1,
i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,1) = (⃗02, 0⃗2, ̃︀𝜋′𝑒⃗(ℓ), ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*

𝚤
for 𝚤 ∈ [𝑛′+𝑛], ℓ ∈ [2], the components of the 𝜒th

decryption key sk(𝑓𝜒) given by ℬ2-2 to ℋ take the form

𝒌′(𝜒,𝑗′) = ((𝛾𝜒,𝑗′ , 𝛼𝜒,𝑗′), 0⃗
2, (̃︀𝜋′𝛾𝜒,𝑗′ , ̃︀𝜋′𝛼̆𝜒,𝑗′),

(̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2), 0)𝔹*
𝜌𝜒(𝑗′)

for 𝑗′ ∈ [𝑚𝜒],

𝒌(𝜒,𝑗) = ((𝜎𝜒,𝑗 , 𝜁𝜒), 0⃗
2, (̃︀𝜋′𝜎̆𝜒,𝑗 , ̃︀𝜋′𝜁𝜒),

(̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

which coincides with that in Hyb2-𝜒-4 (Eq. (3.7)), where we have ̂︀𝛼𝜒,𝑗′ = ̃︀𝜋′𝛼̆𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′ = ̃︀𝜋′𝛾𝜒,𝑗′

for 𝑗′ ∈ [𝑚𝜒], ̂︀𝜎𝜒,𝑗 = ̃︀𝜋′𝜎̆𝜒,𝑗 for 𝑗 ∈ [𝑛], ̂︀𝜁𝜒 = ̃︀𝜋′𝜁𝜒, 𝜅⃗′(𝜒,𝑗′) = (̃︀𝜅𝛾𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,1, ̃︀𝜅𝛼̆𝜒,𝑗′ + ̂︀𝜅′𝜒,𝑗′,2) for
𝑗′ ∈ [𝑚𝜒], and 𝜅⃗(𝜒,𝑗) = (̃︀𝜅𝜎̆𝜒,𝑗 + ̂︀𝜅𝜒,𝑗,1, ̃︀𝜅𝜁𝜒 + ̂︀𝜅𝜒,𝑗,2) for 𝑗 ∈ [𝑛].

Clearly, ̃︀𝜁𝜒 is uniformly and independently (of the other variables) distributed in 𝔽𝑞 except
when ̃︀𝜋 = 0, and so is ̂︀𝜁𝜒 except when ̃︀𝜋′ = 0. This is because 𝜁𝜒 is sampled uniformly and
independently (of the other variables) from 𝔽𝑞. For similar reasons, each of {𝜅⃗′(𝜒,𝑗′)}𝑗′∈[𝑚𝜒] and
{𝜅⃗(𝜒,𝑗)}𝑗∈[𝑛] is uniformly and independently (of the other variables) distributed in 𝔽2

𝑞 . In order
to see that ({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) and ({̂︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̂︀𝛼𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) simulated by
ℬ2-2 have the desired distribution in Hyb2-𝜒-3 and Hyb2-𝜒-4 respectively, i.e., their distributions
coincide with the output distribution of PGB(𝑓𝜒) with uniform and independent (of the other
variables of those experiments) randomness, let 𝑟⃗(𝜒)

U←− 𝔽𝑚𝜒+𝑛−1
𝑞 be the random vector used

while generating the constants ({𝜎̆𝜒,𝑗}𝑗∈[𝑛], {𝛼̆𝜒,𝑗′ , 𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]). Then, by the linearity property
of PGB (as described in Section 2.3), it follows that the constants ({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒])
and ({̂︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̂︀𝛼𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) respectively are the outputs of PGB(𝑓𝜒) with randomness
𝑟⃗′(𝜒) = ̃︀𝜋𝑟⃗(𝜒) and 𝑟⃗′′(𝜒) = ̃︀𝜋′𝑟⃗(𝜒). Since, 𝑟⃗(𝜒) is uniformly and independently (of the other vari-
ables) sampled from 𝔽𝑚𝜒+𝑛−1

𝑞 , it follows that 𝑟⃗′(𝜒) is uniformly and independently (of the other
variables) distributed in 𝔽𝑚𝜒+𝑛−1

𝑞 except when ̃︀𝜋 = 0, and so is 𝑟⃗′′(𝜒) except when ̃︀𝜋′ = 0. Thus,
({̃︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̃︀𝛼𝜒,𝑗′ , ̃︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) simulated by ℬ2-2 have the desired distribution in Hyb2-𝜒-3 ex-
cept when ̃︀𝜋 = 0, and the same holds for ({̂︀𝜎𝜒,𝑗}𝑗∈[𝑛], {̂︀𝛼𝜒,𝑗′ , ̂︀𝛾𝜒,𝑗′}𝑗′∈[𝑚𝜒]) in Hyb2-𝜒-4 except
when ̃︀𝜋′ = 0.

Also, the components of the ciphertext ct returned to ℋ by ℬ2-2 have the form

𝒄′(𝜄
′) = (𝜔(1, 𝑥𝜄′), ̃︀𝜏(1, 𝑥𝜄′), ̃︀𝜃(1, 𝑥𝜄′), 0⃗2, 𝜙′

𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (𝜔(1, 𝑧𝜄), ̃︀𝜏(1, 𝑠𝜄), ̃︀𝜃(1, 𝑠𝜄), 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

which coincides with those in Eq. (3.6) corresponding to both Hyb2-𝜒-3 and Hyb2-𝜒-4, where
𝜏 = ̃︀𝜏 and 𝜃 = ̃︀𝜃 are clearly distributed uniformly and independently (of the other variables)
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in 𝔽𝑞. Moreover, for all 𝑕 ∈ [𝑞key]∖{𝜒}, the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌𝑕,𝑗}𝑗∈[𝑛] of the
𝑕th decryption key sk(𝑓𝑕) given to ℋ by ℬ2-2 are generated the same as in Eq. (3.7), if 𝑕 < 𝜒,
and as in Eq. (3.2), if 𝑕 > 𝜒, which are their proper forms in the respective cases both in
Hyb2-𝜒-3 and in Hyb2-𝜒-4. Finally, the public parameters mpk provided to ℋ by ℬ2-2 are clearly
distributed identically to those in both Hyb2-𝜒-3 and Hyb2-𝜒-4. Therefore, it follows that the view
of ℋ simulated by ℬ2-2 given 𝜒 and a Problem 3 instance 𝜚P3̂︀𝛽 for ̂︀𝛽 ∈ {0, 1}, coincides with that

in Hyb2-𝜒-3 except with probability 1/𝑞, if ̂︀𝛽 = 0, while that in Hyb2-𝜒-4 except with probability
1/𝑞, if ̂︀𝛽 = 1. Hence the lemma follows. ⊓⊔

Lemma B.7: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ3, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(2-𝑞key-pre-4)

ℋ (𝜆)− Adv(3)ℋ (𝜆)| ≤ AdvP2
ℬ3
(𝜆) + 3/𝑞.

Proof: In order to achieve the transition from Hyb2-𝑞key-pre-4 to Hyb3, we first alter the forms
of the components {𝒄′(𝜄′)}𝜄′∈[𝑛′] and {𝒄(𝜄)}𝜄∈[𝑛] of the ciphertext ct returned to ℋ from those in
Eq. (3.6), which corresponds to Hyb2-𝑞key-pre-4, to those in Eq. (3.4), which corresponds to Hyb3,
via an information-theoretic change as shown in Case (II) in the proof of Lemma B.2. Then, for
all 𝑕 ∈ [𝑞key], we modify the forms of the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of the
𝑕th decryption key sk(𝑓𝑕) returned to ℋ from those in Eq. (3.7), if 𝑕 ∈ [𝑞key-pre], and Eq. (3.2),
if 𝑕 ∈ [𝑞key-pre] + 1, 𝑞key], which correspond to the respective cases in Hyb2-𝑞key-pre-4, to those in
Eq. (3.8), which correspond to Hyb3, and we bound the difference in the advantage of ℋ with
that of an algorithm ℬ3 against Problem 2 in a manner similar to that in the proof of Lemma B.3.
We omit the details to avoid repetition. ⊓⊔

Lemma B.8: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
|Adv(3)ℋ (𝜆)− Adv(4)ℋ (𝜆)| ≤ 1/𝑞.

Proof: In order to prove Lemma B.8, we show that the distribution of the view of ℋ, i.e., the
distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb3 and that in Hyb4 are equivalent. Consider the
distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb4. Let us define new set of dual orthonormal bases
{𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] using the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] use in Hyb4 as follows: Sample

ℵ U←− 𝔽𝑞, compute the vectors

𝒅(𝚤,2+ℓ) = 𝒃(𝚤,2+ℓ) − ℵ𝒃(𝚤,ℓ), 𝒅*(𝚤,ℓ) = 𝒃*(𝚤,ℓ) + ℵ𝒃*(𝚤,2+ℓ) for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2],

and set

𝔻𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2),𝒅(𝚤,3),𝒅(𝚤,4), 𝒃(𝚤,5), . . . , 𝒃(𝚤,9)}
𝔻*
𝚤 = {𝒅*(𝚤,1),𝒅*(𝚤,2), 𝒃*(𝚤,3), . . . , 𝒃*(𝚤,9)}

}︂
for 𝚤 ∈ [𝑛′ + 𝑛].

(B.19)

It can be readily observed that the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthonormal,

and are distributed the same as the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛].

Now, notice that the components of the ciphertext ct returned to ℋ in Hyb4 can be expressed
in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (⃗02, 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′

= (𝜔(1, 𝑥𝜄′), 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

= (𝜔(1, 𝑧𝜄), 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.20)

where 𝜔 = ℵ𝜏 , and all the other variables are generated as in Hyb4. Also, for 𝑕 ∈ [𝑞key], the
components of the 𝑕th decryption key sk(𝑓𝑕) provided to ℋ in Hyb4 can be expressed in terms
of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as
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(a) (𝑕 ∈ [𝑞key-pre])

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′), (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗
′(𝑕,𝑗′), 0)𝔹*

𝜌𝑕(𝑗
′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾′𝑕,𝑗′ , ̃︀𝛼′
𝑕,𝑗′), (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕), (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎′
𝑕,𝑗 ,
̃︀𝜁 ′𝑕), (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛].

(B.21)

(b) (𝑕 ∈ [𝑞key-pre + 1, 𝑞key])

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′), 0⃗
2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾′𝑕,𝑗′ , ̃︀𝛼′
𝑕,𝑗′), 0⃗

2, 𝜅⃗′(𝑕,𝑗
′), 0)𝔻*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕), 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎′
𝑕,𝑗 ,
̃︀𝜁 ′𝑕), 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(B.22)

where ̃︀𝛼′
𝑕,𝑗′ = ̃︀𝛼𝑕,𝑗′ − ℵ𝛼𝑕,𝑗′ , ̃︀𝛾′𝑕,𝑗′ = ̃︀𝛾𝑕,𝑗′ − ℵ𝛾𝑕,𝑗′ for all 𝑕 ∈ [𝑞key], 𝑗

′ ∈ [𝑚𝑕], ̃︀𝜎′
𝑕,𝑗 = ̃︀𝜎𝑕,𝑗 − ℵ𝜎𝑕,𝑗

for all 𝑕 ∈ [𝑞key], 𝑗 ∈ [𝑛], ̃︀𝜁 ′𝑕 = ̃︀𝜁𝑕−ℵ𝜁𝑕 for all 𝑕 ∈ [𝑞key], and all the other variables are generated
as in Hyb4.

Clearly, 𝜔 is uniformly and independently (of the other variables) distributed in 𝔽𝑞 except
when 𝜏 = 0, i.e., except with probability 1/𝑞, since ℵ is sampled uniformly and independently
(of the other variables) from 𝔽𝑞. Similarly, {̃︀𝜁 ′𝑕}𝑕∈[𝑞key] are uniformly and independently (of the
other variables) distributed in 𝔽𝑞 since the variables {̃︀𝜁𝑕}𝑕∈[𝑞key] are sampled uniformly and
independently (of the other variables) from 𝔽𝑞. In order to observe that for all 𝑕 ∈ [𝑞key],
the constants ({̃︀𝜎′

𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼′
𝑕,𝑗′ , ̃︀𝛾′𝑕,𝑗′}𝑗′∈[𝑚𝑕]) are the outputs of PGB(𝑓𝑕) with fresh uniform

randomness, let 𝑟⃗(𝑕,1) and 𝑟⃗(𝑕,2) be the random vectors used by PGB(𝑓𝑕) while generating the
constants ({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) and ({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) respectively for
𝑕 ∈ [𝑞key]. Then, by the linearity property of PGB, as described in Section 2.3, it follows that
for all 𝑕 ∈ [𝑞key], the constants ({̃︀𝜎′

𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼′
𝑕,𝑗′ , ̃︀𝛾′𝑕,𝑗′}𝑗′∈[𝑚𝑕]) are the output of PGB(𝑓𝑕) with

randomness 𝑟⃗′(𝑕) = 𝑟⃗(𝑕,2)−ℵ𝑟⃗(𝑕,1). Since for all 𝑕 ∈ [𝑞key], the vectors 𝑟⃗(𝑕,2) are sampled uniformly
and independently (of the other variables) from 𝔽𝑚𝑕+𝑛−1

𝑞 , the vectors {𝑟⃗′(𝑕)}𝑕∈[𝑞key] are also
uniformly distributed in 𝔽𝑚𝑕+𝑛−1

𝑞 , and are independent of all the other variables.
Now, note that in the view of ℋ, both the original set of bases {𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] and the
transformed set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk. Further,
for all 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) returned to ℋ preserve their
forms as in Eq. (3.8), which is their proper forms in Hyb3, under the basis transformation. Finally,
since the RHS of Eq. (B.20) and that of Eq. (3.4) have the same form except with probability 1/𝑞,
it follows that the components of the ciphertext ct returned to ℋ in Hyb4 can be conceptually
changed to those in Hyb3 except with probability 1/𝑞. Hence the lemma follows. ⊓⊔

Lemma B.9: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ4, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(4)ℋ (𝜆)− Adv(5)ℋ (𝜆)| ≤ AdvP2

ℬ4
(𝜆) + 5/𝑞 + negl(𝜆), where negl is some negligible function.

Proof: In order to prove Lemma B.9, we construct below a probabilistic algorithm ℬ4 against
Problem 2 using a stateful probabilistic adversary ℋ for distinguishing between Hyb4 and Hyb5
as a black-box sub-routine. Suppose ℬ4 is given an instance of Problem 2,

𝜚P2̂︀𝛽 = (params, {̃︀𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛],𝒚

(0,̂︀𝛽),𝒇 (0), {𝒚(𝚤,ℓ,̂︀𝛽),𝒇 (𝚤,ℓ)}𝚤∈[𝑛′+𝑛],ℓ∈[2]),
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where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));̃︀𝛿, ̃︀𝜅, ̃︀𝜋, ̃︀𝜔, ̃︀𝜏 U←− 𝔽𝑞;̃︀𝔹0 = {𝒃(0,1), 𝒃(0,3), . . . , 𝒃(0,6)};

𝒚(0,0) = (̃︀𝛿, 0, 0, 0, ̃︀𝜅, 0)𝔹*
0
,𝒚(0,1) = (̃︀𝛿, ̃︀𝜋, 0, 0, ̃︀𝜅, 0)𝔹*

0
;

𝒇 (0) = (̃︀𝜔, ̃︀𝜏 , 0, 0, 0, 0)𝔹0 ;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,5), . . . , 𝒃(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0), 𝑒⃗(2) = (0, 1) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,ℓ,0) = (̃︀𝛿𝑒⃗(ℓ), 0⃗2, 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒚(𝚤,ℓ,1) = (̃︀𝛿𝑒⃗(ℓ), ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

𝒇 (𝚤,ℓ) = (̃︀𝜔𝑒⃗(ℓ), ̃︀𝜏 𝑒⃗(ℓ), 0⃗2, 0⃗2, 0)𝔹𝚤
⎫⎪⎬⎪⎭ for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈ [2].

ℬ4 interacts with ℋ as follows:

1. First, ℬ4 (implicitly) sets new dual orthogonal bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] using the bases

{𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] of the Problem 2 instance as

𝔻𝚤 = {𝒅(𝚤,1), . . . ,𝒅(𝚤,9)} = {𝒃(𝚤,5), 𝒃(𝚤,6), 𝒃(𝚤,3), 𝒃(𝚤,4), 𝒃(𝚤,1), 𝒃(𝚤,2),
𝒃(𝚤,7), . . . , 𝒃(𝚤,9)}

𝔻*
𝚤 = {𝒅*(𝚤,1), . . . ,𝒅*(𝚤,9)} = {𝒃*(𝚤,5), 𝒃*(𝚤,6), 𝒃*(𝚤,3), 𝒃*(𝚤,4), 𝒃*(𝚤,1),

𝒃*(𝚤,2), 𝒃*(𝚤,7), . . . , 𝒃*(𝚤,9)}

⎫⎪⎪⎬⎪⎪⎭ for 𝚤 ∈ [𝑛′ + 𝑛]. (B.23)

Observe that {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthogonal, and are distributed the same as

the bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] of the Problem 2 instance. ℬ4 provides ℋ the public parameters

mpk = (params, {̂︀𝔻𝚤}𝚤∈[𝑛′+𝑛]), where params is taken from the given Problem 2 instance, and
for all 𝚤 ∈ [𝑛′+𝑛], ̂︀𝔻𝚤 = {𝒅(𝚤,1),𝒅(𝚤,2),𝒅(𝚤,9)} = {𝒃(𝚤,5), 𝒃(𝚤,6), 𝒃(𝚤,9)} is also constructed from the
given Problem 2 instance.

2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th decryption key query of ℋ for some function 𝑓𝑕 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip , ℬ4 proceeds as follows:
(a) (𝑕 ∈ [𝑞key-pre]) ℬ4 creates

(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀
,
(︀
({𝜎̆𝑕,𝑗}𝑗∈[𝑛],

{𝛼̆𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕] → [𝑛′]
)︀
,
(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕] → [𝑛′]

)︀
R←− PGB(𝑓𝑕), samples 𝜁𝑕, 𝜁𝑕, 𝜁𝑕, {̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜅′𝑕,𝑗′,2}𝑗′∈[𝑚𝑕], {̂︀𝜅𝑕,𝑗,1, ̂︀𝜅𝑕,𝑗,2}𝑗∈[𝑛] U←− 𝔽𝑞, computes

𝒌′(𝑕,𝑗′) = 𝛾𝑕,𝑗′𝒚
(𝜌𝑕(𝑗

′),1,̂︀𝛽) + 𝛼̆𝑕,𝑗′𝒚
(𝜌𝑕(𝑗

′),2,̂︀𝛽) + 𝛾𝑕,𝑗′𝒃
*(𝜌𝑕(𝑗′),1) + 𝛼𝑕,𝑗′𝒃

*(𝜌𝑕(𝑗′),2)+

𝛾𝑕,𝑗′𝒃
*(𝜌𝑕(𝑗′),5) + 𝛼𝑕,𝑗′𝒃

*(𝜌𝑕(𝑗′),6) + ̂︀𝜅′𝑕,𝑗′,1𝒃*(𝜌𝑕(𝑗′),7) + ̂︀𝜅′𝑕,𝑗′,2𝒃(𝜌𝑕(𝑗′),8) for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = 𝜎̆𝑕,𝑗𝒚
(𝑛′+𝑗,1,̂︀𝛽) + 𝜁𝑕𝒚

(𝑛′+𝑗,2,̂︀𝛽) + 𝜎𝑕,𝑗𝒃
*(𝑛′+𝑗,1) + 𝜁𝑕𝒃

*(𝑛′+𝑗,2)+

𝜎𝑕,𝑗𝒃
*(𝑛′+𝑗,5) + 𝜁𝑕𝒃

*(𝑛′+𝑗,6) + ̂︀𝜅𝑕,𝑗,1𝒃*(𝑛′+𝑗,7) + ̂︀𝜅𝑕,𝑗,2𝒃*(𝑛′+𝑗,8) for 𝑗 ∈ [𝑛],

and returns the decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛]) to ℋ.

(b) (𝑕 ∈ [𝑞key-pre+1, 𝑞key]) ℬ4 provides ℋ with a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕],

{𝒌(𝑕,𝑗)}𝑗∈[𝑛]), the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are formed as in
Eq. (3.8) using the bases {𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] constructed in Step 1 by modifying the original bases
{𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] of the given Problem 2 instance.
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3. When ℬ4 receives the ciphertext query fromℋ for some pair of public-private attribute strings
(𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , ℬ4 samples 𝑠⃗′

U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛
𝑞 |𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗))∀

𝑕 ∈ [𝑞key-pre]}, samples ̂︀𝜃, {𝜙′
𝜄′}𝜄′∈[𝑛′], {𝜙𝜄}𝜄∈[𝑛]

U←− 𝔽𝑞, computes

𝒄′(𝜄
′) = ̂︀𝜃𝒇 (𝜄′,1) + ̂︀𝜃𝑥𝜄′𝒇 (𝜄′,2) + 𝜙′

𝜄′𝒃
(𝜄′,9) for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = ̂︀𝜃𝒇 (𝑛′+𝜄,1) + ̂︀𝜃𝑧𝜄𝒇 (𝑛′+𝜄,2) + ̂︀𝜃𝑠′𝜄𝒃(𝑛′+𝜄,2) + 𝜙𝜄𝒃
(𝑛′+𝜄,9) for 𝜄 ∈ [𝑛],

and hands ℋ the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
4. ℋ eventually outputs a bit 𝛽 ∈ {0, 1}. ℬ4 outputs ̂︀𝛽′ = 𝛽 as its guess bit in its Problem 2

challenge.

Observe that when ̂︀𝛽 = 0, i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,0) = (̃︀𝛿𝑒⃗(ℓ), 0⃗2, 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′ + 𝑛], ℓ ∈
[2], then for all 𝑕 ∈ [𝑞key-pre], the components of the 𝑕th decryption key sk(𝑓𝑕) returned by ℬ4
to ℋ take the form

𝒌′(𝑕,𝑗′) = ((̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ , ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′), 0⃗
2, (𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝜅𝛾𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔹*

𝜌𝑕(𝑗
′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ , ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′), (̃︀𝜅𝛾𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔻*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 , ̃︀𝛿𝜁𝑕 + 𝜁𝑕), 0⃗
2, (𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 , ̃︀𝛿𝜁𝑕 + 𝜁𝑕), (̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

which coincides with those in Hyb5 (Eq. (3.7)), where we have ̂︀𝛼𝑕,𝑗′ = ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′ =̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ for 𝑗′ ∈ [𝑚𝑕], ̂︀𝜎𝑕,𝑗 = ̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 for 𝑗 ∈ [𝑛], ̂︀𝜁𝑕 = ̃︀𝛿𝜁𝑕 + 𝜁𝑕, 𝜅⃗′(𝑕,𝑗
′) = (̃︀𝜅𝛾𝑕,𝑗′ +̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2) for 𝑗′ ∈ [𝑚𝑕], and 𝜅⃗(𝑕,𝑗) = (̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2) for 𝑗 ∈ [𝑛]. On the

other hand, in case ̂︀𝛽 = 1, i.e., 𝒚(𝚤,ℓ,̂︀𝛽) = 𝒚(𝚤,ℓ,1) = (̃︀𝛿𝑒⃗(ℓ), ̃︀𝜋𝑒⃗(ℓ), 0⃗2, ̃︀𝜅𝑒⃗(ℓ), 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′+𝑛], ℓ ∈ [2],
then for all 𝑕 ∈ [𝑞key-pre], the components of the 𝑕th decryption key sk(𝑓𝑕) given by ℬ4 to ℋ
take the form

𝒌′(𝑕,𝑗′) = ((̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ , ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′), (̃︀𝜋𝛾𝑕,𝑗′ , ̃︀𝜋𝛼̆𝑕,𝑗′), (𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′),

(̃︀𝜅𝛾𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝜋𝛾𝑕,𝑗′ , ̃︀𝜋𝛼̆𝑕,𝑗′), (̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ , ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′),

(̃︀𝜅𝛾𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 , ̃︀𝛿𝜁𝑕 + 𝜁𝑕), (̃︀𝜋𝜎̆𝑕,𝑗 , ̃︀𝜋𝜁𝑕), (𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2), 0)𝔹*
𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜋𝜎̆𝑕,𝑗 , ̃︀𝜋𝜁𝑕), (̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 , ̃︀𝛿𝜁𝑕 + 𝜁𝑕),

(̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2), 0)𝔻*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

which coincides with that in Hyb4 (Eq. (3.8)), where we have ̂︀𝛼𝑕,𝑗′ = ̃︀𝛿𝛼̆𝑕,𝑗′ + 𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′ =̃︀𝛿𝛾𝑕,𝑗′ + 𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′ = ̃︀𝜋𝛼̆𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′ = ̃︀𝜋𝛾𝑕,𝑗′ for 𝑗′ ∈ [𝑚𝑕], ̂︀𝜎𝑕,𝑗 = ̃︀𝛿𝜎̆𝑕,𝑗 + 𝜎𝑕,𝑗 , ̃︀𝜎𝑕,𝑗 = ̃︀𝜋𝜎̆𝑕,𝑗 for
𝑗 ∈ [𝑛], ̂︀𝜁𝑕 = ̃︀𝛿𝜁𝑕 + 𝜁𝑕, ̃︀𝜁𝑕 = ̃︀𝜋𝜁𝑕, 𝜅⃗′(𝑕,𝑗′) = (̃︀𝜅𝛾𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,1, ̃︀𝜅𝛼̆𝑕,𝑗′ + ̂︀𝜅′𝑕,𝑗′,2) for 𝑗′ ∈ [𝑚𝑕], and
𝜅⃗(𝑕,𝑗) = (̃︀𝜅𝜎̆𝑕,𝑗 + ̂︀𝜅𝑕,𝑗,1, ̃︀𝜅𝜁𝑕 + ̂︀𝜅𝑕,𝑗,2) for 𝑗 ∈ [𝑛].

Clearly, for all 𝑕 ∈ [𝑞key-pre], ̂︀𝜁𝑕 is uniformly and independently (of the other variables) dis-
tributed in 𝔽𝑞, and so is ̃︀𝜁𝑕 except when ̃︀𝜋 = 0. This is because 𝜁𝑕 and 𝜁𝑕 are sampled uniformly
and independently (of the other variables) from 𝔽𝑞. For similar reasons, for all 𝑕 ∈ [𝑞key-pre],
each of {𝜅⃗′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝜅⃗(𝑕,𝑗)}𝑗∈[𝑛] is uniformly and independently (of the other variables)
distributed in 𝔽2

𝑞 . In order to see that for all 𝑕 ∈ [𝑞key-pre], ({̂︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̂︀𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕])
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and ({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) simulated by ℬ4 have the desired distribution in Hyb5
and Hyb4, i.e., their distribution coincides with the output distribution of PGB(𝑓𝑕) with uni-
form and independent (of the other variables) randomness, let for 𝑕 ∈ [𝑞key-pre], 𝑟⃗(𝑕,1)

U←−
𝔽𝑚𝑕+𝑛−1
𝑞 and 𝑟⃗(𝑕,2)

U←− 𝔽𝑚𝑕+𝑛−1
𝑞 be the random vectors used while forming the constants

({𝜎̆𝑕,𝑗}𝑗∈[𝑛], {𝛼̆𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) and ({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) respectively. Then, by the
linearity property of PGB (as described in Section 2.3), it follows that for all 𝑕 ∈ [𝑞key-pre], the
constants ({̂︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̂︀𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) and ({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) respectively are
the outputs of PGB(𝑓𝑕) with randomness 𝑟⃗′′(𝑕) = ̃︀𝛿𝑟⃗(𝑕,1) + 𝑟⃗(𝑕,2) and 𝑟⃗′(𝑕) = ̃︀𝜋𝑟⃗(𝑕,1). Since, for all
𝑕 ∈ [𝑞key-pre], the vectors 𝑟⃗(𝑕,1) and 𝑟⃗(𝑕,2) are uniformly and independently (of one another and
of all the other variables) sampled from 𝔽𝑚𝑕+𝑛−1

𝑞 , it follows that 𝑟⃗′′(𝑕) is uniformly distributed
in 𝔽𝑚𝑕+𝑛−1

𝑞 , and so is 𝑟⃗′(𝑕) except when ̃︀𝜋 = 0, as well as they are independent of one an-
other and of all the other variables. Thus, for all 𝑕 ∈ [𝑞key-pre], ({̂︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̂︀𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕])
and ({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) simulated by ℬ4 have the desired distributions except wheñ︀𝜋 = 0.

Also, the components of the ciphertext ct returned to ℋ by ℬ4 have the form

𝒄′(𝜄
′) = (̂︀𝜃̃︀𝜔(1, 𝑥𝜄′), ̂︀𝜃̃︀𝜏(1, 𝑥𝜄′), 0⃗2, 0⃗2, 𝜙′

𝜄′)𝔹𝜄′

= (⃗02, ̂︀𝜃̃︀𝜏(1, 𝑥𝜄′), ̂︀𝜃̃︀𝜔(1, 𝑥𝜄′), 0⃗2, 𝜙′
𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (̂︀𝜃̃︀𝜔(1, 𝑧𝜄) + ̂︀𝜃(0, 𝑠′𝜄), ̂︀𝜃̃︀𝜏(1, 𝑧𝜄), 0⃗2, 0⃗2, 𝜙𝜄)𝔹𝑛′+𝜄

= (⃗02, ̂︀𝜃̃︀𝜏(1, 𝑧𝜄), ̂︀𝜃̃︀𝜔(1, 𝑧𝜄) + ̂︀𝜃(0, 𝑠′𝜄), 0⃗2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

which coincides with those in Eq. (3.9) corresponding to both Hyb4 and Hyb5, where we have
𝜏 = ̂︀𝜃̃︀𝜏 , 𝜃 = ̂︀𝜃̃︀𝜔, and 𝑠⃗ = 𝑧⃗+ ̃︀𝜔−1𝑠⃗′. Clearly, 𝜏 = ̂︀𝜃̃︀𝜏 is uniformly and independently (of the other
variables) distributed in 𝔽𝑞 except when ̂︀𝜃 = 0, since ̃︀𝜏 is so. Similarly, 𝜃 = ̂︀𝜃̃︀𝜔 is uniformly and
independently (of the other variables) distributed in 𝔽𝑞 except when ̃︀𝜔 = 0, since ̂︀𝜃 is so. Further,
𝑠⃗ = 𝑧⃗+ ̃︀𝜔−1𝑠⃗′ is uniformly and independently (of the other variables) distributed in 𝑆 other than
negligible probability, except when ̃︀𝜔 = 0, since 𝑠⃗′ is sampled uniformly and independently (of
the other variables) from 𝑆 and 𝑧⃗ ∈ 𝑆. Moreover, for all 𝑕 ∈ [𝑞key-pre +1, 𝑞key], the components
{𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌𝑕,𝑗}𝑗∈[𝑛] of the 𝑕th decryption key sk(𝑓𝑕) given to ℋ by ℬ4 are generated
the same as in Eq. (3.8) which are their proper forms both in Hyb4 and in Hyb5. Finally, the
public parameters mpk provided to ℋ by ℬ4 are clearly distributed identically to those in both
Hyb4 and Hyb5. Therefore, it follows that the view of ℋ simulated by ℬ4 given a Problem 2
instance 𝜚P2̂︀𝛽 for ̂︀𝛽 ∈ {0, 1}, coincides with that in Hyb4 except with probability 3/𝑞 + negl(𝜆),

i.e., except when one of ̃︀𝜋, ̃︀𝜔, and ̂︀𝜃 is 0, if ̂︀𝛽 = 1, while that in Hyb5 except with probability
2/𝑞 + negl(𝜆), i.e., except when one of ̃︀𝜔 and ̂︀𝜃 is 0, if ̂︀𝛽 = 0, where negl is some negligible
function. Hence the lemma follows. ⊓⊔

Lemma B.10: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
Adv(5)ℋ (𝜆) = Adv(6)ℋ (𝜆).

Proof: In order to prove Lemma B.10, we show that the distribution of the view of ℋ, i.e.,
the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb5 and that in Hyb6 are equivalent. Consider
the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb5. Let us define new set of dual orthonormal
bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] from the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] used in Hyb5 as follows:

Generate matrices 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑥𝜄′)𝒁 = 𝑒⃗(2) = (0, 1)} for 𝜄′ ∈ [𝑛′], 𝒁𝜄
U←−

{𝒁 ∈ GL(2,𝔽𝑞|(1, 𝑧𝜄)𝒁 = 𝑒⃗(2) = (0, 1)} for 𝜄 ∈ [𝑛], define 𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺ for 𝜄′ ∈ [𝑛′],
𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛], where (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is the pair of public-private attribute
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strings corresponding to the ciphertext query of ℋ, compute the vectors(︂
𝒅(𝜄′,3)

𝒅(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))−1

(︂
𝒃(𝜄

′,3)

𝒃(𝜄
′,4)

)︂
,

(︂
𝒅*(𝜄′,3)

𝒅*(𝜄′,4)

)︂
= (𝒁 ′(𝜄′))⊺

(︂
𝒃*(𝜄

′,3)

𝒃*(𝜄
′,4)

)︂
for 𝜄′ ∈ [𝑛′],

(︂
𝒅(𝑛′+𝜄,3)

𝒅(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))−1

(︂
𝒃(𝑛

′+𝜄,3)

𝒃(𝑛
′+𝜄,4)

)︂
,

(︂
𝒅*(𝑛′+𝜄,3)

𝒅*(𝑛′+𝜄,4)

)︂
= (𝒁(𝜄))⊺

(︂
𝒃*(𝑛

′+𝜄,3)

𝒃*(𝑛
′+𝜄,4)

)︂
for 𝜄 ∈ [𝑛],

and set

𝔻𝜄′ = {𝒃(𝜄
′,1), 𝒃(𝜄

′,2),𝒅(𝜄′,3),𝒅(𝜄′,4), 𝒃(𝜄
′,5), . . . , 𝒃(𝜄

′,9)}
𝔻*
𝜄′ = {𝒃*(𝜄

′,1), 𝒃*(𝜄
′,2),𝒅*(𝜄′,3),𝒅*(𝜄′,4), 𝒃*(𝜄

′,5), . . . , 𝒃*(𝜄
′,9)}

}︂
for 𝜄′ ∈ [𝑛′],

𝔻𝑛′+𝜄 = {𝒃(𝑛
′+𝜄,1), 𝒃(𝑛

′+𝜄,2),𝒅(𝑛′+𝜄,3),𝒅(𝑛′+𝜄,4), 𝒃(𝑛
′+𝜄,5), . . . , 𝒃(𝑛

′+𝜄,9)}
𝔻*
𝑛′+𝜄 = {𝒃*(𝑛

′+𝜄,1), 𝒃*(𝑛
′+𝜄,2),𝒅*(𝑛′+𝜄,3),𝒅*(𝑛′+𝜄,4), 𝒃*(𝑛

′+𝜄,5), . . . , 𝒃*(𝑛
′+𝜄,9)}

}︂
for 𝜄 ∈ [𝑛].

(B.24)

It can be readily observed that the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are indeed dual orthonormal,

and are distributed the same as the original set of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛].

Now, notice that the components of the ciphertext ct returned to ℋ in Hyb5 can be expressed
in terms of the new set of bases {𝔻𝚤,𝔻*

𝚤 }𝚤∈[𝑛′+𝑛] as

𝒄′(𝜄
′) = (⃗02, 𝜏(1, 𝑥𝜄′), 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′

= (⃗02, 𝜏 𝑒⃗(2), 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔻𝜄′

= (⃗02, (0, 𝜏), 𝜃(1, 𝑥𝜄′), 0⃗
2, 𝜙′

𝜄′)𝔻𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, 𝜏(1, 𝑧𝜄), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄

= (⃗02, 𝜏 𝑒⃗(2), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔻𝑛′+𝜄

= (⃗02, (0, 𝜏), 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔻𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(B.25)

where all the variables are generated as in Hyb5.
Also, for 𝑕 ∈ [𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) provided to ℋ in Hyb5

can be expressed in terms of the new set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] as

(a) (𝑕 ∈ [𝑞key-pre])

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), 0⃗
2, (̂︀𝜎𝑕,𝑗 , ̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔻*

𝑛′+𝑗
for 𝑗 ∈ [𝑛].

(B.26)

(b) (𝑕 ∈ [𝑞key-pre + 1, 𝑞key])

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′), 0⃗
2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)

= ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′)𝑼
′(𝜌𝑕(𝑗′)), 0⃗2, 𝜅⃗′(𝑕,𝑗

′), 0)𝔻*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕), 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

= ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕)𝑼 (𝑗), 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔻*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(B.27)

where the matrices {𝑼 ′(𝜄′)}𝜄′∈[𝑛′], {𝑼 (𝜄)}𝜄∈[𝑛] are as computed above, and all the other variables
are generated as in Hyb5.

Now, note that in the view of ℋ, both the original sets of bases {𝔹𝚤,𝔹*
𝚤 }𝚤∈[𝑛′+𝑛] and the

transformed set of bases {𝔻𝚤,𝔻*
𝚤 }𝚤∈[𝑛′+𝑛] are consistent with the public parameters mpk. Further,
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for 𝑕 ∈ [𝑞key-pre], the components of the 𝑕th decryption key sk(𝑓𝑕) returned to ℋ preserve
their form as in Eq. (3.7) which are their proper forms in Hyb6, under the basis transformation.
Finally, since the RHS of Eq. (B.25) (respectively Eq. (B.27)) and that of Eq. (3.10) (respectively
Eq. (3.11)) have the same form, it follows that the components of the ciphertext ct and the
components of the 𝑕th decryption key sk(𝑓𝑕) for all 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], returned to ℋ in
Hyb5 can be conceptually changed to those in Hyb6. Hence the lemma follows. ⊓⊔

Lemma B.11: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ5, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(6)ℋ (𝜆)− Adv(7)ℋ (𝜆)| ≤ AdvP4

ℬ5
(𝜆) + 1/𝑞.

Proof: In order to prove Lemma B.11, we construct below a probabilistic algorithm ℬ5 against
Problem 4 using a stateful probabilistic adversary ℋ for distinguishing between Hyb6 and Hyb7
as a black-box sub-routine. Suppose ℬ5 is given an instance of Problem 4,

𝜚P4̂︀𝛽 = (params,𝔹0,𝔹*
0, {̃︀𝔹𝚤,𝔹*

𝚤 }𝚤∈[𝑛′+𝑛], {𝒚(𝚤,1,̂︀𝛽)}𝚤∈[𝑛′+𝑛]),

where

(params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9));

̃︀𝜋, ̃︀𝜅1, ̃︀𝜅2 U←− 𝔽𝑞;̃︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,4), . . . , 𝒃(𝚤,9)} for 𝚤 ∈ [𝑛′ + 𝑛];

𝑒⃗(1) = (1, 0) ∈ 𝔽2
𝑞 ;

𝒚(𝚤,1,0) = (⃗02, 0⃗2, 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

𝒚(𝚤,1,1) = (⃗02, ̃︀𝜋𝑒⃗(1), 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

}︂
for 𝚤 ∈ [𝑛′ + 𝑛].

ℬ5 interacts with ℋ as follows:

1. First, ℬ5 provides the public parameters mpk = (params, {̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}}𝚤∈[𝑛′+𝑛]),
all of which are taken from the given Problem 4 instance.

2. For 𝑕 ∈ [𝑞key], in response to the 𝑕th decryption key query of ℋ for some function 𝑓𝑕 ∈
ℱ (𝑞,𝑛′,𝑛)

abp∘ip , ℬ5 proceeds as follows:
(a) (𝑕 ∈ [𝑞key-pre]) ℬ5 gives ℋ a decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]),
the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌(𝑕,𝑗)}𝑗∈[𝑛] of which are generated as in Eq. (3.7)
using the bases {𝔹*

𝚤 }𝚤∈[𝑛′+𝑛] included within the given Problem 4 instance.
(b) (𝑕 ∈ [𝑞key-pre + 1, 𝑞key]) ℬ5 generates

(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕] → [𝑛′]

)︀
,(︀

({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]
)︀ R←− PGB(𝑓𝑕), samples 𝜁𝑕, ̃︀𝜁𝑕, {̂︀𝜂′𝑕,𝑗′}𝑗′∈[𝑚𝑕],

{̂︀𝜂𝑕,𝑗}𝑗∈[𝑛], {̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜅′𝑕,𝑗′,2}𝑗′∈[𝑚𝑕], {̂︀𝜅𝑕,𝑗,1, ̂︀𝜅𝑕,𝑗,2}𝑗∈[𝑛] U←− 𝔽𝑞, computes

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′)𝑼
′(𝜌𝑕(𝑗′)), 0⃗2, (̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜅′𝑕,𝑗′,2), 0)𝔹*

𝜌𝑕(𝑗
′)
+

̂︀𝜂′𝑕,𝑗′𝒚(𝜌𝑕(𝑗
′),1,̂︀𝛽) for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕)𝑼 (𝑗), 0⃗2, (̂︀𝜅𝑕,𝑗,1, ̂︀𝜅𝑕,𝑗,2), 0)𝔹*
𝑛′+𝑗

+ ̂︀𝜂𝑕,𝑗𝒚(𝑛′+𝑗,1,̂︀𝛽) for 𝑗 ∈ [𝑛],

where the matrices {𝑼 ′(𝜄′)}𝜄′∈[𝑛′], {𝑼 (𝜄)}𝜄∈[𝑛] are formed in Step 3 below, and returns the
decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]) to ℋ. Note that for all 𝑕 ∈
[𝑞key-pre +1, 𝑞key], the 𝑕th decryption key query is made by ℋ after making the ciphertext
query. Hence, anything that ℬ5 generates in Step 3 below can be used by ℬ5 while answering
these decryption key queries.
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3. When ℬ5 receives the ciphertext query from ℋ for some pair of public-private attribute
strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 , ℬ5 provides ℋ with a ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]),

the components {𝒄′(𝜄′)}𝜄′∈[𝑛′] and {𝒄(𝜄)}𝜄∈[𝑛] of which are computed as in Eq. (3.10) using the

partial bases {̃︀𝔹𝚤}𝚤∈[𝑛′+𝑛]. ℬ5 also samples 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑥𝜄′𝒁 = 𝑒⃗(2) = (0, 1)}
for 𝜄′ ∈ [𝑛′], 𝒁(𝜄) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑧𝜄)𝒁 = 𝑒⃗(2) = (0, 1)} for 𝜄 ∈ [𝑛], as well as computes
𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺ for 𝜄′ ∈ [𝑛′], 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛]. ℬ5 uses {𝑼 ′(𝜄′)}𝜄′∈[𝑛′] and
{𝑼 (𝜄)}𝜄∈[𝑛] while simulating the decryption keys that ℋ queries after the ciphertext query.

4. ℋ eventually outputs a bit 𝛽 ∈ {0, 1}. ℬ5 outputs ̂︀𝛽′ = 𝛽 as its guess bit in its Problem 4
challenge.

First, note that by construction of the matrices {𝑼 ′(𝜄′)}𝜄′∈[𝑛′] and {𝑼 (𝜄)}𝜄∈[𝑛], we have
𝑼 ′(𝜄′)(𝑒⃗(2))⊺ = (1, 𝑥𝜄′)

⊺, i.e., the second column of 𝑼 ′(𝜄′) is (1, 𝑥𝜄′)
⊺ for all 𝜄′ ∈ [𝑛′], and simi-

larly, 𝑼 (𝜄)(𝑒⃗(2))⊺ = (1, 𝑧𝜄)
⊺, i.e., the second column of 𝑼 (𝜄) is (1, 𝑧𝜄)⊺ for all 𝜄 ∈ [𝑛]. Consequently,

observe that when ̂︀𝛽 = 0, i.e., 𝒚(𝚤,1,̂︀𝛽) = 𝒚(𝚤,1,0) = (⃗02, 0⃗2, 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′ + 𝑛], then for
all 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) returned by ℬ5 to
ℋ take the form

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′)𝑼
′(𝜌𝑕(𝑗′)), 0⃗2, (̂︀𝜂′𝑕,𝑗′̃︀𝜅1 + ̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜂′𝑕,𝑗′̃︀𝜅2 + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔹*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕)𝑼 (𝑗), 0⃗2, (̂︀𝜂𝑕,𝑗̃︀𝜅1 + ̂︀𝜅𝑕,𝑗,1, ̂︀𝜂𝑕,𝑗̃︀𝜅2 + ̂︀𝜅𝑕,𝑗,2), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

which coincides with those in Hyb6 (Eq. (3.11)), where we have 𝜅⃗′(𝑕,𝑗′) = (̂︀𝜂′𝑕,𝑗′̃︀𝜅1+̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜂′𝑕,𝑗′̃︀𝜅2+̂︀𝜅′𝑕,𝑗′,2) for 𝑗′ ∈ [𝑚𝑕], and 𝜅⃗(𝑕,𝑗) = (̂︀𝜂𝑕,𝑗̃︀𝜅1 + ̂︀𝜅𝑕,𝑗,1, ̂︀𝜂𝑕,𝑗̃︀𝜅2 + ̂︀𝜅𝑕,𝑗,2) for 𝑗 ∈ [𝑛]. On the other hand,

in case ̂︀𝛽 = 1, i.e., 𝒚(𝚤,1,̂︀𝛽) = 𝒚(𝚤,1,1) = (⃗02, ̃︀𝜋𝑒⃗(1), 0⃗2, ̃︀𝜅1, ̃︀𝜅2, 0)𝔹*
𝚤

for 𝚤 ∈ [𝑛′ + 𝑛], then for all
𝑕 ∈ [𝑞key-pre + 1, 𝑞key], the components of the 𝑕th decryption key sk(𝑓𝑕) given by ℬ5 to ℋ take
the form

𝒌′(𝑕,𝑗′) = ((𝛾𝑕,𝑗′ , 𝛼𝑕,𝑗′), ((̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′) · 𝑢⃗′(𝜌𝑕(𝑗
′),1) + ̂︀𝜂′𝑕,𝑗′̃︀𝜋, (̃︀𝛼𝑕,𝑗′𝑥𝜌𝑕(𝑗′) + ̃︀𝛾𝑕,𝑗′)), 0⃗2,

(̂︀𝜂′𝑕,𝑗′̃︀𝜅1 + ̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜂′𝑕,𝑗′̃︀𝜅2 + ̂︀𝜅′𝑕,𝑗′,2), 0)𝔹*
𝜌𝑕(𝑗

′)
for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎𝑕,𝑗 , 𝜁𝑕), ((̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕) · 𝑢⃗(𝑗,1) + ̂︀𝜂𝑕,𝑗̃︀𝜋, (̃︀𝜁𝑕𝑧𝜄 + ̃︀𝜎𝑕,𝑗)), 0⃗2,
(̂︀𝜂𝑕,𝑗̃︀𝜅1 + ̂︀𝜅𝑕,𝑗,1, ̂︀𝜂𝑕,𝑗̃︀𝜅2 + ̂︀𝜅𝑕,𝑗,2), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

which coincides with that in Hyb7 (Eq. (3.12)), where we have 𝜂𝑕,𝑗′ = (̃︀𝛾𝑕,𝑗′ , ̃︀𝛼𝑕,𝑗′) · 𝑢⃗′(𝜌𝑕(𝑗
′),1) +̂︀𝜂′𝑕,𝑗′̃︀𝜋 for 𝑗′ ∈ [𝑚𝑕], 𝜂𝑕,𝑗 = (̃︀𝜎𝑕,𝑗 , ̃︀𝜁𝑕) · 𝑢⃗(𝑗,1)+ ̂︀𝜂𝑕,𝑗̃︀𝜋 for 𝑗 ∈ [𝑛], 𝜅⃗′(𝑕,𝑗′) = (̂︀𝜂′𝑕,𝑗′̃︀𝜅1+ ̂︀𝜅′𝑕,𝑗′,1, ̂︀𝜂′𝑕,𝑗′̃︀𝜅2+̂︀𝜅′𝑕,𝑗′,2) for 𝑗′ ∈ [𝑚𝑕], and 𝜅⃗(𝑕,𝑗) = (̂︀𝜂𝑕,𝑗̃︀𝜅1 + ̂︀𝜅𝑕,𝑗,1, ̂︀𝜂𝑕,𝑗̃︀𝜅2 + ̂︀𝜅𝑕,𝑗,2) for 𝑗 ∈ [𝑛]. Here, (𝑢⃗′(𝜄′,1))⊺

stands for the first column of the matrix 𝑼 ′(𝜄′) for all 𝜄′ ∈ [𝑛′], and (𝑢⃗(𝜄,1))⊺ denotes the same for
the matrix 𝑼 (𝜄) for all 𝜄 ∈ [𝑛].

Clearly for all 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], {𝜂′𝑕,𝑗′}𝑗′∈[𝑚𝑕] and {𝜂𝑕,𝑗}𝑗∈[𝑛] simulated by ℬ5 are
uniformly and independently (of the other variables) distributed in 𝔽𝑞 except when ̃︀𝜋 = 0,
since {̂︀𝜂′𝑕,𝑗′}𝑗′∈[𝑚𝑕] and {̂︀𝜂𝑕,𝑗}𝑗∈[𝑛] are so. For similar reasons, for all 𝑕 ∈ [𝑞key-pre + 1, 𝑞key],
each of {𝜅⃗′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝜅⃗(𝑕,𝑗)}𝑗∈[𝑛] is uniformly and independently (of the other variables)
distributed in 𝔽2

𝑞 . Moreover, for all 𝑕 ∈ [𝑞key-pre], the components {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕] and {𝒌𝑕,𝑗}𝑗∈[𝑛]
of the 𝑕th decryption key sk(𝑓𝑕) given to ℋ by ℬ5 are generated the same as in Eq. (3.7), which
are their proper forms both in Hyb6 and in Hyb7. Further, the components {𝒄′(𝜄′)}𝜄′∈[𝑛′] and
{𝒄(𝜄)}𝜄∈[𝑛] of the ciphertext ct returned to ℋ by ℬ5 are generated as in Eq. (3.10), which are
their proper forms both in Hyb6 and in Hyb7. Finally, the public parameters mpk provided to ℋ
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by ℬ5 are clearly distributed identically to those in both Hyb6 and Hyb7. Therefore, it follows
that the view of ℋ simulated by ℬ5 given a Problem 4 instance 𝜚P4̂︀𝛽 for ̂︀𝛽 ∈ {0, 1}, coincides with

that in Hyb6, if ̂︀𝛽 = 0, while that in Hyb7 except with probability 1/𝑞, i.e., except when ̃︀𝜋 = 0,
if ̂︀𝛽 = 1. Hence the lemma follows. ⊓⊔

Lemma B.12: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
Adv(7)ℋ (𝜆) = Adv(8)ℋ (𝜆).

Proof: In order to prove Lemma B.12, we note that the only difference between Hyb7 and Hyb8 is
that for all 𝑕 ∈ [𝑞key-pre+1, 𝑞key], while generating the components ({𝒌′(𝑕,𝑗)}𝑗∈[𝑛], {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕])

of the 𝑕th decryption key sk(𝑓𝑕) queried by ℋ after making the ciphertext query, in place of us-
ing the shares ({̃︀𝜁𝑕𝑧𝑗 + ̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′𝑥𝜌𝑕(𝑗′)+̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]) obtained by combining ({̃︀𝜎𝑕,𝑗}𝑗∈[𝑛],
{̃︀𝛼𝑕,𝑗′ , ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), outputted by PGB(𝑓𝑕) using uniformly and independently (of the other
variables) sampled randomness, with (𝑥⃗, ̃︀𝜁𝑕𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 the shares ({𝜈𝑕}𝑕∈[𝑛], {𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]),

outputted by SIM(𝑓𝑕, 𝑥⃗, 𝑓𝑕(𝑥⃗, ̃︀𝜁𝑕𝑧⃗)) with uniformly and independently (of the other variables)
sampled randomness, are used as the coefficient of ({𝒃*(𝑛′+𝑗,4)}𝑗∈[𝑛], {𝒃*(𝜌𝑕(𝑗

′),4)}𝑗′∈[𝑚𝑕]) respec-
tively, where (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is the pair of public-private attribute strings corresponding to

the ciphertext query of ℋ and ̃︀𝜁𝑕 U←− 𝔽𝑞. Now, by the privacy property of PGB, as described
in Section 2.3, it follows that the distribution of ({̃︀𝜁𝑕𝑧𝑗 + ̃︀𝜎𝑕,𝑗}𝑗∈[𝑛], {̃︀𝛼𝑕,𝑗′𝑥𝜌𝑕(𝑗′) + ̃︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕])
and that of ({𝜈𝑕,𝑗}𝑗∈[𝑛], {𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]) are identical. Therefore, it follows that the distribution
of the view of ℋ, i.e., the distribution (mpk, {sk(𝑓𝑕)}𝑕∈[𝑞key],ct) in Hyb7 and that in Hyb8 are
identical. Hence the lemma follows. ⊓⊔

C Proof of Theorem 4.1

The proof of Theorem 4.1 is essentially an extension of that of Theorem 3.1. Here, we only provide
a rough sketch of the proof highlighting the similarities and differences with that of Theorem 3.1.
In the proof of Theorem 4.1, we consider the following two cases:

– Case (1): 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 1 for some 𝑕 ∈ [𝑞key-pre], i.e., ℋ makes at least one pre-
ciphertext decryption key query corresponding to some function that satisfies the 𝑅abp∘ip

relation with the public-private attribute pair associated with its ciphertext query.
– Case (2): 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0 for all 𝑕 ∈ [𝑞key-pre], i.e., none of the functions associated

with the pre-ciphertext decryption key queries of ℋ satisfies the 𝑅abp∘ip relation with the
public-private attribute pair associated with its ciphertext query.

■ Description of the simulator

The simulator 𝒮 is described below. The strategy of 𝒮 differs in the two cases mentioned above.
Although, 𝒮’s strategy for simulating the pre-ciphertext decryption key queries is the same in
both the cases since 𝒮 realizes which case occurs after the ciphertext query is made by ℋ, and
𝒮 obtains the oracle output on the whole pre-ciphertext decryption key queries of ℋ.

� Case (1): In this case, the strategy of the simulator 𝒮 is obtained by augmenting that of the
simulator in the attribute-only case (Section 3.2) in essentially the same way the original KEM
version of our PHPE scheme is obtained from the attribute-only version. The most crucial point
to note here is that since in this case ℋ makes at least one pre-ciphertext decryption key query
whose corresponding function satisfies the 𝑅abp∘ip relation with the attribute pair (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞

associated with its ciphertext query, 𝒮 is provided with a session key kem = 𝑔𝜉𝑇 ∈ 𝔾𝑇 by the
oracle 𝒪𝑅abp∘ip at the time of simulating the queried ciphertext. Therefore, 𝒮 simply uses 𝜉 ∈ 𝔽𝑞
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while simulating the 𝒄′(0) component of the queried ciphertext ct. Of course, for this 𝒮 needs
to perform a brute force discrete log computation to extract 𝜉 from 𝑔𝜉𝑇 , and it is the reason
why 𝒮 must run in super-polynomial time, since discrete log is computationally hard in 𝔾𝑇 .
The simulator constructed by Wee for his PHPE construction [Wee17] also performs a similar
discrete log computation to extract the exponent from the session key provided by the oracle,
and consequently runs in super-polynomial time.

� Case (2): In this case, the strategy of the simulator 𝒮 is as follows:

∙ In order to generate the public parameters, 𝒮 proceeds as follows:

1. It first generates (params, {𝔹𝚤,𝔹*
𝚤 }𝚤∈[0,𝑛′+𝑛])

R←− 𝒢ob(𝑛
′ + 𝑛, (6,

𝑛′+𝑛⏞  ⏟  
9, . . . , 9)).

2. It sets ̂︀𝔹0 = {𝒃(0,1), 𝒃(0,4), 𝒃(0,6)}.
3. For 𝚤 ∈ [𝑛′ + 𝑛], it sets ̂︀𝔹𝚤 = {𝒃(𝚤,1), 𝒃(𝚤,2), 𝒃(𝚤,9)}.
4. It outputs the public parameters mpk = (params, {̂︀𝔹𝚤}𝚤∈[0,𝑛′+𝑛]).
∙ For 𝑕 ∈ [𝑞key-pre], 𝒮 simulates the 𝑕th decryption key queried by ℋ corresponding to some

function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip as follows:

1. At first, it generates
(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕] → [𝑛′]

)︀
,
(︀
({̂︀𝜎𝑕,𝑗}𝑗∈[𝑛],

{̂︀𝛼𝑕,𝑗′ , ̂︀𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]
)︀ R←− PGB(𝑓𝑕).

2. Next, it samples 𝑟𝑕,0, ̂︀𝑟𝑕,0, ̂︀𝑟′𝑕,0, 𝜅𝑕,0, 𝜁𝑕, ̂︀𝜁𝑕 U←− 𝔽𝑞, and computes

𝒌′(𝑕,0) = (−𝑟𝑕,0, 0,−̂︀𝑟′𝑕,0, 1, 𝜅𝑕,0, 0)𝔹*
0
.

3. Then, for 𝑗′ ∈ [𝑚𝑕], it samples 𝑏′𝑕,𝑗′
U←− 𝔽𝑞, 𝜅⃗′(𝑕,𝑗

′) U←− 𝔽2
𝑞 , and computes 𝛾+𝑕,𝑗 = 𝛾𝑕,𝑗+𝑏′𝑕,𝑗′𝑟𝑕,0,̂︀𝛾+𝑕,𝑗′ = ̂︀𝛾𝑕,𝑗′ + 𝑏′𝑕,𝑗′̂︀𝑟𝑕,0, as well as

𝒌′(𝑕,𝑗′) = ((𝛾+𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝛾+𝑕,𝑗′ , ̂︀𝛼𝑕,𝑗′), 𝜅⃗

′(𝑕,𝑗′), 0)𝔹*
𝜌𝑕(𝑗

′)
.

4. Then, for 𝑗 ∈ [𝑛], it samples 𝑏𝑕,𝑗
U←− 𝔽𝑞, 𝜅⃗(𝑕,𝑗)

U←− 𝔽2
𝑞 , and computes 𝜎+

𝑕,𝑗 = 𝜎𝑕,𝑗 + 𝑏𝑕,𝑗𝑟𝑕,0,̂︀𝜎+
𝑕,𝑗 = ̂︀𝜎𝑕,𝑗 + 𝑏𝑕,𝑗̂︀𝑟𝑕,0, as well as

𝒌(𝑕,𝑗) = ((𝜎+
𝑕,𝑗 , 𝜁𝑕), 0⃗

2, (̂︀𝜎+
𝑕,𝑗 ,
̂︀𝜁𝑕), 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
.

5. It outputs the decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛], {𝒌
′(𝑕,𝑗′)}𝑗′∈[0,𝑚𝑕],

{𝒌(𝑕,𝑗)}𝑗∈[𝑛]).
∙ When ℋ queries a ciphertext for some pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 ×𝔽𝑛
𝑞 ,

𝒮 receives 𝑥⃗ and (

𝑞key-pre⏞  ⏟  
⊥, . . . ,⊥). Note that in this case, 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0 for all 𝑕 ∈ [𝑞key-pre].

It simulates the ciphertext as follows:
1. At first, it samples 𝑠⃗ U←− 𝑆 = {𝑠⃗ ∈ 𝔽𝑛

𝑞 |𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑠⃗)) = 0∀𝑕 ∈ [𝑞key-pre]} using the same
technique as the simulator does in the attribute-only case.

2. Then, it samples 𝜃, ̃︀𝜉, 𝜙′
0

U←− 𝔽𝑞, and computes

𝒄′(0) = (⃗02, 𝜃, ̃︀𝜉, 0, 𝜙′
0)𝔹0 .

3. Next, for 𝜄′ ∈ [𝑛′], it samples 𝜙′
𝜄′

U←− 𝔽𝑞, and computes

𝒄′(𝜄
′) = (⃗04, 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ .
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4. Then, for 𝜄 ∈ [𝑛], it samples 𝜙𝜄
U←− 𝔽𝑞, and computes

𝒄(𝜄) = (⃗04, 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 .

5. It outputs the ciphertext ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]).
6. It also samples 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑥𝜄′)𝒁 = 𝑒⃗(2) = (0, 1)} for 𝜄′ ∈ [𝑛′], 𝒁(𝜄) U←−
{𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑠𝜄)𝒁 = 𝑒⃗(2) = (0, 1)} for 𝜄 ∈ [𝑛], and computes 𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺ for
𝜄′ ∈ [𝑛′], 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛]. It uses these matrices in the next query phase.

∙ For 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], in response to the 𝑕th decryption key query of ℋ corresponding
to some function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip , 𝒮 executes the following steps:

1. It first generates
(︀
({𝜎𝑕,𝑗}𝑗∈[𝑛], {𝛼𝑕,𝑗′ , 𝛾𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− PGB(𝑓𝑕).

2. After that, it samples 𝜁𝑕
U←− 𝔽𝑞.

3. Next, it queries its oracle 𝒪𝑅abp∘ip with the function 𝑓𝑕, and receives back either a session
key kem = 𝑔𝜉𝑇 ∈ 𝔾𝑇 for some 𝜉 U←− 𝔽𝑞, or ⊥, depending on whether 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 1 or
0. If it receives kem = 𝑔𝜉𝑇 ∈ 𝔾𝑇 , i.e., 𝑅abp∘ip(𝑓𝑕(𝑥⃗, 𝑧⃗)) = 1, or in other words, 𝑓𝑕(𝑥⃗, 𝑧⃗) = 0,

it forms
(︀
({̂︀𝜈𝑕,𝑗}𝑗∈[𝑛], {̂︀𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− SIM(𝑓𝑕, 𝑥⃗, 0). It also determines
𝜉 ∈ 𝔽𝑞 from the obtained kem = 𝑔𝜉𝑇 by solving a brute force discrete log. On the other hand,
if it obtains ⊥, i.e., 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0, or in other words, 𝑓𝑕(𝑥⃗, 𝑧⃗) ̸= 0, then it samples
𝜁𝑕

U←− 𝔽𝑞, and generates
(︀
({̂︀𝜈𝑕,𝑗}𝑗∈[𝑛], {̂︀𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− SIM(𝑓𝑕, 𝑥⃗, 𝜁𝑕).

4. After that, it samples 𝑟𝑕,0, ̂︀𝑟𝑕,0, ̂︀𝑟′𝑕,0, 𝜅′𝑕,0 U←− 𝔽𝑞, and computes

𝒌′(𝑕,0) =

{︃
(−𝑟𝑕,0, 0,−̂︀𝑟𝑕,0 + 𝜃−1(𝜉 − ̃︀𝜉), 1, 𝜅′𝑕,0, 0)𝔹*

0
if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 1,

(−𝑟𝑕,0, 0,−̂︀𝑟′𝑕,0, 1, 𝜅′𝑕,0, 0)𝔹*
0

if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0,

where 𝜃, ̃︀𝜉 are the same variables used while simulating the ciphertext ct. Note that 𝒮 can
determine the quantity 𝜃−1(𝜉 − ̃︀𝜉) ∈ 𝔽𝑞 with all but negligible probability 1/𝑞, i.e., except
when 𝜃 = 0.

5. Next, for 𝑗′ ∈ [𝑚𝑕], it samples 𝑏′𝑕,𝑗′ , ̂︀𝜂′𝑕,𝑗′ U←− 𝔽𝑞, 𝜅⃗
′(𝑕,𝑗′) U←− 𝔽2

𝑞 , and computes 𝛾+𝑕,𝑗′ =

𝛾𝑕,𝑗′ + 𝑏′𝑕,𝑗′𝑟𝑕,0, ̂︀𝜇+
𝑕,𝑗′ = ̂︀𝜇𝑕,𝑗′ + 𝑏′𝑕,𝑗′̂︀𝑟𝑕,0, as well as

𝒌′(𝑕,𝑗′) = ((𝛾+𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗
2, (̂︀𝜂′𝑕,𝑗′ , ̂︀𝜇+

𝑕,𝑗′)(𝑼
′(𝜌𝑕(𝑗′)))−1, 𝜅⃗′(𝑕,𝑗

′), 0)𝔹*
𝜌𝑕(𝑗

′)
.

6. Then, for 𝑗 ∈ [𝑛], it samples 𝑏𝑕,𝑗 , ̂︀𝜂𝑕,𝑗 U←− 𝔽𝑞, 𝜅⃗
(𝑕,𝑗) U←− 𝔽2

𝑞 , and computes 𝜎+
𝑕,𝑗 = 𝜎𝑕,𝑗+𝑏𝑕,𝑗𝑟𝑕,0,̂︀𝜈+𝑕,𝑗 = ̂︀𝜈𝑕,𝑗 + 𝑏𝑕,𝑗̂︀𝑟𝑕,0, as well as

𝒌(𝑕,𝑗) = ((𝜎+
𝑕,𝑗 , 𝜁𝑕), 0⃗

2, (̂︀𝜂𝑕,𝑗 , ̂︀𝜈𝑕,𝑗)(𝑼 (𝑗))−1, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

.

7. It outputs the decryption key sk(𝑓𝑕) = (𝑓𝑕, {𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛], {𝒌
′(𝑕,𝑗′)}𝑗′∈[0,𝑚𝑕],

{𝒌(𝑕,𝑗)}𝑗∈[𝑛]).

■ Sequence of Hybrid Experiments

� Case (1): In this case, we design a hybrid sequence Hyb0 through Hyb8, which is essentially
the same as the one used in the attribute-only case (Section 3.2), except for the additional
components of the queried ciphertext and decryption keys which are also altered in a similar
fashion to the other components during the hybrid transitions. Since, the simulation strategy
in this case is essentially the same as that in the attribute-only case, other than the additional
components of the ciphertext and decryption keys that are simulated in a similar fashion to the
other components, it is immediate that Hyb8 coincides with the ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) in this case.
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� Case (2): In this case also, we perform the hybrid transitions from Hyb0 through Hyb8 in
the same manner to Case (1). However, in this case, we need to execute some additional hybrid
transitions, which we describe below. As earlier, in the description of these hybrids also, a part
framed by a box indicates coefficients that are altered in a transition from its previous hybrid.

Hyb9: This experiment is the same as Hyb8 except that in this experiment, the ciphertext
queried by ℋ corresponding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is

created as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(0) = (0, 𝜏, 𝜃, 𝜉, 0, 𝜙′
0)𝔹0 ,

𝒄′(𝜄
′) = (⃗02, 𝜏(1, 𝑥𝜄′) , 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, 𝜏(1, 𝑠𝜄) , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(C.1)

while for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], the 𝑕th decryption key queried by ℋ corresponding to the
function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip is generated as sk(𝑓𝑕) = (𝑓𝑕, {𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛], {𝒌

′(𝑕,𝑗′)}𝑗′∈[0,𝑚𝑕],

{𝒌(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,0) = (−𝑟𝑕,0,−̃︀𝑟𝑕,0, 0, 1, 𝜅′𝑕,0, 0)𝔹*
0
,

𝒌′(𝑕,𝑗′) = ((𝛾+𝑕,𝑗′ , 𝛼𝑕,𝑗′), (𝜂′𝑕,𝑗′ , 𝜇
+
𝑕,𝑗′)(𝑼

′(𝜌𝑕(𝑗′)))−1 , 0⃗2, 𝜅⃗′(𝑕,𝑗
′), 0)𝔹*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎+
𝑕,𝑗 , 𝜁𝑕), (𝜂𝑕,𝑗 , 𝜈

+
𝑕,𝑗)(𝑼

(𝑗))−1 , 0⃗2, 𝜅⃗(𝑕,𝑗), 0)𝔹*
𝑛′+𝑗

for 𝑗 ∈ [𝑛],

(C.2)

where 𝒁 ′(𝜄′) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑥𝜄′)𝒁 = 𝑒⃗(2) = (0, 1)}, 𝑼 ′(𝜄′) = ((𝒁 ′(𝜄′))−1)⊺, for 𝜄′ ∈ [𝑛′],
𝒁(𝜄) U←− {𝒁 ∈ GL(2,𝔽𝑞)|(1, 𝑠𝜄)𝒁 = 𝑒⃗(2) = (0, 1)}, 𝑼 (𝜄) = ((𝒁(𝜄))−1)⊺ for 𝜄 ∈ [𝑛], and all the other
variables are generated as in Hyb8.

Hyb10: This experiment is analogous to Hyb9 except that in this experiment, for 𝑕 ∈ [𝑞key-pre+

1, 𝑞key], the 𝑕th decryption key queried by ℋ corresponding to the function 𝑓𝑕 ∈ ℱ
(𝑞,𝑛′,𝑛)
abp∘ip is

generated as sk(𝑓𝑕) = (𝑓𝑕, {𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛], {𝒌
′(𝑕,𝑗′)}𝑗′∈[0,𝑚𝑕], {𝒌

(𝑕,𝑗)}𝑗∈[𝑛]) such that

𝒌′(𝑕,0) = (−𝑟𝑕,0, 0,−̂︀𝑟𝑕,0 , 1, 𝜅′𝑕,0, 0)𝔹*
0
,

𝒌′(𝑕,𝑗′) = ((𝛾+𝑕,𝑗′ , 𝛼𝑕,𝑗′), 0⃗2, (̂︀𝜂′𝑕,𝑗′ , ̂︀𝜇+
𝑕,𝑗′)(𝑼

′(𝜌𝑕(𝑗′)))−1 , 𝜅⃗′(𝑕,𝑗
′), 0)𝔹*

𝜌𝑕(𝑗
′)

for 𝑗′ ∈ [𝑚𝑕],

𝒌(𝑕,𝑗) = ((𝜎+
𝑕,𝑗 , 𝜁𝑕), 0⃗2, (̂︀𝜂𝑕,𝑗 , ̂︀𝜈+𝑕,𝑗)(𝑼 (𝑗))−1 , 𝜅⃗(𝑕,𝑗), 0)𝔹*

𝑛′+𝑗
for 𝑗 ∈ [𝑛],

(C.3)

where {̂︀𝑟𝑕,0}𝑕∈[𝑞key-pre+1,𝑞key], {̂︀𝜂′𝑕,𝑗′}𝑕∈[𝑞key-pre+1,𝑞key],𝑗′∈[𝑚𝑕], {̂︀𝜂𝑕,𝑗}𝑕∈[𝑞key-pre+1,𝑞key],𝑗∈[𝑛],

{̂︀𝜁𝑕}𝑕∈[𝑞key-pre+1,𝑞key]
U←− 𝔽𝑞,

(︀
({̂︀𝜈𝑕,𝑗}𝑗∈[𝑛], {̂︀𝜇𝑕,𝑗′}𝑗′∈[𝑚𝑕]), 𝜌𝑕 : [𝑚𝑕]→ [𝑛′]

)︀ R←− SIM(𝑓𝑕, 𝑥⃗, 𝑓𝑕(𝑥⃗, ̂︀𝜁𝑕𝑧⃗))
for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], ̂︀𝜇+

𝑕,𝑗′ = ̂︀𝜇𝑕,𝑗′ + 𝑏′𝑕,𝑗′̂︀𝑟𝑕,0 for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], 𝑗
′ ∈ [𝑚𝑕],̂︀𝜈+𝑕,𝑗 = ̂︀𝜈𝑕,𝑗 + 𝑏𝑕,𝑗̂︀𝑟𝑕,0 for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], 𝑗 ∈ [𝑛], and all the other variables are gen-

erated as in Hyb9.

Hyb11: This experiment is the same as Hyb10 except that in this experiment, the ciphertext
queried by ℋ corresponding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞 is

created as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that

𝒄′(0) = (0, 0 , 𝜃, 𝜉, 0, 𝜙′
0)𝔹0 ,

𝒄′(𝜄
′) = (⃗02, 0⃗2 , 𝜃(1, 𝑥𝜄′), 0⃗

2, 𝜙′
𝜄′)𝔹𝜄′ for 𝜄′ ∈ [𝑛′],

𝒄(𝜄) = (⃗02, 0⃗2 , 𝜃(1, 𝑠𝜄), 0⃗
2, 𝜙𝜄)𝔹𝑛′+𝜄 for 𝜄 ∈ [𝑛],

(C.4)
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where all the variables are generated as in Hyb10.

Hyb12: This experiment is identical to Hyb11 except that in this experiment, the ciphertext
queried by ℋ corresponding to the pair of public-private attribute strings (𝑥⃗, 𝑧⃗) ∈ 𝔽𝑛′

𝑞 × 𝔽𝑛
𝑞

is created as ct = (𝑥⃗, {𝒄′(𝜄′)}𝜄′∈[0,𝑛′], {𝒄(𝜄)}𝜄∈[𝑛]) such that {𝒄′(𝜄′)}𝜄′∈[𝑛′], {𝒄(𝜄)}𝜄∈[𝑛] are given by
Eq. (C.4), and

𝒄′(0) = (0, 0, 𝜃, ̃︀𝜉 , 0, 𝜙′
0)𝔹0 , (C.5)

while for 𝑕 ∈ [𝑞key-pre + 1, 𝑞key], the 𝑕th decryption key queried by ℋ corresponding to the
function 𝑓𝑕 ∈ ℱ

(𝑞,𝑛′,𝑛)
abp∘ip is generated as sk(𝑓𝑕) = (𝑓𝑕, {𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛], {𝒌

′(𝑕,𝑗′)}𝑗′∈[0,𝑚𝑕],

{𝒌(𝑕,𝑗)}𝑗∈[𝑛]) such that {𝒌′(𝑕,𝑗′)}𝑗′∈[𝑚𝑕], {𝒌
(𝑕,𝑗)}𝑗∈[𝑛] are given by Eq. (C.3), and

𝒌′(𝑕,0) =

⎧⎪⎨⎪⎩
(−𝑟𝑕,0, 0, ̂︀𝑟′𝑕,0 , 1, 𝜅′𝑕,0, 0)𝔹*

0
if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0,

(−𝑟𝑕,0, 0, −̂︀𝑟𝑕,0 + 𝜃−1(𝜉 − ̃︀𝜉) , 1, 𝜅′𝑕,0, 0)𝔹*
0

if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 1,

(C.6)

where ̃︀𝜉 U←− 𝔽𝑞, ̂︀𝑟′𝑕,0 U←− 𝔽𝑞 for 𝑕 ∈ [𝑞key-pre+1, 𝑞key] with 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0, and all the other
variables are generated as in Hyb10. Observe that this experiment coincides with the experiment
ExpPHPE,IDEAL

ℋ,𝒮 (𝜆) with the simulator 𝒮 described above.

■ Analysis

� Case (1): Since, the hybrids are similar to that in the attribute-only case, essentially the
same analysis apply. The most important difference is the analysis of the transition from Hyb2-𝜒-2
to Hyb2-𝜒-3 (𝜒 ∈ [𝑞key-pre]), i.e., the central information-theoretic transition for the pre-ciphertext
decryption keys (i.e., to prove a lemma similar to Lemma B.4). Now, we will consider an aug-
mented matrix

𝑳+(𝜒)(𝑥⃗, 𝑧⃗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0
𝑏′𝜒,1
...

𝑏′𝜒,𝑚𝜒

𝑏𝜒,1
...

𝑏𝜒,𝑛

𝑳(𝜒)(𝑥⃗, 𝑧⃗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ 𝔽(𝑚𝜒+𝑛+1)×(𝑚𝜒+𝑛+1)

𝑞 ,

where 𝑳(𝜒) ∈ 𝔽(𝑚𝜒+𝑛)×(𝑚𝜒+𝑛)
𝑞 is the matrix representation of the ABP 𝛤 ′

𝜒 computing the
function 𝑓𝜒 ∈ ℱ (𝑞,𝑛′,𝑛)

abp∘ip queried by ℋ, as computed by PGB described in Section 2.3, and
({𝑏′𝜒,𝑗′}𝑗′∈[𝑚𝜒], {𝑏𝜒,𝑗}𝑗∈[𝑛])

U←− 𝔽𝑚𝜒+𝑛
𝑞 are the random coefficients selected during the generation

of the decryption key sk(𝑓𝜒). We observe the following two facts:

(I) (𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 0, i.e., 𝑓𝜒(𝑥⃗, 𝑧⃗) ̸= 0) As already noted in the proof of Claim B.5,
from Lemma 2.1, we have det(𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = 𝑓𝜒(𝑥⃗, 𝑧⃗). Hence, we have det(𝑳+(𝜒)(𝑥⃗, 𝑧⃗)) =
−det(𝑳(𝜒)(𝑥⃗, 𝑧⃗)) = −𝑓𝜒(𝑥⃗, 𝑧⃗). Since 𝑓𝜒(𝑥⃗, 𝑧⃗) ̸= 0 in this case, it follows that
det(𝑳+(𝜒)(𝑥⃗, 𝑧⃗)) ̸= 0, or in other words, the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) is invertible in this case. There-
fore, the image of the linear transformation defined by the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) is 𝔽𝑚𝜒+𝑛+1

𝑞 .

(II) (𝑅abp∘ip(𝑓𝜒, (𝑥⃗, 𝑧⃗)) = 1, i.e., 𝑓𝜒(𝑥⃗, 𝑧⃗) = 0) In this case, the rank of the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗)
is 𝑚𝜒 + 𝑛. In order to see this, first notice that the rank of the matrix 𝑳(𝜒)(𝑥⃗, 𝑧⃗) is 𝑚𝜒 +
𝑛 − 1 in this case, as argued in the proof of Claim B.5. Therefore, the sub-matrix of order
(𝑚𝜒 + 𝑛 + 1) × (𝑚𝜒 + 𝑛) of the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) obtained by removing its first column,
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i.e., the sub-matrix

⎛⎜⎜⎜⎜⎜⎜⎝

0 . . . 0

𝑳(𝜒)(𝑥⃗, 𝑧⃗)

⎞⎟⎟⎟⎟⎟⎟⎠ clearly has rank 𝑚𝜒+𝑛− 1. Moreover, the first column

of the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗), namely, the column (−1, 𝑏′𝜒,1, . . . , 𝑏′𝜒,𝑚𝜒
, 𝑏𝜒,1, . . . , 𝑏𝜒,𝑛)

⊺ is linearly
independent of all the other columns of the matrix, since the first entry of this column is −1,
whereas those of the other columns of the matrix are all 0’s. Therefore, it follows that the
rank of the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) is 𝑚𝜒 + 𝑛.

Also, in this case, it holds that ((𝛺′
𝜒,𝑗′)𝑗′∈[0,𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])𝑳

+(𝜒)(𝑥⃗, 𝑧⃗) = 0⃗𝑚𝜒+𝑛+1, where
({𝛺𝜒,𝑗}𝑗∈[𝑛], {𝛺′

𝜒,𝑗′}𝑗′∈[𝑚𝜒]) = REC(𝑓𝜒, 𝑥⃗) and 𝛺′
𝜒,0 =

∑︀
𝑗′∈[𝑚𝜒]

𝛺′
𝜒,𝑗′𝑏

′
𝜒,𝑗′ +

∑︀
𝑗∈[𝑛]

𝛺𝜒,𝑗𝑏𝜒,𝑗 . To see

this, first note that ((𝛺′
𝜒,𝑗′)𝑗′∈[𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])𝑳

(𝜒)(𝑥⃗, 𝑧⃗) = 0⃗𝑚𝜒+𝑛 holds in this case, as already
explained in the proof of Claim B.5. Hence, we clearly have

((𝛺′
𝜒,𝑗′)𝑗′∈[0,𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])

⎛⎜⎜⎜⎜⎜⎜⎝

0 . . . 0

𝑳(𝜒)(𝑥⃗, 𝑧⃗)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0⃗𝑚𝜒+𝑛.

Also, from the expression of 𝛺′
𝜒,0, it is clear that ((𝛺′

𝜒,𝑗′)𝑗′∈[0,𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])(−1, (𝑏′𝜒,𝑗′)𝑗′∈[𝑚𝜒],

(𝑏𝜒,𝑗)𝑗∈[𝑛])
⊺ = 0. Therefore, it follows that ((𝛺′

𝜒,𝑗′)𝑗′∈[0,𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛])𝑳
+(𝜒)(𝑥⃗, 𝑧⃗) =

0⃗𝑚𝜒+𝑛+1.
From the above two observations, it follows that the image of the linear transformation de-

fined by the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) is given by the (𝑚𝜒+𝑛)-dimensional subspace Im(𝑳+(𝜒)(𝑥⃗, 𝑧⃗)) =

{𝑣⃗ = (𝑣1, . . . , 𝑣𝑚𝜒+𝑛+1) ∈ 𝔽𝑚𝜒+𝑛+1
𝑞 | ((𝛺′

𝜒,𝑗′)𝑗′∈[0,𝑚𝜒], (𝛺𝜒,𝑗)𝑗∈[𝑛]) · 𝑣⃗ =
∑︀

𝑗′∈[0,𝑚𝜒]

𝛺′
𝜒,𝑗′𝑣𝑗′+1 +∑︀

𝑗∈[𝑛]
𝛺𝜒,𝑗𝑣𝑛′+𝑗+1 = 0} ⊂ 𝔽𝑚𝜒+𝑛+1

𝑞 .

Thus, it is clear that the augmented matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) satisfies similar properties as the matrix
𝑳(𝜒)(𝑥⃗, 𝑧⃗). Hence, we can argue the transition from Hyb2-𝜒-2 to Hyb2-𝜒-3 in the same manner as
is done in the proof of Lemma B.4.

� Case (2): As already mentioned, the hybrid transitions from Hyb0 to Hyb8 in this case is
similar to that in Case (1). So, the analysis of those transitions would also be similar to Case (1).
In particular, we will make use of the augmented matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) for arguing the transition
from Hyb2-𝜒-2 to Hyb2-𝜒-3 in this case as well. We now turn to analysing the additional hybrid
transitions in this case, namely, the hybrid transition from Hyb8 to Hyb12.

Lemma C.1: For any probabilistic adversary ℋ, for any security parameter 𝜆, Adv(8)ℋ (𝜆) =

Adv(9)ℋ (𝜆).

Proof: The transition from Hyb8 to Hyb9 is essentially the reverse of the transition from Hyb5
to Hyb6. Therefore, Lemma C.1 can be proven by applying a similar information-theoretic basis
transformation as used in the proof of Lemma B.10. ⊓⊔

Lemma C.2: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ6, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(9)ℋ (𝜆)− Adv(10)ℋ (𝜆)| ≤ AdvP3

ℬ6
(𝜆) + 2/𝑞.
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Proof: Observe that the transition from Hyb9 to Hyb10 is similar to that from Hyb2-𝜒-3 to
Hyb2-𝜒-4, where we move some coefficients of the decryption key components from the second 2-
dimensional block to the third 2-dimensional block. Hence, the proof of Lemma C.2 is analogous
to that of Lemma B.6. ⊓⊔

Lemma C.3: For any stateful probabilistic adversary ℋ, there exists a probabilistic algorithm
ℬ7, whose running time is essentially the same as that of ℋ, such that for any security parameter
𝜆, |Adv(10)ℋ (𝜆)− Adv(11)ℋ (𝜆)| ≤ AdvP1

ℬ7
(𝜆) + 2/𝑞.

Proof: Observe that the transition from Hyb10 to Hyb11 is essentially similar to the reverse of the
transition from Hyb0 to Hyb2-1-1. Hence, Lemma C.3 can be proven by an argument that amounts
to a combination of the arguments used in the proofs of Lemma B.2 and Lemma B.1. ⊓⊔

Lemma C.4: For any stateful probabilistic adversary ℋ, for any security parameter 𝜆,
Adv(11)ℋ (𝜆) = Adv(12)ℋ (𝜆).

Proof: Lemma C.4 can be proven by applying an information-theoretic linear transformation
between the third and fourth vectors of the basis (𝔹0,𝔹*

0), something similar to the one used in
the proof of Lemma B.10. The fact that in Hyb12 for 𝑕 ∈ [𝑞key-pre+1, 𝑞key], the coefficient ̂︀𝑟′𝑕,0 of
the component 𝒌′(𝑕,0) of the decryption key sk(𝑓𝑕) is uniformly and independently (of the other
variables) distributed in 𝔽𝑞 in case 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0, can be proven by a similar argument
as used in the proof of Lemma B.4 by observing that the matrix

̂︀𝑳+(𝑕)(𝑥⃗, 𝑧⃗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0
𝑏′𝑕,1
...

𝑏′𝑕,𝑚𝑕

𝑏𝑕,1
...

𝑏𝑕,𝑛

̂︀𝑳(𝑥⃗, 𝑧⃗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ̂︀𝑳(𝑕)(𝑥⃗, 𝑧⃗) is the matrix used by the PGB-simulator SIM to generate the constants ({̂︀𝜈𝑕,𝑗}𝑗∈[𝑛],
{̂︀𝜇𝑕,𝑗′}𝑗∈[𝑚𝑕]), and ({𝑏′𝑕,𝑗′}𝑗′∈[𝑚𝑕], {𝑏𝑕,𝑗}𝑗∈[𝑛])

U←− 𝔽𝑚𝑕+𝑛
𝑞 are the random coefficients sampled while

generating the decryption key sk(𝑓𝑕), is invertible if 𝑅abp∘ip(𝑓𝑕, (𝑥⃗, 𝑧⃗)) = 0, by a similar logic as
used for the matrix 𝑳+(𝜒)(𝑥⃗, 𝑧⃗) above. ⊓⊔
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