
Towards Practical Security of Pseudonymous Signature
on the BSI eIDAS Token?

Mirosław Kutyłowski, Lucjan Hanzlik??, Kamil Kluczniak? ? ?

Faculty of Fundamental Problems of Technology, Wrocław University of Technology
{firstname.secondname}@pwr.edu.pl

Abstract. In this paper we present an extension of Pseudonymous Signature in-
troduced by the German Federal BSI authority as a part of technical recommen-
dations for electronic identity documents.
Without switching to pairing friendly groups we enhance the scheme so that: (a)
the issuer does not know the private keys of the citizen (so it cannot imperson-
ate the citizen), (b) a powerful adversary that breaks any number of ID cards
created by the Issuer cannot forge new cards that could be proven as fake ones,
(c) deanonymization of the pseudonyms used by a citizen is a multi-party proto-
col, where the consent of each authority (e.g. a court) is necessary to reveal the
identity of a user. (d) we propose extended features concerning fully anonymous
signatures and a pragmatic revocation approach. (e) we present an argument for
unlinkability (cross-domain anonymity) of the presented schemes.
In this way we make a step forwards to overcome the substantial weaknesses of
the Pseudonymous Signature scheme. Moreover, the extension is on top of the
original scheme with relatively small number of changes, following the strategy
of reusing the previous schemes – thereby reducing the costs of potential tech-
nology update.

1 Introduction

Introduction of strict personal data protection rules in the European regulation GDPR
[13] creates a market for technical solutions that attempt to satisfy the requirements
by-design. One of the solutions is to change the status from personal data to non-
personal data. It suffices to ensure that the data does not concern identifiable person. So
changing explicit identification data by pseudonymous identity may solve the problem
as long as the pseudonym cannot be linked with the pseudonym owner using available
data. On the other hand, as already reflected by GDPR, the pseudonymization process
should be reversible: in certain circumstances, like law enforcement, it might be neces-
sary to link the pseudonym back to the original identity.

? This paper is an extended raport, where an initial version, “Pseudonymous Signature on eI-
DAS Token Implementation Based Privacy Threats”, has been presented at ACISP 2016. New
results contained in this paper have been supported by National Science Centre (Poland) under
grant OPUS no 2014/15/B/ST6/02837

?? current affiliation: Stanford University, USA
? ? ? current affiliation: CISPA, Saarbrücken, Germany



2 Kutyłowski, Hanzlik, Kluczniak

Domains specific pseudonyms.

There might be many strategies to replace the real identity with pseudonyms. Re-
placing the ID with a single pseudonym is very likely to be totally ineffective: high
amount of data related to a single pseudonym enables eliminating all candidates but
the pseudonym owner. So the best solution would be to use the same pseudonym only
when it is necessary to indicate that the same (anonymous) person is concerned. These
leads to the concept of a domain, which is a virtual environment where all activities of
a physical person should be linked together (so a single pseudonym per person should
be used), while activities within domain should not be linked with activities outside the
domain.

The concept of domains appeared probably for the first time in Austria together with
the concept of Bürgerkarte. The domains have been defined as different areas of public
administration. The solution has been based on symmetric cryptography and enabled
the user to create a domain specific password. The main invention was to prevent using
the password from one domain in another domain. Otherwise the solution is not stronger
than one could achieve with symmetric cryptography.

The Austrian concept of domains have been reused by German authorities with in-
troduction of Restricted Identification on electronic personal identity documents [7].
A single (asymmetric) key stored on an ID card enables to create exactly one crypto-
graphic pseudonym per domain, which serves as a password authenticating the request.

Domain specific pseudonymous signatures.

The main advantage and disadvantage of Restricted Identification is that the scheme
creates a volatile proof. The advantage is that as a volatile proof it cannot be misused
as it does not create an undeniable digital data. The disadvantage is that one the pass-
word created by Restricted Identification has been learned by a malicious party (e.g.
via leaking from the target system), it can be used to authenticate as the legitimate user.
Moreover, it cannot authenticate any digital data contributed by the user.

Domain specific pseudonymous signature is a concept that:

• a user hold exactly one signing key (or set of keys of a fixed size),
• for any given domain, the user may create its pseudonym using their signing key;

the pseudonyms acts simultaneously as a public of this person,
• given domain D and digital data M , a user can create its signature for M ; the

signature points to D as well as the pseudonym of the signer in domain D,
• the verification process requires the name of domain, signer’s pseudonym in this

domain, the signature and the signed data. The verification result is negative if,
among others, there is mismatch in the domain name or the pseudonym.

While this concept has appeared in the technical recommendation [7], it leaves some
details unspecified or as options. For instance, it need to be specified what domain data
is required to compute a domain specific pseudonym. In the simplest case (ID based
solution) only a domain name is required. The other case is that the domain itself has
a public key that has to be generated by a multiparty-protocol in cooperation with an
appropriate authority. Both options (together with a technical solution) have been briefly



Privacy Threats and Defenses for Pseudonymous Signature 3

mentioned in [7]; the second one enables deanonymization of the signer. For more about
the formal concept of domain signatures see [11].

Applications. There is a large number of potential applications for domain specific
pseudonymous signatures. For typical cases and a classification of such schemes see
[3], but let us name just a few ones:

anonymous authentication: domain specific pseudonymous signature might be a part
of a challenge-response authentication mechanism, where the user authenticates
themselves under domain specific pseudonym. This option has been used for Chip
Authentication v.3 from [7] – this scheme is an improvement over the former
method based on Chip Authentication with Restricted Identification.

authenticating database entries: if a database consists from records that need to be
strongly authenticated, then a good way is to attach a pseudonymous signature of
the author for each record. The domain in this case is a database.

self-organization in ad hoc groups: suppose that a self-organization algorithm has to
be executed in a group of users that has emerged ad hoc. If the domain is an ad hoc
one, related to the group and the situation in which the self-organization algorithm
is run, then we may use the domain specific pseudonyms of the users as a source
of randomness for the algorithm, thereby derandomizing it in a verifiable way. The
signatures can be used to authenticate the data presented by the participants as well
as the pseudonyms. For further details see [8].

Previous schemes.

While Pseudonymous Signature presented in [1, 2, 7] is the initial scheme developed in
Germany, a few other schemes have followed it, but all of them have been based on
pairings friendly groups. The first scheme is due to a French team ([4, 5], see also [10]).
Then a few improved schemes for different scenarios have been developed by Kluczniak
[9]. A version based on self-created certificates has been presented by M.Wszoła and
Marcin Słowik during CECC 2017 (see [3] for a concise description of the scheme). A
scheme dealing with “two-dimensional” domains and deanonymizations along dimen-
sions has been presented in [8].

As far as Pseudonymous Signature from [1] are concerned, the only following secu-
rity report has been published in [12]. Later in this paper we recall its conclusions and
countermeasures proposed.

1.1 Paper contribution

The goal of this paper is to improve the Pseudonymous Signature by eliminating its
weaknesses – both known before as well as a few ones presented in this paper. We
work under the assumption that all countermeasures need to work for standard groups,
without retreating to pairings friendly groups. This is motivated by the fact that there are
some concerns (economic and technical ones) against wide scale transition to pairing
friendly groups.

The goals achieved are the following ones:



4 Kutyłowski, Hanzlik, Kluczniak

• the private keys of the user are known only for the user, the Issuer has no longer
access to them (we follow the approach from [12]),

• the Issuer has no longer possibility to create trapdoor information for tracing links
between pseudonyms in different domains (we defer the attacks presented in [12]),

• despite the ability of the user to create own private keys, the Issuer together with a
Control Authority has possibility to deanonymize the domain specific pseudonym
of the user, deanonymization by the Issuer alone is infeasible,

• there is a limited seclusiveness property: if a given user has not been enrolled to the
system by the Issuer, then it can be proved during a deanonymization procedure,
(However, detection is not automatic during a standard signature verification.)

• we propose a framework of certificates-of-health as an effective solution for Pseudony-
mous Signature revocation (as well as an ultimate solution for the seclusiveness
problem) – lack of a pragmatic revocation procedure have been limiting the scope of
applications of Pseudonymous Signature to low risk areas, even in case of schemes
based on pairing friendly groups where seclusiveness problem has been solved, (ac-
cording to [1] the Issuer together with each domain authority creates a blacklist of
revoked user – which is not practical if the number of domains is large),

• we present an proof for unlinkability, thereby filling the crucial gap due to problems
regarding the argument from [1],

• we extend the scheme so that if only part of the pseudonym is given, then the
signatures of a user in a domain remain linkable, but deanonymization is infeasible.

2 Pseudonymous Signature

2.1 Pseudonymous Signature from BSI Technical Recommendation [7]

Let us recall the Pseudonymous Signature Protocol described in the BSI Technical Rec-
ommendation [7]. Note that an almost the same protocol has been published by the
same authors in the paper [1]; we shall discuss the differences shortly and the end of
this section.

Setup. The scheme uses a group G of a prime order q. The DDH Problem for G must
be hard. Moreover, specification of G must point to a generator g ∈ G.
During the setup process the Issuer creates its system keys:

• secret keys SKICC, SKM ∈ Zq ,
• public keys PKICC,PKM ∈ G, where PKICC = gSKICC and PKM = gSKM .

One of peculiar properties of the scheme described in [7] is that the keys PKM , SKM
are long term keys, while PKICC, SKICC change periodically.

User’s keys. The user gets a signing device with the following keys installed there by
the Issuer:

• private key (x0, x1) such that SKICC = x0 + x1 · SKM mod q,
• the corresponding public keys P0 = gx0 and P1 = gx1 .



Privacy Threats and Defenses for Pseudonymous Signature 5

Setup of a domain. For a domain D, a public key PKD is defined. There are two ways
to do it: according to the first option the discrete logarithm of PKD is not known to any
party. A way to realize it is to compute PKD by hashing the domain’s official name (the
hashing function has to map into G). According to the second option, PKD = gd, where
d is a secret key. The key d can be divided into parts: d = r ·R, where r is known only
to the Issuer and R is known only to the domain’s authority.

Domain pseudonyms of a user. In a domainD with the public key PKD, a user holding
the keys x0, x1 has identifiers ID0 , ID1 , where

I0 := (PKD)x0 and I1 := (PKD)x1 .

According to the specification, it is possible to use the scheme with just one of the
pseudonym components or even to create a signature without indicating the pseudonym.

Creating a signature. A device holding the keys x0, x1 creates a signature for m and
domain with the public key PKD in the following way:

• choose k0, k1 < q at random,
• compute Q := gk0 · PKk1M ,
• compute the pseudonyms I0 := (PKD)x0 , I1 := (PKD)x1 ,
• [optional?] compute the commitments A0 := (PKD)k0 , A1 := (PKD)k1 ,
• compute

c := Hash(Q, I0, A0, I1, A1,PKD,m) , (1)

• compute s0 := k0 − c · x0 mod q, s1 := k1 − c · x1 mod q,
• output the signature (c, s0, s1) together with the pseudonyms I0, I1.

Verification of a signature. Given the signature (c, s0, s1) and pseudonyms I0, I1, the
following steps are executed by a verifier:

• reconstruct Q as Q′ := (PKICC)
c · gs0 · (PKM )s1 ,

• reconstruct A0 as A′0 := (PKD)s0 · (I0)c,
• reconstruct A1 as A′1 := (PKD)s1 · (I1)c,
• accept the signature if and only if

c = Hash(Q′, I0, A
′
0, I1, A

′
1,PKD,m)

Note: There are slight differences between the version of the algorithm presented
in [1] and in [7]. In [1] only I0 and A0 are used and I1, A1 are skipped. The differ-
ences have been neither explained nor justified.



6 Kutyłowski, Hanzlik, Kluczniak

3 Problems

3.1 Securing against the Issuer

• According to [7], the Issuer creates the private keys for each user and during this
process has full access to them. As the Issuer may retain these keys (or modify the
generation process so that the domain key of a user can be recovered later), there is
a silent assumption that the Issuer is unconditionally honest.

• The above problem has been solved in [12]. According to the modified scheme a
user personalizes the private keys, so that they is protected against Issuer aiming to
forge signatures of the user. However, this is a double edged sword: the technique
applied in [12] prevents (controlled) deanonymization of the user. On the other
hand, such a special deanonymization procedure is necessary for most practical
applications.

The goal of this paper is to enable personalization such that deanonymization remains
possible on a cryptographic way even if the user does not register the personalized
public keys.

3.2 External Hash Attack

Below we discuss an attack that may happen, if an implementation of the scheme is
not careful enough and does not take care of some details that are not included in the
original documentation. Namely, we show that a likely implementation of Pseudony-
mous Signature can lead to a situation where creating users gets out of control and a
PC communicating with 2 different electronic identity documents can create Pseudony-
mous Signatures attributed to a new identity. Therefore, in such a case seclusiveness
property does not really hold, despite that there is no physical attack against the identity
documents.

The attack has the following background:

• One of the operations performed during signature creation is computing the value
c = Hash(Q, I0, A0, I1, A1,PKD,m) for a message m to be signed. However, m
might be a very long document and sending it to the signing device and computing
the hash c there would be quite tedious. If for example computing a hash value of
a 256-bit block on a smart card takes 5ms, then signing a 4MB document (a photo)
would take over 10 minutes due to the hashing effort.

• None of the arguments used for computing c is confidential. What is more, they
are explicitly used during a standard signature verification. Therefore, it seems to
be harmless to outsource this computation to the computer, from which the signing
request originates. Definitely, this would solve the problem of computing a hash
value for a long document m.

• One can also argue that even if PC is malicious and sends a manipulated value
c, then no secrets are revealed, since in fact in this case the PC executes Schnorr
identification protocol with the electronic identity document. Therefore the security
arguments about the Schnorr identification protocol apply here as well.



Privacy Threats and Defenses for Pseudonymous Signature 7

Given protocol specification and the arguments raised above, it seems acceptable
to outsource computing the hash c to the machine interacting with the identity
document. Sometimes, to be on the safe side (“random” properties of the hash output)
it is required that the final stage of computing the hash value is performed by the signing
device.

Attack description. For the attack described below we assume that the implementation
of Pseudonymous Signature outsources computation of the hash c, at least up to the
moment when A1 is fully processed.

Steps of the attack performed by a computer C:

1. C opens communication with two different identity documents, say U and V . Let
x0,U , x1,U and x0,V , x1,V denote their private keys.

2. C sends signing requests to U and V .
3. U returns the values Q, I0, A0, I1, A1, while device V returns Q′, I ′0, A

′
0, I
′
1, A

′
1.

4. C chooses α at random and computes:
• Q̂ := Qα ·Q′1−α

• Â0 := Aα0 ·A′0
1−α

• Â1 := Aα1 ·A′1
1−α

• Î0 := Iα0 · I ′0
1−α

• Î1 := Iα1 · I ′1
1−α

• c := Hash(Q̂, Î0, Â0, Î1, Â1,PKD,m)

and returns c both to U and V .
5. U computes the signature values s0, s1 and returns them to C,

analogously, V computes the signature values s′0, s
′
1 and returns them to C.

6. C computes ŝ0 := α · s0 + (1− α) · s′0 and ŝ1 := α · s1 + (1− α) · s′1.
7. Finally, C outputs the signature (c, ŝ0, ŝ1) for an (artificial) identity Î0, Î1.

Fact 1 (c, ŝ0, ŝ1) is a valid Pseudonymous Signature for pseudonymous identity Î0, Î1
and the message m.

Proof. The verification procedure yields the positive result if

Q̂ = (PKICC)
c · gŝ0 · (PKM )ŝ1

Â0 = (PKD)ŝ0 · (Î0)c

Â′1 = (PKD)ŝ1 · (Î1)c

We have

(PKICC)
c · gŝ0 · (PKM )ŝ1 = (PKICC)

c · gα·s0+(1−α)·s′0 · (PKM )α·s1+(1−α)·s′1

= (PKICC)
c · gα·s0 · g(1−α)·s

′
0 · (PKM )α·s1 · (PKM )(1−α)·s

′
1

=
(
(PKICC)

c·α · gα·s0 · (PKM )α·s1
)
·
(
(PKICC)

c·(1−α)g(1−α)·s
′
0 · (PKM )(1−α)·s

′
1

)
= Qα ·Q′1−α = Q̂ .



8 Kutyłowski, Hanzlik, Kluczniak

Moreover,

(PKD)ŝ0 · (Î0)c = (PKD)α·s0+(1−α)·s′0 · (Iα0 · I ′0
1−α

)c

= (PKD)α·s0 · (Iα0 )c · (PKD)(1−α)·s
′
0 · (I ′0)1−α)c

= (PKs0D · I
c
0)
α · (PKD)s

′
0 · (I ′0)c)1−α = Aα0 · (A′0)1−α = Â0 .

Analogously, one can check that Â′1 = (PKD)ŝ1 · (Î1)c. ut

One might hope that the identities created by the attack are in some sense specific
and that some test (different from the standard verification procedure) might indicate
the attack. Unfortunately, this is not the case:

• The user private keys x0, x1 satisfy the linear equation SKICC = x0+x1 ·SKM mod
q, so all valid keys form a 1-dimensional affine subspace of Z2

q .
• The keys x̂0, x̂1 created by the attack form an affine subspace of dimension one.

Therefore, each private key pair can be obtained in this way.

Attack countermeasures. A simple change that disables the above mentioned attack
is to compute the hash c via the following equation.

c = Hash(Q, I0, A0, I1, A1,PKD,Hash(m))

In this scenario the signing device receives the input Hash(m) and therefore can easily
perform the whole computation itself. Another approach could be to take m as the first
argument for hashing:

c = Hash(m,Q, I0, A0, I1, A1,PKD)

In this approach the computation can be outsourced to a PC until the time when the
whole m is consumed.

4 Pseudonymous Signature 2.0

In this section we present an enhancement of the scheme presented in [12] (as well as
[7]). The current solution eliminates the following problems:

• the Issuer does not know the secret keys of the user (as in [12], but not [7]),
• a user is not forced to register after private key personalization in order to enable

deanonymization,
• enables detection of forged identities created after breaking into some number of

identity documents,
• each pseudonym can be linked with an entry in a database of legitimate participants,

in this process cooperation of the domain authority, the Issuer and the Control Au-
thority is necessary.



Privacy Threats and Defenses for Pseudonymous Signature 9

Setup. We use a group G of a prime order q satisfying the same properties as for the
original Pseudonymous Signature. Let g be a chosen generator of G.

• The Issuer holds the following system keys used for generating private keys of the
users:

- secret keys SKICC, SKM , SKL ∈ Zq chosen at random,
- the corresponding public keys PKICC, PKM , PKL, where

PKICC = gSKICC , PKM = gSKM , PKL = gSKL .

• For deanonymization purposes, the Issuer holds the following keys:
- private keys δ, γ chosen at random,
- the corresponding public keys ∆, Γ , where

∆ = gδ and Γ = gγ .

• For auxiliary purposes (signing database entries), the Issuer also holds keys for
creating standard electronic signatures.

User’s pre-keys. The Issuer prepares a signing device with the following keys:

• a private key (x′0, x
′
1, x
′
2) such that{

SKICC = x′0 + x′1 · SKM + x′2 · SKL mod q ,
IDA = x′1 · γ + x′2 · δ mod q ,

where IDA is an ID token of the user (see below for the ID token specification),
• a twin private key (x′′0 , x

′′
1 , x
′′
2) satisfying the same system of linear equations:{

SKICC = x′′0 + x′′1 · SKM + x′′2 · SKL mod q ,
IDA = x′′1 · γ + x′′2 · δ mod q ,

• and the corresponding public keys (P ′0, P
′
1, P

′
2) and (P ′′0 , P

′′
1 , P

′′
2 ), where

(P ′0, P
′
1, P

′
2) = (gx

′
0 , gx

′
1 , gx

′
2), (P ′′0 , P

′′
1 , P

′′
2 ) = (gx

′′
0 , gx

′′
1 , gx

′′
2 ) .

For this purpose x′1 ∈ Zq (respectively, x′′1 ) is chosen at random, and x′2, x
′
0 (respec-

tively, x′′2 , x
′′
0 ) are derived based on the linear equations presented above.

The signing device containing (x′0, x
′
1, x
′
2), (x

′′
0 , x
′′
1 , x
′′
2) is given the the user. At the

same time the public keys are given directly to the user. A mutual authentication of the
user and the Issuer is required at this moment – any effective procedure can be applied.

The public keys given to the user are used only for checking personalization pro-
cess by the user. This optional procedure aims to to prevent cheating the user (e.g.
preinstalling the keys known to the Issuer and running a fake personalization process
by the signing device).



10 Kutyłowski, Hanzlik, Kluczniak

Creating IDA. The following procedure is executed by the Issuer when enrolling a user
A. Among others, during the execution an entry concerning A is stored in a database
DBID run by the Issuer.

1. choose s ∈ Zq independently at random, set IDA = s,
2. store a signed record containing (gIDA , A) in the database DBID. (The value IDA is

not published and should be destroyed.)

If the identity of users that have the signing devices is not to be published, then the
publicly available part of DBID may contain the entries (gIDA ,SignIssuer(g

ID
A )).

Note that the construction opens room for a further improvements, where the Issuer
chooses numbers s from some subset of all possible exponents, but recognizing whether
gs has been created in this way requires a trapdoor from the Issuer.

Signing key personalization. The user personalizes the pre-keys so that the Issuer
loses control over the private keys in a signing device, even if the pre-keys are retained
by the Issuer. We follow the approach presented in [12]:

• the user chooses α at random and sets β := 1− α mod q, the value α is presented
to the signing device,
• the signing device sets the signing key to (x0, x1, x2), where

(x0, x1, x2) = α · (x′0, x′1, x′2) + β · (x′′0 , x′′1 , x′′2) mod q

Note that (x0, x1, x2) satisfies the same system of linear equations:{
SKICC = x0 + x1 · SKM + x2 · SKL mod q
IDA = x1 · γ + x2 · δ mod q

(2)

• the public keys (P0, P1, P2) corresponding to the personalized private keys are
computed according to the formula

Pi = (P ′i )
α · (P ′′i )β for i = 0, 1, 2 . (3)

Note that this computation can be done by the user outside the signing device.

The user may verify that the signing device has installed the private key according
to the method described above. The detailed procedure based on the equalities (3) is
presented below after describing the pseudonym creation and signing processes.

Domain’s parameters. For each domain there are assigned three public keys PKdom,
PKdom, PKdom. The public key PKdom is created by hashing the domain name (so its
discrete logarithm is not known with very high probability). The two other public keys
fulfil the following equalities:

PKdom = gd1·d2 , PKdom = ∆d1·d2

where the exponent d1 is chosen at random by the Issuer and the exponent d2 is chosen
at random by the target domain authority.



Privacy Threats and Defenses for Pseudonymous Signature 11

Creating a signature. Assume that PKdom, PKdom, PKdom are the domain parameters
of a domain for which a user holding (x0, x1, x2) has to sign m. The signing procedure
is analogous to the procedure from [7]:

• choose k0, k1, k2 random,
• compute Q = gk0 · PKk1M · PKk2L ,
• compute domain specific pseudonyms of the signer:

I0 = (PKdom)
x0 , I1 = (PKdom)

x1 , I2 = (PKdom)
x2 ,

• [optional1] compute commitments to random elements k0, k1, k2:

A0 = (PKdom)
k0 , A1 = (PKdom)

k1 , A2 = (PKdom)
k2 ,

• for a message m to be signed compute

c = Hash(Q, I0, A0, I1, A1,PKdom, I2, A2,Hash(m)) ,

• compute the second components of Schnorr signatures:

s0 = k0 − c · x0 mod q, s1 = k1 − c · x1 mod q, s2 = k2 − c · x2 mod q ,

• output signature (c, s0, s1, s2) together with pseudonyms I0, I1, I2 and the identity
of the domain concerned.

Verification of a signature. The verification is a simple extension of the verification
procedure of the Pseudonymous Signature [7]:

• recompute Q as

Q′ = (PKICC)
c · gs0 · (PKM )s1 · (PKL)s2

• reconstruct A0 as A′0 = (PKdom)
s0 · (I0)c,

• reconstruct A1 as A′1 = (PKdom)
s1 · (I1)c,

reconstruct A2 as A′2 = (PKdom)
s2 · (I2)c,

• accept the signature iff

c = Hash(Q′, I0, A
′
0, I1, A

′
1,PKdom, I2, A

′
2,Hash(m))

1 creating the pseudonyms and including them in the computation of c is optional according to
[7]. If the pseudonyms are not included, then the signature indicates that it has been created
by a party holding keys fulfilling the equations (2), so presumably a legitimate user. Note that
if only I0 is given in the signature, then it is possible to link the signatures of the same user in
this domain, but it will be impossible to deanonymize him.



12 Kutyłowski, Hanzlik, Kluczniak

Verifying initialization of the keys. Potentially, the signing device might pretend to
follow the procedure of device initialization, but instead of initializing the private keys
according to the equality (2), it might install some predefined values known to the Is-
suer, thereby enabling it to create signature on behalf of the user. The following proce-
dure enables to check that the keys are set according to (2):

1. a user chooses r0, r1, r2 at random and ask the device for a signature for a domain
with parameters PKdom, PKdom, PKdom, where

PKdom = gr0 , PKdom = gr1 , PKdom = gr2 ,

2. when a signature with pseudonyms I0, I1, I2 is returned, then the user checks that:

I0 = ((P ′0)
α · (P ′′0 )β)r0 , I1 = ((P ′1)

α · (P ′′1 )β)r1 , I2 = ((P ′2)
α · (P ′′2 )β)r2

A user can also check that his IDA has been correctly marked in the database DBID.
That is, the entry gIDA should be contained there. For this purpose the following steps
are executed:

1. the user chooses r at random and creates artificial domain parameters: PKdom =
∆r, PKdom = Γ r,

2. the user asks the signing device for a domain signature for such domain parameters,
3. the signing device returns a signature with pseudonyms I1, I2,
4. the user computes S = (I1 · I2)r

−1 mod q and check whether S is on the publicly
available part of DBID.

Deanonymization. Let us assume that in a domain with parameters PKdom, PKdom,
PKdom there is a misbehaving user with a pseudonym I0, I1, I2. Then the following
steps are executed:

• The domain authority (holding d2) computes

I ′1 := I
d−1
2 mod q

1 , I ′2 := I
d−1
2 mod q

2

• The Control Authority (holding d1) computes

I ′′1 := (I ′1)
d−1
1 mod q, I ′′2 := (I ′2)

d−1
1 mod q

The resulting values are I ′′1 = gx1 , I ′′2 = ∆x2 .
• Finally, the Issuer computes I = (I ′′1 )

γ · I ′′2 , which should be equal to gIDA .
• the Issuer looks for an entry I in DBID and finds the identity A of the misbehaving

user.

Note that all computations (raising to powers) can be accompanied by some proof
of correctness.

Remark 1. One may observe that the Control Authority and the domain authority may
derive gx1 (by performing analogous steps for the pseudonym I0). So linking between
domains is possible once the authorities of the domains concerned and the Control
Authority collude. However, the real identity of the user will remain hidden.



Privacy Threats and Defenses for Pseudonymous Signature 13

Fully anonymous version. Let us recall that in our construction we have used the
domain parameter PKdom, for which the discrete logarithm is not known. Introducing
such domain parameter has been possible since PKdom and PKdom enable deanonymiza-
tion. On the other hand, this opens a option for creating signatures, where only the
pseudonym I0 = (PKdom)

x0 is presented. Such signatures are bound to the given do-
main, all signatures of the same user in this domain can be immediately linked, but it is
infeasible to recover the identity of the user via deanonymization procedure as long as
I0 is not used together with I1, I2 in any signature in this domain.

A similar possibility has been indicated for [7], but then we had two choices: First,
the domain parameters could be generated so that the discrete logarithm is not known.
In this case every signature in this domain is anonymous. The other case is that no
pseudonym is given in the signature (it does not appear as an argument of the hash in
(1). In this case the signatures created by the same user in this domain cannot be linked.

5 Comparison

Table 1 presents the proposed algorithm and its basic version from [7] in a tabular form.
The new or changed elements in our scheme are presented in the red color.

In Table 2 we compare some features of three versions of Pseudonymous Signature
scheme published in [7], [12] and this paper.



14 Kutyłowski, Hanzlik, Kluczniak

BSI Pseudonymous Signature [7] Pseudonymous Signature 2.0

System setup

PKICC = gSKICC PKICC = gSKICC

PKM = gSKM PKM = gSKM

PKL = gSKL

∆ = gδ , Γ = gγ

Domain setup

PKdom = gd1·d2 PKdom , PKdom = gd1·d2 , PKdom = ∆d1·d2

User keys

x0, x1 x0, x1, x2
where: where:

SKICC = x0 + x1 · SKM SKICC = x0 + x1 · SKM + x2 · SKL
IDA = x1 · γ + x2 · δ

Signature creation

choose k0, k1 at random choose k0, k1, k2 at random
Q = gk0 · PKk1M Q = gk0 · PKk1M · PKk2L
I0 = (PKdom)

x0 , I1 = (PKdom)
x1 I0 = (PKdom)

x0 , I1 = (PKdom)
x1 , I2 = (PKdom)

x2

A0 = (PKdom)
k0 , A1 = (PKdom)

k1 , A0 = (PKdom)
k0 , A1 = (PKdom)

k1 , A2 = (PKdom)
k2

c = Hash(Q, I0, A0, I1, A1,PKdom,m) c = Hash(Q, I0, A0, I1, A1,PKdom, I2, A2,Hash(m))
s0 = k0−c·x0, s1 = k1−c·x1 s0 = k0−c·x0, s1 = k1−c·x1, s2 = k2−c·x2

Signature verification

Q′ = (PKICC)
c · gs0 · (PKM )s1 Q′ = (PKICC)

c · gs0 · (PKM )s1 · (PKL)s2

A′0 = (PKdom)
s0 · (I0)c A′0 = (PKdom)

s0 · (I0)c
A′1 = (PKdom)

s1 · (I1)c A′1 = (PKdom)
s1 · (I1)c

A′2 = (PKdom)
s2 · (I2)c

c
?
= Hash(Q′, I0, A

′
0, I1, A

′
1,PKdom,m) c

?
= Hash(Q′, I0, A

′
0, I1, A

′
1,PKdom, I2, A

′
2,Hash(m))

Deanonymization / checking ID validity

I ′1 := I
d−1
2

1 I ′1 := I
d−1
2

1 , I ′2 := I
d−1
2

2 (domain authority)
I := (I ′1)

d−1
1 I ′′1 := (I ′1)

d−1
1 , I ′′2 := (I ′2)

d−1
1 (Control Authority)

I := (I ′′1 )
γ · (I ′′2 ) (Issuer)

check for I in the database of the Issuer check for I in the database DBID

Table 1: Pseudonymous Signature from [7] and our scheme in a tabular form



Privacy Threats and Defenses for Pseudonymous Signature 15

Properties: [7] [12] this paper

the Issuer can derive yes no no
user’s pseudonyms in any domain
the Issuer can create yes no no
valid signatures of the user
the Issuer can yes no no
enable tracing a user
size of the private key 2 exponents 2 exponents 3 exponents
signing device personalization no yes yes
registration necessary no required no
to enable deanonymization
deanonymization Issuer+ Issuer+ Issuer+
executed by domain auth. domain auth. domain auth. +

(if registered) Control Auth.
recognizing by comparison by comparison by checking database
forged ID’s with retained with registered
(after deanonym.) keys keys
external hash possible possible impossible
attack
consequences of creating fake creating fake creating fake
breaking into eID eID’s eID’s eID’s
proof of forgery by Issuer’s by inspecting by inspecting DBID

declaration registration records created at issuing time
declaration registration records (potential extensions)

Table 2: Comparison of properties of Pseudonymous Signature schemes



16 Kutyłowski, Hanzlik, Kluczniak

6 Security

6.1 Seclusiveness

As for the scheme [7] breaking into a small number of signing devices may create
problems. Indeed, after breaking into three signing devices the adversary gets three
triples (x0, x1, x2) that satisfy

SKICC = x0 + x1 · SKM + x2 · SKL

Thereby the adversary may derive SKICC, SKM , SKL. The equality

IDA = x1 · γ + x2 · δ

is more problematic, since each new broken device brings one new equality but also a
new unknown IDA (note that IDA is not stored inside the device and not available in
DBID). Therefore it is infeasible to derive γ and δ.

It follows that an adversary may create signing devices that create signatures ac-
cepted via the regular verification procedure. However, in order to escape detection of
a forgery after executing the deanonymization procedure the adversary would have to
use x1, x2 such that

gs = ∆x1 · Γ x2 (4)

for some entry gs from the database, where s is secret. For modelling the attack we
have to assume that the adversary knows some number of entries v and keys x′1 and x′2
such that v = ∆x′1 · Γ x′2 .

First assume that an adversary knows x1, x2 such that (4) holds and can find dif-
ferent keys x′1, x

′
2, which point to the same gs through running the deanonymization

procedure. We shall see that in this case it would be possible to break the discrete loga-
rithm problem. Namely, assume that for an input U we aim to find u such that U = gu.
First we choose r1 and r2 at random and set ∆ = gr1 , Γ = Ur2 . Then we choose at
random x1, x2 and create an entry (gs from (4)) equal to ∆x1Γ x2 . We feed these data
to the adversary and obtain back different keys x′1, x

′
2 such that

∆x′1Γ x
′
2 = ∆x1Γ x2 .

Then
∆(x′1−x1)/(x2−x′2) = Γ, so gr1·(x

′
1−x1)/(x2−x′2) = Ur2

and the sought discrete logarithm equals r1·(x′1−x1)
(x2−x′2)·r2

modulo the group order.

If an adversary can find x′1, x
′
2 such that∆x′1Γ x

′
2 equals another entry in the database,

then we provide a similar argument. We set such an entry as gr0 , and provide the system
parameters of the form ∆ = gr1 and Γ = Ur2 , where r0, r1, r2 are chosen at random.
Then a solution x′1, x

′
2 given by the adversary satisfies

gr0 = gr1·x
′
1 · Ur2·x

′
2 .

Consequently, the discrete logarithm of U equals r0−r1·x′1
r2·x′2

.



Privacy Threats and Defenses for Pseudonymous Signature 17

6.2 Malicious Issuer

We concern here the problem of effectiveness of personalization of the signing keys.
The Issuer knows the pre-keys, so the question is whether he can link the set of keys be-
fore personalization with the keys after personalization. The second question is whether
the Issuer can impersonate the user once his public keys after personalization are given
(in principle, this may not require to learn the identity of the user).

Theorem 2. If the Issuer can link the private keys before personalization to the public
keys after personalization, then the Issuer can solve the DDH problem as well.

Proof. Assume that the Issuer learns I0 = PKx0

dom, I1 = PKx1

dom, I2 = PKx2

dom and has to
decide whether they correspond to x′0, x

′
1, x
′
2, x
′′
0 , x
′′
1 , x
′′
2 . It corresponds to the question

whether there is α such that

xi = αx′i + (1− α)x′′i for i = 0, 1, 2.

These equations are equivalent to

(xi − x′i) = α(x′i − x′i) + (1− α)(x′′i − x′i) for i = 0, 1, 2.

which in turn reduces to the question whether there is β such that

(xi − x′i) = β(x′′i − x′i) for i = 0, 1, 2.

This corresponds to existence of β fulfilling the equalities

I0/PKx
′
0

dom = PK(x′′0−x
′
0)β

dom , I1/PKx
′
1

dom = PK(x′′1−x
′
1)β

dom , I2/PKx
′
2

dom = PK(x′′2−x
′
2)β

dom (5)

LetA be an algorithm that enables to check if there is such β. We use it to solve the
Problem of Equality of 3 Discrete Logarithms. That is, given an instance (A,B,C,D,E, F )
we have to decide whether there is ζ such that Aζ = B, Cζ = D, and Eζ = F .

Note that the DDH problem is the problem of equality of 2 logarithms: given
an instance (A,B,C,D) we have to decide whether there is ζ such that Aζ = B,
Cζ = D. Obviously, solving DDH implies solving Problem of Equality of 3 Discrete
Logarithms. Also solving the later problem implies solving problem of equality of 2
logarithms: given (A,B,C,D) we choose r, r′ at random and solve the question for
(A,B,C,D,ArCr

′
, BrDr′) (one can see that if for (A,B,C,D) the answer is nega-

tive, then ArCr
′
, BrDr′ is uniformly distributed).

Now we prepare an input for algorithm A:

- choose x′i, x
′′
i at random for i = 0, 1, 2,

- set PKdom = A(x′′0−x
′
0)
−1

, PKdom = C(x′′1−x
′
1)
−1

, PKdom = E(x′′2−x
′
2)
−1

- set I0 = B · PKx
′
0

dom, I1 = D · PKx
′
1

dom, I2 = F · PKx
′
2

dom,

Then for the tuple (A,B,C,D,E, F ) the answer is positive, if and only if there is β,
for which (5) holds. ut



18 Kutyłowski, Hanzlik, Kluczniak

Remark 2. Theorem 2 can be extended to the version where the Issuer is given sig-
natures of the user over messages of his choice, under the assumption of the Random
Oracle Model.

Corollary 1. If the Issuer can forge signatures of a user, given his pre-keys and the
public keys after personalization, then he will be able forge the signatures of users for
which he does not know the pre-keys.

Proof. Any difference in forging capabilities would contradict Theorem 2. ut

The above corollary says that creating the pre-keys does not endanger the user. Note
that this holds despite that the user cannot personalize his keys to get an arbitrary valid
triple of keys satisfying (2). Note that the situation is less obvious than in case of the
scheme from [12], where any pair of keys could be derived during the personalization
process.

6.3 Unlinkability

As pointed out in [6, 10] unlinkability proof from [1] is faulty, so at the moment we
are missing even the proof for the standard [7]. The situation in our case is even more
complex due to more relationships between the secret key components.

We express unlinkability property in the same way as in [9]: given the pseudonyms
and signatures of a user in all domains except for a domain with parameters PKdom,
PKdom, PKdom, we wish to determine whether given pseudonyms I0, I1, I2 in this do-
main correspond to the key (x0, x1, x2):

I0 = PKx0

dom, I1 = PKx1

dom, I2 = PKx2

dom

or have been created as

I0 = PKx
′
0

dom, I1 = PKx
′
1

dom, I2 = PKx
′
2

dom

where (x′0, x
′
1, x
′
2) have been chosen at random from the set of valid keys. “Unlinka-

bility” means that it is infeasible to distinguish between these two cases given that the
challenger chooses the option to present with probability 1

2 and that the discrete log-
arithms of PKdom, PKdom, PKdom are not known. However, following the construction
we know that two discrete logarithms are equal: PKdom = gd, PKdom = ∆d for some
(unknown) d.

Our strategy is to show that the case of unlinkability for the scheme [1] (called
below the basic scheme) would be solved if unlinkability would be violated for our
scheme. For this purpose we build a reduction where a case from the basic scheme is
converted to a case for an adversary breaking unlinkability of our scheme. So we deal
with a case when a user holds private keys x0 and x1. The corresponding pseudonyms
are generated with these keys.

For our scheme we need three keys as well as new system keys SKL and δ, γ. First
we take ω at random and set:

PKL = PKωM , that is, SKL = SKM · ω



Privacy Threats and Defenses for Pseudonymous Signature 19

The key δ, γ are chosen at random.
The next step is to convert the x0 and x1 from the basic scheme to keys x′0, x

′
1, x
′
2.

We put x′0 = x0, x′1 is chosen at random, while x′2 is chosen so that

x1 = x′1 + x′2 · ω .

Of course, we cannot compute these keys explicitly. However note that

SKICC = x0 + SKM · x1 = x′0 + SKM · (x′1 + x′2 · ω) = x′0 + SKM · x′1 + SKL · x′2

and so the new keys fulfill the property required by our scheme.
Having the new keys one has to show how to create pseudonyms in our new case

when having the pseudonyms in the corresponding domains of the basic scheme. First,
as PKdom is a result of a pseudorandom process, we can program the oracle to get
PKdom = (PKdom)

r, where r is chosen independently at random for each domain. Then
the pseudonym corresponding to PKdom equals I ′0 = (I0)

r. In the next step we set
PK′dom = PKdom. Then the new pseudonym I ′1 is simply (PKdom)

x′1 (recall that we
know x′1). The third domain parameter is PK′dom = (PK′dom)

δ . So we have to derive the
pseudonym I ′2 = (PK′dom)

x′2 – while of course we do not know x′2. Note that

(x1 − x′1)/ω = x′2 .

Therefore it suffices to compute

(PKdom)
δ)(x1−x′1)/ω, or equivalently ((PKdom)

x1)/(PKdom)
x′1))δ/ω .

As (PKdom)
x1 is known (as the pseudonym in the basic scheme), we can compute the

right-hand side expression.
The next problem is to convert the signatures created in the basic scheme into sig-

natures created in our scheme. Let (c, s0, s1) be such a signature. Then in particular
s1 = k1 − c · x1. As we shall program the hash oracle, let us note that finally we shall
get the a signature of the form (c, s0, s

′
1, s
′
2). First we choose k′1 at random and set

s′1 = k′1 − c · x′1. For the component s′2 note that

s1 = k1 − c · (x′1 + x′2 · ω)

As s′1 = k′1 − c · x′1, we can rewrite the last equation:

s1 − s′1 = k1 − k′1 + c · x′1 − c · (x′1 + x′2 · ω) = (k1 − k′1) + c · x′2 · ω

So finally
(s1 − s′1)/ω = (k1 − k′1)/ω + c · x′2

and we set s′2 = (s1 − s′1)/ω. For the hash oracle we set

c = Hash(Q′, I ′0, A
′
0, I
′
1, A

′
1,PKdom, I

′
2, A

′
2,m)



20 Kutyłowski, Hanzlik, Kluczniak

where

Q′ = (PKICC)c · gs0 · (PKM )s
′
1 · (PKL)s

′
2

A′0 = A0

A′1 = (PKdom)
k′1

A′2 = (PK′dom)
s′2 · (I ′2)c

(Note that we could completely replace the computation of A′0, A
′
1, A

′
2 by the one used

by verification. This is possible as we program the hash oracle).
It is easy to see that the transformation of pseudonyms results in pseudonyms cor-

responding to x′0, x
′
1, x
′
2 if in the basic scheme we had the pseudonyms corresponding

to x0, x1. If this is not the case, and, say, the pseudonyms correspond to some different
y0, y1. However, in this case y0 6= x0, as all valid keys have to satisfy the same linear
equation. Consequently, I ′0 = Ir0 = gy0r 6= gx0r. One can see also that I ′2 would also
be different, then derived from x1.

Remark 3. The same technique as above can be used to reduce the question of unlink-
ability for the scheme [1] to an artificial scheme, where a user holds only one secret
key and the signature scheme reduces to Schnorr signatures where the base element is
PKdom. (Of course, such a scheme is useless as it is impossible to show seclusiveness
property.) On the other hand, for the artificial scheme unlinkability property can be re-
duced to the DDH problem, as long as we can program the hash oracle. Consequently
we may claim that the proposed schemes, including the standard [7], indeed satisfies
unlinkability property.

6.4 Unforgeability

The argument for unforgeability of the scheme follows the same steps as for [1] and is
based on the Forking Lemma.

7 Seclusiveness and revocation with certificates-of-health

From the practical point of view, the main problem related to domain specific signatures
might be checking the status of the signature keys. Indeed, if the signature scheme
has to be used to any serious application, then we have to take into account that the
signing devices are sometime lost or stolen, the keys might be compromised, etc. This
fundamental problem has not been addressed so far in the literature. In particular, the
schemes based on pairing friendly groups solve the seclusiveness problem but provide
no answer how to revoke the signing keys.

For traditional signature schemes the problem might be solved by PKI mechanisms.
Each user gets a certificate for their public key issued by a Certification Authority.
Moreover, there are either blacklists or whitelists that are kept up to date regarding revo-
cation cases. For domain specific pseudonyms and signatures this approach is doomed
to fail completely. First, while the number of potential domains is potentially unlimited,
the number of the domains where a user will eventually be active is small. As it is not



Privacy Threats and Defenses for Pseudonymous Signature 21

known in which domains a user might be active, the white or blacklist should be up-
dated for each single domain when a status change occurs. The fundamental problem is
that even if we learn that a pseudonym I in domain D has to be included in the white-
or blacklist, we cannot say which pseudonym in a domain D′, for D′ 6= D, should be
revoked as well. So, alone computing all pseudonyms corresponding to a compromised
key is a practical challenge and must require additional secret keys, presumably held
by the Issuer. So potentially for each change of the status of a key the Issuer would be
forced to create as many updates to the lists as the number of existing domains. This is
hard to imagine to work in practice, especially in case of trans-border services.

A domain signature scheme by Słowik and Wszoła enable to issue a single certifi-
cate per user (see [3]). Such a certificate can be randomized and recomputed by the
user to create a domain specific certificate authenticating the pseudonym of the user in
a given domain. The derived certificates are unlinkable between themselves and in par-
ticular do not link to the “base” certificate. This solutions looks very attractive, however
leaves revocation problem unsolved.

In this situation we believe that using certificates-of health might be the best solu-
tion. This can be supported by the following arguments:

• in most cases the signatures and pseudonyms will be used online, we may assume
that at least the user will periodically go online and at his moment be able to fetch
new certificates,

• in some application cases the risk is relatively low and we do not need to check the
status of the signing key, so the number of certificates is not as high as the number
of domains, where the user is active.

However, perhaps the most important argument is that (as a side effect) the certificates-
of-health solve also the seclusiveness problem: no fake user can get a certificate-of-
health.

Below we present a draft of the proposed solution. The construction is quite generic
and we talk about a single private key x instead of two components x1, x2 that are used
in case of Pseudonymous Signature. In the later case we can fetch and use a certificate
for one component of the key or extend the procedures in a straightforward way.

FETCHING A CERTIFICATE
Assume that Alice is a system participant and holds a device A implementing her a
private key x. Assume that the Issuer holds the public key gx of Alice. The following
steps are executed to get a certificate-of-health:

1. A chooses k at random and computes h = gx·k,
2. a secure connection between A and the Issuer is established, A authenticates itself

against the Issuer with the key x, for instance by executing a chip authentication
protocol based on Pseudonymous Signature and where g is the domain public key,

3. the Issuer checks the status of the public key gx and rejects the request, if it is on a
black list,

4. A requests a blind signature over h and the current time t,
5. th Issuer checks that A knows the discrete logarithm of h; for instance, the Issuer

decides at random whether to proceed with signing blindly h, otherwise the Issuer



22 Kutyłowski, Hanzlik, Kluczniak

asks A to open the commitment for h and disclose k such that h = (gx)k, after the
test the procedure is restarted with a new h,

6. A recovers a signature s of h, t created blindly by the Issuer, (h, t, s) is the certificate-
of health.

In case of any irregularity during opening the commitment for h the device A is perma-
nently blacklisted as a malicious one and consequently excluded from the system.

AUTHENTICATING A PSEUDONYM
Assume that Alice aims to confirm validity of her pseudonym I = Dx for a domain
with domain public key D. The following steps are executed:

1. A sends to the domain the following data:
the certificate (h, t, s), the pseudonym I , and the element I ′ = Ik,

2. A proves that it knows logD I , logI I
′, and that logg h = logD I

′.
3. The domain accepts pseudonym I if the proof is valid and the time t is fresh enough

to be accepted according to the security policy of the domain.

If the second step succeeds, then one can conclude that A knows logg h. On the
other hand, the certificate-of-health has been given to a device that has presented a
valid ID and has known logg h, where the logarithm has been generated at random. So
one can assume that that the device presenting the certificate and the pseudonym I is
the same person that has obtained the certificate-of health

For the proof of knowledge of discrete logarithms any standard protocol can be
applied.

References

1. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous sig-
natures for the German identity card. In Gollmann, D., Freiling, F.C., eds.: Information
Security, ISC 2012,. Volume 7483 of LNCS., Springer (2012) 104–119

2. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous signa-
tures for the German identity card. IACR Cryptology ePrint Archive 2012 (2012) 558

3. Błaśkiewicz, P., Hanzlik, L., Kluczniak, K., Krzywiecki, Ł., Kutyłowski, M., Słowik, M.,
Wszoła, M.: Pseudonymous signature schemes. In Li, K.C., Chen, X., Susilo, W., eds.:
Advances in Cyber Security: Principles, Techniques, and Applications. Springer Nature,
Singapore (2018)

4. Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure dynamic
domain-specific pseudonymous signatures for ID documents. IACR Cryptology ePrint
Archive 2014 (2014) 67

5. Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure dynamic
domain-specific pseudonymous signatures for ID documents. In Christin, N., Safavi-Naini,
R., eds.: Financial Cryptography and Data Security - 18th International Conference, FC
2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers. Volume 8437
of Lecture Notes in Computer Science., Springer (2014) 255–272

6. Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure dynamic
domain-specific pseudonymous signatures for ID documents. In Christin, N., Safavi-Naini,
R., eds.: Financial Cryptography and Data Security. Volume 8437 of LNCS. Springer Berlin
Heidelberg (2014) 255–272



Privacy Threats and Defenses for Pseudonymous Signature 23

7. BSI: Advanced Security Mechanisms for Machine Readable Travel Documents and eIDAS
Token 2.20. Technical Guideline TR-03110-2 (2015)

8. Hanzlik, L., Kluczniak, K., Kutyłowski, M., Dolev, S.: Local self-organization with strong
privacy protection. In: Trustcom/BigDataSE/ISPA, 2016 IEEE, IEEE (2016) 775–782

9. Kluczniak, K.: Anonymous authentication using electronic identity documents. Institute of
Computer Science, Polish Academy of Sciences, PhD Thesis (2015)

10. Kluczniak, K.: Domain-specific pseudonymous signatures revisited. IACR Cryptology
ePrint Archive 2016 (2016) 70

11. Kluczniak, K., Hanzlik, L., Kutylowski, M.: A formal concept of domain pseudonymous
signatures. In Bao, F., Chen, L., Deng, R.H., Wang, G., eds.: Information Security Practice
and Experience - 12th International Conference, ISPEC 2016, Zhangjiajie, China, November
16-18, 2016, Proceedings. Volume 10060 of Lecture Notes in Computer Science. (2016)
238–254

12. Kutyłowski, M., Hanzlik, L., Kluczniak, K.: Pseudonymous signature on eIDAS token -
implementation based privacy threats. In Liu, J.K., Steinfeld, R., eds.: Information Security
and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-
6, 2016, Proceedings, Part II. Volume 9723 of Lecture Notes in Computer Science., Springer
(2016) 467–477

13. The European Parliament and the Council of the European Union: Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/ec (General Data Protection Regulation). Official Journal of
the European Union 119(1) (2016)


