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Abstract. Logistic regression is a popular technique used in machine
learning to construct classification models. Since the construction of such
models is based on computing with large datasets, it is an appealing idea
to outsource this computation to a cloud service. The privacy-sensitive
nature of the input data requires appropriate privacy preserving mea-
sures before outsourcing it. Homomorphic encryption enables one to com-
pute on encrypted data directly, without decryption and can be used to
mitigate the privacy concerns raised by using a cloud service. In this pa-
per, we propose an algorithm (and its implementation) to train a logistic
regression model on a homomorphically encrypted dataset. The core of
our algorithm consists of a new iterative method that can be seen as
a simplified form of the fixed Hessian method, but with a much lower
multiplicative complexity. We test the new method on two interesting
real life applications: the first application is in medicine and constructs
a model to predict the probability for a patient to have cancer, given ge-
nomic data as input; the second application is in finance and the model
predicts the probability of a credit card transaction to be fraudulent. The
method produces accurate results for both applications, comparable to
running standard algorithms on plaintext data. This article introduces a
new simple iterative algorithm to train a logistic regression model that
is tailored to be applied on a homomorphically encrypted dataset. This
algorithm can be used as a privacy-preserving technique to build a bi-
nary classification model and can be applied in a wide range of problems
that can be modelled with logistic regression. Our implementation results
show that our method can handle the large datasets used in logistic re-
gression training.

1 Background

1.1 Introduction

Logistic regression is a popular technique used in machine learning to solve bi-
nary classification problems. It starts with a training phase during which one
computes a model for prediction based on previously gathered values for pre-
dictor variables (called covariates) and corresponding outcomes. The training
phase is followed by a testing phase that assesses the accuracy of the model. To
this end, the dataset is split into data for training and data for validation. This
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validation is done by evaluating the model in the given covariates and comparing
the output with the known outcome. When the classification of the model equals
the outcome for most of the test data, the model is considered to be valuable
and it can be used to predict the probability of an outcome by simply evaluating
the model for new measurements of the covariates.

Logistic regression is popular because it provides a simple and powerful
method to solve a wide range of problems. In medicine, logistic regression is
used to predict the risk of developing a certain disease based on observed char-
acteristics of the patient. In politics, it is used to predict the voting behaviour
of a person based on personal data such as age, income, sex, state of residence,
previous votes. In finance, logistic regression is used to predict the likelihood
of a homeowner defaulting on a mortgage or a credit card transaction being
fraudulent.

As all machine learning tools, logistic regression needs sufficient training
data to construct a useful model. As the above examples show, the values for
the covariates and the corresponding outcomes are typically highly sensitive,
which implies that the owners of this data (either people or companies) are
reluctant to have their data included in the training set. In this paper, we solve
this problem by describing a method for privacy preserving logistic regression
training using somewhat homomorphic encryption. Homomorphic encryption
enables computations on encrypted data without needing to decrypt the data
first. As such, our method can be used to send encrypted data to a central server,
which will then perform logistic regression training on this encrypted input data.
This also allows to combine data from different data owners since the server will
learn nothing about the underlying data.

1.2 Related work

Private logistic regression with the aid of homomorphic encryption has already
been considered in [NLV11,BLN14], but in a rather limited form: both papers
assume that the logistic model has already been trained and is publicly available.
This publicly known model is then evaluated on homomorphically encrypted
data in order to perform classification of this data without compromising the
privacy of the patients. Our work complements these works by executing the
training phase for the logistic regression model in a privacy-preserving manner.
This is a much more challenging problem than the classification of new data,
since this requires the application of an iterative method and a solution for the
nonlinearity in the minimization function.

Aono et al. [AHTPW16] also explored secure logistic regression via homo-
morphic encryption. However, they shift the computations that are challenging
to perform homomorphically to trusted data sources and a trusted client. Con-
sequently, in their solution the data sources need to compute some intermediate
values, which they subsequently encrypt and send to the computation server.
This allows them to only use an additively homomorphic encryption scheme
to perform the second, easier, part of the training process. Finally, they re-
quire a trusted client to perform a decryption of the computed coefficients and
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use these coefficients to construct the cost function for which the trusted client
needs to determine the minimum in plaintext space. Their technique is based on
a polynomial approximation of the logarithmic function in the cost function and
the trusted client applies the gradient descent algorithm as iterative method to
perform the minimization of the cost function resulting from the homomorphic
computations. Our method does not require the data owners to perform any
computations (bar the encryption of their data) and determines the model pa-
rameters by executing the minimization directly on encrypted data. Again this
is a much more challenging problem.

In [XWBB16] Xie et al. construct PrivLogit which performs logistic regression
in a privacy-preserving but distributed manner. As before, they require the data
owners to perform computations on their data before encryption to compute
parts of a matrix used in the logistic regression. Our solution starts from the
encrypted raw dataset, not from values that were precomputed by the centers
that collect the data. In our solution all computations that are needed to create
the model parameters, are performed homomorphically.

Independently and in parallel with our research, Kim et al. [KSW+18] inves-
tigated the same problem of performing the training phase of logistic regression
in the encrypted domain. Their method uses a different approach than ours:
firstly, they use a different minimization method (gradient descent) compared
to ours (a simplification of the fixed Hessian method), a different approxima-
tion of the sigmoid function and a different homomorphic encryption scheme.
Their solution is based on a small adaptation of the input values, which reduces
the number of homomorphic multiplications needed in the computation of the
model. We assumed the dataset would be already encrypted and therefore adap-
tations to the input would be impossible. Furthermore, they tested their method
on datasets that contain a smaller number of covariates than the datasets used
in this article.

1.3 Contributions

Our contributions in this paper are as follows: firstly, we develop a method for
privacy preserving logistic training using homomorphic encryption that consists
of a low depth version of the fixed Hessian method. We show that consecutive
simplifications result in a practical algorithm, called the simplified fixed Hessian
(SFH) method, that at the same time is still accurate enough to be useful. We
implemented this algorithm and tested its performance and accuracy on two real
life use cases: a medical application predicting the probability of having cancer
given genomic data and a financial application predicting the probability that a
transaction is fraudulent. Our test results show that in both use cases the model
computed is almost as accurate as the model computed by standard logistic
regression tools such as the ones present in Matlab.
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2 Technical Background

2.1 Logistic regression

Logistic regression can be used to predict the probability that a dependent vari-
able belongs to a class, e.g. healthy or sick, given a set of covariates, e.g. some
genomic data. In this article, we will consider binary logistic regression, where
the dependent variable can belong to only two possible classes, which are la-
belled {±1}. Binary logistic regression is often used for binary classification by
setting a threshold for a given class up front and comparing the output of the
regression with this threshold. The logistic regression model is given by:

Pr(y = ±1|x,β) = σ(yβTx) =
1

1 + e(−yβTx)
, (1)

where the vector β = (β0, . . . , βd) are the model parameters, y the class label
(in our case {±1}) and the vector x = (1, x1, . . . , xd) ∈ Rd+1 the covariates.

Because logistic regression predicts probabilities rather than classes, we can
generate the model using the log likelihood function. The training of the model
starts with a training dataset (X,y) = [(x1, y1), . . . , (xN, yN )], consisting of N
training vectors xi = (1, xi,1, . . . , xi,d) ∈ Rd+1 and corresponding observed
class yi ∈ {−1, 1}. The goal is to find the parameter vector β that maximizes
the log likelihood function:

l(β) = −
n∑
i=1

log
(
1 + e(−yiβ

Txi)
)
. (2)

When the parameters β are determined, they can be used to classify new data
vectors xnew = (1, xnew1 , . . . , xnewd ) ∈ Rd+1 by setting

ynew =

{
1 if p(y = 1|xnew,β) ≥ τ
−1 if p(y = 1|xnew,β) < τ

in which 0 < τ < 1 is a variable threshold which typically equals 1
2 .

2.2 Datasets

As mentioned before, we will test our method in the context of two real life use
cases, one in genomics and the other in finance.

The genomic dataset was provided by the iDASH competition of 2017 and
consists of 1581 records (each corresponding to a patient) consisting of 103 co-
variates and a class variable indicating whether or not the patient has cancer.
The challenge was to devise a logistic regression model to predict the disease
given a training data set of at least 200 records and 5 covariates. However, for
scalability reasons the solution needed to be able to scale up to 1000 records
with 100 covariates. This genomic dataset consists entirely of binary data.
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The financial data was provided by an undisclosed bank that provided anonymized
data with the goal of predicting fraudulent transactions. Relevant data fields that
were selected are: type of transaction, effective amount of the transaction, cur-
rency, origin and destination, fees and interests, etc. This data has been subject
to preprocessing by firstly representing the non-numerical values with labels and
secondly computing the minimum and maximum for each of the covariates and
using these to normalise the data by computing x−xmin

xmax−xmin
. The resulting finan-

cial dataset consists of 20 000 records with 32 covariates, containing floating
point values between 0 and 1.

2.3 The FV scheme

Our solution is based on the somewhat homomorphic encryption scheme of Fan
and Vercauteren [FV12], which can be used to compute a limited number of
additions and multiplications on encrypted data. The security of this encryption
scheme is based on the hardness of the ring learning with error problem (RLWE)
introduced by Lyubashevsky et al. in [LPR13]. The core objects in the FV scheme
are elements of the polynomial ring R = Z[X]/(f(X)), where typically one
chooses f(X) = XD + 1 for D = 2n (in our case D = 4096). For an integer
modulus M ∈ Z we denote with RM the quotient ring R/(MR).

The plaintext space of the FV scheme is the ring Rt for t > 1 a small integer
modulus and the ciphertext space is Rq ×Rq for an integer modulus q � t. For
a ∈ Rq, we denote by [a]q the element in R obtained by applying [·]q to all its
coefficients ai, with [ai]q = ai mod q given by a representative in

(−q
2 ,

q
2

]
. The

FV scheme uses two probability distributions on Rq: one is denoted by χkey and
is used to sample the secret key of the scheme, the other is denoted χerr and will
be used to sample error polynomials during encryption. The exact security level
of the FV scheme is based on these probability distributions, the degree D and
the ciphertext modulus q and can be determined using an online tool developed
by Albrecht et al. [Alb04].

Given parameters D, q, t and the distributions χkey and χerr, the core oper-
ations are then as follows:

– KeyGen: the private key consists of an element s← χkey and the public key
pk = (b, a) is computed as a← Rq uniformly at random and b = [−(as+e)]q
with e← χerr.

– Encrypt(pk, m): given m ∈ Rt, sample error polynomials e1, e2 ∈ χerr and
u ∈ χkey and compute c0 = ∆m+ bu+ e1 and c1 = au+ e2 with ∆ = bq/tc,
the largest integer smaller than q

t . The ciphertext is then c = (c0, c1).
– Decrypt(sk, c): compute m̃ = [c0 + c1s]q, divide the coefficients of m̃ by ∆

and round and reduce the result into Rt.

Computing the sum of two ciphertexts simply amounts to adding the corre-
sponding polynomials in the ciphertexts. Multiplication, however, requires a bit
more work and we refer to [FV12] for the precise details.

The relation between a ciphertext and the underlying plaintext can be de-
scribed as [c0 + c1s]q = ∆m+ e, where e is the noise component present in the
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ciphertext. This also shows that if the noise e grows too large, decryption will no
longer result in the original message, and the scheme will no longer be correct.
Since the noise present in the resulting ciphertext will grow with each opera-
tion we perform homomorphically, it is important to choose parameters that
guarantee correctness of the scheme. Knowing the computations that need to be
performed up front enables us to estimate the size of the noise in the resulting
ciphertext, which permits the selection of suitable parameters.

2.4 w-NIBNAF

In order to use the FV scheme, we need to transform the input data into poly-
nomials of the plaintext space Rt. To achieve this, our solution makes use of the
w-NIBNAF encoding, because this encoding improves the performance of the
homomorphic scheme. The w-NIBNAF encoding is introduced in [BBB+17] and
expands a given number θ with respect to a non-integral base 1 < bw < 2. By
replacing the base bw by the variable X, the method encodes any real number θ
as a Laurent polynomial:

θ = arX
r + ar−1X

r−1 + · · ·+ a1X + a0− a−1Xd−1− a−2Xd−2− · · ·− a−sXd−s.

A final step then maps this Laurent polynomial into the plaintext space Rt and
we refer the reader to [BBB+17] for the precise details.

The w-NIBNAF encoding is constructed such that the encoding of a number
will satisfy two conditions: the encoding has coefficients in the set {−1, 0, 1}
and each set of w consecutive coefficients will have no more than one non-zero
coefficient. Both conditions ensure that the encoded numbers are represented
by very sparse polynomials with coefficients in the set {−1, 0, 1}, which can
be used to bound the size of the coefficients of the result of computations on
these representations. In particular, this encoding results in a smaller plaintext
modulus t, which improves the performance of the homomorphic encryption
scheme. Since larger values for w increase the sparseness of the encodings and
hence reduce the size of t even more, one would like to select the value for w
to be as large as possible. However, similar to encryption one has to consider
a correctness requirement for the encoding. More specifically, decoding of the
final polynomial should result in the correct answer, hence the base bw and
consequently also the value of w should be chosen with care.

3 Privacy preserving training of the model

3.1 Newton-Raphson method

To estimate the parameters of our logistic regression model, we need to com-
pute the parameter vector β that maximizes Equation (2). Typically, one would
differentiate the log likelihood equation with respect to the parameters, set the
derivatives equal to zero and solve these equations to find the maximum. The
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gradient of the log likelihood function l(β), i.e. the vector of its partial derivatives
[∂l/∂β0, ∂l/∂β1, . . . , ∂l/∂βd] is given by:

∇βl(β) =
∑
i

(1− σ(yiβ
Txi))yixi .

In order to estimate the parameters β, this equation will be solved numerically
by applying the Newton-Raphson method, which is a method to numerically
determine the zeros of a function. The iterative formula of the Newton-Raphson
method to calculate the root of a univariate function f(x) is given by:

xk+1 = xk −
f(xk)

f ′(xk)
, (3)

with f ′(x) the derivative of f(x). Since we now compute with a multivariate
objective function l(β), the (k + 1)th iteration for the parameter vector β is
given by:

βk+1 = βk −H−1(βk)∇βl(βk) , (4)

with ∇βl(β) as defined above and H(β) = ∇2
βl(β) the Hessian of l(β), being

the matrix of its second partial derivatives Hi,j = ∂2l/∂βi∂βj , given by:

H(β) = −
∑
i

(1− σ(yiβ
Txi))σ(yiβ

Txi)(yixi)
2 .

3.2 Homomorphic logistic regression

The downside of Newton’s method is that exact evaluation of the Hessian and
its inverse are quite expensive in computational terms. In addition, the goal is to
estimate the parameters of the logistic regression model in a privacy-preserving
manner using homomorphic encryption, which will further increase the compu-
tational challenges. Therefore, we will adapt the method in order to make it
possible to compute it efficiently in the encrypted domain.

The first step in the simplification process is to approximate the Hessian ma-
trix with a fixed matrix instead of updating it every iteration. This technique is
called the fixed Hessian Newton method. In [BL88], Böhning and Lindsay inves-
tigate the convergence of the Newton-Raphson method and show it converges
if the Hessian H(β) is replaced by a fixed symmetric negative definite matrix
B (independent of β) such that H(β) ≥ B for all feasible parameter values β,
where “ ≥ ” denotes the Loewner ordering. The Loewner ordering is defined for
symmetric matrices A, B and denoted as A ≥ B iff their difference A − B is
non-negative definite. Given such B, the Newton-Raphson iteration simplifies to

βk+1 = βk −B−1∇βl(βk) .

Furthermore, they suggest a lower bound specifically for the Hessian of the logis-
tic regression problem, which is defined as H̄ = − 1

4X
TX and demonstrate that

this is a good bound. This approximation does not depend on β, consequently
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it is fixed throughout all iterations and it only needs to be computed once as
desired. Since the Hessian is fixed, so is its inverse, which means it only needs
to be computed once.

In the second step, we will need to simplify this approximation even more,
since inverting a square matrix whose dimensions equal the number of covariates
(and thus can be quite large), is nearly impossible in the encrypted domain. To
this end, we replace the matrix H̄ by a diagonal matrix for which the method
still converges. The entries of the diagonal matrix are simply the sums of the
rows of the matrix H̄, so our new approximation H̃ of the Hessian becomes:

H̃ =


∑d
i=0 h̄0,i 0 . . . 0

0
∑d
i=0 h̄1,i . . . 0

...
...

. . .
...

0 0 . . .
∑d
i=0 h̄d,i

 .
To be able to use this approximation as lower bound for the above fixed

Hessian method we need to assure ourselves it satisfies the condition H(β) ≥ H̃.
As mentioned before we already know from [BL88] that H(β) ≥ −14 X

TX, so it

is sufficient to show that −14 X
TX ≥ H̃, which we now prove more generally.

Lemma 1. Let A ∈ Rn×n be a symmetric matrix with all entries non-positive,
and let B be the diagonal matrix with diagonal entries Bk,k =

∑n
i=1Ak,i for

k = 1, . . . , n, then A ≥ B.

Proof. By definition of the matrix B, we have that C = A−B has the following
entries: for i 6= j we have Ci,j = Ai,j and Ci,i = −

∑n
k=1,k 6=iAi,k. In particular,

the diagonal elements of C are minus the sum of the off-diagonal elements on
the i-th row. We can bound the eigenvalues λi of C by Gerschgorin’s circle
theorem [Ger31], which states that for every eigenvalue λ of C, there exists an
index i such that

|λ− Ci,i| ≤
∑
j 6=i

|Cij | i ∈ {1, 2, . . . , n} .

Note that by construction of C we have that Ci,i =
∑
j 6=i |Cij |, and so every

eigenvalue λ satisfies |λ − Ci,i| < Ci,i for some i. In particular, since Ci,i ≥ 0,
we conclude that λ ≥ 0 for all eigenvalues λ and thus that A ≥ B.

Our approximation H̃ for the Hessian also simplifies the computation of the
inverse of the matrix, since we simply need to invert each diagonal element sep-
arately. The inverse will be again computed using the Newton-Raphson method:
assume we want to invert the number a, then the function f(x) will be equal to
1
x−a and the iteration is given by xk+1 = xk(2−axk). For the Newton-Raphson
method to converge, it is important to determine a good start value. Given the
value range of the input data and taking into account the dimensions of the
training data, we estimate a range of the size of the number we want to invert.
This results in an estimation of the order of magnitude of the solution that is
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expected to be found by the Newton-Raphson algorithm. By choosing the initial
value of our Newton-Raphson iteration close to the constructed estimation of
the inverse, we can already find an acceptable approximation of the inverse by
performing only one iteration of the method.

In the third and final step, we simplify the non-linearity coming from the sig-
moid function. Here, we simply use the Taylor series: extensive experiments with

plaintext data showed that approximating σ(yiβ
Txi) by 1

2 + yiβ
Txi

4 is enough
to obtain good results.

The combination of the above techniques finally results in our simplified fixed
Hessian (SFH) method given in Algorithm 1.

Algorithm 1 β ← simplified fixed Hessian(X,Y, u0, κ)

1: Input: X(N, d + 1): training data with in each row the values for the covariates
for one record and starting with a column of ones to account for the constant
coefficient

2: Y (N, 1): labels of the training data
3: u0: start value for the Newton-Raphson iteration that computes the inverse
4: κ: the required number of iterations
5: Output: β: the parameters of the logistic regression model
6:
7: β = 0.001 ∗ ones(d+ 1, 1)
8: sum = zeros(N, 1);
9: for i = 1 : N do

10: for j = 1 : d+ 1 do
11: sum(i)+ = X(i, j)
12: end for
13: end for
14: for j = 1 : d+ 1 do
15: temp=0;
16: for i = 1 : N do
17: temp+ = X(i, j)sum(i);
18: end for
19: H̃(j)(j) = − 1

4
temp;

20: H̃−1(j)(j) = 2u0 − H̃(j)(j)u2
0;

21: end for
22: for k = 1 : κ do
23: for i = 1 : N do
24: g+ = ( 1

2
− 1

4
Y (i)X(i, :)β)Y (i)X(i, :);

25: end for
26: β = β − H̃−1g;
27: end for

We implemented the SFH algorithm in Matlab and verified the accuracy for a
growing number of iterations. One can see from Algorithm 1 that each iteration
requires 5 homomorphic multiplications, so performing one iteration is quite ex-
pensive. In addition, Table 1 indicates that improving the accuracy significantly
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Table 1: Performance for the financial dataset with 31 covariates and 700 training
records and 19 300 testing records.

# iterations AUC SFH

1 0.9418

5 0.9436

10 0.9448

20 0.9466

50 0.9517

100 0.9599

requires multiple iterations. We will therefore restrict our experiments to one
single iteration.

4 Results

4.1 Accuracy of the SFH method

Table 2 shows the confusion matrix of a general binary classifier. From the

Table 2: Comparing actual and predicted classes

actual class

-1 1

predicted -1 true negative (TN) false negative (FN)

class 1 false positive (FP) true positive (TP)

confusion matrix, we can compute the true positive rate (TPR) and the false
positive rate (FPR) which are given by

TPR =
#TP

#TP + #FN
and FPR =

#FP

#FP + #TN
. (5)

By computing the TPR and FPR for varying thresholds 0 ≤ τ ≤ 1, we can con-
struct the receiver operating characteristic curve or ROC-curve. The ROC-curve
is constructed by plotting the (FPR,TPR) pairs for each possible value of the
threshold τ . In the ideal situation there would exists a point with (FPR,TPR) =
(0, 1), which would imply that there exists a threshold for which the model clas-
sifies all test data correctly.

The area under the ROC-curve or AUC-value will be used as the main indi-
cator of how well the classifier works. Since our SFH method combines several
approximations, we need to verify the accuracy of our model first on unencrypted
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data and later on encrypted data. For well chosen system parameters, there will
be no difference between accuracy for unencrypted vs. encrypted data since all
computations on encrypted data are exact.

The first step is performed by comparing our SFH method with the standard
logistic regression functionality of Matlab. This is done by applying our method
with all its approximations to the plaintext data and comparing the result to the
result of the “glmfit” function in Matlab. The function b = glmfit(X, y, distr)
returns a vector b of coefficient estimates for a generalized linear model of the
responses y on the predictors in X, using distribution distr. Generalized linear
models unify various statistical models, such as linear regression, logistic regres-
sion and Poisson regression, by allowing the linear model to be related to the
response variable via a link function. We use the “binomial” distribution, which
corresponds to the “logit” link function and y a binary vector indicating success
or failure to compute the parameters of the logistic regression model with “glm-
fit”.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1: ROC curve for the cancer detection scenario of iDASH with 1000 training records
and 581 testing records, all with 20 covariates.

From Figures 1 and 2 one can see that the SFH method classifies the data
approximately as well as “glmfit” in Matlab, in the sense that one can always
select a threshold that gives approximately the same true positive rate and false
positive rate. One can thus conclude that the SFH method, with all its approx-
imations, performs well compared to the standard Matlab method, which uses
much more precise computations. By computing the TPR and FPR for several
thresholds, we found that the approximations of our SFH method shifts the
model a bit such that we need a slightly larger threshold to get approximately
the same TPR and FPR as for the Matlab model. Since the ideal situation would
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Fig. 2: ROC curve for the financial fraud detection with 1000 training records and
19 000 testing records, all with 31 covariates.

be to end up with a true positive rate of 1 and false positive rate of 0, we see
from Figure 1 that for the genomics dataset both models are performing rather
poorly. The financial fraud use case is, however, much more amenable to binary
classification as shown in Figure 2. The main conclusion is that our SFH method
performs almost as well as standard methods such as those provided by Matlab.

4.2 Implementation details and performance

Our implementation uses the FV-NFLlib software library [Cry16] which imple-
ments the FV homomorphic encryption scheme. The system parameters need to
be selected taking into account the following three constraints:

1. the security of the somewhat homomorphic FV scheme,
2. the correctness of the somewhat homomorphic FV scheme,
3. the correctness of the w-NIBNAF encoding.

The security of a given set of system parameters can be estimated using the work
of Albrecht, Player and Scott [APS15] and the open source learning with error
(LWE) hardness estimator implemented by Albrecht [Alb04]. This program esti-
mates the security of the LWE problem based on the following three parameters:

the degree D of the polynomial ring, the ciphertext modulus q and α =
√
2πσ
q

where σ is the standard deviation of the error distribution χerr. The security es-
timation is based on the best known attacks for the learning with error problem.
Our system parameters are chosen to be q = 2186, D = 4096 and σ = 20 (and

thus α =
√
2πσ
q ) which results in a security of 78 bits.

As explained in the section on the FV scheme, the error in the ciphertext
encrypting the result, should be small enough to enable correct decryption. By
estimating the infinity norm of the noise we can select parameters that keep
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this noise under the correctness bound and in particular, we obtain an upper
bound tmax of the plaintext modulus. Similarly, to ensure correct decoding, the
coefficients of the polynomial encoding the result must remain smaller than the
size of the plaintext modulus t. This condition results in a lower bound on the
plaintext modulus tmin.

It turns out that these bounds are incompatible for the chosen parameters, so
we have to rely on the Chinese Remainder Theorem to decompose the plaintext
space into smaller parts that can be handled correctly. The plaintext modulus
t is chosen as a product of small prime numbers t1, t2, . . . , tn with ∀i ∈
{1, . . . , n} : ti ≤ tmax and t =

∏n
i=1 ti ≥ tmin, where tmax is determined by

the correctness of the FV scheme and tmin by the correctness of the w-NIBNAF
decoding. The CRT then gives the following ring isomorphism:

Rt → Rt1 × . . .×Rtn : g(X) 7→ (g(X) mod t1, . . . , g(X) mod tn) .

and instead of performing the training algorithm directly over Rt, we compute
with each of the Rti ’s by reducing the w-NIBNAF encodings modulo ti. The
resulting choices for the plaintext spaces are given in Table 3.

Table 3: The parameters defining plaintext encoding

w t

genomic data (1) 71 5179 · 5189 · 5197

financial data (2) 150 2237 · 2239

Since we are using the Chinese Remainder Theorem, each record will be
encrypted using two (for the financial fraud case) or three (for the genomics
case) ciphertexts. As such, a time-memory trade off is possible depending on
the requirements of the application. One can choose to save computing time
by executing the algorithm for the different ciphertexts in parallel; or one can
choose to save memory by computing the result for each plaintext space Rti
consecutively and overwriting the intermediate values of the computations in
the process.

The memory required for each ciphertext is easy to estimate: a ciphertext
consists of 2 polynomials of Rq = Zq[X]/(XD+1), so its size is given by 2D log2 q
which is ≈ 186kB for the chosen parameter set. Due to the use of the CRT, we
require T (with T = 2 or T = 3) ciphertexts to encrypt each record, so the
general formula for the encrypted dataset size is given by:

T (d+ 1)N2D log2 q bits ,

with T the number of prime factors used to split the plaintext modulus t and
d+ 1 (resp. N) the number of covariates (resp. records) used in the training set.

The time complexity of our SFH method is also easy to estimate, but one has
to be careful to perform the operations in a specific order. If one would naively
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Table 4: Performance for the genomic dataset with a fixed number of covariates equal
to 20. The number of testing records is for each row equal to the total number of input
records (1581) minus the number of training records.

# training records computation time AUC SFH AUC glmfit

500 22 min 0.6348 0.6287

600 26 min 0.6298 0.6362

800 35 min 0.6452 0.6360

1000 44 min 0.6561 0.6446

Table 5: Performance for the genomic dataset with a fixed number of training records
equal to 500 and the number of testing records equal to 1081.

# covariates computation time AUC SFH AUC glmfit

5 7 min 0.65 0.6324

10 12 min 0.6545 0.6131

15 17 min 0.6446 0.6241

20 22 min 0.6348 0.6272

compute the matrix H̃ by first computing H̄ and subsequently summing each
row, the complexity would be O(Nd2). However, the formula of the k-th diagonal

element of H̃ is given by −14
∑d+1
j=1

(∑N
i=1 xk,ixj,i

)
, which can be rewritten as

−1
4

∑N
i=1 xk,i

(∑d+1
j=1 xj,i

)
. This formula shows that it is more efficient to first

sum all the rows of X and then perform a matrix vector multiplication with
complexity O(Nd).

Table 6: Performance for the financial dataset with a fixed number of covariates equal
to 31. The number of testing records is for each row equal to the total number of input
records (20 000) minus the number of training records.

# training records computation time AUC SFH AUC glmfit

700 30 min 0.9416 0.9619

800 36 min 0.9411 0.9616

900 40 min 0.9409 0.9619

1000 45 min 0.9402 0.9668

This complexity is clearly visible in the tables, more specifically in Table 4
and Table 5 for the genomic use case, and Table 6 and Table 7 for the financial
use case. All these tables show a linear growth of the computation time for a
growing number of records or covariates as expected by the chosen order of the
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Table 7: Performance for the financial dataset with a fixed number of records equal to
500 and the number of testing records equal to 19 500.

# covariates computation time AUC SFH AUC glmfit

5 5 min 0.8131 0.8447

10 8 min 0.9403 0.9409

15 11 min 0.9327 0.9492

20 15 min 0.9401 0.9629

computations in the implementation.
In Table 4 and Table 5 we see that often the AUC value of the SFH model is
slightly higher than the AUC value of the glmfit model. However, as mentioned
before both models perform poorly on this dataset. Since our SFH model contains
many approximations we expect it to perform slightly worse than the “glmfit”
model. Only slightly worse because Figure 1 and Figure 2 already showed that
the SFH models classifies the data almost as well as the “glmfit” model. This is
consistent with the results for the financial dataset shown in Table 6 and Table 7,
which we consider more relevant than the results of the genomic dataset due to
the fact that both models perform better on this dataset.

5 Discussion

The experiments of this article show promising results for the simple iterative
method we propose as an algorithm to compute the logistic regression model. A
first natural question is whether this technique is generalizable to other machine
learning problems. In [Böh92], Böhning describes how to adapt the lower bound
method to make it applicable to multinomial logistic regression, it is likely this
adaption will also apply to our SFH technique and hence our SFH technique can
most likely also be applied to construct a multinomial logistic regression model.
In the case of neural networks we can refer to [BCIV17]; in order to construct
the neural network one needs to rank all the possibilities and only keep the best
performing neurons for the next layer. Constructing this ranking homomorphi-
cally is not straightforward and not considered at all in our algorithm, hence
neural networks will require more complicated algorithms.
When we look purely at the performance of the FV homomorphic encryption
scheme, we might consider a residue number system (RNS) variant of the FV
scheme as described in [BEHZ16] to further improve the running time of our im-
plementation. One could also consider single instruction multiple data (SIMD)
techniques as suggested in [CIV17] or look further into a dynamic rescaling pro-
cedure for FV as mentioned in [FV12]. These techniques will presumably further
decrease the running time of our implementation, which would render our solu-
tion even more valuable.
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6 Conclusions

The simple, but effective, iterative method presented in this paper allows one to
train a logistic regression model on homomorphically encrypted input data. Our
method can be used to outsource the training phase of logistic regression to a
cloud service in a privacy preserving manner. We demonstrated the performance
of our logistic training algorithm on two real life applications using different
numeric data types. In both cases, the accuracy of our method is only slightly
worse than standard algorithms to train logistic regression models. Finally, the
time complexity of our method grows linearly in the number of covariates and
the number of training input data points.
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