
Approximate and Probabilistic Differential Privacy Definitions

Sebastian Meiser
University College London, United Kingdom, e-mail: s.meiser@ucl.ac.uk

November 1, 2018

Abstract

This technical report discusses three subtleties related to the widely used notion of differential privacy
(DP). First, we discuss how the choice of a distinguisher influences the privacy notion and why we should
always have a distinguisher if we consider approximate DP. Secondly, we draw a line between the very
intuitive probabilistic differential privacy (with probability 1 − δ we have ε-DP) and the commonly
used approximate differential privacy ((ε, δ)-DP). Finally we see that and why probabilistic differential
privacy (and similar notions) are not complete under post-processing, which has significant implications
for notions used in the literature.

Differential privacy

Differential privacy and its relaxation, approximate differential privacy (ADP) have been used widely in the
literature. ADP classically quantifies, in terms of parameters ε and δ, the privacy of a mechanism that
releases statistical information on databases with sensitive information in a privacy-preserving way. A prime
example is releasing the answers to statistical queries on a database with medical records without revealing
information about the individual records in the database. Moreover, differential privacy finds applications
in machine learning, smart metering and even anonymous communication. Technically, differential privacy
is often defined roughly like this:

Definition 1 (Differential privacy). A mechanism M is (ε, δ)-differentially private, where ε ≥ 0 and δ ≥ 0,
if for all neighboring databases D0 and D1, i.e., for databases differing in only one record, and for all sets
S ⊆ [M], where [M] is the range of M , the following in-equation holds:

Pr [M(D0) ∈ S] ≤ eε · Pr [M(D1) ∈ S] + δ.

We say that a mechanism satisfies pure differential privacy, if it satisfies (ε, 0)-differential privacy and we
say that it satisfies approximate differential privacy (ADP), if it satisfies (ε, δ)-differential privacy for δ > 0.

Differential privacy is quite helpful for defining privacy, particularly since it is preserved under arbitrary
post-processing: no matter which functions are applied on the output of a differentially private mechanism,
the results do not reduce the privacy guarantee in any way. More formally, if M is (ε, δ)-differentially private
and T is any randomized algorithm, then T (M), defined as T (M)(x) = T (M(x)) is also (ε, δ)-differentially
private.

Background and further reading

For background on the notions, definitions and applications of differential privacy we want to refer to the
comprehensive book on differential privacy by Aaron Roth and Cynthia Dwork [2]. As a further read,
particularly on the intuition behind the notions, we would recommend some of the great blog posts by
Frank McSherry on what differential privacy is and isn’t about [6] and his illustrative take on the qualitative
difference of ε and δ in (ε, δ)-differential privacy [7].

At this point we don’t want to delve into more intuition on why differential privacy is interesting or on
the mathematical foundations behind the definition. Instead, we will simply claim that in a perfect world we
would typically prefer to have pure (ε, 0)-differential privacy, as this would provide us with a clean and (more
or less) easily understandable definition that provides us with deniability. In fact, if would make definitions
of differential privacy a bit easier and a common pitfall could be avoided.

1

Subtlety 1: Who distinguishes the output?

The definition for differential privacy from above holds for all possible sets of outputs of M . Another way to
look at this is to consider S to be a (potentially computationally unbounded) distinguisher: a certain subsets
of outputs are considered to be in S, while all other outputs are not. Note that if the range of M is large,
this distinguisher can potentially solve computationally difficult problems (S can be the set of all outputs
that encode instances of DDH), or even solve undecidable problems (S can be the set of all outputs that
encode a Turing machine and an input, such that the machine halts on that input). We might not always
want to consider such a strong adversary, so in some cases we need to find weaker definitions that allow us
to get rid of the all-powerful set S.

To soften up the definition, we can introduce a distinguisher/adversary A that has to distinguish outputs
of M on input D0 and outputs of M on input D1, which is very close to the notion of IND-CDP introduced
by Mironov, Pandey, Reingold, and Vadhan [8]:

Definition 2 (Computational differential privacy). A mechanism M is (ε, δ)-differentially private, where
ε ≥ 0 and δ ≥ 0, if for all neighboring databases D0 and D1, i.e., for databases differing in only one record,
and for all probabilistic polynomial time Turing machines A, the following in-equation holds:

Pr [0 = A(M(D0))] ≤ eεPr [0 = A(M(D1))] + δ.

Such a computational definition allows us to include, say, the encryption of a secret into the output of M ,
without unreasonably concluding that the encryption results in a privacy violation. If we had used sets S
instead, our definition would have to hold even for sets that can distinguish the encryption of one secret from
the encryption of another secret. Note that we additionally need to be careful about where the encryption
key comes from. If the key is considered static, it can be hard-coded into any distinguisher and if it is a
secret input into M we need to be careful about who chooses this input. Thus, the next subtlety we run
into is deciding on who chooses the input databases. We might ask ourselves: is a property that holds for all
pairs or neighboring databases equivalent to having the adversary choose two databases? Fortunately, for
stateless mechanisms M and fixed inputs it is, as any pair of two databases (D0, D1) can be hard-coded in the
description of A. If the databases depend on the security parameter, things get a little more tricky. We either
consider a non-uniform adversary (that can have two relevant databases of a polynomial size hard-coded) or
we show that our mechanism is not as complex as it could be; e.g., if we simply add some noise to the result
of a counting query and additionally send an encryption with it, there really is no need for complicated
solutions: we can split the analysis of the (ε, δ)-differentially private output and of the encryption (leading
to a negligible adversarial advantage δ′) and then deduce that we achieve (ε, δ + δ′)-differential privacy.

Bad idea: no distinguisher at all An alternative path of getting rid of the set S is simply avoiding it,
which brings us to our first common example of an unhelpful definition.

Definition 3 (How not to define differential privacy). A mechanism M is (ε, δ)-differentially private, where
ε ≥ 0 and δ ≥ 0, if for all neighboring databases D0 and D1, i.e., for databases differing in only one record,
and for all potential outputs y ∈ [M], where [M] is the range of M , the following in-equation holds:

Pr [y = M(D0)] ≤ eεPr [y = M(D1)] + δ.

The two definitions Definitions 1 and 3 are equivalent if δ = 0, so stumbling upon a definition on individual
elements in not always problematic. However, if δ happens to be non-zero and particularly if M has a rather
large range, things can become tricky. Let’s consider what happens if |[M]| > 1

δ : This can occur even for a
value of δ negligible in a security parameter λ, if the mechanism is, e.g., allowed to output strings linear in λ.
Imagine the following mechanism Mleaky. On input D, the mechanism outputs whatever private information
we don’t want it to output and then attaches a random bit string of length λ to that output. Since each
such random bit string has a chance of 1

2λ
of being chosen, the probability for any y ∈ [Mleaky] to be the

output of Mleaky is bounded by 1
2λ

as well. Consequently, we have a negligible δ(λ) = 1
2λ

and for any two
inputs D0 and D1 (including neighboring ones), we have

Pr [y = Mleaky(D0)] ≤ δ(λ) ≤ eε · Pr [y = Mleaky(D1)] + δ(λ).

In summary, we should not define ADP without any distinguisher, even if δ is negligible.

2

Subtlety 2: Probabilistic differential privacy is not equivalent to ADP

ADP is widely used, and rightfully so, since many actual implementations of differential privacy do not satisfy
ε-differential privacy, but only (ε, δ)-ADP. Here is a common interpretation for what it means if a mechanism
is (ε, δ)-ADP: with probability 1 − δ the output of the mechanism enjoys (pure) (ε, 0)-differential privacy,
i.e., the ratio between the probability to observe this output on either input is bounded by eε. This intuition
is useful for reasoning about the otherwise quite mathematical notion in terms we can mostly understand:
Assuming we have developed an understanding of the probability ratio of (pure) differential privacy, we can
easily reason about small chances of things going wrong. However, this intuition unfortunately is wrong:
there can be events that occur with a probability significantly higher than δ for which the probability ratio
is not quite bounded by eε. To illustrate this discrepancy between ADP and probabilistic DP, we create a
simple example.

A simple example We construct a mechanism M on just one bit of input and one bit of output. Let

M(0) =

{
0 with probability eε

1+eε

1 with probability 1
1+eε

,

for some small value ε > 0 and, conversely,

M(1) =

{
0 with probability 1

1+eε

1 with probability eε

1+eε

.

We trivially see that we have (pure) ε-DP:

∀x. e−ε ≤ M(0)

M(1)
=
M(1)

M(0)
≤ eε.

Since this ratio holds for all individual elements (all two of them), it also holds for all sets of elements
(all four of them). Moreover, we can calculate the total variation distance (the L1 norm) between M(0) and
M(1) as eε−1

1+eε . In terms of distinguishing between them, the best distinguisher simply outputs the bit it sees.

Thus, we can show that M is
(

0, e
ε−1

1+eε

)
-ADP as well (here, the worst-case sets are S = {0} and S = {1}).

The latter should already tell us that (ε, δ)-ADP cannot be the same as probabilistic differential privacy: we
have a result for ε = 0 with a small value δ = eε−1

1+eε ≈ ε
2 , but in no way are we guaranteed to have 0-DP with

a probability anywhere near 1− ε
2 . Rather, more likely than not (with probability eε

eε+1 >
1
2) we will observe

an event for which the ratio is exactly eε, which means that an observer learns exactly this: the chance that
the input was b is, assuming an unbiased prior, more likely by a factor of eε than that the input was 1− b.

A more general note We can apply a very similar technique counter to our intuition of probabilistic
differential privacy: for any M that is (ε, 0)-DP and for any 0 ≤ ε′ ≤ ε, we can easily show that M satisfies
(ε′, eε − eε′)-ADP. That is, for all S ⊆ [M] and for all neighboring D0, D1 we have

Pr [M(D0) ∈ S] ≤ eεPr [M(D1) ∈ S]

= eε
′
Pr [M(D1) ∈ S] + (eε − eε′)Pr [M(D1) ∈ S]

≤ eε′Pr [M(D1) ∈ S] + (eε − eε′).

As this calculation in no way requires any information about M or the two inputs D0 and D1, it in fact is
always possible and leads us to what we can call an epsilon-delta-graph: For every chosen value of ε′, we can
derive a bound on δ so that the distributions are (ε′, δ)-ADP. When doing just that, we see that δ in fact is
unrelated to the actual probabilities of any real events and is merely a definitional measure for how much of
a probability mass is outside the ε′ curve, by which we mean the area between the output distributions of
M(D0) and eε ·M(D1), which is the output distribution of M(D1) multiplied with eε (see Figure 1).

3

−10 −5 0 5 10

A
B

eε ·A

−10 −5 0 5 10

A
B

eε
′ ·A

(a) Two Laplace probability distributions

−10 −5 0 5 10

A
B

eε ·A

−10 −5 0 5 10

A
B

eε
′ ·A

(b) Two less regular probability distributions

−5 0 5

A
B

eε ·A

−5 0 5

A
B

eε
′ ·A

δA,B(ε)

(c) Two truncated Gaussian probability distributions

Figure 1: Each graph depicts two probability distributions A and B, as well as a “scaled up” version of A
(every point is multiplied with eε / eε

′
). Note that eε · A is not a probability distribution. On the left, we

scale up A with an exactly large enough factor eε to achieve pure ε-DP (every point of B fits under eε · A;
except for the error resulting from the truncation in part (c)). On the right side we chose a factor eε

′
that

is too low (not every point of B fits under eε
′ ·A). We still achieve (ε′, δ)-ADP, where δ is the volume of the

red area, i.e., the area not captured under the scaled up curve.
Part (a) depicts two Laplace distributions, part (b) depicts two less regular distributions and part (c) depicts
two truncated Gaussian probability distributions.

4

Subtlety 3: Probabilistic DP is not preserved under post-processing

One might ask why we even bother to work with ADP in the first place, if there is a more intuitive form of
differential privacy. Consider the following definition for probabilistic differential privacy, which is close to
the one by Machanavajjhala et al. [5], but we find it more intuitive:

Definition 4. A mechanism M is (ε, δ)-probabilistically differentially private, where ε ≥ 0 and δ ≥ 0, if for
all neighboring databases D0 and D1, i.e., for databases differing in only one record there is a set Sδ ⊆ [M]
with Pr

[
M(D0) ∈ Sδ

]
≤ δ, s.t., for all sets S ⊆ [M], where [M] is the range of M , the following in-equation

holds:
Pr
[
M(D0) ∈ S \ Sδ

]
≤ eε · Pr

[
M(D1) ∈ S \ Sδ

]
This definition is equivalent to having two separate sets Sδ0 and Sδ1 for bounding bad events in M(D0)

and M(D1) respectively, where we bound the probability mass that the respective mechanism returns an
output that falls within the respective set (see Definition 7 for this alternative definition).

The definition fits to our intuition in that there may be some events that occur with a probability of less
than δ for which we don’t make a statement, but all other events enjoy the property of (pure) (ε, 0)-DP.
One of the main advantages of differential privacy, however, is that the property is preserved under arbitrary
post-processing. Indeed, as long as our post-processing only expands each output/event this is still true for
PDP. However, we can define a post-processing step that destroys the PDP property.1

Theorem 1. Let M be any (ε, δ)-PDP mechanism and let D0 and D1 be two neighboring inputs for which
the PDP property barely holds, i.e., for which we have sets Sδ0 ⊆ [M] and Sε ⊆ [M] \ Sδ0 with the following
properties (that are in line with PDP):

� Pr
[
M(D0) ∈ Sδ0

]
≤ δ,

� Pr
[
M(D0) ∈ Sδ0 ∪ Sε

]
> eεPr

[
M(D1) ∈ Sδ0 ∪ Sε

]
,

� Pr
[
M(D0) ∈ Sδ0 ∪ Sε

]
> δ.

Then, there is a deterministic transformation T such that T ◦M is not PDP.

Proof. Let M be any (ε, δ)-PDP mechanism and let D0 and D1 be two neighboring inputs for which we have
sets Sδ0 , Sε ⊆ [M] with the properties mentioned in the lemma.

Let T be the following transformation and let ⊥ be a value that is not in [M]:

T (x) =

{
⊥ if x ∈ Sδ0 ∪ Sε
x otherwise.

Note that Pr [T (M(D0)) = ⊥] = Pr
[
M(D0) ∈ Sδ0 ∪ Sε

]
> δ. Consequently, one cannot add the event ⊥ to

a δ-set for T ◦M : For every set SδT with Pr
[
T (M(D0)) ∈ SδT

]
≤ δ we know that ⊥ /∈ SδT . To satisfy the

definition of PDP, we thus need the (ε, 0)-DP inequality to hold for this event ⊥, but it will not. Formally,
since Sε ⊆ [M] \ Sδ0 , we have for S⊥ = {⊥}

Pr [T (M(D0)) ∈ S⊥] = Pr
[
M(D0) ∈ Sδ0 ∪ Sε

]
> eε · Pr

[
M(D1) ∈ Sδ0 ∪ Sε

]
= eεPr [T (M(D1)) ∈ S⊥] ,

which violates the definition of (ε, δ)-PDP. Thus, T ◦M does not satisfy (ε, δ)-PDP.

Consider, as an example, the following distributions:

M(0) =


0 with probability δ

1 with probability eε

(1+eε) · (1− δ)
2 with probability 1

(1+eε) · (1− δ)
3 with probability 0

M(1) =


0 with probability 0

1 with probability 1
(1+eε) · (1− δ)

2 with probability eε

(1+eε) · (1− δ)
3 with probability δ

.

1That PDP is not closed under post-processing has first been shown by Kifer et al [4] (Section 2.2) prior to this report and
with a similar example; thanks to Balazs Pejo for pointing this out.

5

They clearly satisfy (ε, δ)-PDP, but T (M) will look like this:

M(0) =


⊥ with probability δ + eε

(1+eε) · (1− δ)
2 with probability 1

(1+eε) · (1− δ)
3 with probability 0

M(1) =


⊥ with probability 1

(1+eε) · (1− δ)
2 with probability eε

(1+eε) · (1− δ)
3 with probability δ

,

and we have Pr [M(0) = ⊥] = δ + eε

(1+eε) · (1− δ) > eε

(1+eε) · (1− δ) = eε · Pr [M(1) = ⊥].

The very same strategy can be applied to other “probabilistic” relaxations of (differential) privacy notions,
such as δ-approximate zero-concentrated differential privacy, a variant of concentrated differential privacy [3]
and to a wide range of approximate probabilistic properties, really. To see that this is true, we generalize
the proof idea from above.

Generalization: no non-trivial δ-approximate probabilistic property is preserved under post-
processing. While there of course are properties that are preserved under post-processing (for example
(ε, 0)-DP and (ε, δ)-ADP), we now characterize which properties are not preserved. They boil down to
properties that exclude a “bad” event (defined as a set of potential outputs; if this event occurs, the property
does not have to hold), by placing a bound δ on the probability that the “bad” event occurs and by forcing
the property to hold otherwise. Moreover, the property can’t just be trivially true (e.g., even if the “bad”
event occurs), so we require that there is some set of “borderline” events that, when combined with the
“bad” events do not fulfill the property. To disallow the property from cheating, we finally require that the
combined probability of the “bad” and the “borderline” events must be larger than δ.

Definition 5 (non-trivial δ-approximate probabilistic property). We call any property Υ a δ-approximate
non-trivial probabilistic property on two distributions A and B if there are sets Sbad ⊆ [A], Sborderline ⊆
[A] \ Sbad with the following properties:

1. Pr [A ∈ Sbad] ≤ δ,
2. ∀S ⊆ [A] \ Sbad : Υ(A|S , B|S) = 1

3. Υ(A|Sborderline∪Sbad
, B|Sborderline∪Sbad

) = 0

4. Pr [A ∈ Sborderline ∪ Sbad] > δ,

where X|S restricts the distribution X on the elements in the set S. If X = M(D) corresponds to a
randomized mechanism on some input D, the restriction applies to the outputs of the mechanism on this
input. We say that two distributions are δ-approximate (potentially trivial) Υ, if the properties 1. and 2.
are satisfied.

Theorem 2. Let Υ any δ-approximate non-trivial property on two distributions A and B. Then there is a
deterministic transformation T such that T (A) and T (B) are not δ-approximate Υ.

Proof. Let Υ any δ-approximate non-trivial property on two distributions A and B with the sets Sbad ⊆ [A]
and Sborderline ⊆ [A] \ Sbad defined as in Definition 5. Let T be the following transformation, where ⊥ is
value that is not in [A]:

T (x) =

{
⊥ if x ∈ Sbad ∪ Sborderline

x otherwise.

Assume for contradiction that there was a set Tbad s.t.,

� Pr [T (A) ∈ Tbad] ≤ δ,
� ∀S ⊆ [T (A)] \ Tbad : Υ(Pr [T (A) ∈ S] ,Pr [T (B) ∈ S]) = 1

Note that sinceA andB are δ-approximate non-trivial probabilistic Υ, by property 4. we have Pr [T (A) = ⊥] =
Pr [A ∈ Sbad ∪ Sborderline] > δ. Consequently, ⊥ cannot be in Tbad. We define the set S⊥ = {⊥} ⊆
[T (A)] \ Tbad and get

Υ(T (A)|S⊥ , T (B)|S⊥) = Υ(A|Sborderline∪Sbad
, B|Sborderline∪Sbad

) = 0,

which violates property 2. for T (A) and T (B). Since S⊥ ⊆ [T (A)] \ Tbad, this is a contradiction to our
assumption that T (A) and T (B) are δ-approximate Υ.

6

Example: δ-approximate zero-concentrated differential privacy (δ-zCDP) We now instantiate
the general property from above to show that δ-zCDP is not preserved under post-processing. To see this,
we first review the definition of δ-zCDP.

Definition 6 (δ-approximate zero-concentrated differential privacy [1]). A randomized mechanism M is
δ-approximately (ξ, ρ)-zCDP if, for all neighboring D0, D1 there exist events E and E′ such that Pr [E] ≥
1− δ ∧ Pr [E′] ≥ 1− δ, and

∀α ∈ (1,∞) Dα (M(D0)|E ||M(D1)|E′)) ≤ ξ + ρ · α ∧ Dα (M(D1)|E′ ||M(D0)|E)) ≤ ξ + ρ · α,
where for two random variables A and B over the same universe U , Dα(A||B) is the Rényi divergence

Dα(A||B) =
1

α− 1
log

(∑
x∈U

A(x)

B(x)

)
,

which is not defined if B(x) = 0 for any x ∈ U .

We concentrate on only one direction and set Υ(A,B) = ∀α ∈ (1,∞) : Dα (A || B)) ≤ ξ + ρ. Assume
two distributions A and B are non-trivial δ-approximate Υ, i.e., there are events occurring with probability
δ for which the property doesn’t hold and at least one additional event for which it barely holds. Then, Υ is
not preserved if we merge these events by applying T . In particular, if a mechanism M is δ-approximately
(ξ, ρ)-zCDP in a non-trivial way, then T (M) is not δ-approximately (ξ, ρ)-zCDP.2

The mechanism in the middle The difference between ADP and PDP is a bit subtle. Not only does
(ε, δ)-PDP imply (ε, δ)-ADP, but Dwork and Roth [2](Lemma 3.17) show that if and only if M satisfies (ε, δ)-
ADP, then we can for any two neighboring inputs D0 and D1 find distributions M ′D0

and M ′D1
such that

∆(M(D0),M ′D0
) ≤ δ

1+eε and ∆(M(D1),M ′D1
) ≤ δ

1+eε and such that M ′D0
and M ′D1

are related as by pure
(ε, 0)-DP, where ∆(A,B) ≤ z describes a variant of the statistical distance (total variation) that is equivalent
to (0, z)-DP. Thus, we can say that whenever M is (ε, δ)-ADP on two inputs, M is ≈ δ-indistinguishable to
some other distributions that have a (now only multiplicative) privacy loss of at most eε.

What do we learn?

Pure differential privacy is a robust notion that we can (to some degree) understand intuitively: ε captures
how much more likely any event based on the output of the mechanism can be. These events can range
from any “guesses about the input based on the output” to results of computations and even actions taken
based on the observed output. However, whenever we use computers (that often make use of imperfect
randomness) or we combine our outputs with cryptography or we have any other ever so slight chance that
the mechanism behaves unexpectedly, we simply cannot expect to achieve pure (ε, 0)-differential privacy.

We discussed several weaker definitions and many of them seem robust (although they run a bit counter
to our intuition), but it seems we need to be careful with any δ-approximate (non-trivial) variants of privacy
notions. Whenever we try to confine bad events by banishing them into a “small probability of failure” it
seems that very simple transformations can, at least formally, invalidate the privacy notion.

Lessons learned in terms of post-processing We see two reasons against using δ-approximate non-
trivial privacy properties, such as probabilistic differential privacy or δ-approximate zero-concentrated dif-
ferential privacy. First, proofs for (differential) privacy notions of any kind very often use preservation under
post-processing as a fundamental component. If the preservation under post-processing is not satisfied, we
might be faced with problems and errors in proofs. Second, a property that isn’t preserved under post-
processing may not be helpful in understanding privacy: Nothing prevents the adversary from processing
the observations it makes, in which case the property does not hold anymore and we might end up with a
different privacy notion, such as ADP. To make reasonable statements about what the adversary can learn,
we then need to understand which privacy notion still holds after post-processing. Thus, we reason that we
should use that notion in the first place instead of the original notion.

2Note that we require a sort of “tightness” of the bounds to make such strong statements. A mechanism that, for example,
always outputs 0 is of course δ-approximately (ξ, ρ)-zCDP for arbitrary δ, ξ, ρ ≥ 0 and post-processing will not change that.

7

Alternative PDP definitions

First, we briefly present a definition of PDP that is equivalent to Definition 4

Definition 7. A mechanism M is (ε, δ)-probabilistically differentially private, where ε ≥ 0 and δ ≥ 0,
if for all neighboring databases D0 and D1, i.e., for databases differing in only one record there are sets
Sδ0 , S

δ
1 ⊆ [M] with Pr

[
M(D0) ∈ Sδ0

]
≤ δ and Pr

[
M(D1) ∈ Sδ1

]
≤ δ, s.t., for all sets S ⊆ [M], where [M] is

the range of M , the following in-equations hold:

Pr
[
M(D0) ∈ S \ Sδ0

]
≤ eε · Pr

[
M(D1) ∈ S \ Sδ0

]
∧Pr

[
M(D1) ∈ S \ Sδ1

]
≤ eε · Pr

[
M(D0) ∈ S \ Sδ1

]
.

This definition is equivalent to Definition 4. The direction from Definition 7 to Definition 4 is straight-
forward: the set Sδ0 from Definition 7 satisfies the conditions necessary for Sδ from Definition 4. The other
direction follows similarly directly: The set Sδ in Definition 4 satisfies the conditions required for Sδ0 ; if for
every pair of distributions D0, D1 such a set Dδ exists, then also for the pair D1, D0 and that set satisfies
the conditions required for Sδ1 .

There is another PDP definition by Machanavajjhala et al. [5] that is similar, but has a few subtle
differences to the once(s) presented before. We found Definitions 4 and 7 to be closer to how people seemed
to considered PDP intuitively.3

Definition 8 (Probabilistic Differential Privacy (based on Disclosure Sets) [5]). Let M be a randomized
algorithm. Let ε > 0 and 0 < δ < 1 be constants. We say that M satisfies (ε, δ)-PDP if for all inputs x,
Pr [M(x) ∈ Disc(x, ε)] ≤ δ, where the disclosure set Disc is defined as

Disc(x, ε) =

{
y ∈ [M] | ∃x1, x2 both neighboring to x and to each other ∧ log

(
Pr [y ←M(x1)]

Pr [y ←M(x2)]

)
> ε

}
This notion is quite similar to the ones we defined, but differs in (at least) these aspects:

� The set Disc(x, ε) captures relations between all datasets x1, x2 that are neighboring to x and that
differ in at most one row, including . One example for such sets could replace a row in a dataset in x
with two different rows, one in x1 and one in x2 each.

� The set Disc(x, ε) captures “both directions” of differential privacy together, i.e., if we consider the

logarithmic privacy loss (as defined, by Dwork and Rothblum [3]), L(y) = log
(

Pr[M(x1)=y]
Pr[M(x2)=y]

)
, then our

definition uses Sδ0 for capturing just the elements with a privacy loss L(y) > ε and Sδ1 for capturing the
elements with a privacy loss L(y) < −ε; in contrast, Disc(x, ε) combines them into the same set.

� The set Disc(x, ε) can be the full set of outputs, even if the mechanism intuitively should satisfy PDP.
Consider a mechanism that, with probability δ, leaks the real valued first attribute zδ of the first row
of its input database and that otherwise performs a counting query to which Laplace noise is added
(or mimics some other (ε, 0)-DP mechanism with sufficiently large output set). Every output has a
measurable probability iff it is the first row’s first attribute. Consequently, for every input x and for
every output y there are neighboring x1, x2 (zδ = y for x1), s.t. their privacy loss on y output is larger
than any ε and thus (every) y is in the disclosure set and Definition 8 cannot be satisfied.

Definition 8 also generally isn’t preserved under post-processing: in our simplistic counterexample pre-
sented after Theorem 1 all three definitions coincide, since there are only two possible inputs (0 and 1)
anyway and no matter which one we choose, we always have Dist(x, ε) = {0, 3} and the probability of M(x)
to be in {0, 3} is always δ, for any x (which can be 0 or 1).

Acknowledgement

This work has been partially supported by the European Commission through H2020-DS-2014-653497
PANORAMIX and the EPSRC Grant EP/M013-286/1. Thanks to Esfandiar Mohammadi and Balazs Pejo
for the discussions on ADP (and to Esfandiar also for the idea behind the graphical depiction of delta).

3I’m pretty sure I saw the PDP definition captured in Definition 7 in either a presentation or a paper, but do not remember
which one it was. If the reader is aware of such a publication, I would be happy to cite it.

8

References

[1] M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds.
In Theory of Cryptography Conference, pages 635–658. Springer, 2016.

[2] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 9(3–4):211–407, 2014.

[3] C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv preprint arXiv:1603.01887,
2016.

[4] D. Kifer and B.-R. Lin. An axiomatic view of statistical privacy and utility. Journal of Privacy and
Confidentiality, 4(1):5–49, 2012.

[5] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets practice
on the map. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, pages
277–286. IEEE Computer Society, 2008.

[6] F. McSherry and J. Klucar. Lunchtime for data privacy. Blog, available under https://github.com/

frankmcsherry/blog/blob/master/posts/2016-08-16.md, 2016.

[7] F. McSherry and J. Klucar. How many secrets do you have? Blog, available under https://github.

com/frankmcsherry/blog/blob/master/posts/2017-02-08.md, 2017.

[8] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential privacy. In Advances in
Cryptology-CRYPTO 2009, pages 126–142. Springer, 2009.

9

