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Abstract. Lattice signature schemes generally require particular care
when it comes to preventing secret information from leaking through sig-
nature transcript. For example, the Goldreich-Goldwasser-Halevi (GGH)
signature scheme and the NTRUSign scheme were completely broken
by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt
2006). Several heuristic countermeasures were also shown vulnerable to
similar statistical attacks.

At PKC 2008, Plantard, Susilo and Win proposed a new variant of GGH,
informally arguing resistance to such attacks. Based on this variant, Plan-
tard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature
scheme, called DRS, that is in the round 1 of the NIST post-quantum
cryptography project.

In this work, we propose yet another statistical attack and demonstrate
a weakness of the DRS scheme: one can recover some partial information
of the secret key from sufficiently many signatures. One difficulty is that,
due to the DRS reduction algorithm, the relation between the statistical
leak and the secret seems more intricate. We work around this difficulty
by training a statistical model, using a few features that we designed
according to a simple heuristic analysis.

While we only recover partial secret coefficients, this information is easily
exploited by lattice attacks, significantly decreasing their complexity.
Concretely, we claim that, provided that 100000 signatures are available,
the secret key may be recovered using BKZ-138 for the first set of DRS
parameters submitted to the NIST. This puts the security level of this
parameter set below 80-bits (maybe even 70-bits), to be compared to an
original claim of 128-bits.

Furthermore, we review the DRS v2 scheme that is proposed to resist
above statistical attack. For this countermeasure, while one may not
recover partial secret coefficients exactly by learning, it seems feasible to
gain some information on the secret key. Exploiting this information, we
can still effectively reduce the cost of lattice attacks.

Keywords: Cryptanalysis - Lattice based signature - Statistical attack
- Learning - BDD

* This is an extended version of the conference paper [36]. New material has been
added as Section 6, treating the application of our technique to the second version
of DRS [30, 33].



1 Introduction

At Crypto’97, Goldreich, Goldwasser and Halevi proposed the encryption and
signature schemes [18] whose security relies on the hardness of lattice problems.
Concurrently, a practical scheme, NTRUEncrypt was proposed, and adapted
for signatures a few years later (NTRUSign [21]). In 2006, Nguyen and Regev
presented a celebrated statistical attack [26] and completely broke GGH and
NTRUSign in practice. The starting point of NR attack is a basic observation
that any difference between signature and message always lies in the parallelepi-
ped spanned by secret key. Thus each signature leaks partial information about
the secret key, which allows to fully recover the secret key from sufficiently many
signatures. In 2012, Ducas and Nguyen revisited NR attack [14] and showed that
it could be generalized to defeat several heuristic countermeasures [21, 22].

Designing secure and efficient lattice based signatures remains a challenging
problem. To get rid of information leaks, the now standard method is to use
a delicate sampling algorithm for trapdoor inversion [17, 28].# Following such
setting, it can be proved that signatures are independent of the secret key. Yet
this provable guarantee doesn’t come cheap in terms of efficiency and simplicity:
it remains very tempting to make more aggressive design choices.

Such a design was proposed by Plantard, Susilo and Win [31]. It is very
close to the original GGH scheme, with a modified reduction algorithm that
produces signatures falling in a known hypercube, independent of the secret key.
According to the authors, such property should prevent the NR attack. The
main idea of [31] is to reduce vectors under £,-norm instead of Euclidean norm.
Plantard, Sipasseuth, Dumondelle and Susilo then updated this scheme, and
submitted it to the NIST post-quantum cryptography project, under the name
of DRS [29], standing for Diagonal-dominant Reduction Signature. DRS is in
the list of round 1 submissions to the NIST post-quantum cryptography project.

Our results. In this work, we present a statistical attack against the DRS
scheme [31, 29]. We first notice that while the support of the transcript dis-
tribution is indeed fixed and known, the distribution itself is not, and is related
to the secret key. More concretely, in the DRS signature, the reduction algorithm
will introduce some correlations among coordinates w;’s of the signature, and
these correlations are strongly related to certain coefficients of the secret key S.

In more details, we assume that the coefficient S; ; can be well approximated
by some function of the distribution of (w;,w;) and proceed to profile such a
function according to known instances (the training phase). Once we have the
function, we can measure over sufficient signatures and obtain the guess for an
unknown secret S.

With a few extra amplification tricks, we show this attack to be rather ef-
fective: for the first set of parameters, 100 000 signatures suffice to locate all the

4 Alternatively, one may resort to the (trapdoorless) Fiat-Shamir with aborts approach
such as done in [24, 13], yet for simplicity, we focus our discussion on the Hash-then-
Sign approach.



large coefficients of the secret matrix S and to determine most of their signs as
well. Finally, we can feed this leaked information back into lattice attacks (BDD-
uSVP attack), significantly decreasing their cost. Concretely, we claim that the
first set of parameters offers at most 80-bits of security, significantly less than
the original claim of 128-bits.

As a by-product, we formalize how to accelerate BDD attack when given some
known coefficients of the solution. More specifically, we are able to construct a
lattice of the same volume but smaller dimension for this kind of BDD instances.

To resist the above attack, Sipasseuth, Plantard and Susilo proposed the DRS
v2 scheme [30, 33] as a countermeasure. In this paper, we also analyze DRS v2.
Indeed this scheme has a better resistance to the aforementioned attack: we
cannot determine partial secret coefficients by learning directly. Nevertheless it
seems still feasible to make a guess carrying secret information using learning
technique. Provided sufficiently many samples are available, the guess can be
effectively exploited by lattice attacks. As a consequence, we claim that the
parameter set for at least 128-bits of security actually provides the security of
at most 100-bits once 239 transcripts are released.

Our scripts are open source for checking, reproduction or extension purposes,
available at https://github.com/yuyang-Tsinghua/DRS_Cryptanalysis.

Related work. In 2018, Li, Liu, Nitaj and Pan proposed a chosen message at-
tack [20] against the randomized version of Plantard-Susilo-Win GGH signature
variant [31]. Their starting observation is that the difference between two sig-
natures of a same message is a relatively short lattice vector in the randomized
Plantard-Susilo-Win scheme, then from enough such short lattice vectors one
may recover some short vectors of the secret matrix by lattice reduction. The
randomized modification is a crucial weakness of Plantard-Susilo-Win scheme
exploited by the attack in [20]. To fix such weakness, the authors mentioned two
strategies: storing previous messages and padding a random nonce in the hash
function. In comparison, our targeted scheme and technical idea are different
from those in [20]. More importantly, the weakness of the DRS scheme that we
demonstrate does not seem to be easily fixed.

Roadmap. In Section 2, we introduce notations and background on lattices. In
Section 3, we provide a brief description of DRS signature scheme. Then we
explain how to learn large coefficients of the secret matrix in Section 4, and
how to combine partial information and lattice techniques to recover the full key
in Section 5. In Section 6, we provide a cryptanalysis of the DRS v2 scheme.
Finally, we conclude and discuss potential countermeasure in Section 7.
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2 Preliminaries

We use bold lowercase letters for vectors and denote by v; the i-th entry of the
vector v. We denote by ||v]| (resp. ||v]]1 and ||v]|s) the Euclidean norm (resp.
£1-norm and {,-norm) of v. For consistency with the implementation, we start
indexing vectors from 0: the subscript of each entry of v € R" is to be interpreted
as an element of Z,, = {0,--- ,n — 1}.

Let rot;(v) = (v_j,--+ ,v_i4+n—1) be a rotation of v € R". We denote by
srot;(v) (for signed-rotation) the random variable generated by flipping the
signs of all entries of rot;(v) independently at random with probability 1/2. We
define the set

Ny entries equal to b;
T(n,b, Ny, N1) = < v € Z"|v has exactly Ny entries equal to 1;
n — N1 — N entries equal to 0.

We use bold capital letters for matrices and denote by v; the i-th row of the
matrix V, ie. V = (vg,---,v,_1). We use V, ; to represent the entry in the
i-th row and j-th column of V. Let I,, be the n-dimensional identity matrix.
We denote by ROT(v) (resp. SROT(v)) the matrix (roto(v),--- ,rot,_1(v))
(resp. (srotg(v),---,srot,_1(v))). Note that all srot;(v)’s in SROT(v) are
generated independently. A matrix V is diagonal dominant if V;; > ., [V
for all 7.

For a distribution D, we write X < D when the random variable X is
sampled from D. Given a finite set S, let U(S) be the uniform distribution over
S. We denote by E(X) the expectation of random variable X.

A (full-rank) n-dimensional lattice £ is the set of all integer combinations of
linearly independent vectors by,--- ,b, € R™, ie. £L = {}.] | z;b; | z; € Z}.
We call B = (by,--- ,b,) a basis of £ and write £ = £(B). For a unimodular
matrix U € Z"*", we have UB is also a basis of £L(B), i.e. £L(B) = £L(UB). Let
(b§, -+ ,b%_;) be the Gram-Schmidt vectors of B. The volume of the lattice
L(B) is vol(£(B)) = [, ||b;|| that is an invariant of the lattice. Given £ C R"
and t € R, the distance between t and £ is dist(t, £) = minyez ||t — V]|

Lattice reduction is an important tool for solving lattice problems and esti-
mating the security of lattice-based cryptosystems. The goal of lattice reduction
is to find a basis of high quality. The quality of a basis B is related to its root

1/n
Hermite factor rhf(B) = (%) . Currently, the most practical lattice

reduction algorithms are BKZ [32] and BKZ 2.0 [11]. We denote by BKZ-3 the
BKZ/BKZ 2.0 with blocksize . In general, we assume the root Hermite factor



of a BKZ-f basis is bounded by

N N
AT 27e

when n > 3 > 50.

3 The DRS Signature Scheme

In this section, we provide a brief description of the first DRS scheme. We may
omit some details that are unnecessary for understanding our attack. For more
details on the algorithms and implementations we refer to [29].

To start with, we introduce several public parameters of DRS:

— n : the dimension

— D : the diagonal coefficient of the secret key

— b : the magnitude of the large coefficients (i.e. {£b}) in the secret key

— Np : the number of large coefficients per vector in the secret key

— Njp : the number of small coefficients (i.e. {£1}) per vector in the secret key

Following the setting provided in [29], the parameter D is chosen to be n and
satisfies that D > b - N, + Nj.
The secret key of DRS is a matrix

S=D-1,-M

where M = SROT(v) with v <~ U (T (n,b, Ny, N1) ({v € Z™ | vg = 0}) is the
noise matrix. It is easily verified that S is diagonal dominant. The public key is
a matrix P such that £(P) = £(S) and the vectors in P are much longer than
those in S.

Hash space. The specification submitted to the NIST [29] is rather unclear about
the message space. Namely, only a bound of 22® is mentioned, which suggests a
hash space M = (—228 228)" following the original scheme [31]. Yet, we noted
that the implementation seems to instead use the message space M = (0, 228)":
the sign randomization is present, but commented out. Discussion with the de-
signers® led us to consider this as an implementation bug, and we therefore focus
on the analysis with M = (—228,228%)" following both the original scheme [31]
and the intention of [29].

We strongly suspect that taking M = (0,228)" would not be an effective
countermeasure against the kind attack analyzed in this paper. Preliminaries
experiments on this variant suggested that leak was stronger, but its relation to
the secret key seemed more intricate.

For our experiments, we generated directly uniform points in that space
rather than hashing messages to this space; according to the Random Oracle
Model, this should make no difference.

® https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/official-comments/DRS-official-comment.pdf
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Signature. The signature algorithm of DRS follows the one in [31] and its main
component is a message reduction procedure in £,,-norm. It is summarized below
as Algorithm 1.

Algorithm 1: Message reduction in DRS signature algorithm

Input: a message m € Z", the secret matrix S
Output: a reduced message w € Z" such that w — m € £L(S)
1: wem,i < 0,k 0

2: repeat

3: g« [wi/D]o, (Rounding toward 0)
4:  if ¢ # 0 then

5: W < W — @gs;

6: k=0

7 end if

8 k<« k+1,i+ (i+1)modn
9: until £k =n
10: return w

In brief, the message reduction is reducing successively each large coefficient
m; of the message m by ¢D such that |m; — ¢D| < D but adding +q, +gb to
m; with j # 4 according to the entries of M, until all coefficients of the reduced
message are within (—D, D). Since S is diagonal dominant, the message can be
reduced within bounded steps as proved in [29, 31].

Besides the reduced message w, an auxiliary vector k is also included in the
signature and used to accelerate the verification. To verify the signature, one
would first check whether ||w||o < D and then check whether m — w = kP. In
later discussions, we shall ignore the auxiliary vector, because it can be calculated
in polynomial time from w, m and the public key P.

4 Learning Coefficients of the Secret Matrix

All DRS signatures w lie in the region (—D, D)™. Unlike the GGH scheme, the
signature region is a known hypercube and independent of the secret matrix,
thus the DRS scheme was deemed to resist statistical attacks. However, the
distribution of random signature in (—D, D)™ may be still related to the secret
key, which would leak some key information.

In later discussion, we aim at a concrete parameter set

(n, D,b, Ny, Ny) = (912,912, 28, 16, 432)

that is submitted to the NIST and claimed to provide at least 128-bits of security
in [29].



4.1 Intuition on a potential leak

Our approach is to try to recover S;; by studying the distribution W;; of
(w;, w;). Indeed, when a reduction happens at index i: w < w — ¢s;, and when
S; ; # 0 some correlation is introduced between w; and w;. Symmetrically, corre-
lation is also introduced when S;; # 0. Another source of correlations is created
by other reductions at index k ¢ {i,j} when both Sy ; and Sj ; are non-zero;
these events create much less correlations since the diagonal coefficients are much
larger, but those correlations accumulate over many k’s. One is tempted to mo-
del the accumulated correlations as those of some bi-variate Gaussians with a
certain covariance.

Of course, there are complicated “cascading” phenomena: by modifying a
coefficient, a reduction may trigger another reduction at an other index. But let
us ignore such phenomena, and just assume that several reductions at indices
k # i,j occur, followed by one reduction at index i with ¢ = £1, before the
algorithm terminates. We depict our intuition as Figure 1.

(D.D)

(-D.-D) w,

(D,D) (D.D) (D,D)

(-D,~D) w,

Fig. 1. Figures in the second row show the regions to which (w;, w;) in two cap regions
will be moved by reduction at index ¢ when S;; = —b,0,b respectively from left to
right.

In this simple model, we note that there are 4 degrees of liberty, 3 for the
shape of the ellipsoid, and 1 for S; ; = —b,0, b.6 Therefore, one may expect to be
able to recover all the parameters using 4 statistical measures. One natural choice
is the following. First, measure the covariance matrix of the whole distribution,
which gives 3 parameters. Assuming the clipped caps have small weights, this

5 In fact, two of those degrees are fixed by the shape of the secret matrix: each rows
of S has fixed Euclidean length, fixing the variance of w; and wj.



would roughly give the shape of the ellipsoid. For the last measure, one would
select only sample for which |w;| is small, so as to focus on the superimposed
displaced caps. With a bit of effort one would find an appropriate measurement.

Unfortunately, it seems rather hard to determine mathematically what will
precisely happen in the full reduction algorithm, and to construct by hand a
measurement on the distribution of (w;,w;) directly giving S; ;, i.e. a function
[ such that f(W; ;) =S, ;.

4.2 Training

While constructing such a function f by a mathematical analysis may be hard,
our hope is that such function may be easy to learn using standard techni-
ques, ranging from least-square method to convolutional neural networks. In-
deed, going back to Figure 1, recovering S; ; from W; ; can essentially be viewed
as a grey-scale image classification problem (the lightness of the pixel (x,y)
corresponding to the density of W; ; at (z,y)).

Features. We therefore proceed to design a few features, according to the intui-
tion built above. The average of each w; is supposed to be 0, thus we do not
treat it as a feature. Certainly, the covariance information is helpful, but we also
introduce extra similar statistics to allow the learning algorithm to handle extra
perturbations not captured by our simple intuition. We restrict our features to
being symmetric: a sample (z,y) should have the same impact as (—z, —y). In-
deed, while quite involved, the whole reduction process preserves this symmetry.

More specifically, by scaling a factor of D, consider the distribution W
to have support (—1,1)2. For a function f over (—1,1)2, we write f(W) =
E (24w (f(x)). The features mentioned before are listed below:

We could go on with higher degrees, but this would cause some trouble.
First, higher degree moments converge much slower. Secondly, taking too many
features would lead to over-fitting.

Then, following our intuition, we want to also consider features that focus
on the central region. Still, we do not want to give too much weight to samples
with = very close to 0. Indeed, there will be some extra perturbation after the
reduction at index 4, which could flip the sign of z. A natural function to take
this into account is the following.

" We introduced a re-normalization factor D in our experiments. We keep it in this
paper for consistency.

8 As we are only going to consider linear models in our features, we could equivalently
replace this feature by E(Ly)(_w(xg -y) because of the presence of fi.



The most contributing sample will be the one for which x = +1/ \/3, and it is not
clear that this is the optimal range to select. We therefore offer to the learning
algorithm a few variants of the above that select samples with smaller values of
x, hoping that it can find a good selection by combining all of them:

- f5(W) =D- E(Ly)(_w(zE(QSE — 1)(2$ + ].) -y ‘ ‘2%‘ < 1);
~ $a(W) = DBy (do(ts — )4z + 1) -y | [4a] < 1;
— ft(W) =D -Eqpew@zB8x —1)8x+1) -y | |8z <1).

For any function f over R?, we call f!: (z,y) — f(y,z) the transpose of f. So
far, we have introduced 13 different features, i.e. f1,-- -, fr and their transposes
fa=fh -, fiz = fL.9 We plot these functions in Figure 2.

Fig. 2. The color matrices for fi,--- , f7. For any pixel at (z,y), its color is red (full-line
contour), blue (dashed-line contour) when f;(z,y) > 0, < 0 respectively. The deeper
the color is, the larger |fi(x,y)]| is.

Generating data. Then, we proceed to measure each W; ; for known values of
Si,;j, say, using 400 000 samples for each key S, and using 30 different keys S. This
is implemented by our script gen_training.py. This took about 38 core-hours.

Training. We naturally considered using advanced machine learning techniques
(support vector regression [8], random forest regression [23] and artificial neural
networks) to construct a model, with the precious support of Han Zhao. Despite
some effort, he was unable to find a method that outperforms what we achieved
with a linear models f = Zéil xpfy trained using the least-square fit method.
Yet his exploration was certainly far from exhaustive, and we do not conclude
that least-square fit is the best method.

9 Since fi is a symmetric function of (w;, w;), we did not count its transpose.



Evaluating and refining our model. After preliminary experiments, we noted
that, depending on their position (i—j), some coefficients S; ; seem easier to learn
than others. In this light, it is not clear that one should use the same function
f for all indices i, j. Instead, we constructed two functions f+ = Zacz' fo, [~ =
Y-, fe respectively for indices such that ¢ — j mod n > n/2 and i — j mod n <
n/2. The model obtained by the least-square fit method is provided in Table 1
and plotted in Figure 3. Moreover, the distributions of f*(W;;), f~(W; ;) for
Si; = £b,£1,0 are illustrated in Figures 4 and 5.

Remark 1. For other set of parameters, or even to refine our attack and recover
more secret information, it is of course possible to cut our modeling in more than
2 pieces, but this requires more training data, and therefore more computational
resources.

1 1 2 3 4 5 6 7
x; -48.3640 354.9788 -289.1598 58.7149 -3.7709 -2.9138 2.3777
1 8 9 10 11 12 13
x; -21.2574 6.6581 3.5598 1.0255 0.4835 -0.3637
1 1 2 3 4 5 6 7
x] -67.9781 324.8442 -248.7882 44.6268 -4.1116 -2.6163 2.8288
1 8 9 10 11 12 13
xf -9.0923  3.1639 -0.8145 0.5204 0.3486 0.4920

Table 1. The model trained from 30 keys and 400000 signatures per key. This is
implemented by our script gen_model.py.

Fig. 3. The left graph is the color matrix for f~, and the right one is for f7.

10



0.20 S. =1 |

0.15} i

0.10+ R

0.05} i

0.00 . : ! .
-20 -10 0 10 20

0.30

0.25}

0.20}

0.15}

0.10}

0.05}

0.00
-10

Fig. 4. The distributions of f~(W.;), fT(W; ;) for S;; = £b,41,0. The upper one
corresponds to f~ and the lower one corresponds to fT. Experimental values measure
over 20 instances and 400 000 samples per instance.
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Fig.5. The impact from sample sizes on the measured distributions of f~(W;;),
ft (Wi, ). The left graphs correspond to f~ and the right graphs correspond to f7.
The upper graphs measure over 20 instances and 400 000 samples per instance, and the
lower graphs measure over 20 instances and 50 000 samples per instance.

Remark 2. As shown in Figures 4 and 5, predicted values f(W; ;) for large coef-
ficients are usually of larger size than those for —1,0,1. Compared with large
coefficients far from the main diagonal, those near the main diagonal tend to
be predicted as a number of larger size. Furthermore, the variances of f(W; ;)
decrease with sample size growing, which provides a sanity check for our models.

4.3 Learning

Following the previous method, we obtain a matrix S’ consisting of all guesses
of S; ;’s.'Y While clear correlations between the guess S’ and S were observed,
the guess was not good enough by itself for the limited number of samples that
we used. In the following, we exploit the “absolute-circulant” structure of the
secret key to improve our guess. The experimental results described below are
based on our script attack.py.

10 We ignore diagonal elements because they are public.
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Determining the locations. Notice that all S; ;’s in a same diagonal are of the
same absolute value, hence we used a simple trick to enhance the contrast bet-
ween large and small coefficients. It consists in calculating

n—1

2
Wi = Z S;,(i+k) mod n
1=0

as the weight of the k-th diagonal. Since we used two different features for
coefficients near/far from the main diagonal, for better comparison, the first
n/2 — 1 weights were scaled by their maximum and so were the last n/2 weights.
We denote by W, the first n/2 —1 scaled weights and by W,j the last n/2 ones.

As illustrated in Figure 6, the scaled weights of those diagonals consisting of
large coefficients are significantly larger than others. A straightforward method
to locate large coefficients is to pick the IV, largest scaled weights.

1.4¢ — Large coefficient |
1.2} Wy .
1.0f C
R
0.8H T i
r
0.6 .
R 4
0.4 .
0.2 8
0.0 L L
0 200 400 600 800
k

Fig. 6. Large coefficients and scaled weights. Experimental values measure over 400 000
samples.

Verified by experimental results, we were able to perfectly locate all large
coefficients, provided we collected sufficient signatures. For different sample size,
i.e. the number of signatures, we respectively tested 20 instances and checked the
accuracy of locations for large coefficients. All experimental data is illustrated
in Table 2.
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#signatures 13/16 14/16 15/16 16/16

50000 5 3 6 6
100000 - - - 20
200000 - - - 20
400000 - - - 20

Table 2. Experimental measure of location accuracy. The column, labeled by K/16,
shows the number of tested instances in which the largest N, scaled weights correspon-
ded to exactly K large coefficient diagonals.

Determining the signs. We straightforward assumed the sign of measured feature
f(W; ;) is the same as that of S; j, when S, ; = £b. Unlike guessing locations,
we could not recover all signs of large coefficients exactly, but as the sample
size grows, we were still able to get a high accuracy, denoted by p. Then, we
may expect to recover all signs of large coefficients in each row exactly with a
probability prow = p™* (in our case N, = 16).

Moreover, we noticed that the accuracy of guessing signs for large coefficients
in the lower triangle, i.e. S; ; with ¢ > j, is higher than that for large coeflicients
in the upper triangle, thus we denote by p; and p, the accuracy corresponding
to the lower and upper triangle. That may suggest us to guess the signs of large
coefficients from the last row to the first row. Table 3 exhibits the experimental
data for p;, pu,p and Prow.

#Signs b DPu p Prow

400000 0.9975 0.9939 0.9956 0.9323
200000 0.9920 0.9731 0.9826 0.7546
100 000 0.9722 0.9330 0.9536 0.4675
50000 0.9273 0.8589 0.8921 0.1608

Table 3. Experimental measures for p;,p,,p and prow. All values measure over 20
instances.

Comparing guessing locations, guessing signs is much more sensitive to the
number of signatures. That is because the sign information of S; ; only comes
from f(W; ;) rather than all features in the same diagonal so that it requires a
more precise measurement. Furthermore, we tried a modified model for guessing
signs: in training phase, we mapped S; ; to |S; ;/b] and then find x,’s determi-
ning the global feature. Intuitively, the modified model further emphasizes large
coefficients, but it performed almost the same as the current model in practice.
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5 Exploiting Partial Secret Key Knowledge in Lattice
Attacks

Using the technique described in last section, we are able to recover exactly all
off-diagonal large coefficients in a row, with high probability (in addition to the
diagonal coefficient D). First, we show how to adapt the BDD-uSVP attack, by
exploiting the known coefficients of a row s to decrease the distance of the BDD
target to the lattice, making the problem easier. Then, we show a more involved
version, where we also decrease the dimension of the lattice while maintaining its
volume. While not much is gained to recover a first secret row s, this technique
makes guessing the rest of the key much faster.

In later discussion, assume that we have already successfully determined all
—b,b and D coefficients in s. Let M = {my,--- ,mp, } be the set of all m’s such
that Sg.m € {=b,b, D} where my < -+ < my,. We still focus on the concrete
parameter set (n, D, b, Ny, N1) = (912,912, 28,16, 432).

5.1 Direct BDD-uSVP attack

Let t € Z" such that, if [Sy ;| > 1, t; = Si;, otherwise t; = 0, then dist(t, £) =
v/ N1. We construct a new lattice £’ with a basis

P/ _ (; é) c Z(n+1)><(n+l)’

we have vol(L') = vol(£) ~ D™ and L’ contains a vector of Euclidean norm
VNi +1 < D. Thus, to recover s, it suffices to solve uSVP on L’.

New estimations of the blocksize required by BKZ to solve uSVP were given
in [5] and have been confirmed by theoretical analysis and experiments in [3].
Following these results, we claim that s; could be recovered by BKZ-3 when [

satisfies:
6 28—n—1 —_n_
\/n+1~\/]\71+1§65 - Dn+t,

We conclude that running BKZ-8 with § = 146 should be sufficient to break
the scheme. Typically [9, 1], it is estimated that BKZ-3 converges after about
16 tours,!! therefore making 16(n + 1) calls to SVP-4:

CBKZ-B = 16(?1 + 1) . CSVP-B-

Though the factor 16 may shrink by increasing the blocksize 3’ progressively
from 2 to 8. Estimation of the cost of Cgyp.g varies a bit in the literature, also
depending on the algorithm used. The standard reference for estimating the cost
enumeration is [11], which gives a cost of 20-2708In#=1.0195+16.10 [4 " 10] clock-
cycles. Alternatively, the Gauss-Sieve algorithm [25] with dimension for free and
other tricks showed a running time of 20-3969+8:4 clock cycles [12].

'L A theoretical estimate of the expected tour number is 2 (g—; log n) suggested in [19].
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Those two methods lead respectively to estimates of 27® and 280 clock-cycles
to recover one secret row. One could of course repeat the attack over each row,
but below, we present a strategy that slightly reduces the cost of guessing a first
row, and greatly reduces the cost of guessing all the other rows.

Remark 3. These numbers are likely to be over-estimates. Indeed, while cost
predictions have not been provided, the enumeration algorithms have been sped
up in practice recently with the discrete-pruning technique [15, 6, 34]. More
importantly, it has seen a significant progress on sieve [12, 2] and the General
Sieve Kernel (G6K) [2] has pushed the SVP challenge record up to SVP-157.
Unfortunately, the record timing on SVP challenges are difficult to use, as they
only solve SVP up to an approximation factor of 1.05, which is significantly
easier than the exact SVP typically used in BKZ. Moreover, the BKZ used in
GO6K proceeds in a different way; its behavior remains to be studied.

5.2 BDD-uSVP attack with dimension reduction

Next we detail how to also reduce the dimension of £’ but maintain its volume,
when exploiting known coefficients of a BDD solution.
Let H = (h; ;);,; be the HNF (Hermite Normal Form) of P satisfying:

— hi,i > O;
- hj,i S th for any j > 1.
— hj; =0 for any j <i.

Let I ={¢ | h;; > 1}. In general, |I| is very small (say < 5), for example |I| =1
if det(H) is square-free. Thus we have, with a high probability, that I N M = 0,
ie. hpm,m = 1 for any m € M. If not so, we choose another row s, of S. Let
{lo7 s ,ln,Q,Nb} =7 \ M where lg < --- < ln,Q,Nb.

Let H' = (h] ;)i ; be a matrix of size (n — N, — 1) x (n — N, — 1), in which
h; ;=M. Let a=(ag, -+ ,an—n,—2) where a; =3 1/ Sk.mhbum,i,- Let L be
the lattice generated by

B (H’ ) ¢ 7(n—Np)x(n—Ny)
al

We first have that
det(H
vol(£') = det(H') = — St 1) = vol(z),
HmEM hm,m
Secondly, we can prove that £’ has an unusually short vector corresponding to
all small coefficients of si. Indeed, let ¢ € Z"™ such that cH = sy, then ¢,,, = Si 1,
for any m € M thanks to Ay, m = 1. Let ¢/ = (¢, , ¢ , then

n727N,))

(C/,I)B = (c’H’—|—a,1) = (810,“- , Sl 1) = V,.

n—2—N?

Notice that ||[v']| = /N1 + 1 < vol(L') N a DN , we may use uSVP oracle
to find v’.
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Using the same argument as in the previous subsection, we could recover v,
namely s, by BKZ-8 when [ satisfies:

J—PEI< o5t prE
TL—Nb

This condition is satisfied for 8 = 138. Based respectively on [11] and [12],
this gives attack in 273 and 277 clock-cycles. Again, these numbers should be
taken with a grain of salt (see Remark 3).

5.3 Cheaply recovering all the other rows

Once a vector s has been fully recovered, we have much more information on
all the other secret rows. In particular, we know all the positions of the 0, and
this allows to decrease the dimension from n to N, + Ny + 1.

As in previous section we are able to construct a (Ny+ N7 +1)-dimensional lat-
tice L’ of the same volume as £ and containing a vector of length v/ N, - b2 + Ny + 1.
Then, using BKZ-50 is enough'? to recover the target vector and the cost is neg-
ligible compared to the cost of the first step.

6 Cryptanalysis of the DRS v2 Scheme

To resist the aforementioned attack, we did suggest in our conference version [36]
some potential countermeasures summarized as follows:

1. Densely distributed coefficients. For a sparse yet wide set {0,+1,+b}, the
gap between 1 and b allows one to detect large coefficients with much more
confidence (see Figures 4). Thus noise coefficients should better spread over
an interval of integers {—u,--- ,u}.

2. No “absolute-circulant” structure. Indeed the “absolute-circulant” structure
is exploited to significantly improve the guess (see Figure 6). Additionally,
such structure seems unnecessary for the sake of small key size; indeed, the
whole matrix, could be streamed by a PRG, only keeping the seed as the
new secret key.?

3. Perturbation/drowning. Depending on the situation, adding well-designed
perturbation may [28] or may not [21, 14] be an effective countermeasure
against statistical attacks. Drowning is a similar idea in spirit, but the ad-
ded noise has a fixed distribution, typically much larger than what is to be
hidden.

Along with above suggestions, we have also explicitly mentioned that counter-
measures 1 and 2 may only mitigate the attack, but would not fully seal the
leak.

12 The required blocksize can be much smaller, but we should use a different estimation
for s for small g3 [11, 35].
13 Variants can be designed so that each row can be generated on demand.
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Following up on our initial work, the DRS team proposed a new variant [30,
33], called the DRS v2 scheme. Essentially, the modifications concern the key
generation algorithm, and follow the principles of our countermeasures 1 and 2.
Precisely, the modified secret key is still a diagonally dominant matrix

S=D-1,-M
but the noise matrix M is randomly chosen among all possible candidates:
M«+~U{veZzZ"||v|] <D}").

We refer to [30] for detailed algorithms.

The DRS v2 scheme is assumed to withstand learning attack but without
detailed security analysis. The impact of learning attack on it remains unclear.
In this section, we investigate the effectiveness of our learning attack against
DRS v2. In brief, we are not able anymore to recover partial secret coefficients
exactly, but we are still able to recover key-related information that is helpful
to lower the cost of lattice attacks. Qualitatively, we confirm that a leak is still
here. Quantitatively, we estimate a drop by at least 30-bits of security having
seen about 23° signatures, for the first set of parameters of DRS v2.

6.1 Leakage

We note that none of the changes introduced in DRS v2 affects the principle of
the leak from Section 4.1, and therefore follow essentially the same basic steps.
However, because the absolute-circulant structure has been removed, we can not
apply our amplification trick anymore, and we therefore require much more data
to detect biases. Furthermore, there is no distinct gap between the values to be
guessed, contrary to the ‘large’ coefficients +b of the first version of DRS.

It therefore becomes much less practical to carry out our experiments directly
on cryptographically large instance. Instead, we proceed with experiments in
small dimensions and extrapolate the behaviour.

Features. We just re-use all 13 features introduced in Section 4.2. Let us recall
that the models are some linear combinations of these features trained using the
least-square fit method.

Model training. We follow the previous idea of endowing each diagonal with
a model. A minor difference is that we train two functions f¢ and f° for the
main diagonal and others respectively. One may also split f° into more pieces as
done before, but that does not improve the performance finally given the same
training data. For each dimension n, we generate 5 random DRS v2 instances
for training. And we separately train the model for each sample size N.

Computation. We let the computation run for about a week on 20 cores, for
various parameters n ranging from 16 to 512. To reproduce the experiments,
one just needs to execute the shell script full_attack_all.sh available at the
public repository.
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Fig. 7. Experimental measure of the average r(n, N). The y-axis is set as log-scale.
The average is taken over 5 instances.

Performance of models. With the model, we make a guess S’ of the secret S
through many signatures. The number of used signatures is equal to the sample
size of training the model. We evaluate the performance of the model parame-
trized by (n, N) with

(m, N) 12 Is: — sl
r(n, = — T EE———
n<=|si — Dei|

where e; is the i-th row of I,,. This is closely related to the complexity of the
BDD-uSVP attack (see Section 5): the smaller r(n, N) is, the lower the com-
plexity is; and De; is the default target made without any secret information.

Figure 7 shows the evolution of r(n, N). It seems that given n, r(n, N) de-
creasingly converges to some 7 (n) as N grows. This shows a limitation of our
models: the model is incapable of computing the exact secret key no matter how
many samples are provided. But on a positive note, 7o, (n) behaves like a decre-
asing function of n, thus our model remains asymptotically effective (at the cost
of more samples).

Despite some effort, we did not find a satisfactory fit for r(n, V). We therefore
only extrapolate an upper bound of r(n, N) based on the apparent monotoni-
city in n of the derived function 7/(n, N') = r(n, N’ - n?) for all N’. Indeed,
Figure 8 suggests that 7/(n, N') seems monotonically decreasing with n. Since
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7'(192,29-83) ~ 0.367 is the minimum achieved by experiment, we use it as an es-
timate of r'(n,2%83) for n > 192. Indeed our experiment can be pushed further;
more training instances and larger sample sizes certainly refine the estimate. Yet
this needs more computation resources and seems unlikely to improve the final
security estimate significantly. Qualitatively, our results confirm that the DRS
v2 scheme still suffers from a statistical leak.

6.2 Quantitative security analysis

In this subsection, we focus on the concrete parameter set (n, D) = (1108, 1108)
claimed to provide at least 128-bits of security in [30].

Security estimate without leaks. The original security estimate of DRS v2 [30, 33]
considers the cost of the BDD-uSVP attack following the argument in [16] for
which we use the shorthand the 2008 estimate. But as shown in [3], 2008 estimate
is now made obsolete by the 2016 estimate [5] that we follow in Section 5. For a
fair comparison, let us first make a security estimate based on the 2016 estimate.
As claimed in Section 5, some secret row vector, say sy could be recovered by
BKZ-$ when [ satisfies:

\/ niﬂ “[l[so — Deol| < 5257%1 - D,
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We suppose ||sg — Degl| ~ v/2- ”—\/}Ll, which is implicit in the original estimate [30,
33]. Then we verify that 3 = 220 satisfies the condition. This gives attack in 2!26

and 20 clock-cycles based on [11] and [12] respectively.

Refined security estimate with leaks. According to Section 6.1, given the model
parametrized by (n, N) along with N signatures, one can compute a guess S’ of
the secret basis S such that ||sg — sp|| = r(n, N) - |[sg — Deg||. Then the required
blocksize 3 for BKZ suffices to satisfies:

5 —_n— n
V7o - lso = Deo|l - r(n, N) < 577" D,

For a concrete comparison, we set N a2 2983 .02 ~ 230-1 then r(n, N) < 0.367
as mentioned in Section 6.1. A routine computation yields that one may recover
so by BKZ-178 within 2% and 2% clock-cycles according to [11] and [12]. We
highlight again that the security estimates are probably over-estimates: the cost
of BKZ can be refined hopefully [2] and there may be some non-negligible diffe-
rence between r(n, N) and its upper bound 0.367. In addition, larger N would
further reduce these numbers. Note that NV ~ 230 is far from the maximal query
number 254 suggested in the NIST call for proposal [27, Sec 4.A.4].

Since we cannot determine some secret coeflicients with high confidence, the
“dimension reduction” technique (see Section 5.2) does not apply to DRS v2.
Additionally, as the absolute-circulant structure is removed, we do not have as
in Section 5.3 a much faster way of recovering the other secret vectors.

However, the cost of recovering all the rows should be significantly less than
n times that of recovering a first secret row. Indeed, as we accumulate knowledge
of many short vectors, the cost of the lattice attack should decrease significantly.
Suppose we have recovered i secret vectors, say sg, - - ,8;—1, we now proceed to
recover s;. Let proj,(s) denote the projection of s on span(sg,---,s;—1) and
orth;(s) = s — proj,(s). We consider the following lattice £’ with a basis

orthi(si — S;) 1
orth;(s;) 0

: 0

OI'thi (Sn_ 1 ) 0

P/ — e Q(n+1—i)><(n+1).

All s;’s are nearly orthogonal and ||s;|| & D, hence vol(£') ~ D"~*. A standard

heuristic suggests that |Jorth;(s; —s})|| ~ ":i;l |s; —s}||. Consequently, given
So,- - ,S;—1, one can recover s; by BKZ-5 with § satisfying:
B \/n +1—1 26— (nd1—i) py-n=i
. s: — De;ll - N) <§$ c Dnti—i,
Vo s e vt v < 6

Figure 9 shows the blocksize g required for the recovery of the i-th secret row
vector: with more vectors being revealed, 8 decreases rapidly. The cost of BKZ
is (super-)exponential with S, thus the cost of full key recovery is dominated by
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Fig. 9. Required g for recovering s;.

the first calls of BKZ. Note that we simply set § = 50 when its prediction is
less than 50, which only results in a negligible impact on the security estimate.
By some numerical computation, the overall cost is around 2'°' and 2°7 clock-
cycles based on [11] and [12] respectively, that is, only about 2% times the cost of
recovering a single vector, and not n ~ 2'° times as the naive approach would.

7 Conclusion

We have shown that the DRS scheme is in principle susceptible to a statistical
attack: signatures do leak information about the secret key. More concretely,
for the first set of parameters submitted to the NIST [29], we have shown its
security should be considered below 80-bits after 100000 ~ 2'7 signatures have
been released, contradicting the original claim of 128-bits of security. While
such a large number of signatures may not be released in many applications, it
remains much lower than the bound of 264 signatures given by the NIST call for
proposal [27, Sec 4.A.4].

We also verify that despite the countermeasure, signature transcripts of the
DRS v2 scheme [30, 33] still leak some exploitable information on the secret
key. After 230 signatures have been released, the security provided by the first
suggested parameter set should be considered below 100-bits rather than the
original claim of 128-bits.
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In addition, we would like to clarify that our security estimates are likely to
be over-estimates. It seems possible to improve the learning step by using more
signatures, better-chosen features and advanced machine learning techniques.
Working with larger instances will also help to evaluate the model performance
more accurately. As for the cost of lattice attacks, we did stick to the best known
attack methodology in this paper. But we do not take account of the state-of-
the-art algorithms, e.g. discrete pruning technique for enumeration [15, 6, 34]
and the General Sieve Kernel for sieve [2], that have unfortunately not yet been
the object of easily usable predictions. Overall, it is not clear how much effort an
accurate cryptanalysis of DRS deserves. In our view, our current attack suffices
to demonstrate the need to fix the leak of all current DRS schemes [29, 30, 33],
and maybe to re-parametrize them.

7.1 Potential countermeasure

We note nevertheless that this statistical attack seems much less powerful than
the statistical attacks presented in [26, 14] against the original schemes GGH [18]
and NTRUSign [21]. Indeed, our attack requires much more signatures, and still
only recovers partial secret key information. In this light, we do not conclude
that the approach of [31, 29, 30, 33] is to be discarded at once, at least if it shows
competitive performances.

As we saw (Section 6), the mitigation countermeasures did make the attack
less powerful, but did not seal the leak, and we predict a noticeable decrease of
security from this leak. Given this track record of non-provable countermeasure
to leaks in lattice based signature schemes, we find the formal approaches prefe-
rable. Perturbation and drowning could be promising. We note that the problem
of directly trying to forge a signature seems harder than recovering the secret
key with the current parameters of DRS. This means that allowing larger vectors
for signatures (up to a certain cross-over point) should not affect security. This
gives a lot of room for perturbation or drowning, for which ad-hoc concrete sta-
tistical statements could plausibly be made, maybe exploiting Rényi divergence
as in [5, 7].

Finally we insist that a much more thorough analysis of the statistical pro-
perties of the scheme should be provided to sustain its security. A statistical
argument would be much more reassuring than the experimental failure of the
type of attack described in this paper.
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