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Abstract. Clauser-Horne-Shimony-Holt inequality, an extension of Bell’s inequality,

is of great importance to modern quantum computation and quantum cryptography.

So far, all experimental demonstrations of entanglement are designed to check Bell’s

inequality or Clauser-Horne-Shimony-Holt inequality. In this note, we specify the math

assumptions needed in the argument for Clauser-Horne-Shimony-Holt inequality. We

then show the math argument for this inequality is totally indispensable of any physical

interpretation, including the hidden variable interperation for EPR thought experiment

and the Copenhagen interpretation for quantum mechanics.
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1 Introduction

The Copenhagen interpretation for quantum mechanics says that a measurement causes an

instantaneous collapse of the wave function and the quantum system after the collapse is random.

Einstein, et al. [9] insisted that quantum mechanics was incomplete and proposed a thought ex-

periment (EPR paradox) to refute it. In 1964, J. Bell [2] formulated EPR paradox mathematically

and constructed an inequality,

|E(~a,~b)− E(~a,~c)| ≤ 1 + E(~b,~c)

which involves three vectors ~a,~b,~c in a Hilbert space. In 1969, Clauser, Horne, Shimony and Holt [7]

extended Bell’s inequality for the case involving four vectors ~a,~b,~a′,~b′, i.e.,

|E(~a,~b)− E(~a,~b′) + E(~a′,~b′) + E(~a′,~b)| ≤ 2.

In the past decades, many experiments have been designed to test the Bell’s inequality or

Clauser-Horne-Shimony-Holt inequality [1,6–8,10]. Today, the two inequalities are of great impor-

tance to quantum information and computation [3, 4, 11,12].

Very recently, we [5] have shown the math contradictions in Bell’s argument for his inequality.

For the readers’ request, we had been investigating the Clauser-Horne-Shimony-Holt inequality. In

this note, we specify the math assumptions needed in the argument for Clauser-Horne-Shimony-

Holt inequality. We then show the math argument for the inequality is totally indispensable of any

physical interpretation.
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2 A purely mathematical argument

Theorem. Suppose that H is a Hilbert space and T is a topological space. The random variable

λ ∈ T satisfies
∫
ρ(λ) dλ = 1, where ρ(λ) is the density function. Suppose A : H×T −→ {−1, 0, 1},

B : H× T −→ {−1, 0, 1}. The average values of A,B are denoted by Ā, B̄, respectively. Define the

function

E(~a,~b) =

∫
Ā(~a, λ)B̄(~b, λ)ρ(λ) dλ

Then for arbitrary ~a,~a′,~b,~b′ ∈ H, the inequality

|E(~a,~b)− E(~a,~b′) + E(~a′,~b′) + E(~a′,~b)| ≤ 2

always holds.

Proof. By the definition of the function E, we have

E(~a,~b)− E(~a,~b′) =

∫
Ā(~a, λ)B̄(~b, λ)ρ(λ) dλ−

∫
Ā(~a, λ)B̄(~b′, λ)ρ(λ) dλ

=

∫
Ā(~a, λ)B̄(~b, λ)[1± Ā(~a′, λ)B̄(~b′, λ)]ρ(λ) dλ

−
∫
Ā(~a, λ)B̄(~b′, λ)[1± Ā(~a′, λ)B̄(~b, λ)]ρ(λ) dλ

Hence, by triangle inequality, it gives

|E(~a,~b)− E(~a,~b′)| ≤
∣∣∣∣∫ Ā(~a, λ)B̄(~b, λ)[1± Ā(~a′, λ)B̄(~b′, λ)]ρ(λ) dλ

∣∣∣∣
+

∣∣∣∣∫ Ā(~a, λ)B̄(~b′, λ)[1± Ā(~a′, λ)B̄(~b, λ)]ρ(λ) dλ

∣∣∣∣
Since |Ā(~a, λ)| ≤ 1, |B̄(~b, λ)| ≤ 1, |B̄(~b′, λ)| ≤ 1, we obtain

|E(~a,~b)− E(~a,~b′)| ≤
∣∣∣∣∫ [1± Ā(~a′, λ)B̄(~b′, λ)]ρ(λ) dλ

∣∣∣∣+

∣∣∣∣∫ [1± Ā(~a′, λ)B̄(~b, λ)]ρ(λ) dλ

∣∣∣∣
Since ρ(λ) ≥ 0, 1± Ā(~a′, λ)B̄(~b′, λ) ≥ 0, 1± Ā(~a′, λ)B̄(~b, λ) ≥ 0, we have∣∣∣∣∫ [1± Ā(~a′, λ)B̄(~b′, λ)]ρ(λ) dλ

∣∣∣∣ =

∫
[1± Ā(~a′, λ)B̄(~b′, λ)]ρ(λ) dλ = 1±

∫
Ā(~a′, λ)B̄(~b′, λ)ρ(λ) dλ∣∣∣∣∫ [1± Ā(~a′, λ)B̄(~b, λ)]ρ(λ) dλ

∣∣∣∣ =

∫
[1± Ā(~a′, λ)B̄(~b, λ)]ρ(λ) dλ = 1±

∫
Ā(~a′, λ)B̄(~b, λ)ρ(λ) dλ

Therefore,

|E(~a,~b)− E(~a,~b′)| ≤ 2±
[∫

Ā(~a′, λ)B̄(~b′, λ)ρ(λ) dλ+

∫
Ā(~a′, λ)B̄(~b, λ)ρ(λ) dλ

]
which means

|E(~a,~b)− E(~a,~b′)| ≤ 2−
∣∣∣∣∫ Ā(~a′, λ)B̄(~b′, λ)ρ(λ) dλ+

∫
Ā(~a′, λ)B̄(~b, λ)ρ(λ) dλ

∣∣∣∣
= 2− |E(~a′,~b′) + E(~a′,~b)|
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Thus,

2 ≥ |E(~a,~b)− E(~a,~b′)|+ |E(~a′,~b′) + E(~a′,~b)| ≥ |E(~a,~b)− E(~a,~b′) + E(~a′,~b′) + E(~a′,~b)|.

This completes the proof. �

3 Conclusion

In this note, we remark that the argument for Clauser-Horne-Shimony-Holt inequality is purely

mathematical and totally independent of any physical interpretations. Apparently, the inequality

does not capture any essences of EPR thought experiment or the Copenhagen interpretation for

quantum mechanics. It is just a math proposition.
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