
Return of GGH15: Provable Security Against Zeroizing Attacks

James Bartusek?, Jiaxin Guan??, Fermi Ma? ? ?, and Mark Zhandry†

Princeton University

Abstract. The GGH15 multilinear maps have served as the foundation for a number of cutting-edge
cryptographic proposals. Unfortunately, many schemes built on GGH15 have been explicitly broken by
so-called “zeroizing attacks,” which exploit leakage from honest zero-test queries. The precise settings
in which zeroizing attacks are possible have remained unclear. Most notably, none of the current indis-
tinguishability obfuscation (iO) candidates from GGH15 have any formal security guarantees against
zeroizing attacks.

In this work, we demonstrate that all known zeroizing attacks on GGH15 implicitly construct algebraic
relations between the results of zero-testing and the encoded plaintext elements. We then propose a
“GGH15 zeroizing model” as a new general framework which greatly generalizes known attacks.

Our second contribution is to describe a new GGH15 variant, which we formally analyze in our
GGH15 zeroizing model. We then construct a new iO candidate using our multilinear map, which we
prove secure in the GGH15 zeroizing model. This implies resistance to all known zeroizing strategies.
The proof relies on the Branching Program Un-Annihilatability (BPUA) Assumption of Garg et al.
[TCC 16-B] (which is implied by PRFs in NC1 secure against P/poly) and the complexity-theoretic
p-Bounded Speedup Hypothesis of Miles et al. [ePrint 14] (a strengthening of the Exponential Time
Hypothesis).

1 Introduction

1.1 Motivation

Multilinear maps [1] are a powerful cryptographic tool that have enabled many cryptographic applications,
ranging from multiparty key agreement [1] to extremely powerful indistinguishability obfuscation (iO) [2].
There are currently three families of multilinear maps: those of Garg, Gentry, and Halevi [3] (GGH13), those
of Coron, Lepoint, and Tibouchi [4] (CLT13), and those of Gentry, Gorbunov, and Halevi [5] (GGH15).

Each of these multilinear map families are based on fully homomorphic encryption (FHE) schemes.
However, the FHE schemes are intentionally weakened by providing a broken secret key to allow useful infor-
mation to be extracted from encrypted values. Because of these broken secret keys, extensive cryptanalysis
is required before we can gain confidence that some security remains. In this work, we study the GGH15
multilinear maps. We believe these maps are particularly interesting for a couple reasons:

– In some cases, by specializing the GGH15 construction to certain settings, security can actually be proved
based on the well-studied Learning with Errors (LWE) assumption [6]. Notably, the lockable obfuscation
constructions of Wichs and Zirdelis [7], of Goyal, Koppula, and Waters [8], and of Chen, Vaikuntanathan,
and Wee [9], and the private puncturable PRFs of Canetti and Chen [10] and Chen et. al. [9], are all
based in part on the GGH15 multilinear maps, and can be proved secure under LWE.1 Therefore, the
GGH15 multilinear maps seem to be the most promising route to achieving security based on LWE.

? bartusek.james@gmail.com
?? jiaxin@guan.io

? ? ? fermima1@gmail.com
† mzhandry@princeton.edu
1 The lockable obfuscation constructions in [7] and [8] use ideas from prior work of Goyal, Koppula, and Waters [11]

which introduced techniques for using GGH15 encodings to encrypt branching programs.

– The other two candidate multilinear maps, GGH13 and CLT13, have been shown vulnerable to quantum
attacks [12–16]. In contrast, given the positive results above and the fact that LWE appears resistant
to quantum attacks, it seems reasonable to expect that GGH15 is quantum immune, at least in certain
settings. This leaves GGH15 as the main candidate multilinear map for the post-quantum era.

Despite the above positive results, there is still a large gap between what is provably secure under
LWE and what the community hopes to achieve with multilinear maps, namely iO. On the positive side,
“direct attacks” on the multilinear maps seem unlikely. Here “direct attacks” refer to attempts to attack the
underlying FHE schemes, ignoring the extra information provided through the broken secret key.

Unfortunately, all multilinear map candidates have been subject to very strong “zeroizing” attacks [3,
17, 18] which exploit the broken secret key. These attacks have broken many of the applications which had
not been proven secure. Since the original attacks, the field has seen a continual cycle of breaking schemes
and fixing them. In the case of GGH15, these attacks [18, 19, 9] have broken many applications, including
multiparty key agreement, and several of the iO candidates.

Given the importance of iO, it is important to study the security of multilinear maps even in the setting
that lacks a security proof under well-studied assumptions. In order to break free from the cycle above, our
aim is to develop a rigorous and formal justification for security, despite the lack of “provable” security.

Recent works have shown how to break the attack-fix-repeat cycle for GGH13 [20] and CLT13 [21] mul-
tilinear maps by devising abstract “zeroizing” models that capture and generalize all known zeroizing attack
strategies on the maps. These works formally prove security of applications in these models, demonstrating
in a rigorous sense that the analyzed schemes are resistant to known zeroizing attacks. Since these works, all
subsequent classical polynomial-time attacks have fit the proposed models, demonstrating that these models
may reasonably reflect the security of the maps.

Our goal is to extend these works to the GGH15 setting, devising a model that captures and generalizes
all known zeroizing attack strategies. For GGH15, however, there are unique challenges that make this task
non-trivial:

– The underlying mathematics of the scheme differs from previous schemes, and the details of the attacks
are quite different. As such, any attack model will be different.

– There does not appear to be a single unified GGH15 multilinear map in the literature, but instead many
variants — the basic GGH15 map, a version with safeguards, a version with commutative plaintexts, etc.
Moreover, many applications do not conform to the multilinear map interface, and are instead described
directly on the GGH15 implementation. The many variants of GGH15 and applications are accompanied
by similarly varied settings for the attacks.

– Additionally, there are some functional limitations of GGH15: plaintexts are required to be “short”, by
default plaintexts do not commute, and the level structure derives from graphs instead of sets. These
present challenges in applying the standard multilinear map tools (such as Kilian randomizing branching
programs, straddling sets, etc) to the GGH15 setting. This breaks many of the analysis techniques that
have been applied to other multilinear map candidates, and has also led to some ad hoc proposals, such
as using diagonal matrices for the plaintexts, multiplying by random scalars to create levels, or Kilian
randomizing using special types of matrices.

Therefore, our goal will be to:

Develop an abstract zeroizing attack model that captures
all known zeroizing attacks on all variants of GGH15, and
develop new techniques for proving security in this model.

Our Results. In this work we devise an abstract attack model that applies to all existing variants of GGH15
and applications built on top of GGH15. We demonstrate that our attack model captures and generalizes
all zeroizing attacks.

We then describe a new variant of GGH15, based on several prior works in the area, which we can
prove strong security statements about in our model. Our new scheme is flexible enough to support a simple

2

obfuscation scheme which we can prove secure in our model. The result is a scheme that is provably resistant
to algebraic zeroizing attacks. Before giving our results, we start with a very brief overview of the GGH15
maps and known attacks

1.2 The GGH15 Multilinear Map

GGH15 is a “graph-induced” multilinear map, which departs somewhat from the usual multilinear map
notions. Here, we have a connected directed acyclic graph G = (V,E) of d nodes with a single source
(labeled 1) and a single sink (labeled d). A “level” is a pair of vertices (u, v) for which there is a path from
u to v; we will denote such levels by u v (different paths between u, v will be considered the same level).
Plaintexts S are encoded relative to levels u v, and we denote such an encoding as [S]u v.

Given a handful of encodings, the following operations can be performed:

– Addition: Two encodings [S0]u v, [S1]u v relative to the same pair of vertices can be added, obtaining
the encoding of the sum [S0 + S1]u v(relative to the same pair of vertices).

– Multiplication: Two encodings [S0]u v, [S1]v w whose nodes form a path u v w can be multi-
plied, obtaining an encoding [S0 ·S1]u w of the product at the level corresponding to concatenating the
paths.

– Zero Testing: Given an encoding [S]1 d between the unique source and sink, we can test whether or
not S is equal to 0.

In GGH15, the “plaintexts” are also matrices, rather than scalars, meaning the multiplications above are
non-commutative. Moreover, in GGH15, the plaintext matrices are required to be “short”.

GGH15 works as follows. Associated to each node u is a matrix Au. An encoding of S at level u v is a
matrix D that satisfies AuD = SAv+E mod q where both D and E are “short”. This encoding is generated
using a lattice trapdoor.

Addition is straightforward to verify. For multiplication, suppose AuD0 = S0Av+E0 mod q and AvD1 =
S1Aw + E1 mod q. Then AuD0D1 = S0S1Aw + E0D1 + S0E1 mod q.

Since Sb, Db and Eb are short, we can define E2 = E0D1 + S0E1, which is also short, and we see that
D0D1 is an encoding of S0S1 relative to the path u w.

For zero-testing, we note that if we have an encoding D of S relative to 1 d and we compute A1D mod
q = SAd + E mod q, the resulting matrix will be “short” relative to q if S = 0, and otherwise, we would
expect the result to be large relative to q.

1.3 Zeroizing Attacks on GGH15

As with all current multilinear map candidates, GGH15 is vulnerable to “zeroizing” attacks. These attacks
leverage the fact that any time a zero-test actually detects 0, the procedure also produces an equation that
holds over the integers.

For GGH15, notice that zero-testing computes A1D mod q = SAd + E mod q. If S = 0, the result is
just E mod q, which equals E since E is guaranteed to be short relative to q. But recall from the GGH15
description that if D is the result of several multilinear map operations, E depends on not just the error
terms of the original encodings, but also on the plaintext values S. Therefore, any successful zero-test will
give an equation depending on the original plaintext values, and this equation holds over the integers.
These equations can then potentially be manipulated to learn non-trivial information about the underlying
plaintexts. This is the heart of all known zeroizing attacks on GGH15.

More abstractly, suppose that c plaintext matrices S1, . . . ,Sc are encoded relative to various edges,
producing the corresponding encoding matrices D1, . . . ,Dc. In all known zeroizing attacks, the adversary
adds and multiplies the matrices {Di}i honestly (respecting the edge-constraints of the graph) to produce top-
level encodings of zero.2 Let pu({Di}i) denote the u-th top-level encoding of zero the adversary constructs.

2 Technically, the Coron et al. attack on key exchange does not compute top-level encodings of zero, but encodings
of the same matrix relative to different source-to-sink paths [18]. However, by connecting a master source node to

3

Each top-level zero pu({Di}i) is then zero-tested by multiplying on the left by A1, successfully obtaining a
low-norm matrix of zero-test results, which we denote as Tu (in some constructions, Tu is simply a scalar).
The current attacks all build a new matrix W whose entries are plucked from the various Tu matrices (or
Tu itself in the case of a scalar). From this point, the known attacks differ in strategy from each other. But
at a high level, all of them extract some piece of information from W, such as its kernel or its rank, and use
this information to recover non-trivial information about the hidden plaintext matrices {Si}i.

1.4 Our Zeroizing Model for GGH15

We make the following observation: all known attacks that recover information about the plaintexts {Si}i
from the {Tu}u set up an algebraic relation between the two (we will often refer to this relation as a
polynomial). More precisely, this means that implicit in all successful zeroizing attacks on GGH15, there is
a non-trivial bounded-degree polynomial Q such that

Q({Tu}u, {Si,j,k}i,j,k) = 0

holds over the integers, where Si,j,k denotes the (j, k)-th entry of matrix Si. In known attacks, this Q depends
on the matrix W in some way; however, anticipating potential new avenues for attack, we consider a much
more general attack format which assumes as little as possible about the structure of the attacks. Hence, our
general condition makes no reference to a matrix W.

While this condition seems simple, it is not a priori obvious that any of the GGH15 zeroizing attacks
actually produce such a Q. In theory, an adversary might recover information about the plaintext matrix
entries {Si,j,k}i,j,k through any efficient algorithm taking {Tu}u as input. We certainly cannot hope to re-
express any poly-time algorithm as a polynomial over its inputs and outputs. However, we are able to show
that all known attacks can be recast as procedures that uncover a Q polynomial.

Example: The CLLT16 Attack. In Coron et al. [18], the first step of the attack is to construct the matrix
W as above, and then compute a vector v in the left kernel of W. They show, using the algebraic structure
of GGH15, that such a v in fact gives a relation amongst the plaintext elements only (no error terms).
In particular, there is a vector x of fixed polynomials in the underlying plaintext elements such that v is
orthogonal to x. The attack then proceeds to use this relation amongst the plaintexts to break the scheme.

We observe that an equivalent view of their analysis is that x is in the column span of W. This means
that if we append the column vector x to W, the rank will be unchanged. Suppose for the moment that
W itself is full rank, and that it is one column shy of being square. Then we can capture the fact that the
rank does not increase with a simple algebraic relation: the determinant of [W | x] equals 0. Therefore,
in this restricted setting where W is full rank and almost square, we see that the CLLT16 attack implicitly
contains a polynomial Q as desired.

In the actual attack, W may not be full rank, meaning the determinant may trivially be 0 no matter what
x is; this means Q does not give us a useful relation over the plaintexts. Moreover, [W | x] may not be square,
so the determinant may not be defined. With a bit more effort, we can see that a polynomial Q is nonetheless
implicit in the attack for general W. Basically, if we knew the rank r of W, we could choose a “random”
matrix R with r+ 1 rows, and a “random” matrix S with r+ 1 columns. If we compute R · [W | x] ·S, we
will obtain an (r+1)× (r+1) matrix whose rank is (with high probability) identical to the rank of [W | x].
Now we can take the determinant of R · [W | x] · S to be our algebraic relation. In practice, we do not
know r, but we can guess it correctly with non-negligible probability since r is polynomially bounded.

The GGH15 Zeroizing Model. With our observations above in hand, we can define a new zeroizing model for
GGH15. Roughly, the model allows the attacker to perform multilinear map operations as explicitly allowed
by the multilinear map interface (i.e. following edge constraints). Then, after performing a zero-test, if the
encoding actually contained a zero, the adversary obtains a handle to the elements produced by zero-testing

the original source nodes, we can assume that all GGH15 graphs have a single source. In this case, the Coron et
al. attack indeed computes top-level encodings of zero.

4

(the E matrix in the discussion above, but potentially a different quantity for different GGH15 variants).
Next, the adversary tries to construct an algebraic relation Q between the zero-test results and the original
plaintexts. The only restrictions we place on Q are that it must be computable by an efficient algebraic
circuit, and that it must have degree that is not too large (e.g. sub-exponential). These restrictions are very
conservative, as the known attacks are quite low degree and very efficiently computable.

We also discuss (Appendix A) how to relax the model even further. We consider two different relaxations.
In the first one, we allow the adversary to actually manipulate the entries of the encodings D individually,
rather than treating the the matrices monolithically. The adversary is still required to obey the edge restric-
tions, so for example he can only add two entries if they belong to encodings on the same path, and can
only multiply two entries if they belong to encodings on joined paths. In the second relaxation, we allow the
adversary to zero-test arbitrary (degree-bounded) polynomials over the encodings, which may not obey edge
restrictions. However, here, we require that the adversary treats the matrices monolithically.

1.5 A New GGH15 Variant

For our next result, we describe a new GGH15 variant. Our goal with this variant is to add safeguards —
some of which have been proposed in the literature — in a rigorous way that allows us to formally analyze
the effectiveness of these safeguards. Our modifications to GGH15 are as follows:

Tensored Plaintexts. First, we will modify plaintexts as suggested in Chen et al. [9]. Plaintexts will still be
matrices M. However, before encoding, we will manipulate M as follows. First, we will tensor M with a
random matrix S. Then we will also append S as a block diagonal, obtaining the matrix

S′ =

[
M⊗ S

S

]
Then we will encode S′ as in plain GGH15. By performing this encoding, we can use the Chen et al. [9] proof
to show that direct attacks (those that do not use the broken secret key) are provably impossible, assuming
LWE.

Block Diagonal Ciphertexts. Next, after obtaining a plain GGH15 encoding D′ of S′, we append a block
diagonal B. Each matrix B will have “smallish” entries, and will be chosen independently for each encoding.
These matrices will multiply independently of the encodings D′. After multiplying to the top level, we will
introduce bookend vectors which will combine the products of the D′ and B matrices together. Since the B
matrices are small, this will not affect zero-testing.

These block diagonals are used to inject sufficient entropy into the encodings, which will be crucial for
several parts of our analysis. In particular, these block diagonals will be used to prove that any attack in
our zeroizing model will also lead to an attack in a much simpler “GGH15 Annihilation Model”, discussed
below in Section 1.6. Their role is similar to block diagonals introduced by Garg et al. [20], in the context of
GGH13 multilinear maps. However, we note that their role here is somewhat different: our block diagonals
are added to the ciphertexts, whereas in [20] they are added to the plaintexts before encoding.

Kilian Randomization. As described so far, the block diagonals B can simply be stripped off by the adversary,
and therefore do not provide any real-world security, despite offering security in our model as discussed in
Section 1.6. The reason for this inconsistency is that our model assumes the adversary treats the encoding
matrices monolithically, only operating on whole encoding matrices. Such an adversary cannot decompose a
block diagonal matrix into its blocks.

We therefore employ the relaxation of our model discussed above, where the adversary can manipulate
the individual components of an encoding independently. This model captures any adversary’s attempts to
decompose a block matrix, and potentially much more. In order to maintain security even in this relaxed
model, we Kilian-randomize the encodings, which is one of the suggested safeguards from the original GGH15
paper [5].

5

More precisely, we associate a random matrix Ru with each node u. Then, when encoding on an edge
u v, we left-multiply the block diagonal encoding from above by R−1u , and right multiply by Rv. Note
that the inner R matrices cancel out when multiplying two compatible encodings. Moreover, we include R’s
in the bookend vectors to cancel out the outer matrices when zero-testing.

This randomization, intuitively, allows us to bind the matrices B to D′. We formally prove in our relaxed
model that the adversary learns nothing extra if it attempts to manipulate the individual matrix entries;
therefore, the adversary might as well just operate monolithically on whole encodings. This allows our analysis
from above to go through.

Asymmetric Levels. Finally, we introduce asymmetric levels. In an asymmetric multilinear map, plaintexts
are encoded relative to subsets of {1, . . . , κ}. Encodings relative to the same subset can be added, and
encodings relative to disjoint subsets can be multiplied. Encodings relative to the “top” level {1, . . . , κ} can
be zero-tested.

We do not quite obtain asymmetric multilinear maps from GGH15. Instead, we add the asymmetric
level structure on top of the graph structure. That is, there is still a graph on d nodes as well as a set of
asymmetric levels. Any plaintext is now encoded relative to a pair (u v, L), where u v is a path in
the graph and L is a subset of {1, . . . , κ}. Encodings can be added as long as both the graph-induced and
asymmetric levels are identical, and encodings can be multiplied as long as both sets of levels are compatible.
An element can be zero-tested only if it is encoded relative to the source-to-sink path 1 d, and the “top”
asymmetric level {1, . . . , κ}. Asymmetric levels are useful for creating straddling sets [22] for proving the
security of obfuscation.

To achieve this functionality, we use a technique suggested by Halevi [23]. Simply associate a random
scalar to each asymmetric level, and divide an encoding by the corresponding subset of level scalars. We
choose the level scalars so that they cancel out if and only if they are multiplied together, corresponding to
a “top”-level encoding.

We note that it is possible for an adversary to combine elements that do not conform to the asymmetric
level structure. For example, an adversary can multiply two encodings with the same asymmetric level. The
point is that the adversary will not be able to successfully zero-test such an encoding.

However, the ability to combine illegal elements presents some difficulty for our analysis. Namely, the
adversary could combine some illegal elements, and then cancel them out later at some point prior to zero-
testing. Such a procedure will generate a valid zero-test, despite being composed of illegal operations. This
breaks usual security proofs relying on asymmetric levels, which assume the ability to immediately reject any
illegal operations. Essentially what we get then is an “arithmetic model” for the asymmetric levels, due to
Miles, Sahai, and Weiss [24]. We will therefore use the techniques from their work in order to prove security
in our model.

1.6 An Annihilation Model for Our Scheme

Next, we define a GGH15 Annihilation Model which is much simpler than the zeroizing model described
above. This model makes it very easy to evaluate whether a set of plaintexts could possibly lead to an attack.

Up until successful zero-tests, this model is similar to the original model described above: the adversary
can combine elements as long as they respect the edges in the underlying graph G. One key difference is
that encodings are also associated with an asymmetric level structure. For the asymmetric level structure, we
work with the arithmetic model, which allows the adversary to combine arbitrary elements, but any zero-test
must be on elements which respect the asymmetric level structure (in addition to respecting the graph level
structure).

After successful zero-tests, the model changes from above. Instead of trying to compute a polynomial
relation Q, the adversary simply tries to compute an annihilating polynomial Q′ for the set of zero-test
polynomials previously submitted (where each is evaluated over matrices of formal variables). We show that
any attack on our scheme in the GGH15 zeroizing model corresponds to an attack in the GGH15 annihilation
model, allowing us to focus on proving the security of schemes in the simpler to reason about annihilation
model.

6

1.7 Zeroizing-Proof Obfuscation

We now turn to constructing obfuscation secure against zeroizing attacks. With our new GGH15 construction
and models in hand, the construction becomes quite simple. As with the original obfuscator of Garg et
al. [2], our obfuscator works on matrix branching programs; such an obfuscator can be “bootstrapped” to
a full obfuscator using now-standard techniques (e.g. using FHE as in [2]). Our obfuscator is essentially the
obfuscation construction of [25], which in turn is based on [22]. We do have some simplifications, owing to
the fact that our multilinear map directly works with matrices.

– We assume the branching program is given as a “dual-input” branching program, following the same
restrictions as in [22].3 Any branching program can be converted into such a dual-input program using
simple transformations as described in [22].

– We instantiate our multilinear map with the single path graph G whose length matches the length ` of
the branching program. We also use the version with asymmetric level structure, using ` asymmetric
levels.

– We directly encode the branching program matrices. Each matrix is encoded at the asymmetric level
corresponding to how it would be encoded in [25]. Its graph-induced level is chosen to be consistent with
evaluation order; namely, the branching program matrices in column i are encoded at the i-th edge in
G.

We can then easily prove our obfuscator is secure against zeroizing attacks. The following is a sketch of
the proof: in our GGH15 annihilation model, following previous analysis of [24], we can show that under
the p-Bounded Speedup Hypothesis, the only successful zero-tests the adversary can construct are linear
combinations of polynomially many honest branching program evaluations. But then, any annihilation at-
tack gives an annihilating polynomial for branching programs. We then rely on a non-uniform variant of the
Branching Program Un-Annihilatability Assumption (BPUA) of [20], which conjectures that such annihilat-
ing polynomials are computationally intractable. This assumption can be proven true under the very mild
assumption that PRFs secure against P/poly and computable by branching programs exist (in particular,
PRFs computable by log-depth circuits suffice).4

1.8 Concurrent Work: A Weak Model for CLT13

Ma and Zhandry [21] propose a weak multilinear map model for the CLT13 multilinear maps [4], which
they show captures all known zeroizing attacks on CLT13. They prove that an obfuscation scheme of Badri-
narayanan, Miles, Sahai, and Zhandry [25] as well as an order revealing encryption construction of Boneh
et al. [26] are secure against zeroizing attacks when instantiated with CLT13. They also give a polynomial-
degree asymmetric multilinear map “fix” which they prove secure in their model under a new assumption
they call the “Vector-Input Branching Program Un-Annihilatability Assumption,” a strengthening of the
BPUA Assumption.

Due to the substantial differences between the CLT13 and GGH15 multilinear maps, the techniques of
Ma and Zhandry do not apply to the GGH15 setting. Most notably, their model captures an attacker’s ability
to perform a step that leads to factoring the CLT13 modulus. There is no composite modulus in the GGH15
scheme and thus the zeroizing attacks we consider are quite different.

1.9 Discussion and Limitations

We emphasize that our security claims are far from implying a provably secure iO candidate. Instead,
what we achieve is security against the two major vulnerabilities of GGH15-based constructions. The first

3 Dual-input is necessary to invoke the p-Bounded Speedup Hypothesis for MAX 2-SAT. This arises in the proof of
Lemma 8.

4 Using similar arguments, we can adapt the order-revealing encryption (ORE) construction of [26] to our scheme,
and prove security under BPUA, analogous to constructing ORE from GGH13 as in [20].

7

vulnerability, as Gentry et al. note in their original paper, is that the GGH15 construction requires high-
entropy plaintexts to have any hope of security. We address this by incorporating the “generalized GGH15
encodings” of Chen et al. [9], which introduce the necessary pre-encoding entropy. The second vulnerability
arises from algebraic zeroizing attacks on GGH15. Until now, no GGH15 obfuscation candidate has come
with any formal proofs of zeroizing resistance. Indeed, Chen et al. (Section 1.4 of [9]) state the goal of
achieving zeroizing-resistance for a GGH15 obfuscator as an important open problem. With our GGH15
zeroizing model characterization of zeroizing attacks, we are able to give a formal security guarantee against
such attacks.

The obvious limitation of our approach is that new vulnerabilities in GGH15 may arise at any point
in the future. Like any proof of security in an idealized model, our guarantees only hold against restricted
adversaries and should not be taken as a robust claim of iO security. In the language of Goldwasser and
Kalai [27], we view the security proof of our candidate as an intermediate result toward the goal of iO from
well-studied assumptions. Nevertheless, we believe the uncertain state of current GGH15-based obfuscators
makes our iO candidate both theoretically and practically relevant:

– From a theoretical point of view, the longer that algebraic zeroizing strategies remain the only way
to break GGH15, the more confidence our iO candidate and GGH15 zeroizing model will inspire. On
the other hand, if our candidate is broken, the cryptanalysis will need to introduce new, non-zeroizing
techniques, or use radically different zeroizing strategies that cannot be expressed as algebraic relations.
In other words, our proofs show that current zeroizing techniques only extend so far, and highlights the
need for new ideas in GGH15 cryptanalysis.

– From a practical standpoint, candidate GGH15-based obfuscators have already been implemented. One
example is the recent candidate of Halevi et al. [28] which is now known to be broken by the zeroizing
attack of Chen et al [9]. In light of this, we strongly believe that future obfuscation implementations
should come with a formal justification of security against zeroizing attacks. Our security arguments
present a new way to achieve this, though we do not claim our specific candidate is practical.

2 Preliminaries

2.1 Notation

Throughout this paper we use capital bold letters to denote a matrix M. Lowercase bold letters denote
vectors v. Occasionally, we will use diag(M1, . . . ,Mk) to denote a matrix with block diagonals M1, . . . ,Mk.
We will often need to distinguish between values and formal variables. For example, in a situation where the
variable x = 2, it can be difficult to tell when x represents a formal variable or when it represents the number
2. Thus, whenever we want x to denote a formal variable, we explicitly write it as x̂. When an expression
over formal variables is identically 0, we write ≡ (or 6≡ if it is not). Finally, we identify the ring Zq with
elements [−q/2, q/2).

2.2 Background on Lattices

Here, we give a very brief background on lattices. A lattice Λ of dimension n is a discrete additive subgroup of
Rn that is generated by n basis vectors denoted as {b1, . . . ,bn ∈ Rn}. Specifically, we have Λ = {

∑
i∈[n] xi·bi}

for integer xi’s. We then have the following useful definitions and lemmas.

Definition 1 (Discrete Gaussian on Lattices). First, define the Gaussian function on Rn with center
c ∈ Rn and width σ > 0 as

∀x ∈ Rn, ρσ,c(x) = e−π‖x−c‖
2/σ2

.

Then, the discrete Gaussian distribution over an n-dimensional Λ with center c ∈ Rn and width σ is
defined as

8

∀x ∈ Λ,DΛ,σ,c(x) =
ρσ,c(x)∑

y∈Λ ρσ,c(y)
.

Note that we omit the subscript c when it is 0.

Definition 2 (Decisional Learning with Errors (LWE) [6]). For n,m ∈ N and modulus q ≥ 2, dis-
tributions for secret vectors, public matrices, and error vectors θ, π, χ ⊆ Zq, an LWE sample is defined as
(A, sTA + eT mod q) with s,A, e sampled as s← θn, A← πm×n, and e← χm.

An algorithm is said to solve LWEn,m,q,θ,π,χ if it is able to distinguish the LWE sample from one that is
uniformly sampled from πm×n × U(Zm×1q) with probability non-negligibly greater than 1/2.

Lemma 1 (Hardness of LWE [6]). Given n ∈ N, for any m = poly(n), q ≤ 2poly(n), let θ = π = U(Zq), χ =
DZ,σ where σ ≥ 2

√
n. If there exists an efficient (possible quantum) algorithm that breaks LWEn,m,q,θ,π,χ,

then there exists an efficient (possible quantum) algorithm for approximating SIVP and GAPSVP in the `2
norm, in the worst case, to within Õ(nq/σ) factors.

Lemma 2 (LWE with Small Public Matrices [29]). Given n,m, q, σ chosen as in Lemma 1, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ

is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ for n′ ≥ 2n log q.

Lemma 3 (Trapdoor Sampling [30]). There exists a PPT algorithm called TrapSam(1n, 1m, q) that,
given any integers n ≥ 1, prime q ≥ 2, and sufficiently large m = O(n log q), outputs (A, τ) where A is
statistically close to uniform over Zn×mq , and τ is a trapdoor for A. Furthermore, there is another PPT
algorithm SampleD(A, τ,y, σ) that outputs a sample of vector d from DZm,σ conditioned on Ad = y. For
sufficiently large σ = O(

√
n log q), with all but negligible probability, we have

{A,d,y : y← U(Znq),d← SampleD(A, τ,y, σ)} ≈s {A,d,y : d← DZm,σ,y = Ad}.

2.3 GGH15 Graph-Induced Maps

The GGH15 construction is parameterized by a directed graph G = (V,E) with a single source and sink,
a ring R, and some integer parameters n,m, q, σ, ν with m � n. The plaintext space consists of matrices
S ∈ Rn×n whose entries are “short” (much smaller than q). The encodings are matrices D ∈ (R/qR)m×m.
Each plaintext and encoding matrix is associated with a specific edge or path in the graph. At parameter
generation, a random public matrix Au ∈ Rn×m is sampled for each vertex u, along with secret trapdoor
information τu. An encoding of a plaintext matrix S ∈ Rn×n with respect to a path (u v) is a matrix D
that satisfies

AuD = SAv + E (mod q). (1)

for a low-norm error matrix E ∈ Rn×m. Such a D can be computed by a secret key holder with the
trapdoor τu.

Two encodings D1 and D2 can be added as matrices provided they are encoded relative to the same
path. Multiplication is allowed as long as D1 is an encoding relative to u v and D2 is encoded relative to a
path that starts at v. The resulting encoding, D1 ·D2 is relative to the combined path u w. The encoding
invariant (Equation 1) is preserved under a limited number of additions and multiplications as long as the
initial S, E, and D matrices are sufficiently short.

The encoding scheme supports zero-testing on encodings relative to source-to-sink paths. For a given
public source matrix As and a source to sink encoding D, zero-testing involves checking if the product AsD
is sufficiently small. If D is an encoding of the 0 matrix, it is straightforward to see that their product is a
small matrix:

AsD = 0 ·As + E = E (mod q).

9

2.4 Matrix Branching Programs

We introduce dual-input matrix branching programs of the type considered in [31] but with one minor
modification. Formally, a dual-input matrix branching program BP of length h, width w, and input length
` consists of an input selection function inp : [h]→ [`]× [`] and 4h matrices

{Mi,b1,b2 ∈ {0, 1}w×w}i∈[h];b1,b2∈{0,1}.

BP is evaluated on input x ∈ {0, 1}` by checking whether or not∏
i∈[h]

Mi,x(i) = 0w×w

where x(i) := (xinp(i)1 , xinp(i)2). Note that the definition from [31] includes right and left bookend vectors
that are multiplied on either side of the branching program product resulting in a scalar that is either zero or
non-zero. We can simply turn each bookend into a matrix by repetition of rows/columns in order to recover
the functionality described above. As noted in [31], branching programs of this type can be constructed from
any NC1 circuit with h = poly(n) and w = 5 by Barrington’s theorem [32].

2.5 Straddling Sets

Our obfuscator uses the notion of straddling sets in order to enforce input consistency.

Definition 3 (Straddling Set System). A straddling set system with n entries is a universe set U and a
collection of subsets S = {Si,b ⊆ U}i∈[n],b∈{0,1} such that

–
⋃
i∈[n] Si,0 =

⋃
i∈[n] Si,1 = U

– For any distinct C,D ⊆ S such that
⋃
S∈C S =

⋃
S∈D S, there exists b ∈ {0, 1} such that C = {Si,b}i∈[n]

and C = {Si,1−b}i∈[n]
From [22], the following is a straddling set system with n entries over universe U = {1, ..., 2n− 1}

S1,0 = {1}, S2,0 = {2, 3}, . . . , Si,0 = {2i− 2, 2i− 1}, Sn,0 = {2n− 2, 2n− 1}
S1,1 = {1, 2}, . . . , Si,1 = {2i− 1, 2i}, . . . , Sn−1,1 = {2n− 3, 2n− 2}, Sn,1 = {2n− 1}

3 GGH15 Zeroizing Model

3.1 Graph-Induced Ideal Model

We discuss the syntax of graph-induced graded encoding schemes and describe an ideal model (also known
as a generic multilinear map model) for the graph-induced setting. Note that this is completely analogous
to the ideal model for symmetric/asymmetric multilinear maps, which itself is an extension of the generic
group model to the multilinear map setting [3, 2].

We consider directed acyclic graphs (DAGs) G = (V,E) where |V | = d. We assume the graph has a single
source and a single sink. We label the vertices from 1 to d according to some fixed topological ordering, so
that all edges/paths in the graph can be written as j k where j, k ∈ [d], j < k. (Note that the precise
distinction between paths and edges in graph-induced maps is not important, since the intermediate nodes
on a path do not matter).

Formally, the graph-induced ideal model is instantiated with a DAG G = (V,E), a plaintext ring R,
and a set of plaintexts {Mi, ui vi}i. The plaintexts are indexed by i, and plaintext Mi comes with an
associated path ui vi, where ui, vi ∈ [d], ui < vi.

We describe the model as an interaction between an oracle M (the “model”) and a user A (the “adver-
sary”).

10

– Instance Generation. The model M is instantiated with the graph G, plaintext ring R and the set
{Mi, ui vi}i. For each i, the model M generates a handle Ĉi, stores a pointer from Ĉi to Mi, and

releases (Ĉi, ui vi) publicly.

A can only interact with the handles Ĉi, which in the ideal setting leak no information about Mi. The model
provides the following interfaces for A:

– Addition. Addition on two handles Ĉi, Ĉj is permitted only if their corresponding paths ui vi, uj vj
are the same. The modelM looks up the corresponding plaintexts Mi,Mj , and returns a newly generated

handle Ĉk to the sum Mi +Mj , along with the path ui vi.

– Multiplication. Multiplication on two handles Ĉi, Ĉj is permitted only if the path ui vi ends where
path uj vj begins (vi = uj). The modelM looks up the corresponding plaintexts Mi,Mj , and returns

a newly generated handle Ĉk to the product Mi ·Mj , along with the combined path ui vj .

– Zero-Test.A can request a zero-test on a handle Ĉ.M responds with “zero” if the corresponding plaintext
is 0, and the corresponding path is the source-to-sink path. Otherwise, the result is “not zero.”

Implicit in this model is the assumption that the adversary cannot learn anything beyond what the interfaces
explicitly allow. In particular, it can only learn the bits returned by zero-testing honestly generated source-
to-sink encodings, and nothing more.

These interfaces suffice for our purposes, but we note that a full scheme (such as the GGH15 construction)
usually implements extract and re-randomization capabilities (refer to [5] for definitions and constructions).
Note that an explicit encoding procedure has been omitted in this description since it is handled in in-
stance generation. This reflects the fact that in the GGH15 instantiation of graph-induced multilinear maps
(GGH15), encoding is not a public procedure.

Zero-Test Circuits Observe that addition, multiplication, and zero-testing can be handled in a single
interface. Here, A simply submits an arithmetic circuit p that computes a polynomial over the handles {Ĉi}i.
Any handle that results in a successful zero-test in the above model can be represented as a polynomial-size
circuit over {Ĉi}i where each arithmetic gate respects the addition and multiplication restrictions enforced
by the graph structure.

However, we can relax the restriction on the arithmetic circuit so that the individual gates may not
necessarily respect the graph constraints, but the resulting polynomial still computes a valid source-to-sink
encoding (for example, if terms that violate graph constraints cancel out in the final evaluation). Looking
ahead to our GGH15 Zeroizing Model, we will require this relaxed constraint on arithmetic circuits, which
only makes the model more conservative.

3.2 GGH15 Variants

There are a number of GGH15 variants in the literature that modify the original GGH15 construction at a
number of key points. We identify several points in which the various schemes differ, and establish standard
notation before introducing our model.

Pre-Processing. In the original GGH15 construction [5], an encoding of a plaintext matrix M at path u v
is the matrix D satisfying Au ·D = M ·Av + E.

A number of works have proposed performing additional pre-processing to M before sampling the matrix
D. For example, the γ⊗diag-GGH15 encodings of Chen et al. [9] encode a plaintext matrix M by first sampling
a random P (in the notation of [9], this is the Si,b matrix) and constructing the matrix diag(M ⊗ P,P)
where ⊗ denotes the tensor product (Kronecker product).

Then the encoding D is the matrix satisfying

Au ·D =

[
M⊗P

P

]
·Av + E.

11

As other GGH15 variants perform different pre-processing steps on the initial plaintext M, we denote
the result of pre-processing as S. If there is no pre-processing step, then S = M. In the example above
S = diag(M⊗P,P).5 The encoding is then computed as Au ·D = S ·Av + E.

Post-Encoding. The original GGH15 paper [5] as well as Halevi [23] discuss various steps intended to safe-
guard the scheme against attacks (sometimes called “GGH15 with safeguards”). These steps essentially
perform operations on the matrix D generated from the standard GGH15 encoding procedure to produce a
“final” encoding C. We will adopt this notation, and set C to be the result of the overall encoding process.
If there is no post-encoding step, then C = D.

Zero-Testing. In the original GGH15 construction, zero-testing a source-to-sink encoding is done by com-
puting a matrix from the public parameters and the encodings C, and testing if this matrix is small. Ideally,
only the bit of information (whether or not the result is small) is useful to the adversary. Of course, the
zeroizing attacks on GGH15 show that this assumption is false, and that the actual matrix resulting from
the zero-test can provide useful information to the adversary [18, 19, 9]. This matrix will be referred to as
the “result” of zero-testing. To avoid confusion, the 0/1 bit learned from the zero-test will be referred to as
a bit rather than the result.

In certain GGH15 variants, the result of zero-testing is not a matrix. For example in “GGH15 with
safeguards” [5, 23], the result of zero-testing is a scalar. We will use the letter T to generically denote the
result of zero-testing (noting that T may represent a matrix depending on the scheme, even though it might
not be written in bold).

GGH15 Algorithms. Unlike the graph-induced ideal model, our GGH15 Zeroizing Model is defined with
respect to a specific GGH15 scheme/variant in mind. For example, in the ideal setting, a zero-test is successful
if and only if the product of the plaintexts is zero. In our GGH15 Zeroizing Model, the model explicitly
maintains encodings corresponding to each plaintext, and whether a zero-test is successful is determined
by performing computations on the encodings and public parameters corresponding to an actual GGH15
variant.

To specify our model, we let the scheme be denoted by G. For example, G may be the original GGH15
construction [5], the “GGH15 with safeguards” [23], etc. To be a valid GGH15 scheme, we require G to have
the following algorithms (in the literature, PreProcess is usually implicit):

– G.KeyGen(1λ, G,R, aux): Takes the security parameter, a description of a graph G with source 1 and
sink d, a ring R, and potential auxiliary information aux, and produces public parameters pp and secret
parameters sp.

– G.PreProcess(sp,M): Converts the input plaintext M into a pre-encoding S. For many schemes (including
the original GGH15 construction), S = M.

– G.Enc(sp,S, ui vi): Encodes S on the path ui vi.
– G.Add(pp,C1,C2): Takes an encoding C1 of M1 at path u1 v1 and an encoding C2 of M2 at path
u2 v2. If u1 = u2 and v1 = v2, this produces an encoding C3 of M1 + M2 at path u1 v1.

– G.Mult(pp,C1,C2): Takes an encoding C1 of M1 at path u1 v1 and an encoding C2 of M2 at path
u2 v2. If v1 = u2, this produces an encoding C3 of M1 ·M2 at path u1 v2.

– G.ZeroTest(pp,C): Takes an encoding C, computes a result T , and returns (T, b). If C is an encoding of
0 relative to path 1 d, then T is “small” and b = 1 (indicating successful zero-test). Otherwise, b = 0
with overwhelming probability.

3.3 GGH15 Zeroizing Model

Initialize Parameters. M is initialized with a security parameter λ, a graph G = (V,E), a ring R, poten-
tial auxiliary information aux, and a graph-induced encoding scheme G. It runs G.KeyGen(1λ, G,R, aux) to
generate the public and secret parameters (pp, sp), which it stores.

5 Essentially, S is the result of the γ functions in the notation of [9]. However, the S notation is more natural for
our setting, especially when referring to entries of these matrices.

12

Initialize Elements. M is given a set of initial plaintext elements {Mi, ui vi}i where each plaintext is
indexed by i, and i-th plaintext Mi is associated with path ui vi. The model applies a pre-processing
procedure to the plaintext (recall in the standard GGH15 construction, this procedure does nothing):

Si ← G.PreProcess(sp,Mi).

Then it computes the encoding Ci from the pre-encoding Si:

Ci ← G.Enc(sp,Si, ui vi).

Each tuple (Si,Ci, ui vi) is stored in the pre-zero-test table. For each encoding Ci, the model generates

a corresponding handle Ĉi that contains no information about Ci or Si. The handle is released, along with
the corresponding encoding level ui vi, and the model internally stores a mapping between the handle Ĉi
and the tuple (Si,Ci, ui vi). While the encoding Ci is a matrix, the adversary is given a single handle Ĉi
to the entire matrix.

Zero-Testing. The adversary generates a polynomial p (represented as a poly(λ)-size arithmetic circuit), over

the handles Ĉi and submits it to the model. Note that since the handles correspond to non-commutative
encodings, p must be treated as a polynomial over non-commuting variables.

The model verifies that p computes an edge-respecting polynomial, meaning that each monomial is a
product of encodings corresponding to a source-to-sink path. If p is not edge-respecting, the model returns
⊥. If p is edge-respecting, the model M evaluates p on the encodings Ci, producing a matrix p({Ci}i) that
corresponds to a valid source-to-sink encoding (or a linear combination of source-to-sink encodings). Finally,
M zero-tests p({Ci}i), obtaining (T, b)← G.ZeroTest(pp, p({Ci}i)). If the zero-test is successful (b = 1), the

model stores the value T (possibly a matrix, vector, or scalar) and generates a handle T̂` to each element of
T . Otherwise, the model returns ⊥.

We index the successful zero-tests by the letter u, so Tu will denote the result of the u-th successful zero-
test, T̂u will be the corresponding handles, and pu will be the polynomial submitted for the u-th successful
zero-test.6

Post-Zero-Test. In the post-zero-test stage, the adversary submits a polynomial Q of degree at most 2o(λ)

over the handles {T̂u}u and pre-encoding elements {Ŝi,j,k}i,j,k where Ŝi,j,k is a handle to the (j, k)-th entry
of the i-th pre-encoding matrix Si. For the sake of readability, we will frequently drop the outer subscripts
and denote these sets as {T̂u} and {Ŝi,j,k}. The model M checks the following:

1. Q({Tu}, {Si,j,k}) = 0

2. Q({Tu}, {Ŝi,j,k}) 6≡ 0

3. Q({T̂u}, {Si,j,k}) 6≡ 0

If all three checks pass, the model returns “Win”, and otherwise it returns ⊥. In Section 3.4, we explain how
we derive these conditions, and in Section 3.5 we justify how these conditions capture the known attacks.
We note that A is free to submit as many polynomials Q as it wants as long as it remains polynomial time.
If any such Q causes M to return “Win” then the adversary is successful.

Note that in reality, a zeroizing attack that succeeds with non-negligible probability is indeed considered
successful. Thus, we will allow the adversary to be possibly randomized, and we define a successful adversary
to be one that can obtain a “Win” with non-negligible probability (over the randomness of the model and
the adversary).

6 Although we denote each zero-test result as Tu, an adversary is not required to use Tu monolithically. For example,
an adversary can extract a single entry of Tu in the case when Tu are matrices.

13

3.4 Deriving the Post-Zero-Test Win Condition

All known zeroizing attacks on GGH15 exclusively rely on the results of zero-tests to recover information
about the hidden plaintexts [18, 19, 9]. In our model, this can be viewed as using the values {Tu} to learn
something about the values {Si,j,k}. Furthermore, we claim that all attacks that do this recover information
that can be expressed as an algebraic relation (we justify this claim in Section 3.5).

More precisely, underneath all successful zeroizing attacks on GGH15, there is a non-trivial bounded-
degree polynomial Q (the algebraic relation) such that

Q({Tu}, {Si,j,k}) = 0

holds over the integers.
This corresponds to the intuition that in a zeroizing attack, the adversary can learn something about

the pre-encoding entries Si,j,k by plugging the results of zero-testing {Tu} into the above relation. While not
every algebraic relation is solvable, we take the conservative route and model any non-trivial relation the
adversary can construct as a win.

Now we formalize what it means for Q to be non-trivial. If the adversary can indeed plug in the results
of zero-testing to learn something about the Si,j,k, then the expression must not be identically zero over the

Ŝi,j,k terms (taken as formal variables), when the {Tu} values are plugged in. Thus, we have the condition

Q({Tu}, {Ŝi,j,k}) 6≡ 0.

We also want to ensure that the zeroizing attack uncovers information about the pre-encodings beyond
what the adversary can learn honestly. Note that if the adversary obtains a successful zero-test, it learns
that some function of the pre-encoding entries Ŝi,j,k evaluates to 0. As a simple example, if the adversary
learns from an honest zero-test that matrix Si′ is the 0 matrix, then Si′,j′,k′ = 0 for any choice of j′, k′.

The formal polynomial Q = Ŝi′,j′,k′ for any j′, k′ would then satisfy both of the above conditions. However,
we should not consider this a successful zeroizing “attack,” as it does not use the zero-test results to derive
information about the pre-encodings.

To ensure that what the adversary learns about the pre-encodings relies on Tu in a non-trivial way, we
enforce a third condition

Q({T̂u}, {Si,j,k}) 6≡ 0.

Roughly, this condition states that the relation is not always satisfied regardless of what the {Tu} values
are, and thus the attack “uses” the zero-test leakage.

3.5 Algebraic Relations in Known Attacks

We now describe in detail how in all known zeroizing attacks on GGH15, we can derive an algebraic relation
Q satisfying our three win conditions with non-negligible probability. For a review of the settings of the
zeroizing attacks, refer to Appendix B or the original papers [18, 19, 9].

We will first review steps that are, in large part, common to all known zeroizing attacks on GGH15. In
these steps, the zeroizing attacks derive a matrix W where each entry comes from successful zero-test results
{Tu}. The W matrix in all known attacks crucially factors as W = XY, and the various attacks rely on
different properties of this factorization. We will ignore the precise details of how the attacks proceed from
this point, and instead show that given this W we can derive the algebraic relation Q corresponding to our
win condition.

We stress that a zeroizing attack does not necessarily need to follow these steps to be captured by our
win condition. We only use this template to demonstrate how the attacks fit in our model as it provides the
simplest exposition.

Step 1: Compute Top-Level Encodings of Zero. All known attacks begin by computing J ·K different
top-level encodings of zero, for some positive integers J,K. This corresponds to the adversary submitting
J ·K edge-respecting polynomials p in the zero-testing stage of our model.

14

Specifically, for each j ∈ [J], k ∈ [K], the attacks compute a particular polynomial {pj,k}j∈[J],k∈[K] over
the encodings {C}.

To specify the specific polynomials over the encodings in each of the various attacks, we deviate slightly
from our generic notation in Section 3.3. In our generic notation we denote the u-th zero-test polynomial as
pu, but here we will write the zero-test polynomials as pj,k.

– The CLLT16 attack on GGH15 key exchange does not explicitly compute encodings of zero as in the
original exposition. Instead, the attack computes encodings of the same plaintext on two different source-
to-sink paths (starting from different sources), and subtracts the encodings. In our setting we enforce
without loss of generality that all graphs must have a single source, which can be generically achieved
by connecting a “super” source node to the original source nodes of the graph, and encoding a 1 (or
identity matrix) on edges leading into the original sources.
A diagram of our resulting graph is available in Appendix B.1, Figure 1. Note that we restrict attention
to the 3-party key exchange construction and attack, as the ideas easily generalize to more parties.
The encodings used in the key exchange are Ci,0 for 1 ≤ i ≤ 3 (which we introduce to connect the
super source node) and Ci,i′,l for 1 ≤ i, i′ ≤ 3, 1 ≤ l ≤ N (for some large enough N). Then for
{C} = {Ci,0}i∈{1,2,3} ∪ {Ci,i′,l}i,i′∈{1,2,3},l∈[N], the polynomial

pj,k({C}) = C2,0 ·C2,1,1 ·C2,2,j ·C2,3,k −C3,0 ·C3,1,k ·C3,2,1 ·C3,3,j

is an encoding of s3,1 ·s1,j ·s2,k−s2,k ·s3,1 ·s1,j = 0 for all choices of j ∈ [J], k ∈ [K], where for this attack
J = K = N (N is a parameter in the key exchange construction). Recall the key exchange construction
uses a GGH15 variant that supports a commutative plaintext space, so this is always an encoding of 0.
These details can be verified in Appendix B.1, but we stress they are not important for understanding
how the attack fits in our model. Recall the key exchange construction uses a GGH15 variant that
supports a commutative plaintext space, so this is always an encoding of 0.

– For the CGH17 attack, the source-to-sink encodings of zero are the results of branching program eval-
uations. Specifically, the branching program must have an input partition. Roughly speaking, the h
branching program layers can be partitioned as [h] = X||Z where the matrices chosen in layers X can
be independently varied from the matrices chosen in layers Z so that the result of the program is always
0. The encodings in this scheme are of the form Ci,b (corresponding to the “functional” branch of the
GGHRSW obfuscator) and C′i,b (for the “dummy” branch), for i ∈ [h], b ∈ {0, 1}. We also introduce

bookend encodings C0,C
′
0,Ch+1,C

′
h+1.

Following the notation of [19], we evaluate the branching program on all inputs u(j,k) ∈ {0, 1}` (` denoting
the length of the branching program inputs) where the input-partitioning guarantee is that the branching
program evaluates to 0 on any choice of j, k for j ∈ [J], k ∈ [K].
This gives us our zero-test polynomials pj,k. Let inp : [h] → [`] be the input selection function of the

branching program, and let u
(j,k)
inp(i) be the bit of u(j,k) read on the i-th layer of branching program

evaluation. Then for {C} = {C0,C
′
0,Ch+1,C

′
h+1}∪{Ci,b,C

′
i,b}i∈[h],b∈{0,1}, the input-partitioning of the

branching program guarantees

pj,k({C}) =C0 ·
∏
i∈X

C
i,u

(j,k)

inp(i)

·
∏
i∈Z

C
i,u

(j,k)

inp(i)

·Ch+1

−C′0 ·
∏
i∈X

C′
i,u

(j,k)

inp(i)

·
∏
i∈Z

C′
i,u

(j,k)

inp(i)

·C′h+1,

corresponds to a source-to-sink encoding of zero for all j ∈ [J], k ∈ [K]. Here, J and K parameters
derive from the size of the input partition. Again, we emphasize that a thorough understanding of input
partitioning or the above expression is not crucial to understanding our model. An interested reader can
find a description of the input partitioning requirement and further details in the attack of Chen, Gentry,
and Halevi [19]. A diagram is available in Appendix B.2, Figure 2.

15

– The CVW18 attack essentially relies on the same input-partitioning requirements of the CGH17 attack,
with the difference being that the attacked obfuscator is no longer evaluated by computing two separate
programs and subtracting them. For {C} = {Ci,b}i∈[h],b∈{0,1}, the evaluations are roughly of the form

pj,k({C}) =
∏
i∈X

C
i,u

(j,k)

inp(i)

·
∏
i∈Z

C
i,u

(j,k)

inp(i)

.

A diagram and brief review of the CVW18 attack is available in Appendix B.3, Figure 3.

Step 2: Zero-Test and Build W Matrix. Zero-test each of these top-level encodings, and let the result
of zero-testing pj,k({C}) be Tj,k. Construct a J×K matrix W where the (j, k)-th entry Wj,k is derived from
Tj,k. In all current attacks, the matrix W has the following properties:

– W factors into X × Y where the rows of Y are linearly independent over the integers (with high
probability).

– There exists a column of X that is in the column space of a J × η dimensional matrix M, for some η
that we specify below for each attack. Each entry of M is a polynomial over the entries of pre-encoding
matrices {S}.

We describe the zero-test procedure and specific structure of these matrices in each of the attacks above:

– In the CLLT16 setting (augmented with our “super” source S), we zero-test by multiplying AS with
pj,k({C}) evaluated over the encodings. This gives a zero-test result Tj,k as a vector. Coron et al. observe
that the first element of this vector can be written as a dot product xj ·yk where the entries of xj depend
only on the encodings corresponding to user 1 (and the fixed encodings) and the entries of yk depend
only on the encodings corresponding to user 2 (and the fixed encodings). Moreover, the first element of
xj is the pre-encoding s1,j . Coron et al. also argue that arranging many column vectors yk into a square
matrix Y results in Y being invertible with high probability. Thus we take Wj,k to be the first element of
Tj,k, X to consist of the row vectors x1, ...,xJ , and M to simply be the column vector [s1,1 s1,2 · · · s1,J]>

(of dimension J × η where η = 1).
– In the CGH17 setting, since the attack targets the GGH15 with safeguards scheme [23], there are “GGH15

bookends” (as opposed to branching program bookends) j and l. Zero-testing works by computing the
scalar Tj,k = j · pj,k({Ci,b}) · l. We let Wj,k = Tj,k. Chen et al. observe that Tj,k can be written as
the dot product xj · yk where xj only depends on encodings associated with the X part of the input
partition and yk only depends on encodings associated with the Z part of the input partition. Say that
each pre-encoding matrix Si,b has dimension w×w. Then the first w elements of xj is given by the vector

j ·
∏
i∈X

S
i,u

(j,·)
inp(i)

.

And the very first element of xj is the scalar dot product

j · (
∏
i∈X

S
i,u

(j,·)
inp(i)

)(1)

where S(1) denotes the first column of a matrix S. Then if we again take X to consist of the row vectors
x1, ...,xJ ,

X(1) =


(
∏
i∈X S

i,u
(1,·)
inp(i)

)(1)>

...
(
∏
i∈X S

i,u
(J,·)
inp(i)

)(1)>

 · j>
So we let M be the matrix specified above (which is of dimension J × η for η = w), which consists of all
pre-encoding elements, and conclude that X does indeed contain a column in the column space of M.
Finally, we remark that analysis from CGH17 shows that the matrix Y consisting of the column vectors
yk will be full rank with high probability.

16

– Zero-testing in the CVW18 setting with single-input 2-partition branching programs is identical to the
CGH17 setting and the resulting matrix W decomposes in the same way. The other settings of CVW18
follow analogously.

Step 3: Deriving an Algebraic Relation. At this point, the CLLT16, CGH17, and CVW18 attacks
use different strategies to mount an attack starting from the W matrix. To show all of these attacks are
captured by our model, we will disregard the details of how the individual attacks use the W matrix. Instead,
we demonstrate that this W matrix is already sufficient to come up with a Q satisfying our post-zero-test
win condition (with non-negligible probability). The following steps are written generically, in that they
apply to the W matrix generated in each of the CLLT16, CGH17, and CVW18 attacks. It suffices to give
a polynomial-time procedure (which we refer to as the adversary) that extracts a Q satisfying our win
condition.

To win in our model, the adversary will pick the parameter K so that Y turns out to be square and
thus invertible and the parameter J ≥ K + η (where η is specified in step 2 by the setting we are in).
Y being invertible implies that every column of X is in the column space of W, so in particular we have
a column of X that is in both the column space of W and the column space of M. Intuitively, if we are
able to combine the columns of W and M into a square matrix, we are guaranteed that the determinant
of this matrix will be zero. We just have to ensure that the columns from W and the columns from M
are each linearly independent so that the determinant polynomial is not identically zero when either set of
variables is substituted in. The adversary mounts the attack as follows, where the parameter β is taken to
be exponential in the security parameter λ that the underlying scheme was initialized with, and ← denotes
“drawing uniformly at random.”

To start, the adversary forms the matrix W of handles to honest zero-test results and the matrix M of
pre-encoding handles where W ∈ ZJ×K and M ∈ ZJ×η. The adversary then guesses the ranks rM of M and
rW of W uniformly at random. The adversary guesses the correct ranks with probability 1/(Kη).

The adversary then draws four random matrices U,U′ ← Z(rM+rW)×J
β , V← Zη×rMβ , V′ ← ZK×rWβ , and

constructs
M′ = U ·M ·V , and W′ = U′ ·W ·V′.

Note that M′ ∈ Z(rM+rW)×rM , and W′ ∈ Z(rM+rW)×rW . Lastly, the adversary constructs a square (rM +
rW) × (rM + rW) matrix A = [M′ | W′] by concatenating M′ and W′. Note that the entries of A are
over handles to the zero-test results and the pre-encodings. The adversary takes the determinant polynomial
Q of this matrix and submits Q as the post-zero-test polynomial.

Assume the adversary has guessed the two ranks correctly, which happens with non-negligible probability
since K, η = poly(λ). We now show that Q will satisfy the following three win conditions in our model with
non-negligible probability.

1. Q({Tj,k}, {Si,j,k}) = 0

2. Q({Tj,k}, {Ŝi,j,k}) 6≡ 0

3. Q({T̂j,k}, {Si,j,k}) 6≡ 0

First, Q({Tj,k}, {Si,j,k}) = 0 since we have explicitly introduced a linear dependency among the columns of
A. Now we argue that with high probability, M′ has an rM × rM dimensional submatrix of rank rM which
implies that its columns are linearly independent and thus that Q({T̂j,k}, {Si,j,k}) 6≡ 0. The same argument

applies to W′ implying that Q({Tj,k}, {Ŝi,j,k}) 6≡ 0. This follows from an application of the following lemma,
noting that in our case, β is exponential in λ and the dimensions of M and W are polynomial in λ.

Lemma 4. Suppose an M ∈ Zn×mβ has rank r. Draw uniformly random U ← Zr×nβ ,V ← Zm×rβ . Then

M′ := U ·M ·V is full rank with probability at least 1− 2r
β .

Proof. Let the entries of U and V be formal variables and view M′ as a matrix over these variables. We know
that there exists an r× r full rank submatrix of M. Now consider the determinant of the matrix M′, which
is a degree-2r polynomial over the U and V variables. We can imagine setting the variables to 0/1 so that

17

this submatrix is exactly equal to the full rank submatrix in M, implying that the determinant polynomial
is not identically zero. Now by the Schwartz-Zippel lemma, this polynomial will be non-zero (implying that
M′ is full rank) with probability ≥ 1− 2r

β over the random choice U and V since they came from a subset
of the rational numbers of size β.

3.6 Limitations of Our Model

Our model does not permit a number of common operations that might arise in standard lattice cryptanalysis.
For example, we naturally disallow any modular reductions or rounding on the results of zero-testing, since
the relation would no longer be algebraic. This may at first appear problematic, since it means our model
does not capture many simple attack strategies such as LLL [33].

We stress, however, that this is a common feature of many abstract attack models defined in the literature.
For example, the random oracle model does not allow for differential cryptanalysis, despite it being a powerful
way to attack hash functions. This is usually considered okay, since schemes are tuned (say, by increasing the
number of rounds) to make such attacks useless. Similarly, the generic group model is often applied to elliptic
curves, even though the model does not allow for known attacks such as the MOV attack [34]. Instead, these
models capture things the adversary can do no matter how parameters are chosen.

Our setting is similar, as most lattice attacks can be defeated by tuning parameters. The most devastating
attacks on schemes such as GGH15 are zeroizing attacks, as they are present no matter how parameters are
chosen. Therefore, we devise a model that accurately captures how zeroizing attacks are performed, and tune
parameters to block all other attacks.

4 Towards Zeroizing Resistance: New Models and Constructions

4.1 Section Overview

In this section we construct a graph-induced encoding scheme with two desirable properties.

Property 1: Asymmetric Levels. In asymmetric multilinear maps such as GGH13 and CLT13, plaintexts are
encoded relative to subsets ` ⊆ [κ], where κ is a positive integer. Two encodings can be added if and only if
they are encoded at the same level set and can be multiplied if and only if they are encoded at disjoint level
sets. Only top level [κ] encodings can be zero-tested. In certain settings such as obfuscation, it is desirable
to enforce restrictions based on these asymmetric levels (for example, to implement straddling sets which
prevent “mixed-input” attacks [22, 24]). Unfortunately, the GGH15 edge restrictions do not immediately
give us the same capabilities of asymmetric level restrictions. Thus, we require a notion of “Graph-Induced
Multilinear Maps with Asymmetric Levels”, which simultaneously associates every encoding with a graph
path ui vi as well as a level set ` ⊆ [κ] (first described by Halevi [23]). Addition, multiplication, and
zero-test operations are only allowed as long as both the graph-induced restrictions and the asymmetric level
set restrictions are satisfied.

We naturally redefine our GGH15 Zeroizing Model for this new notion, calling the resulting model the
“Level-Restricted GGH15 Zeroizing Model”. This model is identical to the GGH15 Zeroizing Model, except
the adversary is now forced to additionally respect the asymmetric level restrictions when computing a top-
level encoding of zero.

Property 2: Semantic Security of Encodings. Recent techniques of Chen et al. [9] show how to produce GGH15
encodings that achieve provable semantic security from LWE via a new construction they call “γ-GGH15
encodings”. Note that this semantic security guarantee is orthogonal to what our GGH15 Zeroizing Model
captures. Semantically secure encodings ensure that the encodings themselves do not leak information, but
only in the setting where successful zero-tests are computationally unachievable. On the other hand, our
GGH15 Zeroizing Model captures adversaries who attack using the zero-test leakage but only under the
idealized assumption that the encodings themselves leak nothing.

18

A New GGH15 Variant We integrate these two new techniques into a new construction we call γ-GGH15-
AL (γ-encodings and asymmetric levels). We enforce asymmetric levels using a simple trick of dividing by
random scalars due to Halevi [23]. We show that security of our γ-GGH15-AL construction in the GGH15
Zeroizing Model implies security in a (more restrictive) Level-Restricted GGH15 Zeroizing Model. In other
words, we prove that an attack on γ-GGH15-AL that is free to disobey the asymmetric level restrictions
has no more power than an attack that obeys the asymmetric level restrictions. The proof proceeds from
applications of the Schwartz-Zippel lemma, which allow us to argue that a top-level encoding that disobeys
level restrictions will not give a successful zero-test (with overwhelming probability). To achieve semantic
security guarantees, we incorporate the γ-GGH15 encoding strategy of [9] into our γ-GGH15-AL construction.

We note that semantic security is only a heuristic statement in our setting. The semantic security proofs
of [9] hold when the adversary cannot successfully zero-test, but in our construction, zero-testing can be
achieved using a right bookend vector. Thus, our construction only has semantic security when this bookend
vector is hidden from the adversary. The intuition is that when the right bookend vector is not hidden,
security is lost because of zeroizing attacks, at which point we appeal to our GGH15 Zeroizing Model.

At the end of this section, we introduce a third model we call the “GGH15 Annihilation Model.” We
show that any successful zeroizing attacks in the GGH15 Zeroizing Model on our γ-GGH15-AL construction
imply the existence of a successful adversary in the GGH15 Annihilation Model (by first going through the
Level-Restricted GGH15 Zeroizing Model). An adversary in the GGH15 Annihilation Model will correspond
to a polynomial-complexity arithmetic circuit that annihilates the zero-test polynomials submitted by the
adversary.

Looking ahead to Section 5, these proofs will allow us to construct a new obfuscation candidate based on
our γ-GGH15-AL map and easily prove it secure in the GGH15 Zeroizing Model. We will show that any ad-
versary that mounts a successful zeroizing attack on our candidate in the GGH15 Zeroizing Model will imply
a successful adversary in the GGH15 Annihilation Model. For our particular obfuscation candidate, a suc-
cessful adversary in the GGH15 Annihilation Model will violate the Branching Program Un-Annihilatability
Assumption of Garg et al. [20]. Thus, we will obtain an obfuscation candidate with provable resistance
against zeroizing attacks, coupled with semantically secure encodings (when the right bookend is hidden).

4.2 γ-GGH15 Encodings

Our construction will use the γ-GGH15 encodings (also known as generalized GGH15 encodings) introduced
by Chen et al. [9] The purpose of these encodings is to achieve semantic security from LWE when the
adversary cannot obtain successful zero-tests. Chen et al. [9] only consider the setting of matrix branching
programs, and their definitions are with respect to a path graph with exactly two matrices encoded on each
edge. We note that it is not too difficult to extend their definitions and security guarantees to arbitrary
one-source/one-sink directed acyclic graphs (DAGs) with any polynomial number of matrices encoded on
each edge. For a full description of the γ-GGH15 encodings as defined for encodings of matrix branching
programs, refer to [9].

Consider the functions7

γdiag(M,S) =

[
M

S

]
, γ⊗diag(M,S) =

[
M⊗ S

S

]
.

Notation. Let the nodes of the directed acyclic graph be labeled in topological order as i = 1, . . . , d. To
support a general one-source/one-sink DAG, we allow encoding on any directed edge (i, i′) where i < i′

and i, i′ ∈ {1 . . . , d}. Let the number of plaintexts encoded on edge (i, i′) be denoted N(i, i′). We index the
encodings on edge (i, i′) with the variable j, so that {D(i,i′),j}j∈[N(i,i′)] is the set of all N(i, i′) encodings
on edge (i, i′). Finally, let E = maxi{

∑
i′ N(i, i′)} be the maximum number of encodings relative to any

source vertex, and let M =
∑
i,i′ N(i, i′) be the total number of encodings we consider. To recover the matrix

branching program setting considered by Chen et al [9], simply set N(i, i′) = 2 whenever i′ = i + 1, and
N(i, i′) = 0 otherwise.

7 Other γ functions are considered in [9], but γdiag and γ⊗diag suffice for our purposes.

19

In this notation, we give a more general statement of Theorem 5.7 of [9], and give the proof in Appendix
C. Here we only prove semantic security for γdiag encodings, as the semantic security for γ⊗diag naturally
follows per Corollary 5.9 of [9]. We state the full theorem here re-written in our notation for completeness
but note that the precise details are not essential for our construction and analysis.

Theorem 1 (Semantic Security of γdiag Encodings, adapted from Theorem 5.7 of [9]). Assuming
LWEn,Em,q,U(Zq),DZ,σ,DZ,σ , the following two distributions are computationally indistinguishable:

J ·A1,{D(i,i′),j ,P(i,i′),j ,M(i,i′),j}i<i′,j∈[N(i,i′)],Ad+1

≈c
J ·A1,{V(i,i′),j ,P(i,i′),j ,M(i,i′),j}i<i′,j∈[N(i,i′)],Ad+1

where

– {Ai, τi ← TrapSam(1n, 1m, q)}i∈{1,...,d+1},Ad ← U(Zn×mq), J ∈ {0, 1}n′×(n−n′) | In′×n′ .
– For any matrix X ∈ Zn×∗, X denotes the first (n− n′) rows of X, and X denotes the last n′ rows of X.

– P(i,i′),j ← Dn′×n′
Z,σ , {M(i,i′),j}i<i′,j∈[N(i,i′)] ← f({Pi,i′,j}i<i′,j∈[N(i,i′)]) for f : (Zn′×n′)M → (Z(n−n′)×(n−n′))M .

– D(i,i′),j ← A−1i

[
M(i,i′),jAi′ + E(i,i′),j

P(i,i′),jAi′ + E(i,i′),j

]
, E(i,i′),j ← χn×m.

– V(i,i′),j ← Dm×m
Z,σ .

4.3 A Graph-Induced Encoding Scheme with Asymmetric Levels

Overview To encode a plaintext matrix M on an edge i j with level set L ⊆ [κ] we first generate a
random matrix P in order to apply the γ⊗diag function of [9]. The resulting pre-encoding diag(M⊗P,P) is
encoded via the ordinary GGH15 encoding procedure to obtain an encoding D. The next step is to draw a
random k×k matrix B and append it on along the diagonal. This matrix B ensures each final encoding matrix
C has sufficient entropy (used in Lemma 6), and is crucial for Lemma 7. The next step is to multiply by
Kilian-randomization matrices (drawn by KeyGen for each vertex), and then divide by level scalars

∏
`∈L z`.

The resulting encoding is

C = (
∏
`∈L

z`)
−1 ·R−1i ·

[
D

B

]
·Rj .

To ensure that zero-testing works, we construct our right bookend vector w to contain the product
(
∏
`∈[κ] z`), which cancels out the level scalars in the encoding as long as it is at the top level [κ]. The left

and right bookends also contain Kilian-randomization matrices R1 and R−1d multiplied in to cancel out
the Kilian-randomization on the encodings. The bookends contain additional components bv and b>w which
multiply with the B random matrices during zero-testing. This has the effect of adding the products of random
matrices (with two random bookends) to the result of any zero-test (this will be crucial for our obfuscation
security proof, where it will have the effect of adding a random branching program evaluation). The remaining
bookend components are essentially set to be the bookends required by the γ-GGH15 encodings. However,
we also multiply them by randomly sampled vectors v′ and w′ to simplify dimensions.

Construction γ-GGH15-AL.KeyGen(1λ, G,R = Z, κ, β, k):8

Parameter Generation

8 κ is the number of asymmetric levels, β is a bound on the size of plaintext entries, and k is the dimension of the
block diagonal matrices we append during the encoding procedure.

20

– Label the nodes of G in topological order as 1, . . . , d where node 1 is the unique source and node d is the
unique sink.

– Choose parameters n,w, n′,m, q, σ, χ,B where n = wn′ + n′ according to the remark below. All opera-
tions happen over Zq. Plaintexts have dimension w × w with entries bounded by β, pre-encodings have
dimension n×n with entries bounded (with high probability) by β ·σ ·

√
n, and encodings have dimension

(m+ k)× (m+ k) with entries bounded by ν = 2λ. We draw error matrices under distribution (χ)n×m

and set B to be the zero-test bound.

Instance Generation

– (GGH15 matrices and trapdoors) For each vertex i ∈ V , sample (Ai, τi)← TrapSam(1n, 1m, q).

– (Kilian-randomization matrices) For each vertex i ∈ V , sample a random invertible Ri ∈ Z(m+k)×(m+k)
q .

– (Asymmetric level scalars) For each level ` ∈ [κ], sample a random invertible z` ∈ Zq.

Bookend Generation

– (Left bookend matrix from γ-GGH15 encodings) Sample a random J′ ← {0, 1}n′×wn′ and define

J := [J′ | In
′×n′].

– (Encoding matrix used in right bookend) Sample a uniform A∗ ← Zn×mq , an error matrix E∗ ← (χ)n×m,
and compute

D∗ ← SampleD(Ad, τd,

[
Iwn

′×wn′

0n
′×n′

]
·A∗ + E∗, σ)

This encoding serves to cancel out the lower random block diagonals on pre-encodings and enables
zero-testing on the actual plaintexts.

– (Random bookend vectors) Sample v′ ← Dn′

Z,σ,w
′ ← Dm

Z,σ.

– (Final bookend vectors) Sample uniform bv ∈ Zkν ,bw ∈ Zkν and compute the final bookends

v = [v′ · J ·A1|bv] ·R1, w = (
∏
`∈[κ]

z`) ·R−1d ·
[
D∗ ·w′>

b>w

]
.

Output

– Public parameters pp = {n,w, n′,m, k, q, σ, χ,B,v,w}
– Secret parameters sp = {Ai, τi,Ri}i∈[d], {z`}`∈[κ]

γ-GGH15-AL.Enc(sp,M ∈ Zw×wβ , i j, L ⊆ [κ]):

– Draw P← Dn′×n′
Z,σ and E← (χ)n×m

– Compute D← SampleD(Ai, τi,

[
M⊗P

P

]
·Aj + E, σ)

– Draw uniform B← Zk×kν and output the encoding

C = (
∏
`∈L

z`)
−1 ·R−1i ·

[
D

B

]
·Rj

γ-GGH15-AL.ZeroTest(pp,C):

– Return zero if |v ·C ·w>| ≤ B, and not zero otherwise.

21

Parameters. First, we derive an additional security parameter λLWE = poly(λ) which determines the
hardness of LWE instances associated with the construction. We set the encoding bound ν = 2λ and choose
n,w, n′,m, q, σ, χ = DZ,s where n = wn′+n′, m = Θ(n log q) and σ = Θ(

√
n log q) for trapdoor functionality

and n′ = Θ(λLWE log q) and s = Ω(
√
n′) for LWE security.9 Set the zero-test bound B := (m ·β ·σ ·

√
n)d+1 +

(k · ν)d+1 and choose q ≥ B · ω(poly(λ)) such that q ≤ (σ/λLWE) · (2λLWE)1−ε for some ε ∈ (0, 1).
We briefly argue that these constraints can be satisfied with λLWE = poly(λ). First, we can take log q =

Θ(λLWE) and still satisfy the final constraint. Then since w, k, d = poly(λ), we can write B as λ
poly(λ)
LWE .

Now the remaining constraint is 2Θ(λLWE) ≥ λ
poly(λ)
LWE · ω(poly(λ)), which is satisfied by taking λLWE to be a

sufficiently large polynomial in λ.
We now argue that this setting of parameters enables zero-test functionality. Say that we test a source-

to-sink encoding C. If C is an encoding of 0, then in the worst case (for noise growth) it will be the product
of d − 1 encodings Di of plaintexts Mi with error matrices Ei. In this case (seen by simply expanding out
GGH15 multiplications),

|v ·C ·w>| = |[v′ · J ·A1|bv] ·C · [(D∗ ·w′
>

)>|bw]>|

= |v′ · J ·
d−1∑
j=1

((

j−1∏
i=1

[
Mi ⊗Pi

Pi

]
) ·Ej ·

d−1∏
k=j+1

Dk) ·D∗ ·w′> + bv ·
d−1∏
i=1

Bi · b>w |

≤ |σ2 ·m2 · (m · β · σ ·
√
n)d−1 + (k · ν)d+1| ≤ B

And if C is an encoding of some non-zero M, this multiplication includes the term M ·A∗ for A∗ uniform
in Zq and we have that B

q = negl(λ).

Lemma 5 (Semantic Security). Any set of encodings generated with γ-GGH15-AL achieves semantic
security from LWE, assuming we release a modified set of public parameters pp′ = pp \ {w} that hides the
right bookend vector w.

Proof. This follows immediately from Theorem 1, noting that the modifications we make do not hurt security.
Instead of giving out the exact J · A1, {D(i,i′),j}i<i′,j∈[N(i,i′)] terms in the statement of Theorem 1, our
construction changes the following:

– A random vector is multiplied into J ·A1.
– The D matrices are divided by random scalars
– Random block diagonal B matrices are appended to the D matrices and the result is Kilian-randomized.

Each of the above steps is easily simulated and thus the semantic security of the distribution in Theorem 1
implies the semantic security of encodings produced by the above scheme.

4.4 Level-Restricted GGH15 Zeroizing Model

In order to define this model, we need the following definition.

Definition 4 (Level-Respecting Encodings). Fix a universe of levels [κ]. Let Li be the set of levels
associated with encoding Ci. Let m be a monomial over encodings {Ci} which contains the j encodings

C1, ...,Cj. Then m is level-respecting if L1, ..., Lj are disjoint and
⋃j
i=1 Li = [κ]. A polynomial p over

encodings {Ci} is level-respecting if and only if each of its monomials is.

We only mention the differences between this model and the GGH15 Zeroizing Model. Here we expect
that the GGH15 variant G that the model is initialized with supports asymmetric levels, namely that G.Enc
additionally takes as input a level set L ⊆ [κ].

9 Following Chen et. al. [9]

22

Initialize Parameters. The model M in addition takes a parameter κ denoting the number of asymmetric
levels.

Initialize Elements. M is additionally given a level set Li ⊆ [κ] along with each plaintext Mi and path
ui vi. M computes the corresponding pre-encoding Si (from G.PreProcess), and computes the encoding

Ci ← G.Enc(sp,Si, ui vi, Li).

M stores (Si,Ci, ui vi, Li) in a pre-zero-test table.

Zero-test. When the adversary submits a polynomial p,M additionally checks that it is level-respecting, and
if it is not, M returns ⊥.

Lemma 6. Let A be a successful adversary in the GGH15 Zeroizing Model instantiated with γ-GGH15-AL.
Then there exists a successful adversary A′ in the Level-Restricted GGH15 Zeroizing Model instantiated with
γ-GGH15-AL.

Proof. We show that with overwhelming probability, every zero-test polynomial submitted by A that does
not result in ⊥ is already level-respecting, so any A that wins in the GGH15 Zeroizing model also wins in
the Level-Restricted GGH15 Zeroizing Model.

Consider any edge-respecting polynomial p({Ĉ}) that A submits for a successful zero-test. The result of
zero-testing is the scalar element v · p({C}) ·w>. The proof proceeds from evaluating this zero-test result
v · p({C}) ·w> in two different ways.

Recall that the entries of the matrices {C} include random “level scalars” {zj}. We imagine plugging in
all of the actual values of every term in v ·p({C}) ·w>, except for the values of the random level scalars {zj},
which we leave as formal variables {ẑj}. The result of this substitution is a rational function h({ẑj}). By
construction, h is constant over the ẑj variables if and only if p was level-respecting. Since p corresponds to a
successful zero-test, we know that |h({zj})| ≤ B when the actual random scalars {zj} have been plugged in
for {ẑj}. Equivalently, there exists some β ∈ [−B,B] such that h({zi})− β = 0. For a graph with d vertices
and level set κ, (

∏
i∈[κ] ẑi)

d(h({ẑj})− β) is a polynomial of degree (κ+ 1) · d in the ẑj formal variables. We
plug in the zj variables and invoke the Schwartz-Zippel lemma to conclude that if this polynomial is not
the identically-zero polynomial, it can only evaluate to zero with probability at most (κ + 1)d/q over the
randomness of the zj values. Taking a union bound over all 2B possible values of β gives the final probability
2B
q (κ+ 1)d = negl(λ).

This implies that the rational function h({ẑj}) is a constant function and thus that each monomial
containing any ẑj variables has coefficient 0. Now we can view any such coefficient as a polynomial in terms

of the formal variables b̂k standing in for the elements of the random block diagonals Bi added during
encoding. Recall that these matrices were drawn uniformly from a space of size ν = 2λ and the degree of
the b̂k variables is bounded by d = poly(λ). Applying the Schwartz-Zippel lemma again shows that this

polynomial is identically zero over the b̂k variables with probability 1 − negl(λ). Since the block diagonals
for each encoding are drawn independently, we conclude that with overwhelming probability, the coefficient
of each monomial containing any ẑj variables is identically zero over the encoding matrices, implying that

p({Ĉ}) is level-respecting.

4.5 GGH15 Annihilation Model

We turn to describing a new model which has properties that are much easier to reason about when proving
security. Instead of requiring the adversary to find an algebraic relation in the post-zero-test stage, we instead
require the adversary to find an annihilating polynomial for the set of successful zero-test polynomials
it previously obtained. More specifically, this polynomial must annihilate the zero-test polynomials when
evaluated on square matrices of formal variables of some dimension k.

This k affects the difficulty of winning in the model, since matrices of larger dimension will be harder to
annihilate. The advantage of having this model is that we have a notion of winning that corresponds more

23

directly to the underlying plaintexts encoded with the scheme. Namely, if we are able to encode plaintexts
(taking advantage of asymmetric levels) in such a way that annihilating successful zero-test polynomials is
hard, we can immediately obtain security in this model.

We describe the differences between this model and the Level-Restricted GGH15 Zeroizing Model. First,
there is no computational bound on the adversary — it can submit as many zero-test queries as it wants
and can take as much computation as it wants in the post-zero-test stage. However, each post-zero-test
polynomial it submits must be implemented with a polynomial size circuit. The other modifications are
described below.

Initialize Parameters. The model M takes in an additional ‘tuning’ parameter k, which determines in some
sense how strong the win condition will be.

Post-zero-test. At this point the adversary has submitted a set {pu}u of successful zero-test polynomials
which we associate with a set of formal variables {p̂u}u. The adversary now submits a polynomial sized
circuit C̄ that implements a polynomial Q̄({p̂u}u) over these formal variables. The model M associates a

set of k× k matrices {Ĉi}i of formal variables with the set of encodings {Ci}i and considers two additional
k-dimensional vectors v̂ and ŵ of formal variables. Note that each individual entry of each of these matrices
and vectors is a distinct formal variable. M returns “Win” if the following hold:

1. The degree of Q̄ is 2o(λ)

2. Q̄({p̂u}u) 6≡ 0

3. Q̄({v̂ · pu({Ĉi}i) · ŵ>}u) ≡ 0

Lemma 7. Fix any k ∈ N. Let A be a successful adversary in the Level-Restricted GGH15 Zeroizing Model
instantiated with γ-GGH15-AL where KeyGen receives the parameter k. Then there exists a successful adver-
sary A′ in the GGH15 Annihilation Model with tuning parameter k.

Proof. Consider a successful adversary A in the Level-Respecting GGH15 Zeroizing Model instantiated with
γ-GGH15-AL where KeyGen receives the parameter k (determining the size of block diagonals added during
encoding). We derive a successful adversary A′ in the GGH15 Annihilation Model with tuning parameter
k. First we introduce some notation. Denote by {Ci}i the set of encodings produced in this instantiation
of the Level-Respecting GGH15 Zeroizing Model. Let {bn}n be the set of individual elements of the vectors

and matrices {bv, {Bi}i,b>w} and let {b̂n}n be the corresponding set of formal variables. Suppose A submits

the set of m polynomials {pu({Ĉi}i)}u∈[m] for zero-testing followed by a post zero-test polynomial Q. Let

pu({B̂i}i) denote the u-th polynomial where each encoding handle Ĉi is replaced by its corresponding block

diagonal handle B̂i. Let T̂u denote the handle to the u-th zero-test result Tu := v · pu({Ci}i) ·w> and let
T ′u({bn}n) := bv · pu({Bi}i) · b>w denote the result of evaluating pu over the {Bi}i matrices and multiplying
the result on each side by the corresponding sections of the left and right bookends.

To complete the proof, we show the existence of a polynomial-size circuit C̄ that computes a degree 2o(λ)

polynomial Q̄, derived from Q, such that

1. The degree of Q̄ is 2o(λ)

2. Q̄({T̂j}j∈[m]) 6≡ 0

3. Q̄({T ′j({b̂i})}j∈[m]) ≡ 0

Since each B̂i is a k × k matrix of formal variables and bv and b>w are k-dimensional vectors of formal
variables, the existence of such a Q̄ implies the existence of a successful adversary A′ in the GGH15 Annihi-
lation Model with tuning parameter k. A′ simply submits the same m zero-test polynomials as A and then
iterates over all polynomial sized circuits until it finds one that causes the model to output “Win”.

Recall that Q is a polynomial over the zero-test handles {T̂u}u and pre-encoding handles {Ŝi,j,k}i,j,k and

that Q({T̂u}u, {Si,j,k}i,j,k) 6≡ 0. First we plug in the actual values of the pre-encodings to get a non-zero

polynomial Q′({T̂u}u) over just the zero-test handles with degree at most 2o(λ) (since the degree of Q must

24

have been 2o(λ) if the adversary was successful). Next, we imagine plugging the actual values of each element
of each encoding Ci into the zero-test polynomials pu while keeping the random block diagonal elements as
formal variables. If we do the same for the zero-test vectors, then by construction, each Tu = T ′u({bn}n) +ku
for some constant ku independent of the values of {bn}. Now we can view Q′ as a polynomial over the {b̂n}n
formal variables by making the following substitution:

Q′({T̂u}u) = Q′({T ′u({b̂n}n) + ku}u)

Now observe that

Q′({T ′u({bn}n) + ku}u) = Q({Tu}u, {Si}i) = 0

by definition of our win condition. Furthermore, the degree of Q′ over the {b̂n} variables is 2o(λ) since
each pu is a linear combination of source-to-sink monomials and thus has polynomial degree in each of the
b̂n variables. Since each b̂n variable is drawn independently from a set of size ν = 2λ, we can apply the
Schwartz-Zippel lemma to conclude that

Q′({T ′u({b̂n}n) + ku}u) ≡ 0

with all but negligible probability. Now recall that Q′({T̂u}u) 6≡ 0, which implies that Q′({T̂u+ku}u) 6≡ 0 for

any constants ku since the highest order term after expanding is exactly equal to Q′({T̂u}u). Let Q̄({T̂u}u) =

Q′({T̂u + ku}u). We have just seen that Q̄ satisfies item (1) above. In addition,

Q̄({T ′u({b̂n}u)}u) = Q′({T ′u({b̂n}n) + ku}u) ≡ 0

So Q̄ satisfies the last two conditions. Q̄ is clearly computable by a polynomial sized circuit since it is the
result of simply hard-coding values into certain inputs of Q and adding constants to other inputs.

5 An iO Candidate with Zeroizing Resistance

We show how to use the γ-GGH15-AL construction presented in Section 4.3 to construct a new candidate
indistinguishability obfuscation (iO) scheme, which we can prove secure in the GGH15 Zeroizing Model.

We design our obfuscator to invoke the Branching Program Un-Annihilatability (BPUA) Assumption of
Garg et al. [20]. Roughly, this assumption states that no polynomial-size circuit can annihilate the evaluations
of every matrix branching program, provided we consider branching programs whose input bits are read many
times and in interleaved layers.

Thus, the first step of our obfuscator is to pad the input branching program in order to satisfy the
requirement of the BPUA Assumption. To facilitate this, one of the inputs to our obfuscator is the parameter
t = t(`, λ) ≥ 4`4 which specifies the minimum number of layers required. Note that the resulting padded
program may have length greater than t, so we use a separate variable d to denote the actual length of the
branching program after padding. We also enforce that each pair of input bits is read together in many
layers, which is required to invoke the p-Bounded Speedup Hypothesis of [24].

To encode the matrices with γ-GGH15-AL, we pick asymmetric level sets from a straddling set system.
The sets are assigned precisely to enforce that evaluations respect the input read structure of the padded
branching program. The encoding edges are picked so that the branching program evaluations are naturally
computed by traversing a path graph.

5.1 Construction

Input. The input to the obfuscator is the security parameter λ and a dual-input branching program BP (de-
fined in Section 2.4) of length h, width w, and input length `.BP consists of the matrices {Mi,b1,b2}i∈[h],b1,b2∈{0,1}
and input selection function inp : [h]→ [`]× [`] which satisfies the following requirements:

25

– For each i ∈ [h] : inp(i)1 6= inp(i)2, where inp(i)1, inp(i)2 denote the first and second slots of inp(i),
respectively.

– For each pair j 6= k ∈ [`], there exists i ∈ [h] such that inp(i) ∈ {(j, k), (k, j)}.

BP is evaluated on input x ∈ {0, 1}` by checking whether∏
i∈[h]

Mi,x(i) = 0w×w

where we abbreviate x(i) := (xinp(i)1 , xinp(i)2).

Step 1: Pad the branching program. We pad the branching program with identity matrices until it has d ≥ t
layers to ensure the following conditions:

– Each pair of input bits (j, k) is read in at least 4`2 different layers.
– There exist layers i1 < i2 < · · · < it such that inp(i1)1, . . . , inp(it)1 cycles t/` times through [`].

Step 2: Form straddling sets. For each input index i ∈ [`], let ri be the number of layers in which the bit i is

read, and create a straddling set system with universe U(i) and subsets {S(i)
j,b}j∈[ri],b∈{0,1}. Let U :=

⋃
i∈[`] U(i).

Step 3: Encode with γ-GGH15-AL. Let G be a path graph with d + 1 nodes 1, ..., d + 1 and initialize the
γ-GGH15-AL construction10

pp, sp← γ-GGH15-AL.KeyGen(1λ, G,Z, |U|, max
i,b1,b2

{||Mi,b1,b2 ||∞}, k = 5).

For i ∈ [d] and b ∈ {1, 2}, define jb(i) to be the number of times inp(i)b has been read after reading i columns
of the branching program, and compute

Ci,b1,b2 ← γ-GGH15.Enc(sp,Mi,b1,b2 , i i+ 1, S
inp(i)1
j1(i),b1

∪ S inp(i)2
j2(i),b2

).

5.2 Security

We immediately have that our obfuscation candidate satisfies semantic security without the right bookend
by Lemma 5. However, the primary contribution of our obfuscator is to additionally give a formal proof
of zeroizing resistance. Our main security theorem requires the p-Bounded Speedup Hypothesis of Miles et
al. [24] and the Branching Program Un-Annihilatability (BPUA) Assumption of Garg et al. [20]

In order to state the p-Bounded speedup hypothesis, we recall the following definition of Miles et al. [24].

Definition 5 (X-Max-2-SAT Solver). Consider a set X ⊆ {0, 1}`. We say that an algorithm A is an
X-Max-2-SAT solver if it solves the Max-2-SAT problem restricted to inputs in X. Namely given a 2-CNF
formula φ on ` variables, A(φ) = 1 iff ∃x ∈ X that satisfies at least a 7/10 fraction of φ’s clauses.

Assumption 1. (p-Bounded Speedup Hypothesis, introduced in [24]). Let p : N→ N. Then for any X-Max-
2-SAT solver that has size t(`), |X| ≤ p(poly(t(`))).

The assumption essentially states that the NP-complete problem Max-2-SAT is still hard even for re-
stricted sets of variable assignments. This hardness is parameterized by p, and in its strongest form, p is
taken to be a polynomial. In this form, the assumption states that no polynomial time algorithm can solve
X-Max-2-SAT on an X of super-polynomial size. However, we can also take p to be 2polylog(n) and obtain
meaningful results.

We now state a non-uniform variant of the BPUA, but first we need the following definition from [20].

10 We set k = 5 so that the dimension of the random block diagonals added during encoding match the dimension of
matrix branching programs obtained from Barrington’s theorem.

26

Definition 6. A matrix branching program BP is L-bounded for L ∈ N if every intermediate value computed
when evaluating BP on any input is at most L. In particular all of BP ’s outputs and matrix entries are at
most L.

Assumption 2. (Non-uniform variant of the BPUA assumption of [20]) Let t = poly(`, λ) and let X ⊆
{0, 1}` have poly(λ) size and Q be a poly(λ)-size 2o(λ)-degree polynomial over Z. Then for all `, sufficiently
large λ, and all primes 2λ < p < 2poly(λ), there exists a 2λ-bounded dual-input matrix branching program
BP : {0, 1}` → [2λ] of length t whose first input selection function (inp1) iterates over the ` input bits t/`
times, such that Q({BP (x)}x∈X) 6= 0 (mod p).

Note that this statement is a very mild strengthening of the original BPUA assumption stated in [20].
Their assumption is required to hold for any Q of bounded degree generated by a polynomial-time algorithm,
whereas our assumption must hold for any Q of polynomial size and bounded degree. However, we note that
Garg et al. [20] justify their assumption by showing it is implied by the existence of PRFs in NC1 secure
against P/poly. With a minor tweak to their proof, we can show our non-uniform BPUA is also implied by
the existence of PRFs in NC1 secure against P/poly. We simply modify the non-uniform adversary used in
[Theorem 2, [20]] to take the polynomial-size Q as advice.

Finally, we use the following definition in our security proof.

Definition 7 (Input-Respecting Polynomial). Given a branching program {Mi,b1,b2}i∈[h],b1,b2∈{0,1} with
input selection function inp : [h] → [`] × [`], a polynomial p over the matrices (or elements of matrices) is
input-respecting if no monomial involves two encodings {M

i,b
(i)
1 ,b

(i)
2
}, {M

j,b
(j)
1 ,b

(j)
2
} (or entries of encodings)

such that inp(i)1 = inp(j)1 and b
(i)
1 6= b

(j)
1 or inp(i)2 = inp(j)2 and b

(i)
2 6= b

(j)
2 .

Theorem 2 (Main Theorem). Assuming the p-Bounded Speedup Hypothesis and the non-uniform BPUA
Assumption (implied by the existence of PRFs in NC1 secure against P/poly), our obfuscator is secure in the
GGH15 Zeroizing Model.

Proof. It suffices to prove security in the GGH15 Annihilation Model with parameter 5 (since we set k = 5 in
the obfuscation construction). Suppose an adversary A wins in this model instantiated with our obfuscator.
We argue that every successful zero-test polynomial submitted by A is a linear combination of polynomially
many branching program evaluations and thus that the existence of a Q used to win in the GGH15 Annihi-
lation Model would violate Assumption 2. We know that every successful zero-test polynomial submitted by
A in this model is level-respecting, so by construction of straddling sets, we can conclude that every poly-
nomial is input-respecting. A polynomial that is both edge-respecting (so each monomial contains exactly
one branching program matrix from each layer) and input-respecting, is a linear combination of branching
program evaluations. However, we have no bound on the number of terms in the linear combination. We
now rely on the analysis techniques of Miles, Sahai, and Weiss [24] to show that each polynomial is in fact a
linear combination of polynomially many branching program evaluations, assuming the p-Bounded Speedup
Hypothesis.

Lemma 8. (adapted from [24]) Consider an adversary A interacting with our obfuscation candidate in the
GGH15 Annihilating Model. Assuming the p-Bounded Speedup Hypothesis, any edge-respecting and input-
respecting polynomial submitted by A is a linear combination of polynomially-many branching program eval-
uations.

Proof. Let q be an edge-respecting and input-respecting polynomial over handles to encodings {Ĉi,bi,1,bi,2}
submitted by A (and thus can be represented as a polynomial size circuit c). We know that every monomial of
q represents a branching program evaluation and thus can be associated with some input string x ∈ {0, 1}`.
Let X be the set of all such x associated with a monomial in q. We give an X-Max-2SAT solver of size
poly(|c|) which is sufficient to complete the proof. We are given a 2-CNF formula φ : {0, 1}` → {0, 1} with m
clauses where m ≤ 4`2 without loss of generality. Let {yi}i∈[`] denote the set of variables in φ. Fix a clause
c in φ and let (i, j) be the input bits read by c. The input x associated with each monomial of q determines

27

an assignment to the variables yi and yj in φ. We modify q so that the degree of each monomial associated
with a satisfying assignment to clause c is reduced by one. To do this, take any layer k reading (i, j) that has

not been used before and in q, set every Ĉk,b1,b2 to 1 except for the (b1, b2) pair that doesn’t satisfy c. We
can always pick a layer that wasn’t used before because each pair is read at least 4`2 times by construction.
In the case that i = j, we can take any unused layer k reading (i, i′) for some i′ 6= i and set every Ĉk,b1,b2

to 1 except for the (at most) two that don’t satisfy c.
After doing this for each of the m clauses, we have that q contains a monomial of degree at most t−7m/10

iff some x ∈ X satisfies 7m/10 of φ’s clauses. Let q(d) be the homogeneous degree-d portion of q, and define

q′ =
∑t−7m/10
d=1 q(d) which can be computed in time poly(|c|) and has size poly(|c|) by Lemma 2.1 from [24].

Then q′ 6≡ 0 iff some x ∈ X satisfies 7m/10 of φ’s clauses, so our goal will be to identity test q′. If we select
a set of evaluation points α uniformly at random, the Schwartz-Zippel lemma says that except with low
probability, q′(α) = 0 if and only if q′ ≡ 0. So by choosing many sets of points uniformly at random, we can
significantly reduce the error probability. In particular, with a poly(|c|) sized set of evaluation points, we can
reduce the error to < 1

22|c|
. Note that 2|c| is an upper bound on the set of polynomials that q′ was drawn

from. Then by a union bound, the set of evaluation points we picked resulted in a correct identity testing
algorithm for all possible q′ simultaneously with probability strictly greater than 1 − 1

2|c|
. This implies the

existence of some set of evaluation points which is perfectly correct on all q′ simultaneously, so we can fix
these points to give an X-Max-2SAT solver of size poly(|c|).

With this lemma in hand, we inspect the Q submitted by A that resulted in the model outputting “Win”.
Notice that the {Ĉi}i are in the shape of a dual-input branching program of width 5 (without the bookends),

so by Lemma 8, every v̂ · pu({Ĉi}i) · ŵ> is actually a linear combination of polynomially many honest
branching program evaluations. Since there are only polynomially many pu’s (since Q is implemented with a
polynomial size circuit), and since Q is identically zero over these evaluations, Q contradicts Assumption 2,
and we can conclude that A could not have won in the GGH15 Annihilation model and thus in the GGH15
Zeroizing Model except with negligible probability.

Remark. If we instead take p = 2poly(log(n)) in Assumption 1, we can conclude that every input-respecting
polynomial submitted by A is a linear combination of quasi-polynomially many branching program evalua-
tions. To argue security via BPUA, we can instead assume a PRF that is sub-exponentially secure against
P/poly. The reason we consider a parameterized version of Assumption 1 is that, as mentioned in [24], this
assumption with p = poly(n) is similar in spirit to the Bounded Speedup Hypothesis of [35] (defined relative
to 3-SAT) which has subsequently been shown to be false. The assumption we use here however is relative
to a different NP-complete problem and, as noted in [24], can be reduced to other NP-complete problems as
well.

6 Acknowledgements

We thank Yilei Chen for helpful discussions. We also thank the anonymous TCC reviewers for providing
insightful feedback. Research supported in part from a DARPA SAFEWARE award and NSF. The views
expressed are those of the authors and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

1. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemporary Mathematics 324
(2003) 71–90

2. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. (2013) 40–49

3. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. (2013) 1–17

28

4. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. (2013) 476–493

5. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. (2015) 498–527

6. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. (2005) 84–93

7. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. (2017) 600–611

8. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. (2017) 612–621

9. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: Proofs, attacks, and
candidates. (2018) 577–607

10. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. (2017) 446–476

11. Goyal, R., Koppula, V., Waters, B.: Separating semantic and circular security for symmetric-key bit encryption
from the learning with errors assumption. (2017) 528–557

12. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. (1994) 124–134

13. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assumptions - cryptanalysis
of some FHE and graded encoding schemes. (2016) 153–178

14. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings.
(2016) 559–585

15. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal
problem in arbitrary degree number fields. (2016) 893–902

16. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved secure in the weak multilinear
map model. (2018) 153–183

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. (2015)
3–12

18. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilinear maps. (2016) 607–628

19. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. (2017) 278–307

20. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear
map model. (2016) 241–268

21. Ma, F., Zhandry, M.: The mmap strikes back: Obfuscation and new multilinear maps immune to CLT13 zeroizing
attacks. In: TCC 2018. (2018)

22. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. (2014)
221–238

23. Halevi, S.: Graded encoding, variations on a scheme. Cryptology ePrint Archive, Report 2015/866 (2015)
http://eprint.iacr.org/2015/866.

24. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks. Cryptology ePrint Archive,
Report 2014/878 (2014) http://eprint.iacr.org/2014/878.

25. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: New mathematical tools, and
the case of evasive circuits. (2016) 764–791

26. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically secure order-revealing
encryption: Multi-input functional encryption without obfuscation. (2015) 563–594

27. Goldwasser, S., Kalai, Y.T.: Cryptographic assumptions: A position paper. (2016) 505–522

28. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-obfuscation using graph-induced
encoding. (2017) 783–798

29. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic PRFs and their applications.
(2013) 410–428

30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.
In: Proceedings of the fortieth annual ACM symposium on Theory of computing, ACM (2008) 197–206

31. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear
map model. Cryptology ePrint Archive, Report 2016/817 (2016) http://eprint.iacr.org/2016/817.

32. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in
NC1. (1986) 1–5

33. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische
Annalen 261(4) (1982) 515–534

34. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field.
IEEE Transactions on Information Theory 39(5) (Sept 1993) 1639–1646

35. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. (2014)
1–25

29

A Weaker GGH15 Zeroizing Models

We describe two separate relaxations of our GGH15 Zeroizing Model, designed to allow the adversary more
freedom in how it can potentially obtain successful zero-test results. We prove that when instantiated with
γ-GGH15-AL, security in the GGH15 Zeroizing Model implies security in each of these models (in one case
we actually require a small tweak to γ-GGH15-AL).

A.1 Edge-Relaxed GGH15 Zeroizing Model

First, we relax the condition that the adversary must submit edge-respecting polynomials over encodings
and we refer to the resulting model as the Edge-Relaxed GGH15 Zeroizing Model. The only difference lies
in the description of zero-testing - when the adversary submits a polynomial p over encodings, the model no
longer checks that p is edge-respecting and instead checks that p has degree 2o(λ) over encodings. We now
tweak γ-GGH15-AL by adding “edge scalars” in the same manner that we added level scalars in Section 4.3.
The KeyGen and Enc procedures change slightly and we describe the differences below.

– γ-GGH15-AL.KeyGen: For each i ∈ [d − 1], choose a random invertible scalar ri ∈ Zq, the new right
bookend will be

w = (
∏

i∈[d−1]

ri)(
∏
`∈[κ]

z`) ·R−1d ·
[
D∗ ·w′>

b>w

]
and we add {ri}i∈[d−1] to sp.

– γ-GGH15-AL.Enc: In order to produce an encoding C on the path i j at level L, we compute

C = (
∏

k∈{i,...,j−1}

rk)−1(
∏
`∈L

z`)
−1 ·R−1i ·

[
D

B

]
·Rj .

This allows us to prove that the Edge-Relaxed GGH15 Zeroizing Model is actually equivalent to the
GGH15 Zeroizing Model when instantiated with our construction.

Lemma 9. An adversary A that wins in the Edge-Relaxed GGH15 Zeroizing Model instantiated with γ-
GGH15-AL (with edge scalars) implies an adversary A′ that wins in the GGH15 Zeroizing Model instantiated
with γ-GGH15-AL (with edge scalars).

Proof. We show that A already satisfies the win condition of the GGH15 Zeroizing Model, so A′ = A. We
first argue that every monomial in a successful zero-test polynomial submitted by A must be a permutation
of an edge-respecting monomial. This follows from the analysis used in proving lemma 6 by considering the
set of {ri} as formal variables. We do have to bound the degree of the polynomial in this case to 2o(λ) in
order to apply the Schwartz-Zippel lemma to conclude the above holds with 1− negl(λ) probability.

Next, we show that each monomial must actually be edge-respecting by fixing the correct ordering. We
use the Kilian randomization of encodings and a variant of a lemma by Ma and Zhandry [21] in order to
show this. In order to make use of this lemma, we have to supply several definitions from [21].

We begin by considering a collection of n columns of matrices, where each column may contain an
arbitrary polynomial number of matrices. Denote the j-th matrix in column i as Ai,j . Suppose the matrices
within each column have the same dimensions, and across columns have compatible dimensions so that
matrices in adjacent columns can be multiplied together. Further suppose that multiplying one matrix from
each column results in a scalar. Square matrices Ri are chosen at random. Then matrix Ai,j is left-multiplied

by R−1i and right-multiplied by Ri+1 to form Ãi,j . We also consider a set S of n-tuples of indices that define
a set of “allowable” iterated matrix products.

Definition 8 (Allowable Polynomials [21]). Given {Ãi,j} and S as described, an allowable polynomial
over S is a polynomial where each monomial is a product of exactly one matrix entry from each column
of matrices, subject to the condition that the matrices the entries are drawn from are an explicitly allowed
product in S.

30

Definition 9 (Allowable Matrix Products [21]). An allowable matrix product over S is the iterated
matrix product corresponding to some tuple t ∈ S.

[21] notes that allowable matrix products are an example of allowable polynomials.

We consider each entry of the {Ai,j} matrices described above as a polynomial over a set of variables X.

Definition 10 (Linear Independence [21]). Let X = {X1, ..., Xm} denote a set of variables. For a set
of vectors V = {v1, . . . ,v`} whose entries are polynomials over X, we say that V is linearly independent if
there is no sequence of constants a1, ..., a`, not all of which are 0, such that

∑
i∈[`] aivi is the identically 0

vector.

Definition 11 (Left / Right Non-Shortcutting [21]). A collection of matrices {Ai,j} of polynomials
over the variables X along with a set S of valid matrix products satisfy left non-shortcutting if the following
holds. For each member of S, consider multiplying every corresponding matrix except for the rightmost matrix
and interpret the resulting matrices as vectors of polynomials over the variables X. These vectors must be
linearly independent (in the sense defined above). Right non-shortcutting is defined analogously.

With these definitions in hand, we are now able to state a variant of the Lemma 2 from [21]. We justify
this variant after completing the proof.

Lemma 10 (Modification of Lemma 2 from [21]). Suppose a collection of matrices {Ai,j} of polyno-
mials over the variables X along with the set S of valid products satisfy left and right non-shortcutting. Then
any allowable polynomial over the Ãi,j matrices that is identically a constant as a rational function over the
R variables can be written as a linear combination of allowable matrix products over S.

Returning to our model, we set up columns of matrices that fit the structure of the {Ãi,j} described
above and allow us to invoke Lemma 10. The columns range from column 0 up to column d. For 1 ≤ i ≤ d,
place all matrices C encoded on a path starting at node i in column i. v will be the only ‘matrix’ in column
0, and w will be the only matrix in column d. We also add a Kilian-randomized identity matrix to each
column. Thus the entire set of encodings C, the bookends v and w, and the identity matrices, correspond
to the collection {Ãi,j} of matrices from the lemma (note that we can re-define the Kilian randomization on
an encoding on path i j to be right-multiplied by Ri+1 instead of by Rj+1 and then take a product with
Kilian-randomized identity matrices at columns i+ 1, ..., j to recover the original encoding).

Re-express each entry of each encoding C and the bookends v and w as polynomials over the set of
variables {b̂i} added as random block diagonals (these correspond to the variables X in the lemma statement).
Many entries will be constant (in particular entries of the D matrices), but importantly the formal variables
appearing in any matrix will be distinct from the ones appearing in the other matrices.

The first part of this proof showed that due to the random edge scalars, each polynomial that A submits
(viewed now as a polynomial over entries of encoding matrices) must be an allowable polynomial over the set
S, where S consists of all possible (d+ 1)-tuples of indices subject to the constraint that whenever the tuple
includes an element from some matrix C encoded at edge i j, the elements from columns i+ 1, ..., j must
come from the identity matrix. We note that the block diagonal variables {b̂i} ensure that this collection
of matrices along with S satisfies left and right non-shortcutting. We are then able to apply Lemma 10 to
conclude that the polynomial A submitted must in fact be a linear combination of iterated matrix products
over S, which ensures that A submitted a polynomial (now viewed over encodings rather than over elements
of encodings) where every monomial is an iterated product of encoding matrices that form a source-to-sink
path. This completes the proof of Lemma 9.

Justification of Lemma 10

First, we note that if we replace the R−1i ’s with Radj
i ’s in the construction of the Ãi,j matrices, then

Lemma 10 from above is equivalent to the following, since the determinants will cancel out:

31

Lemma 11. Suppose a collection of matrices {Ai,j} of polynomials over the variables X along with the set

S of valid products satisfies left and right non-shortcutting. Then any allowable polynomial over the Ãi,j

matrices that is identically C
∏n−1
i=1 det(Ri) for some constant C as a polynomial over the R variables can

be written as a linear combination of allowable matrix products over S.

Now that we are dealing with adjoint matrices, we can mirror the proof of lemma 2 from [21]. The proof
begins by expanding out an arbitrary allowable polynomial over the R and Ai,j variables. The first difference
in our setting is when the proof examines the types of products of entries in R1 that are possible. This product
being ‘well-formed’ means it is a permutation monomial and ‘mal-formed’ means it is a non-permutation
monomial. Here, well-formed products can actually have a non-zero coefficient, namely C

∏n−1
i=2 det(Ri).

Importantly, all mal-formed products still must be zero. The inductive step only makes use of the fact that
mal-formed products are zero to conclude that any monomial that doesn’t result from proper multiplication
of two matrices in the first two columns is zeroed out. This is enough to show the result.

A.2 Matrix-Relaxed GGH15 Zeroizing Model

We now turn to describing a relaxation of the GGH15 Zeroizing Model in which we no longer give out handles
to the entire matrix of each encoding and instead give out handles to each element of each matrix. We appeal
to the Kilian-randomization and the above lemma adapted from [21] to immediately conclude equivalence
with the GGH15 Zeroizing Model when instantiated with γ-GGH15-AL (note that we no longer need edge
scalars in this setting). We describe the modifications we make to the model below.

Initialize Elements. After producing an encoding Ci, the model M releases a handle to each element of the
set {Ĉi,j,k}, where Ci,j,k is the (j, k)-th element of encoding Ci.

Zero-Test. The adversary now submits a matrix M of polynomials for zero-testing, whereMs,t = ps,t({Ĉi,j,k}i,j,k)
is a polynomial over handles to elements of encodings. First,M checks that each ps,t is edge-respecting (each
monomial contsists of exactly one entry plucked from each matrix in a source-to-sink path). Now letting
M({Ci,j,k}i,j,k) denote the matrix that results from plugging in encoding entries, the model M obtains
(T, b)← G.ZeroTest(pp,M({Ci,j,k}i,j,k)) and proceeds as in the GGH15 Zeroizing Model.

Lemma 12. An adversary A that wins in the Matrix-Relaxed GGH15 Zeroizing Model instantiated with γ-
GGH15-AL implies an adversary A′ that wins in the GGH15 Zeroizing Model instantiated with γ-GGH15-AL.

Proof. We set up columns required to invoke Lemma 10 in the same manner as in the previous proof. The
edge-respecting condition gives us that each polynomial submitted by A is an allowable polynomial over
the same set S, which allows us to immediately conclude that it is a linear combination of iterated matrix
products, so A = A′.

Remark. It would be ideal to combine both relaxations into just one model and then to prove a corresponding
model conversion lemma. However, this conversion would seem to require each individual entry of each
encoding to have large independent entropy. This appears tricky to argue since columns of (the non-block
diagonal part of) each encoding are drawn together in a random lattice coset. Thus it is clear that there
is some independent entropy between different columns of encodings but not as clear that there is enough
independent entropy among elements of the same column.

B Settings of the GGH15 Zeroizing Attacks

The known zeroizing attacks on GGH15 are mounted on slightly different variants of the scheme, with
different sets of encoded plaintexts and underlying graph structures. In this section, we review the settings
of the three attacks and rewrite them in more unified notation.

32

B.1 CLLT16 Attack on GGH15 Key Exchange

We recall the GGH15 multiparty key agreement protocol, which operates over the commutative variant of
GGH15 from [5]. We consider the protocol with 3 users, and note that both the protocol and the attack
can be easily generalized to k > 3 users. For each user i ∈ {1, 2, 3}, we construct a directed path as in
Figure 1 with k + 1 = 4 nodes, namely vi,1 → vi,2 → vi,3 → vi,4, and associate each of the nodes with a
row vector Avi,1 , · · · ,Avi,4 (we will refer to these vectors as matrices for consistency of notation between
the attack descriptions). The paths of different users share the same end-point v0 = vi,4 for all i ∈ {1, 2, 3}.
Consequently, Av0 = Avi,4 for all i ∈ {1, 2, 3}.

The protocol produces a number of public encodings for each edge, corresponding to small secret com-
ponents si,l

11 for 1 ≤ i ≤ 3 and 1 ≤ l ≤ N , for large enough N . These secret components are generated
randomly, and are encoded on edge i′ = i + j − 1 for each path j, denoted as Cj,i′,l. For our case with 3
users, we have the following encodings for User 1:

Av1,1 ·C1,1,l = s1,l ·Av1,2 + E1,1,l (mod q)

Av2,2 ·C2,2,l = s1,l ·Av2,3 + E2,2,l (mod q)

Av3,3 ·C3,3,l = s1,l ·Av0 + E3,3,l (mod q)

where E denotes the error matrices (vectors). Note that there is no pre-processing step in this scheme as
the plaintext si,l is directly used as the LWE secret.

The original description of the Coron et al. attack does not directly construct top-level encodings of zero
in a strict sense. Instead, it zero-tests two source-to-sink encodings of the same plaintext (relative to different
sources) and subtracts the result. By modifying the graph to have a single “super” source node with directed
edges to each of the original source nodes and having each of these edges encode a plaintext value of 1, the
original procedure of computing the difference between two same encodings relative to two different paths
becomes computing the difference between two same encodings relative to the same source-to-sink path12,
which is essentially computing a single top-level encoding of zero.

v1,1 v1,2 v1,3

v0S

s1,l , C1,1,l

s3,l , C2,1,l

s2,l , C3,1,l

s2,l , C1,2,l

s1,l , C2,2,l

s3,l , C3,2,l

s2,l , C2,3,l

s3,l , C1,3,l

s1,l , C3,3,l

1, C1,0

1, C2,0

1, C3,0

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

Fig. 1. The GGH15 graph structure for a 3-party key agreement protocol with the “super” source node S added.

Now consider the following polynomial:

C2,0 ·C2,1,1 ·C2,2,j ·C2,3,k −C3,0 ·C3,1,k ·C3,2,1 ·C3,3,j

for some j, k that satisfies 1 ≤ j, k ≤ N . Notice that C2,0 ·C2,1,1 ·C2,2,j ·C2,3,k encodes 1 · s3,1 · s1,j · s2,k on
the path for User 2, and C3,0 ·C3,1,k ·C3,2,1 ·C3,3,j encodes 1 · s2,k · s3,1 · s1,j on the path for User 3. By

11 These secret components are denoted as ti,l in the original paper.
12 Although these two source-to-sink paths have different intermediate nodes, they are considered the same path in

GGH15 as long as they share the same start and end nodes.

33

commutativity of scalar multiplication, these are encodings of the same plaintext element. Since they’re both
encoded relative to the same source-to-sink path, the difference between these two encodings constitutes a
top-level encoding of zero.

B.2 CGH17 Attack on GGHRSW Obfuscation

To construct the GGHRSW obfuscation candidate over GGH15, we use the original, non-commutative
GGH15 scheme. We consider a graph with two parallel chains leading to the same sink, corresponding
to the functional branch and the dummy branch of the GGHRSW obfuscator, as illustrated in Figure 2.
Each chain consists of h + 2 nodes, where h is the number of branching program layers. Namely we have
v1 → · · · → vh+2 for the functional branch chain and v′1 → · · · → v′h+1 → vh+2 for the dummy branch
chain. The construction encodes the matrices {Mi,b}i∈[h],b∈{0,1} of a branching program by first applying
pre-processing in the form of adding block diagonals, Kilian randomization, and bundling scalars to produce
the set {Si,b}i∈[h],b∈{0,1}. For all i ∈ [h], it then encodes Si,b for b ∈ {0, 1} on edge vi → vi+1, denoted as
Ci,b. Similarly, we have C′i,b encoding the pre-processed S′i,b matrices of a branching program consisting of
all identity matrices.

Recall that in the GGHRSW construction, the functional branch uses two bookend vectors, denoted as
J and L, where J is a row vector of dimension m and L is a column vector of dimension m. Similarly, we
have J ′ and L′ for the dummy branch. However, the plaintext space of GGH15 only contains matrices of
size m×m. This is handled by choosing these GGHRSW bookends as matrices instead of vectors. Namely,
we choose S0,Sh+1,S

′
0,S
′
h+1

13 bookend matrices by repeating the rows / columns of J, L, J ′, L′. We encode
Sh+1 and S′h+1 on edges vh+1 → vh+2 and v′h+1 → vh+2 as Ch+1 and C′h+1

14 respectively.

As in the CLLT16 attack, we apply the same technique of adding a “super” source node with directed
edges to the original source nodes of the two chains. Namely, we add a new node S and two direct edges
S → v1 and S → v′1. Additionally, we encode S0 and S′0 on S → v1 and S → v′1 as C0 and C′0.

v1

S

S1,0 , C1,0

S0, C0

S'0, C'0

v2 v3

v'1 v'2 v'3

v4

S1,1 , C1,1

S2,0 , C2,0

S2,1 , C2,1

S'1,0 , C'1,0

S'1,1 , C'1,1

S'2,0 , C'2,0

S'2,1 , C'2,1

S3, C3

S'3, C'3

Fig. 2. The GGH15 graph structure for a GGHRSW obfuscator with 2 branching program layers augmented with a
“super” source node S.

For a branching program input u ∈ [`], denote uα for α ∈ [`] as the α-th input bit. Additionally, define
the input mapping function inp : [h] → [`] which maps a branching program layer to the input bit that
should be read at that layer. The result of a branching program evaluation thus takes the form of

S0 ·
∏
i∈[h]

Si,uinp(i)
· Sh+1 − S′0 ·

∏
i∈[h]

S′i,uinp(i)
· S′h+1

13 In the original CGH17 paper, these are denoted as J,L,J′, and L′.
14 Originally denoted as L̃ and L̃′.

34

where the first monomial corresponds to the branching program evaluated on the functional branch, and the
second corresponds to that on the dummy branch. Hence, the encoding of the evaluation result has the form

C0 ·
∏
i∈[h]

Ci,uinp(i)
·Ch+1 −C′0 ·

∏
i∈[h]

C′i,uinp(i)
·C′h+1.

It is easy to verify that this corresponds to a top-level encoding, since both of the monomials are encoded
relative to the same sink-to-source path.

Looking ahead, the CGH17 attack also requires that the branching program has an input partition
[h] = X||Z which means that there are sufficiently many input bits which only control layers in X and
sufficiently many input bits which only control layers in Z. Note that in input u, the bits that control
layers in X do not necessarily come before ones that control layers in Z. Let the input be denoted as

u(j,k) = x(j)z(k) ∈ {0, 1}` and let u
(j,k)
α denote the α-th input bit. Then the encoding of a branching program

evaluation will be

C0 ·
∏
i∈X

C
i,u

(j,k)

inp(i)

·
∏
i∈Z

C
i,u

(j,k)

inp(i)

·Ch+1 −C′0 ·
∏
i∈X

C′
i,u

(j,k)

inp(i)

·
∏
i∈Z

C′
i,u

(j,k)

inp(i)

·C′h+1.

B.3 CVW18 Attack on Obfuscation with Safeguards

The CVW18 attack targets a variant of the original GGHRSW obfuscator, where many of the known safe-
guard mechanisms are applied. As illustrated in Figure 3, the underlying graph structure for this scheme is
a simple path graph with h + 1 vertices, where h is the number of branching program layers. Namely, we
have a graph v1 → v2 → · · · → vh+1. Branching program matrices {Mi,b}i∈[h],b∈{0,1} are tensored with ran-
dom matrices, appended with random block diagonals, and Kilian randomized to produce the pre-encodings
{Si,b}i∈[h],b∈{0,1}15 for b ∈ {0, 1}. These matrices are then encoded as {Ci,b}i∈[h],b∈{0,1}. Thus, the result of
a branching program evaluation is simply

∏
i∈[h] Si,uinp(i)

, which is encoded as
∏
i∈[h] Ci,uinp(i)

.

v1
S1,0 , C1,0 v2 v3S1,1 , C1,1

S2,0 , C2,0

S2,1 , C2,1

S3,0 , C3,0 v4 v5S3,1 , C3,1

S4,0 , C4,0

S4,1 , C4,1

Fig. 3. The GGH15 graph structure for a GGHRSW obfuscator variant with all the safeguards for a 4-layer branching
program.

Like the CGH17 attack, this attack requires an input-partitioning on the branching program. They are
slightly more general in that they require a c-input partition for constant c rather than just a 2-input partition
as described above. However, larger values of c do not significantly alter the attack and we restrict attention
to 2-input partitions here, noting that the extensions fit in our model in an analogous way. In the case of a
2-input partition [h] = X||Z, the encoding of a branching program evaluation becomes∏

i∈X
C
i,u

(j,k)

inp(i)

·
∏
i∈Z

C
i,u

(j,k)

inp(i)

.

C Proof of Theorem 1

We prove Theorem 1, which extends the semantic security proof (Theorem 5.7 of [9]) of the γ-GGH15
encodings of Chen, Vaikuntanathan, and Wee [9] to general directed acyclic graphs.

15 Originally denoted as Ŝi,b.

35

Proof. We briefly show how to modify the original proof of [9] to handle this general setting. To keep the
length of this section reasonable, we only highlight the parts of our proof that differ from theirs. We refer
the reader to [9] for the original proof.

– We define Distributions 1.i for i ∈ {d+2, d+1, . . . , 2} analogously to how they are defined in [9]. In their
setting, to go from Distribution 1.(i + 1) to Distribution 1.i, Chen et al. change how Ai−1,Di,0,Di,1

are sampled. More generally, this step re-samples all encodings that require a trapdoor for Ai−1, which
are just the two encodings Di,0,Di,1 on the edge (i − 1, i). The only difference in our setting is that
the encodings on edges starting at i− 1 are ones of the form D(i−1,i′),j for any j and any i′ > i. To go
between distributions we change how all such D(i−1,i′),j ’s are sampled.

– We can extend the proof of Lemma 5.10 in [9] to our setting. In their proof, Chen et al. construct
an intermediate distribution 1.i∗ and show it is indistinguishable from 1.i. This part of the proof is
completely unaffected by changing the number of D encodings. The second part of their proof requires
showing 1.i∗ is indistinguishable from 1.(i + 1). This follows from showing that a distinguisher would
be able to distinguish two LWE samples with common secret Ai. We simply extend this to the case
where we have some samples with common secret Ai, other samples with common secret Ai+1, etc.
To do this we step through a hybrid for each possible value of i′, in which we (roughly) replace all
S(i−1,i′),jA(i−1,i′),j + E(i−1,i′),j for some fixed i′ with independent uniform samples. Indistinguishability
of these hybrid steps is proved with the same LWE distinguisher constructed in the proof of Lemma 5.10
in [9].

– We define Distributions 2.i for i = 2, 3, . . . , d+ 1 to be the same as in [9], except instead of changing how
Di,0,Di,1 are sampled, we change all encodings of the form D(i−1,i′),j for any i′ > i− 1 and for any j.

– In the proof of Lemma 5.11, we simply change their matrices [Mj,0Aj |Mj,1Aj] to be a concatenation
of all matrices of the form M(i−1,i′),jAi′ . The rest of the proof generalizes naturally.

– We note that the original proof assumes LWEm,2m,q,U(Zq),DZ,σ,DZ,σ , where the 2m parameter is due to
there being 2 encodings relative to each vertex. To extend the proof to the more general setting, we need
to replace 2m with |e|m, where |e| denotes the maximum number of encodings encoded relative to any
vertex in the DAG.

D Asymmetric Levels from Level Gadgets

Here we present an alternative way to construct a graph-induced encoding scheme with asymmetric levels
using “level gadgets”. We make use of an observation from [7] that GGH15 can be tweaked to support
simultaneous encodings of a plaintext M. Namely, M can be encoded on the set of edges {i1 j1, ..., ik jk}
by sampling D such that Ai1

...
Aik

D =

M ·Aj1 + E1

...
M ·Ajk + Ek


We will make use of this observation to build asymmetric levels in the following way. To support a level

set of size κ, we first produce 3κ copies of the input graph and arrange them in groups of 3 (level gadgets).
We refer to the original graph as the “main branch”. We associate one source with each level gadget (so we
now have κ+ 1 distinct sources) and we create a new node that acts as a “super” sink. Our goal is to encode
plaintexts simultaneously on the main branch and the level gadgets in such a way that top-level products of
plaintexts are level-respecting if and only if they are simultaneously encoded from each source to the super
sink. We accomplish this by viewing each level gadget as three layers - top, center, and bottom (t, c, b) -
where each is a copy of the main branch (see figure 1). The source we associate with each level gadget is
the first node of the top layer, and for each gadget, we form an edge from the last node of the center layer

36

to the super sink. In order to zero-test an encoding successfully, it at least must be simultaneously encoded
relative to each of the source nodes.

Now say that we want to encode a plaintext M on edge i j at level ` (more generally this can be
a set of levels). We encode it simultaneously on 3κ + 1 edges, the first being the edge i j on the main
branch. On level gadget `, we explicitly move down one layer, meaning we encode M on edge t`i c`j and

edge c`i b`j . We want to stay at the bottom layer if we are already there, so we also encode at b`i b`j . On

all other levels k 6= `, we simply stay at the level we are on, so we encode at the edges tki tkj , cki ckj ,

and bki bkj . Recall that we only added edges from the end of the center layer of each gadget to the super
sink. We design our right bookend to include an encoding on each of these edges. The point of doing this is
to enforce that zero-testing a monomial over encodings is only successful if each level is only included once
among the encodings in the monomial. If level ` is included more than once, the iterated product of encodings
will get stuck at the bottom layer of gadget ` and if the level is not included at all, the iterated product will
still be at the top layer at the time of zero-testing. Both situations result in large random multiplications
that ruin zero-test functionality. We present our construction below.

v1 v2 v3
C1

{1}

C1
'{1,2}

C2
{4}

C2
'{4,5}

v4 v5
C3

{2,3}

C3
'{3}

C4
{5,6}

C4
'{6}

T
Level Gadget 1

Level Gadget 6

. . . C*

C*

C*

(a) Construction of the level graph to ensure all the levels are respected in a top-level encoding. We add a level
gadget for each level, a “super” sink node T , edge from the original sink to T , and edges from all level gadgets to T .

C1
{1}

C1
'{1,2}

t1
2 t2

2 t3
2 t4

2 t5
2C2

{4}

C2
'{4,5}

C3
{2,3}

C3
'{3} C4

{5,6}

C4
'{6}

c1
2 c2

2 c3
2 c4

2 c5
2C2

{4}

C2
'{4,5}

C4
{5,6}

C4
'{6}

C1
{1}

C1
'{1,2}

b1
2 b2

2 b3
2 b4

2 b5
2C2

{4}

C2
'{4,5}

C3
{2,3}

C3
'{3}

C4
{5,6}

C4
'{6}

C1
{1}

C1
'{1,2} C3

{2,3}

C3
'{3}

Level Gadget 2

TC*

(b) Construction of Level Gadget 2, which ensures one and only one level-2 encoding is included in a top-level
encoding. The dashed nodes and edges are never used in practice for this example construction.

Fig. 4. An example of how the level gadgets are used to ensure level-respecting encodings for a 5-node path graph
with 6 levels and the given encodings.

37

γ-GGH15-AL2.KeyGen(1λ, G = (V,E), R = Z, κ, β, k)16:

Parameter Generation

– Sort the nodes of G in topological order v1, . . . , vd where v1 is the unique source and vd is the unique
sink.

– Construct a new graph G′ by augmenting G (which we now refer to as the “main branch”):

1. Create a “super” sink node T .

2. For each ` ∈ [κ], construct “level gadget `” by creating a set of 3d nodes, denoted as t`i , c
`
i , b

`
i for

i = 1, . . . , d. For each edge vi → vj ∈ E, create five edges t`i → t`j , t
`
i → c`j , c

`
i → c`j , c

`
i → b`j , b

`
i → b`j .

3. Create edges c`d → T for all ` ∈ [κ], and edge vd → T .

4. See γ-GGH15-AL for how we choose the parameters n,w, n′,m, q, σ, χ,B and what they mean. We
make three changes, namely we must now choose m = Θ((3κ + 1)n log(q)) for trapdoor function-
ality, take σ = ω(poly(λSZ)) to ensure that polynomials over pre-encodings are zero with negligible
probability, and multiply an extra κ+ 1 factor into the zero-test bound B.

Instance Generation

– For i ∈ [d− 1], sample (Ai, τi)← TrapSam(1n(3κ+1), 1m, q)

– Sample (Ad, τd)← TrapSam(1n(κ+1), 1m, q)

– Parse each Ai for i ∈ [d− 1] as a stack of 3κ+ 1 matrices of dimension n×m and Ad as a stack of κ+ 1
matrices of dimension n×m:

Ai :=



Avi

At1i
Ac1i
Ab1i

...
Atκi
Acκi
Abκi


Ad =


Avd

Ac1d
Ac2d

...
Acκd



– We also create ‘dummy’ A matrices at the final layer of the graph by drawing At`d
,Ab`d

uniform from

Zn×mq for ` ∈ [κ]. These fill out the d-th stack of 3κ + 1 matrices and will be necessary for encoding
on a path ending at node d. They will also be crucial for proving that the construction enforces level
constraints. Essentially, zero-testing any non-level-respecting monomial encoded on a source-to-sink path
in the main branch will necessarily involve multiplication with one of these dummy matrices, irrevocably
altering the result.

– Sample a uniform A∗ ← Zn×mq which we associate with the super sink node T

Bookend Generation

– (Left bookend) We enforce that zero-testing happens with respect to the source node in the main branch
as well as all the t`1 nodes from the level gadgets. An encoding can only be successfully zero-tested if it
is an encoding of zero with respect to all of these nodes simultaneously. Thus we’ll define the “source”
A-matrix as follows

AS :=


Av1

At11
...

Atκ1


16 κ is the number of asymmetric levels, β is a bound on size of plaintext entries, and k is the dimension of the block

diagonal entries we will add in the encoding procedure.

38

– (Right bookend) Here we form an encoding from the center layer of each level gadget to the super sink.

Sample error matrix E∗i ← (χ)n×m for i = 0, ..., κ, and let S∗ =

[
Iwn

′×wn′

0n
′×n′

]
.

D∗ ← SampleD(Ad, τd,


S∗ ·A∗ + E∗0
S∗ ·A∗ + E∗1

...
S∗ ·A∗ + E∗κ

 , σ)

which is a simultaneous encoding of S∗ at all edges into the super sink (coming from node vd and the
set of nodes {c`d}`∈[κ]). The lower block of zeros will serve to zero out the random P matrices we add
while encoding plaintexts.

– Sample uniform v′ ∈ Zn(κ+1)
ν ,w′ ∈ Zmν , uniform bv ∈ Zkν ,bw ∈ Zkν and compute the bookends

v = [v′ ·A1|bv] ·R1, w = R−1d ·
[
D∗ ·w′>

b>w

]
Output

– Public parameters pp = {n,w, n′,m, k, q, σ, χ, κ,B,v,w}
– Secret parameters sp = {Ai, τi,Ri}i∈[d]

γ-GGH15-AL2.Enc(pp, M ∈ Zw×wβ , i j, L ⊆ [κ]):

– Draw P← Dn′×n′
Z,σ , Ej ← (χ)n×m for j = 0, ..., 3κ, let

S =

[
M⊗P

P

]
and S̄ = S ·Avj + E0

– In addition to encoding S on the main branch, it is also encoded on each of the level gadgets. For level
gadget `, if ` ∈ L, M is encoded on paths t`i → c`j , c

`
i → b`j , and b`i → b`j . If ` 6∈ L, M is encoded on paths

t`i → t`j , c
`
i → c`j and b`i → b`j . Thus, we’ll define

S̄` :=




S ·Ac`j

+ E3`−2

S ·Ac`j
+ E3`−1

S ·Ab`j
+ E3`

 ` ∈ L


S ·At`j

+ E3`−2

S ·Ac`j
+ E3`−1

S ·Ab`j
+ E3`

 ` /∈ L

– Compute D← SampleD(Ai, τi,


S̄
S̄1

...
S̄κ

 , σ)

– Draw uniform B← Zk×kν and output the encoding

C = R−1i ·
[
D

B

]
·Rj

γ-GGH15-AL2.ZeroTest(pp,C):

39

– Return true if |v · C · w>| ≤ B. If C is a level-respecting source-to-sink encoding of zero on the main
branch, then it is actually a simultaneous encoding of zero on the paths v1 vd, t

1
1 c1d, ..., t

κ
1 cκd .

The structure of v and w then enforces that the result of this multiplication is the sum of κ+1 successful
zero-tests over regular GGH15. Correctness follows from analysis in γ-GGH15-AL and the extra κ + 1
term in the zero-test bound.

Lemma 13. Let A be a successful adversary in the GGH15 Zeroizing Model instantiated with γ-GGH15-AL.
Then there exists a successful adversary A′ in the Level-Restricted GGH15 Zeroizing Model instantiated with
γ-GGH15-AL.

Proof. Let A be an adversary in the GGH15 Zeroizing Model and say that it submits a polynomial p({Ci}i)
for zero-testing that contains some non-level-respecting monomials. The intuition behind this proof is that
any non-level-respecting monomial will not be encoded relative to the node c`d for some ` and thus multiplying
this part by D∗ during zero-test will not zero out the bottom n′ rows of the pre-encoding as expected. In
fact, this multiplication will include elements of one of the large and random ‘dummy’ A matrices and will
thus be close to uniformly random, making a successful zero-test possible only with negligible probability.

There are two cases, but both lead to essentially the same proof. For the first case, assume that there
exists some level ` ∈ [κ] such that there exists monomials in p that do not contain any encoding that has `
as a part of its level subset. Our goal is to show that p will only give a successful zero-test with negligible
probability and we will show this by eventually considering p as a polynomial over the formal variables in
the matrix At`d

. Denote by p̂ the restriction of p to monomials which don’t include any encodings at level `.
We expand out the polynomial that results from zero-testing p and push terms that are independent of At`d
into a constant term K, obtaining

v′p̂({Si}i)At`d
D∗w′> +K

where K includes terms of p not in p̂, block diagonal matrices B, error matrices E and encodings on level
gadgets other than `.

Now consider this polynomial over formal variables {âi} substituted for each element of At`d
. First, notice

that all the coefficients and the constant term are derived from quantities that are independent of At`d
. By

the Schwartz-Zippel lemma and the union bound, for p to be a successful zero-test, this polynomial must be
identically zero over the {âi} variables. However, notice that every element of v′ and D∗ ·w′> (determined
at KeyGen time) is non-zero with overwhelming probability. So, the only way this polynomial is identically
zero is if p̂({Si}i) is the all-zeros matrix. But since the Si matrices include the random Pi matrices as lower
block diagonals, whose entries are drawn independently from a super-poly in λ size set, we can apply the
Schwartz-Zippel lemma again to conclude that the set of monomials we are considering (that don’t include
level `) are actually identically zero over the encodings. The same proof applies for every level and for the
second case where we consider a level read multiple times.

40

