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Abstract. Lower bounds for structure-preserving signature (SPS) schemes based on non-interactive
assumptions have only been established in the case of unilateral messages, i.e. schemes signing
tuples of group elements all from the same source group. In this paper, we consider the case of
bilateral messages, consisting of elements from both source groups. We show that, for Type-III
bilinear groups, SPS’s must consist of at least 6 group elements: many more than the 4 elements
needed in the unilateral case, and optimal, as it matches a known upper bound from the literature.
We also obtain the first non-trivial lower bounds for SPS’s in Type-II groups: a minimum of 4 group
elements, whereas constructions with 3 group elements are known from interactive assumptions.
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1 Introduction

Background. A structure-preserving signature (SPS) scheme is a useful building block for cryptographic
protocol design over bilinear groups. As its signature size significantly impacts the efficiency of the
resulting protocols, finding the optimal size is of great concern. For example, showing one’s possession of
a valid signature in non-interactive zero-knowledge manner plays an essential role in the construction of
cryptographic protocols concerning privacy. A typical approach for efficient instantiation of non-interactive
zero-knowledge primitives consists of combining structure-preserving signature schemes [2] over bilinear
groups with non-interactive proofs, e.g., [9, 23–25, 27, 30, 32], for relations defined over the same bilinear
groups. In SPS, signatures, messages and public-keys consist exclusively of source group elements of
bilinear groups and their sizes are measured by the number of them. Since the signature size greatly
impacts the efficiency of the accompanied proofs and the resulting protocol, it is of a great interest to
investigate possible lower bounds for the signature size and to construct schemes that achieve these
bounds. Table 1 summarizes known lower and upper bounds for the size of structure-preserving signatures
over different settings.

Research on lower bounds for structure preserving signatures was initiated in [3], where the authors
investigate the case of asymmetric bilinear groups (Type-III groups [18]) where no efficient morphisms are
known between the source groups, G1 and G2. For schemes defined for unilateral messages (that belong to
only one of the source groups), matching lower and upper bounds are known (for reductions based on both
interactive and non-interactive assumptions). In the case of bilateral messages (that contain elements from
both source groups), a construction is shown in [3] based on non-interactive assumption, but no lower
bounds are provided to argue its optimality. In [7], the authors investigate the case of symmetric bilinear
groups (Type-I groups) where G1 = G2, and present matching lower and upper bounds with respect to
interactive assumptions. Their results are valid as well for asymmetric bilinear groups with an efficient
morphism from G2 to G1 (Type-II groups) for some message types. The analysis over Type-II groups
considering interactive assumptions is continued by [5], where the authors present matching bounds for
unilateral messages with an ‘unexpected’ gap between messages in G1 and G2. Nothing was known with
respect to non-interactive assumptions in Type-II.

In summary, all known lower bounds are about schemes with unilateral messages or being secure
under interactive assumptions. To the best of our knowledge, nothing has been shown for the case of



Table 1. Bounds on the signature size of structure-preserving signature schemes. See discussion in Section 5 for
entries with †, ‡, and §.

Lower bounds Upper Bounds (Constructions)

Setting Messages Interactive Non-interactive Interactive Non-interactive

q-type Static

Type-III
Unilateral 3 [3] 4 [4] 3 [3] 4 [3] 6 [28]
Bilateral 3 [3] 6 (this work) 3 [3] 6 [3] 10 [29]

Type-II
M ∈ G1 3 [5] 4 (this work) 3 [7] 7 [2]‡ 9 [28]§
M ∈ G2 2 [5] 2 [5] 3 [5] 9 [28]§
Bilateral 3 [7] 4 (this work) 7 [2]† 7 [2]‡ 9 [28]§

Type-I N/A 3 [7] 3 [7] 7 [2] 9 [28]

bilateral messages and non-interactive assumptions, though this is the most general and preferred case in
the context of structure-preserving signatures. Note that SPS schemes are often used as a building block
of more complex cryptographic primitives. Therefore, in order to be combined with other constructions,
and handling bilateral messages may be necessary. Efficient and trustworthy constructions (based on
weak assumptions) in this more general setting are desired, as they play an important role in the modular
design of cryptographic primitives.

Our Results. We present lower bounds on the signature size of structure-preserving signature schemes
over asymmetric bilinear groups signing bilateral messages and being secure based on non-interactive
assumptions.

- A tight lower bound for bilateral messages in Type-III groups. As illustrated in Table 1,
this constitutes the last missing piece for structure preserving signatures over Type-III groups. We
show that secure signatures for bilateral messages must contain at least 6 group elements as long
as the underlying assumption is non-interactive (see Section 3). More concretely, we show that
a signature scheme signing bilateral messages cannot be proved to be EUF-CMA by a black-box
algebraic reduction to any non-interactive assumption if the signatures contain less than 3 group
elements in one of the source groups and 3 in the other. Our lower bound matches an existing upper
bound from [3], where the authors propose a scheme that includes exactly 3 group elements in every
source group. Our result allows us to claim the optimality of that scheme.

- Lower bounds for unilateral messages in G1 and bilateral messages in Type-II groups.
These are the first non-trivial lower bounds for Type-II groups involving non-interactive assumptions.
We first show that when signing unilateral messages in G1, signatures must contain at least 4 group
elements (see Section 4). Note that the lower bound for unilateral messages in G1 implies the same
lower bound for bilateral messages since messages in G2 can be efficiently translated into those in G1

when signing and verifying them. That is because there exists a reduction from bilateral to unilateral
messages in G1. However, this reduction is valid only if the message size is fixed to some k1, k2 ∈ N,
i.e., messages belong to Gk11 ×Gk22 , and the underlying scheme supports messages in Gk1+k21 . For our
purpose, it is sufficient to show a lower bound for schemes that sign messages consisting of only one
group element in G1 since such a result would also apply to those with larger message spaces. The
result is unfortunately not known to be optimal as corresponding upper bounds are missing. We
further discuss this point in Section 5.

Our approach follows the framework of [4], i.e., we show the existence of a crucial relation (see Sec-
tion 2.7) in the algebraic model [11, 17]. It is known that if such a relation exists, a meta-reduction [13] can
be constructed and therefore, the considered scheme cannot be proven under non-interactive assumptions.
Having messages in both source groups or having a morphism from one group to the other makes the
analysis more complex compared to the previous cases in [4]. We elaborate this point as follows. We
first recap the argument used in [4]. Consider a SPS scheme over Type-III groups that yields 3-element
signatures, (R,S, T ), for unilateral single-element message M in G1. For the scheme to be secure, at most
two elements in the signature, say R and S, must be in the same group as M . Thus, every pairing product
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equation can be written as

e(R,U1T
a) e(S,U2T

b) e(M,U3T
c) e(V, T ) = Z (1)

with parameters a, b, c, and public-key elements Ui, V and Z that may be different in every equation.
A reduction algorithm R is given an instance of a non-interactive assumption and simulates signatures
for certain messages. Let G and H be generators for G1 and G2, respectively. When R is algebraic, the
signature (R,S, T ) for message M must be computed as

R = GϕrMαr , S = GϕsMαs , T = Hϕt (2)

for some variables αr, αs, ϕr, ϕs, and ϕt taking values in Zp. Actually, Gϕr , Gϕs and Hϕt are linear
combinations of group elements in the given problem instance. Therefore ϕr, ϕs, ϕt may not be known by
R. By substituting (R,S, T ) in every verification equation of the form of (1) and taking logarithm for
base e(G,H), we get a system of equations in the above variables. Roughly, to show that R will never be
successful in breaking the assumption, it is necessary to show that (αr, αs), called the crucial information,
is uniquely identified. If this is done, (αr, αs) can be extracted and used to simulate a valid forgery. The
overall argument is not extremely intricate as the obtained equations are linear in the crucial information
(αr, αs).

The difficulty significantly increases when applying the above procedure to show that at least 6
elements are necessary for signing bilateral messages (M,N) in G1 ×G2 of Type-III groups.

In the case of Type-II groups with unilateral message M in G1, the difficulty comes from the presence
of an efficient morphism φ : G1 → G2. Observe that verification equations for 3-element signatures
(R,S, T ) on message M ∈ G1 will be of the form

e(R,U1T
a) e(S,U2T

b) e(M,U3T
c) e(φ(T ), U4T

d) e(U5, T ) = Z

for (R,S, T ) ∈ G2
1 ×G2. When representing (R,S, T ) as in (2), the resulting system of equations with

respect to the crucial information (αr, αs) is linear, although it includes the quadratic term ϕ2
t (coming

from e(φ(T ), T )), and this makes the analysis slightly more involved than the one from [4].

In our actual proof in Section 4, we address a more general case where the signature element T (in
the opposite group to M) consists of an arbitrary number of elements T1, . . . , T`. In this way, we handle
all cases where signatures include less than three elements, at once.

Other Related Works. There exist variations and extensions of SPS for which the lower bounds appearing
in Table 1 do not hold. For example, for one-time SPS schemes, there are constructions, e.g., [2, 6], whose
signature consists of one or two group elements and their security is based on static assumptions. In
[20, 21], the authors circumvent these bounds by considering messages in a special form (messages are
bound by the Diffie-Hellman relation) and construct a SPS scheme over Type-III groups with two group
elements in each signature.

Upper bounds are frequently being improved in the literature [1, 28, 29, 31]. The state of the art for
static assumptions and Type-III groups is a scheme from [28] with six-element signatures for unilateral
messages. For bilateral messages, a scheme presented in [29] yields 10-element signatures. However, we
point out that combining the scheme from [28] for messages in G1 with a partially one-time SPS from [1]
for messages in G2, results in a scheme for bilateral messages with 9 signature elements. A randomizable
SPS scheme in [19] can be seen as an alternative scheme whose signature size matches the lower bound
of three group elements in Type-III groups based on an interactive assumption. For Type-I groups, the
generic construction from [28] yields a scheme with the smallest signature size of 9 when the underlying
MDDH assumption [15] is instantiated with the DLIN assumption [10] adjusted to Type-I groups [1].

Structure-preserving signatures over Type-II groups received less attention, even though GS-proofs
had been extended to Type-II groups [22]. This may be due to recent results [5] that shows how the
one-way morphism between source groups can be exploited in cryptographic designs. Note that significant
gaps in signature size exist between Type-II and Type-III settings. However, as pointed out in [12],
a smaller signature size does not necessarily imply that a scheme in Type-II is computationally more
advantageous than its analogues scheme in Type-III when the cost of membership testing is taken into
account. That is why, comparisons should be performed within the same group setting of bilinear groups.
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2 Preliminaries

The definitions in this section are mostly borrowed from [4] which our work is based on.

2.1 Notation

We use the same conventions for matrix-representations of linear maps on finite-dimensional spaces. The
rank of a matrix is defined to be the dimension of the vector space generated by its columns/rows. Given
two vectors v,w over Znp , we say they are linearly dependent or proportional, denoted by v ≡ w if and
only if there exist scalars ρ, δ ∈ Zp (not both null), such that ρv = δw.

2.2 Digital Signature Scheme

Definition 1 (Digital Signature Scheme). A digital signature scheme Sig is a set of efficient algo-
rithms (C,K,S,V). The C algorithm is the common-parameter generator that takes security parameter
1λ as input and outputs a common parameter GK . The K algorithm is the key generator that takes GK
as input and outputs a signing key SK and verification key VK . The keys include GK and the public
key defines a message space Msp. The S algorithm is the signature generation algorithm that computes a
signature Σ for input message M by using SK . The V algorithm is the verification algorithm that takes
VK , M , and Σ and outputs 1 or 0, which represent acceptance and rejection, respectively.

A signature scheme must be correct, i.e., it is required that for any key generated using K and
for any message in Msp, it holds that 1 = V(VK ,M,S(SK ,M)). It is assumed that there exists an
efficiently computable key verification algorithm TstVk that takes λ and VK as input and checks the
validity of VK such that if 0← TstVk(1λ,VK ), then V(VK , ∗, ∗) always returns 0, and if 1← TstVk(1λ,
VK ) then the message space Msp is well defined and it is efficiently and uniformly sampleable. A signature
Σ is considered valid (with respect to VK and M), if 1 = V(VK ,M,Σ). Otherwise, it is said to be
invalid.

Definition 2 (EUF-CMA). A signature scheme Sig = (C,K,S,V) is existentially unforgeable against
adaptive chosen message attacks if, for any A ∈ PPT, the probability

Pr

GK ← C(1λ),
(VK ,SK )← K(GK ),
(M?, Σ?)← AO(VK )

:
M? 6∈ Q ∧
1← V(VK ,M?, Σ?)


is negligible in λ. Here, O is a signing oracle that takes message M and returns signatures Σ ← S(SK ,M).
The term Q is the set of messages submitted to the signing oracle.

2.3 Bilinear Groups

Let G be a generator of bilinear groups that takes security parameter 1λ as input and outputs Λ := (p,G1,
G2,GT , e), where p is a λ-bit prime and

– G1,G2,GT are groups of order p with efficiently computable group operations, membership tests, and
bilinear mapping e : G1 ×G2 → GT ,

– ∀G ∈ G1 \ {1}, H ∈ G2 \ {1}, e(G,H) generates GT , and

– ∀A ∈ G1, ∀B ∈ G2, ∀x, y ∈ Z : e(Ax, By) = e(A,B)xy.

Symmetric bilinear groups refer the case where G1 = G2 and they are called Type-I groups. The case
where G1 6= G2 is known as are asymmetric groups. When no efficient morphism is provided for either
direction between G1 and G2, the groups are called Type-III. If there is an efficient morphism from G2 to
G1, they are said to be in Type-II setting. See [18] for their properties.
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2.4 Structure Preserving Signatures

For a description of bilinear groups Λ = (p,G1,G2,GT , e), an equation of the form∏
i

∏
j

e(Ai, Bj)
aij = Z

for constants aij ∈ Zp, Z ∈ GT , and constants or variables Ai ∈ G1, Bj ∈ G2 is called a pairing product
equation (PPE).

Definition 3 (Structure-Preserving Signatures). A signature scheme (C,K,S,V) is called structure
preserving with respect to bilinear group generator G if

– The common parameter GK consists of a group description Λ. Constants aij in Zp are also included
in GK if any,

– VK includes GK and group elements in G1, G2, and GT ,
– M consists of group elements in G1 and G2,
– Σ consists of group elements in G1 and G2, and
– V evaluates membership in G1 and G2 and PPEs.

In a narrow sense, structure preserving signature can be further restricted to the case when Z = 1
and VK excluding elements in GT so that accompanying witness-indistinguishable Groth-Sahai proofs
can have the zero-knowledge property.

2.5 Algebraic Algorithms

An algorithm is called algebraic with respect to a group if it takes a vector of elements X in the group and
outputs a group element Y and there is a corresponding algorithm called an extractor that can output
the representation of Y with respect to X. For instance, if the algebraic algorithm R takes A,B ∈ G1 as
input and outputs C ∈ G1, then R’s extractor E outputs (a, b) such that C = AaBb.

In the following, we give a formal definition of the minimal case where an algorithm takes group
elements from one group as input and outputs only one group element.

Definition 4 (Algebraic Algorithms for G). Let R be a probabilistic polynomial time algorithm that
takes Λ = (p,G1,G2,GT , e) generated by G, group elements X1 ∈ Gk11 and X2 ∈ Gk22 for some k1, k2 ≥ 0,
and a string aux ∈ {0, 1}∗ as input. It outputs group elements Y 1 in Gn1

1 , Y 2 in Gn2
1 and a string

ext ∈ {0, 1}∗. R is called algebraic with respect to G if there exists E ∈ PPT such that, given the same
input as R including the same random coins, for any Λ← G(1λ) and for all polynomial size X1, X2 and
aux, the following probability is negligible in λ.

Pr

[
(Y1, Y2, ext)← R(Λ,X1,X2, aux ; r);
(y1,y2, ext)← E(Λ,X1,X2, aux ; r)

: Y1 6= Xy1

1 ∨ Y2 6= Xy2

2

]
.

It is important to see that elements in G1 and G2 are isolated when R computes Y1 and Y2. For
notational simplicity, however, we may wrap Xi and Yi simply by X and Y if the separated treatment is
not important for the context.

We stress that, unlike the case of the knowledge of exponent assumptions [14, 26, 8] that assumes the
presence of E for any malicious R, here we try to capture the limitation of current technology in building
reduction algorithms. It is in fact easy to imagine an algorithm R that may not be algebraic as defined
above; R takes a string from aux and directly translates it as a group element. For such R there may not
be an efficient extractor E . However, a reduction algorithm that chooses Y in this way will typically not
be more useful than one that chooses Y with a known discrete logarithm with respect to X. Accordingly,
we consider algorithms that compute on explicitly given group elements.

The above definition extends naturally to R that outputs multiple group elements in both groups. It
also extends to interactive and oracle algorithms as follows. We describe interactive algebraic algorithm R
as a sequence of execution (Y (i), ext (i))← R(Λ,X(i−1), aux (i−1)) for i = 0 to n that is some polynomial
in λ. Initial input X(0) should be defined appropriately, and every succeeding input X(i) is defined as
concatenation of X(i−1) from the previous step and the group elements obtained from the interaction.
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(Note that output Y (i) is not included in X(i) as it is redundant with this formulation.) We define
aux (i) in the same manner. The total running time of R should be in a polynomial in λ. We then define
interactive extractor E that takes (Λ,X(0), aux (0)) as initial input (with the same randomness as given
to R), interacts as well as R does, and outputs a representation of every Y (i) with respect to bases in
X(i−1).

2.6 Non-interactive Hardness Assumptions

Typically an assumption is defined in such a way that there is no efficient algorithm A that returns a
correct answer with better probability than a trivial algorithm U giving random answers. The following
definition follows this intuition.

Definition 5 (Algebraic Non-interactive Hardness Assumption). A non-interactive problem con-
sists of a triple of algorithms P = (I,V,U) where I ∈ PPT is an instance generator, which takes 1λ

and outputs a pair of an instance and a witness, (ins,wit), and V is a verification algorithm that takes
ins,wit and an answer ans, and outputs 1 or 0 that represents acceptance or rejection, respectively. A
non-interactive hardness assumption for problem P is to assume that, for any A ∈ PPT, the following
advantage function Adv is negligible in λ.

AdvA(1λ) = Pr[(ins,wit)← I(1λ), ans← A(ins) : 1 = V(ins, ans,wit)]

− Pr[(ins,wit)← I(1λ), ans← U(ins) : 1 = V(ins, ans,wit)]

Problem P is called algebraic if algorithm I is algebraic. That is, I takes Λ generated by group generator
G(1λ) with uniformly chosen default generators G ∈ G1 and H ∈ G2 as a part of input, and there exists
an efficient extractor EI that, given the same input as given to I, outputs a representation of the element
with respect to generator G or H with overwhelming probability.

In search problems, U is usually set to be an algorithm that returns constant ⊥ (or a random answer
ans when the domain is uniformly sampleable). In decision problems, U typically returns 1 or 0 randomly
winning only with probability 1/2.

2.7 Crucial Relation

In [4], it is shown that for a certain class of signature schemes and a certain class of reduction algorithms,
there exist no reductions from their EUF-CMA security to any non-interactive hardness assumptions if
pseudo-random functions exist. That class of signature schemes is characterized by the notion of crucial
relation. More concretely, it is the class of schemes for which there exists a crucial relation. This notion
conveniently abstracts sufficient properties on the reduction algorithms so that a meta-reduction algorithm
can be built to show the impossibility of the reduction. We briefly recap the framework and restate the
impossibility theorem in slightly refined and specific form.

Let Cls be a class of algorithms (we actually consider class of algebraic algorithm in this paper) and
R ∈ Cls be a reduction algorithm that, given an instance ins of a non-interactive hardness problem P,
outputs VK and a poly-size internal state ϕ. Given ϕ and messages M := (M1, . . . ,Mn) for some n > 0,
R outputs signatures Σ := (Σ1, . . . , Σn). Let θ be a transcript defined as θ := (VK ,M ,Σ). A transcript
θ is valid and witness as 1 = V(θ) if 1 = V(VK ,Mi, Σi) for all i = 1, . . . , n. (V is supposed to reject if
TstVk(VK ) 6= 1.)

In security proofs by reduction, it is often the case that the algorithm does not actually hold the
secret key but has some crucial information to simulate signatures. We model such information as a
witness of a binary relation Ψ(θ,$) that we call a crucial relation and define as follows.

Definition 6 (Crucial Relation). Let Sig = (C,K,S,V) be a signature scheme and TstVk be a key
verification algorithm for Sig. A binary relation Ψ : {0, 1}∗ × {0, 1}∗ → {0, 1} is a crucial relation for Sig
with respect to a class of algorithms Cls and n > 0 if the following properties are provided.

Uniqueness: For every θ := (VK ,M ,Σ) such that 1 = V(θ), there exists exactly one (polynomial size) $
fulfilling 1 = Ψ(θ,$).
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Extractability: For any R ∈ Cls, there exists E ∈ PPT such that, for any VK ∈ {0, 1}∗ such that
1← TstVk(1λ,VK ), and any arbitrary string ϕ in 1λ||{0, 1}∗, probability

Pr


M←Mspn

Σ ← R(ϕ,M ; γ)
$ ← E(ϕ,M ; γ)
θ := (VK ,M ,Σ)

:
1 = V(θ)∧
1 6= Ψ(θ,$)

 (3)

is negligible in λ. The probability is taken over the choice of M and random coin γ given to R and E.

Usefulness: There exists an algorithm B ∈ PPT such that, for any θ := (VK ,M ,Σ) and $ that satisfies
Ψ(θ,$) = 1, the following probability is not negligible in λ.

Pr

[
(M,Σ)← B(θ,$) :

M 6∈M ∧
1 = V(VK ,M,Σ)

]
(4)

The intuition behind extractability is that whenever ϕ is helpful for R to compute valid signatures,
the extractor E should be successful in extracting $ from ϕ. This must hold even for a non-legitimate
VK as long as it is functional with respect to the verification. For an R which is successful in producing a
valid θ only with negligible probability, E can be an empty algorithm.

Theorem 8 of [4]. If a crucial relation for a signature scheme exists with respect to algebraic algorithms,
then there exists no algebraic black-box reduction from the EUF-CMA security of the signature scheme to
any non-interactive algebraic problems over groups where the discrete logarithm problem is hard.

3 Tight Lower Bound for Bilateral Messages in Type-III

Theorem 1. Any structure preserving signature scheme over asymmetric bilinear groups that yields
signatures consisting of 2 or less group elements in either of the source groups and ` group elements in
the other (for every ` ≤ 3), cannot have an algebraic black-box reduction for the EUF-CMA security to
non-interactive hardness assumptions if pseudo-random functions exist and the discrete logarithm problem
is hard in both source groups.

Let SIGτ,` be the set of all structure preserving signature schemes in Type-III whose signature consists
of at most τ group elements from one source group and at most ` elements from the other source group.
We prove Theorem 1 by proving the following lemma and applying Theorem 8 of [4]. Note that the
absence of morphisms between source groups is used in the proof via the algebraic model where the source
group elements returned by any algebraic algorithm depend only on the elements from the same source
group that were given to the algorithm as input.

Lemma 1. For every ` ≤ 3 and every scheme in SIG2,`, there exists a crucial relation.

The proof of Lemma 1 will be given by explicitly presenting a crucial relation (Definition 7) and
showing that it satisfies the three required properties: uniqueness, extractability and usefulness (Lemma 2).
Our proof is valid for arbitrary values of ` except for arguing extractability in one sub-case, when the
condition ` ≤ 3 is required. When analyzing Lemma 1 we will consider, without loss of generality, the
case where our scheme has signatures in G2

1 ×G`2.
Before starting, we establish some useful notation for expressing signatures schemes in SIG2,`. These

notation will be used throughout the proofs.
Observe that in every structure preserving signature scheme with signature space G2

1 ×G`2, the j-th
verification equation can be written in the following form:

e(R,U
(j)
1 Nd

(j)
1
∏`
i=1 T

a
(j)
i

i ) e(S,U
(j)
2 Nd

(j)
2
∏`
i=1 T

b
(j)
i
i )

e(M,U
(j)
3 Nd

(j)
3
∏`
i=1 T

c
(j)
i
i ) e(V

(j)
0 , N)

∏`
i=1 e(V

(j)
i , Ti) = Z(j) (5)

where (M,N) ∈ G1 × G2 is a message, V
(j)
0 ∈ G1, for every i ∈ {1, 2, 3}, V (j)

i ∈ G1, U
(j)
i ∈ G2, and

Z(j) ∈ GT are elements in the verification key, and (R,S, T1, . . . , T`) ∈ G2
1 ×G`2 is a signature. Note that
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exponents d
(j)
k , a

(j)
i , b

(j)
i , c

(j)
i for k ∈ {1, 2, 3}, i ∈ {1, . . . , `} are public parameters, determined by the

description of the scheme.
Note that, to show the impossibility, it is sufficient to consider messages in G1 ×G2 rather than its

vector form. Also, observe that we allow arbitrary Z(j) ∈ GT in every verification equation j, for more
generality. These are usually set to 1GT in the strict definition of structure preserving signatures.

We denote the discrete-log of a group element with respect to the default generator by its small-case
letter. For instance, M = Gm and N = Hn. For elements R and S in a signature, we consider a special
representation of the form R = GϕrMαr , S = GϕsMαs for some ϕr, αr, ϕs, αs in Zp. Now, by expressing
the j-th verification equation (5) in the exponent, we have:

(ϕr + αrm)(u
(j)
1 +

∑`
i=1a

(j)
i ti + d

(j)
1 n) + (ϕs + αsm)(u

(j)
2 +

∑`
i=1b

(j)
i ti + d

(j)
2 n)

+m (u
(j)
3 +

∑`
i=1c

(j)
i ti + d

(j)
3 n) + v

(j)
0 n+

∑`
i=1v

(j)
i ti = z (6)

By thinking of the j-th verification equation (6) as a polynomial in m, we have the following equation:

m
{

(u
(j)
1 +

∑`
i=1a

(j)
i ti + d

(j)
1 n)αr + (u

(j)
2 +

∑`
i=1b

(j)
i ti + d

(j)
2 n)αs + (u

(j)
3 +

∑`
i=1c

(j)
i ti + d

(j)
3 n)

}
+
{

(u
(j)
1 +

∑`
i=1a

(j)
i ti + d

(j)
1 n)ϕr + (u

(j)
2 +

∑`
i=1b

(j)
i ti + d

(j)
2 n)ϕs + (v

(j)
0 n+

∑`
i=1v

(j)
i ti − z(j))

}
= 0

(7)

Claim 1. If the discrete-logarithm problem over G1 is hard, for all equations j, every coefficient of (7) as
polynomial in m must be zero.

Proof. Without loss of generality, we focus on a verification equation and drop superscript (j) from the
notation of public-key elements and relevant variables used in the equation. Let G be a group generator
and P = (I,V,U) be an algebraic non-interactive hard problem over G. Since the instance generator
I is algebraic, an instance ins produced by I is of the form ins = (Y1, . . . , Yk1 ,W1, . . . ,Wk2 , ext) where
k1, k2 ≥ 0, Yj ∈ G1, Wj ∈ G2, and ext is an arbitrary string that may include the group description Λ
(the default generators G and H can be present among Yj and Wj). Consider an algebraic algorithm R
that first takes ins and outputs VK and a state σ. Then, it takes a message (M,N) and state σ and
outputs a signature (R,S, T1, . . . , T`). For such R, there exists an extractor ER that takes the same input
(ins,M,N) and the same randomness and outputs representations (ϕvi,1, . . . , ϕvi,k1) for i = {0, 1, 2, 3},
and (γui,1, . . . , γui,k2) for i = {1, 2, 3}, that satisfy

Vi =
∏k1
j=1Y

ϕvi,j
j , Ui =

∏k2
j=1W

γui,j
j , (8)

and (ϕz1,1, . . . , ϕz1,k1), (γz2,1, . . . , γz2,k2) that satisfy

Z = e(
∏k1
j=1Y

ϕz1,j
j ,

∏k2
j=1W

γz2,j
j ), (9)

and (αr, ϕ
(1)
r , . . . , ϕ

(k1)
r ), (αs, ϕ

(1)
s , . . . , ϕ

(k1)
s ), (βi, γ

(1)
ti , . . . , γ

(k2)
ti ) that satisfy

R =
∏k1
j=1Y

ϕ(j)
r

j Mαr , S =
∏k1
j=1Y

ϕ(j)
s

j Mαs , Ti =
∏k2
j=1W

γ
(j)
ti

j Nβi (10)

for all i ∈ {1, . . . , `}. By using yj = logG Yj and wj = logHWj , we can write

vi =
∑k1
j=1ϕvi,jyj , ui =

∑k2
j=1ϕui,jwj , z = (

∑k1
j=1ϕz1,jyj)(

∑k2
j=1ϕz2,jwj), (11)

ϕr =
∑
jϕ

(j)
r yj , ϕs =

∑
jϕ

(j)
s yj , and ti =

∑
jγ

(j)
ti wj + βin. (12)

These ui, vi, z, αr, αs, ϕr, ϕs, t1, . . . , t`, n, and m satisfy (7) for every verification equation j.
For algebraic instance generator I, there exists an extractor EI that outputs a representation

(y1, . . . , yk1 , w1, . . . , wk2) for the group elements in ins. Given R, ER, I, and EI , we construct algo-
rithm D that takes a discrete-log instance (Λ,G, Y ) in G1 and outputs x such that Y = Gx. Algorithm D
selects a default generator H ∈ G2, runs I with input (Λ,G,H), and receives an instance ins. Then it runs
R with input ins and receives VK . It selects a random n and sets M := Y , N := Hn, gives (M,N) to R,
and receives a signature (R,S, T1, . . . , T`). Since ins and (M,N) distribute as expected by R, R must work
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correctly and (R,S, T1, . . . , T`) must be a valid signature with non-negligible probability in λ. Algorithm
D now runs extractors EI and ER. From their outputs, D obtains all ui, vi, z and (αr, αs, ϕr, ϕs, t1, . . . , t`).
If ER is successful, they satisfy (7) with respect to m = logGM . Therefore, if (7) is not trivial, D solves
the linear equation in m and returns it as logG Y .

Accordingly, for every verification equation j, the following two equations are fulfilled.

(u
(j)
1 +

∑`
i=1a

(j)
i ti + d

(j)
1 n)αr + (u

(j)
2 +

∑`
i=1b

(j)
i ti + d

(j)
2 n)αs + (u

(j)
3 +

∑`
i=1c

(j)
i ti + d

(j)
3 n) = 0 (13)

(u
(j)
1 +

∑`
i=1a

(j)
i ti + d

(j)
1 n)ϕr + (u

(j)
2 +

∑`
i=1b

(j)
i ti + d

(j)
2 n)ϕs + (v

(j)
0 n+

∑`
i=1v

(j)
i ti − z(j)) = 0 (14)

Now, we focus on message N . Let Ti = HγiNβi , i.e., ti = γi + βin. Note that, for each verification
equation j, we can rewrite the relations (13) and (14) as polynomials in n by collecting the corresponding
terms: {

(d
(j)
1 +

∑`
i=1a

(j)
i βi)αr+(d

(j)
2 +

∑`
i=1b

(j)
i βi)αs+(d

(j)
3 +

∑`
i=1c

(j)
i βi)

}
n

+
{

(u
(j)
1 +

∑`
i=1a

(j)
i γi)αr+(u

(j)
2 +

∑`
i=1b

(j)
i γi)αs+(u

(j)
3 +

∑`
i=1c

(j)
i γi)

}
= 0 (15){

(d
(j)
1 +

∑`
i=1a

(j)
i βi)ϕr+(d

(j)
2 +

∑`
i=1b

(j)
i βi)ϕs+(v

(j)
0 +

∑`
i=1v

(j)
i βi)

}
n

+
{

(u
(j)
1 +

∑`
i=1a

(j)
i γi)ϕr+(u

(j)
2 +

∑`
i=1b

(j)
i γi)ϕs+(−z(j)+

∑`
i=1v

(j)
i γi)

}
= 0 (16)

Now, for verification equation j we introduce the following more compact notation:

Aβj = d
(j)
1 +

∑`
i=1a

(j)
i βi Aγj = u

(j)
1 +

∑`
i=1a

(j)
i γi Atj = u

(j)
1 +d

(j)
1 n+

∑`
i=1a

(j)
i ti

Bβj = d
(j)
2 +

∑`
i=1b

(j)
i βi Bγj = u

(j)
2 +

∑`
i=1b

(j)
i γi Btj = u

(j)
2 +d

(j)
2 n+

∑`
i=1b

(j)
i ti

Cβj = d
(j)
3 +

∑`
i=1c

(j)
i βi Cγj = u

(j)
3 +

∑`
i=1c

(j)
i γi Ctj = u

(j)
3 +d

(j)
3 n+

∑`
i=1c

(j)
i ti

V βj = v
(j)
0 +

∑`
i=1v

(j)
i βi V γj = −z(j)+

∑`
i=1v

(j)
i γi V tj = −z(j)+v(j)0 n+

∑`
i=1v

(j)
i ti

With a similar argument as the one used in Claim 1, we can argue that if equations (15) and (16)
hold, then they must hold as polynomials in n if the discrete logarithm problem is hard. Therefore, if the
above equations hold, we must have:

(d
(j)
1 +

∑`
i=1a

(j)
i βi)αr+(d

(j)
2 +

∑`
i=1b

(j)
i βi)αs+(d

(j)
3 +

∑`
i=1c

(j)
i βi) = 0 (17)

(u
(j)
1 +

∑`
i=1a

(j)
i γi)αr+(u

(j)
2 +

∑`
i=1b

(j)
i γi)αs+(u

(j)
3 +

∑`
i=1c

(j)
i γi) = 0 (18)

(d
(j)
1 +

∑`
i=1a

(j)
i βi)ϕr+(d

(j)
2 +

∑`
i=1b

(j)
i βi)ϕs+(v

(j)
0 +

∑`
i=1v

(j)
i βi) = 0 (19)

(u
(j)
1 +

∑`
i=1a

(j)
i γi)ϕr+(u

(j)
2 +

∑`
i=1b

(j)
i γi)ϕs+(−z(j)+

∑`
i=1v

(j)
i γi) = 0 (20)

We say a verification equation j is degenerate if Atj = Btj = Ctj = V tj = 0. Note that, Atj = Aγj + nAβj
and the same occurs for B, C and V . In general, if an equation j is degenerate, it must hold

Aγj = Aβj = Bγj = Bβj = Cγj = Cβj = V γj = V βj = 0

if the discrete logarithm is hard (this can be shown by a similar analysis as in Claim 1).

Finally, for every pair of verification equations, say j and k, we define the determinant Dtj,k(n, t1, . . . , t`)
as:

Dtj,k(n, t1, . . . , t`) := AtjB
t
k −AtkBtj

= (Aγj + nAβj )(Bγk + nBβk )− (Aγk + nAβk)(Bγj + nBβj )

We prepared the notation to define a crucial relation for Sig ∈ SIG2,`. We first provide some intuition
about how it is defined and why.
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Intuition about the crucial relation. The algebraic extractor associated to the reduction provides coefficients
of a linear combination, linking the group elements returned by the reduction and the group elements
that it received. It turns out, that if the discrete logarithm problem is hard, these coefficients must
satisfy certain additional properties. When developing the crucial relation, one thinks of how to embed
these coefficients in the witness, since they result extremely useful for creating a forgery. For example,
knowing the pair (αr, αs) that was used by the reduction to create R = GϕrMαr and S = GϕsMαs , a
new signature can be created on a different message as we will show in (27) or (29) in case of the G2 part
of the signature. However, these coefficients cannot just be included in the witness. It is required that
they are unique in some sense. Otherwise, using them to build a signature could potentially give extra
information to the reduction. The biggest challenge when defining the crucial relation is finding cases in
which we can argue usefulness and uniqueness at the same time.

Definition 7 (Crucial Relation for Sig ∈ SIG2,` for ` ≤ 3). For signature scheme Sig = (C,K,S,V)
in SIGτ,`, and its transcript θ, let (R,S, T1, . . . , T`) be the first signature in θ for message (M,N). For
witness $ ∈ (Zp ∪ ⊥)`+2, the relation Ψ(θ,$) is defined by the following algorithm:

1. If θ is invalid, return 0.
2. If there exist j, k such that Dtj,k(n, t1, . . . , t`) 6= 0. Let αr, αs ∈ Zp satisfy equation (13) for such j, k.

If $ = (αr, αs,⊥, . . . ,⊥) then return 1, else return 0.
3. If there exists a verification equation, j, such that one and only one of the following the expressions Atj

and Btj is zero. Let j be the index of the first equation that satisfies the previous condition. If Atj = 0
and $ = (0, αs,⊥, . . . ,⊥) where Btjαs+Ctj = 0 then return 1, else if Btj = 0 and $ = (αr, 0,⊥, . . . ,⊥)
where Atjαr + Ctj = 0 then return 1, else return 0.

4. If all verification equations are degenerate, i.e. for all j, Atj = Btj = Ctj = V tj = 0, if $ = (⊥, . . . ,⊥)
return 1, else return 0.

5. If there exists β = (β1, . . . , β`) ∈ Z`p such that for γi = ti − nβi for i ∈ {1, . . . , `} and every pair of
verification equations j, k the following vectors in Z8

p are proportional:(
Aβj Bβj Cβj V βj Aγj Bγj Cγj V γj

)
≡
(
Aβk Bβk Cβk V βk Aγk Bγk Cγk V γk

)
where, for non-degenerate equations j it holds, AβjB

γ
j −A

γ
jB

β
j 6= 0. If $ = (αr, αs,⊥, . . . ,⊥) satisfying

Aβj αr +Bβj αs + Cβj = 0 and Aγjαr +Bγj αs + Cγj = 0 for every verification equation j, then return 1,
else return 0.

6. If there exists a non-degenerate equation j∗ such that there exist coefficients µ1, µ2, µ3 ∈ Zp, which
are publicly computable and verify(
u
(j∗)
1 d

(j∗)
1 a

(j∗)
1 . . . a

(j∗)
`

)
µ1 +

(
u
(j∗)
2 d

(j∗)
2 b

(j∗)
1 . . . b

(j∗)
`

)
µ2 +

(
u
(j∗)
3 d

(j∗)
3 c

(j∗)
1 . . . c

(j∗)
`

)
µ3 = 0

if it can be found µ3 6= 0 then
• if $ = (⊥, . . . ,⊥) then return 1,
• otherwise, return 0.

else (when µ3 must be 0), go to clause 8.
7. If there exists β = (β1, . . . , β`) ∈ Z`p such that for every verification equation j,

Aβj = 0 ∧ Bβj = 0 ∧ Cβj = 0 ∧ V βj = 0

if $ = (β1, . . . , β`) then return 1, else return 0.
8. In any other case, if $ = (αr, 0,⊥, . . . ,⊥) such that, if we set αs = 0, for every verification equation

j, it holds Atjαr +Btjαs + Ctj = 0 then return 1, else return 0.

Lemma 2. For every ` ≤ 3, Ψ is a crucial relation for every Sig ∈ SIG2,` with respect to algebraic
algorithms and a message sampler choosing messages uniformly.

Proof. We show that Ψ has uniqueness, usefulness, and extractability as defined for a crucial relation. Let
k be the total number of verification equations. When analyzing scheme Sig ∈ SIG2,`, we will assume
without loss of generality that Sig is such that

rank

a
(1)
1 b

(1)
1 c

(1)
1 v

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1 v

(k)
1

...
a
(1)
` b

(1)
` c

(1)
` v

(1)
` . . . a

(k)
` b

(k)
` c

(k)
` v

(k)
`

 = ` (21)
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First note that the assumption is reasonable for ` = 1. Otherwise the scheme would be completely trivial.
For other values of `, the scheme admits a transformation that makes one of the T ′s disappear (because
one of the rows of the above matrix could be expressed as a linear combination of the others) and thus,
Sig would belong to SIG2,`−1 which is captured by the same crucial relation instantiated for `− 1. The
proof is presented for a generic ` and we will only use the restriction ` ≤ 3 to argue extractability for
clause 7.

Uniqueness. To argue uniqueness we need to show that every valid transcript θ admits one and only
one witness $ such that 1 = Ψ(θ,$). First note that every valid θ falls in one of the clauses 2-8 (clause 8
accepts every θ that did not fall in an earlier clause). We analyze clause by clause the uniqueness of $ in
case θ fall in it.

Assume that θ falls into clause 2, i.e., for some (j, k), Dtj,k(n, t1, . . . , t`) 6= 0. Note that, there can only
exist a unique pair (αr, αs) satisfying equation (13) for both j and k, because Dtj,k(n, t1, . . . , t`) 6= 0.
That makes the witness unique.

When θ falls in clause 3, let j be the first verification equation for which one and only one of Atj ,
Btj is zero. Uniqueness holds because if Atj = 0 then Btj 6= 0 and there exists exactly one αs such that
Btjαs + Ctj = 0. On the other hand, if Atj 6= 0, there exists exactly one αr satisfying Atjαr + Ctj = 0.

In case of clauses 4 or 6, uniqueness holds immediately.
For clause 5, it is clear that in case of existing a valid witness, it must be unique. That is because,

due to AβjB
γ
j − A

γ
jB

β
j 6= 0, there exists exactly one pair (αr, αs) satisfying Aβj αr + Bβj αs + Cβj = 0

and Aγjαr + Bγj αs + Cγj = 0 as clause 5 requires. However, we need to show that this (αr, αs) exists,
independently of the β that has been chosen (as long as the β satisfies the conditions of the clause).
To do so, we consider a different vector of β, defined by β′i = βi + δi (we denote γ′i = t′i − nβ′i) for

i ∈ {1, . . . , `} and we prove that the value of (αr, αs) must be the same. Because AβjB
γ
j −A

γ
jB

β
j 6= 0, the

equations we can give a explicit formula for (αr, αs) satisfying the equations Aβj αr +Bβj αs +Cβj = 0 and
Aγjαr +Bγj αs + Cγj = 0 for some j. That is,

αr =
Bγj C

β
j −B

β
j C

γ
j

AγjB
β
j −A

β
jB

γ
j

αs =
AβjC

γ
j −A

γ
jC

β
j

AγjB
β
j −A

β
jB

γ
j

Now, assume that αr and αs are derived from the same equations induced by a different β, i.e.,
β′ = β + δ. Expanding the equations, we would have (we omit indices j for simplicity),

αr =
(u2 +

∑`
i=1biγ

′
i)(u3 +

∑`
i=1ci(βi + δi))− (d2 +

∑`
i=1bi(βi + δi))(u3 +

∑`
i=1ciγ

′
i)

(u1 +
∑`
i=1aiγ

′
i)(d2 +

∑`
i=1bi(βi + δi))− (d1 +

∑`
i=1ai(βi + δi))(u2 +

∑`
i=1biγ

′
i)

where we use γ′i instead of (ti − (βi + δi)n for brevity. By rearranging terms we can express the above
equation as

αr =
Bγj C

β
j −B

β
j C

γ
j − n∆1 +∆2

AγjB
β
j −A

β
jB

γ
j − n∆3 +∆4

where

∆1 = (
∑`
i=1biδi)(d3 +

∑`
i=1ciβi)− (

∑`
i=1ciδi)(d2 +

∑`
i=1biβi)

∆2 = (
∑`
i=1ciδi)(u2 +

∑`
i=1biγi)− (

∑`
i=1biδi)(u3 +

∑`
i=1ciγi)

∆3 = (
∑`
i=1aiδi)(d2 +

∑`
i=1biβi)− (

∑`
i=1biδi)(d1 +

∑`
i=1aiβi)

∆4 = (
∑`
i=1biδi)(u1 +

∑`
i=1aiγi)− (

∑`
i=1aiδi)(u2 +

∑`
i=1biγi)

Our goal is to show that αr is unique and therefore, increments −n∆1 +∆2 and −n∆3 +∆4 are zero.
Observe that, the new β′ must also satisfy the equation

(d1 +
∑`
i=1aiβi +

∑`
i=1aiδi)αr + (d2 +

∑`
i=1biβi +

∑`
i=1biδi)αs + (d3 +

∑`
i=1ciβi +

∑`
i=1ciδi) = 0

which also satisfies (d1 +
∑`
i=1aiβi)αr + (d2 +

∑`
i=1biβi)αs + (d3 +

∑`
i=1ciβi) = 0. Assume that αr, αs is

not unique, in that case, it must be

(d1 +
∑`
i=1aiβi)(d2 +

∑`
i=1biβi +

∑`
i=1biδi)− (d2 +

∑`
i=1biβi)(d1 +

∑`
i=1aiβi +

∑`
i=1aiδi) = 0
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which leads to (
∑`
i=1aiδi)(d2 +

∑`
i=1biβi)− (

∑`
i=1biδi)(d1 +

∑`
i=1aiβi) = 0 and observe that the previous

expression corresponds to ∆3. A similar analysis, using the following equations (from the requirements of
clause 5):

(u1 +
∑`
i=1aiγi)αr + (u2 +

∑`
i=1biγi)αs + (u3 +

∑`
i=1ciγi) = 0

(u1 +
∑`
i=1aiγi +

∑`
i=1aiγi)αr + (u2 +

∑`
i=1biγi +

∑`
i=1biγi)αs + (u3 +

∑`
i=1ciγi +

∑`
i=1ciγi) = 0

leads to (
∑`
i=1biδi)(u1 +

∑`
i=1aiγi) − (

∑`
i=1aiδi)(u2 +

∑`
i=1biγi) = 0 and observe that the previous

expression corresponds to ∆4. By a similar analysis, it can be shown that the increments in the numerator
of αr are zero and eventually, that the same thing occurs for αs.

If θ falls into clause 7, and the witness $ satisfies Ψ , it must be $ = (β1, . . . , β`), with Aβj = 0 ∧ Bβj =

0 ∧ Cβj = 0 ∧ V βj = 0. Or equivalently, (β1, . . . , β`) is a solution of the following linear system

(
β1 . . . β`

)
M =

(
−d(1)1 −d(1)2 −d(1)3 −v(1)0 −d(2)1 . . . −d(k)1 −d(k)2 −d(k)3 −v(k)0

)
where M is the matrix from equation (21). Because the rank of M is `, there exists at most one solution
to the system and therefore, the witness is unique.

For arguing about the missing clause, 8, we prove the following claim.

Claim 2. Any transcript θ that did not fall in clause 5 or before is such that all equations (17)(∗) are be
proportional between them and to all equations (18)(∗) (when considering them as linear equations in
αr, αs).

Proof. Assume that the groups of equations (17)(∗) and (18)(∗) are not proportional. We will show that
under this condition θ should have fallen into clause 5 or earlier.

Note that at this point (and because we did not enter in clause 3), for every pair of verification equations
j, k the determinant Dtj,k(n, t1, . . . , t`) is zero. Also note that, if we consider as before, ti = γi + nβi for
every i ∈ {1, . . . , `}, such a determinant can be seen as a degree-2 polynomial in n,

n2(AβjB
β
k −A

β
kB

β
j ) + n (AβjB

γ
k −A

γ
kB

β
j + AγjB

β
k −A

β
kB

γ
j ) + (AγjB

γ
k −A

γ
kB

γ
j )

which is zero for every pair j, k. In a similar way as done in the proof of Claim 1, we can prove that
Dtj,k(n, t1, . . . , t`) = 0 happens only if every coefficient of the above polynomial in n is zero (otherwise,
R can be used to solve the discrete-logarithm problem in G2). We therefore have

AβjB
β
k −A

β
kB

β
j = 0 (22)

AβjB
γ
k −A

γ
kB

β
j + AγjB

β
k −A

β
kB

γ
j = 0 (23)

AγjB
γ
k −A

γ
kB

γ
j = 0 (24)

Let (x)(j) denote equation (x) with respect to j-th verification equation. Equation (22) implies that,
when considering the relations (17)(j) for all j as equations in αr, αs, they are all proportional. The same
happens with equations (18)(j) due to (24).

First, note that if all verification equations are degenerate, we would have entered in clause 4. On
the other hand, if there is just one non-degenerate verification equation the condition on clause 5 holds
and we would have fallen in there. Now, pick two non-degenerate equations, say (j, k). Note that, since

AβjB
β
k = AβkB

β
j and they are non-degenerate, there must exist a constant ρ ∈ Zp such that Aβj = ρAβk

and Bβj = ρBβk . Analogously, since AγjB
γ
k = AγkB

γ
j and they are non-degenerate, there exists a constant

δ ∈ Zp such that Aγj = δAγk and Bγj = δBγk . Now, substituting in equation (23) we have

ρAβkB
γ
k −A

γ
kρB

β
k + δAγkB

β
k −A

β
kδB

γ
k = (ρ− δ)(AβkB

γ
k −A

γ
kB

β
k ) = 0 (25)

Because the groups of equations (17)(∗) and (18)(∗) are not proportional between them, it must be

(AβkB
γ
k − A

γ
kB

β
k ) 6= 0 for any pair of non-degenerate equations j, k, and thus, it must be ρ − δ = 0.

Therefore, the linear factor between equations (17)(j) and (17)(k) is the same as the linear factor between
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equations (18)(j) and (18)(k). With similar techniques, it can be shown that in this situation happens
between A and C and so on. In fact, it must hold(

Aβj Bβj Cβj V βj Atj Btj Ctj V tj

)
≡
(
Aβk Bβk Cβk V βk Atk Btk Ctk V tk

)
for any pair of non-degenerate verification equations j, k. If j or k are degenerate, the above equations
also hold and the transcript θ would have entered in clause 5.

Therefore, if clause 8 is reached, all equations in (17)(∗) must be proportional to all equations
(18)(∗).

At this point, we know that all equations of the form Aβj αr + Bβj αs + Cβj = 0 are proportional
between them for all j (looking at them as linear equations in αr, αs) and they are all proportional to
Aγjαr +Bγj αs +Cγj = 0 for all j. This implies that they are also all proportional to Atjαr +Btjαs +Ctj = 0
for every j.

Pick a non-degenerate equation, say j∗. If αr, αs satisfy this equation, they satisfy them all. On the
other hand, because it is non-degenerate, Atj∗ 6= 0 and therefore, there exists a unique value αr ∈ Zp such
that Atj∗αr +Btj∗ · 0 + Ctj∗ = 0. Therefore, the witness is unique in this branch.

Usefulness. If the relation Ψ(θ,$) is satisfied in clause 4, then all the equations are degenerate and a
forgery can be created by reusing the elements from G2. This is, (∗, ∗, T1, . . . , T`) ∈ G2

1 ×G`2 is a valid
signature on message (∗, N) ∈ G1 ×G2, where placeholders ∗ can be filled with arbitrary elements from
G1.

If the relation is satisfied in clauses 2, 3, 5, 8 note that in all of them the witness must be of the form
(αr, αs,⊥, . . . ,⊥), where αr, αs ∈ Zp and they satisfy Atjαr +Btjαs +Ctj = 0 for all verification equations
j. Or equivalently,

(u
(j)
1 + d

(j)
1 n+

∑`
i=1a

(j)
i ti)αr + (u

(j)
2 + d

(j)
2 n+

∑`
i=1b

(j)
i ti)αs + (u

(j)
3 + d

(j)
3 n+

∑`
i=1c

(j)
i ti) = 0 (26)

Under these conditions, we can build a forgery as follows. Select an arbitrary fresh message M? ∈ G1

and compute R? = R(M?/M)αr , S? = S(M?/M)αs . Then output (R?, S?, T1, . . . , T`) for forged messages
(M?, N). To verify that the forgery is valid, examine a generic verification predicate:

e(R?, U1N
d1
∏`
i=1 T

ai
i ) e(S?, U2N

d2
∏`
i=1 T

bi
i ) e(M?, U3N

d3
∏`
i=1 T

ci
i ) e(V0, N)

∏`
i=1 e(Vi, Ti)

= e(R(M?/M)αr , U1N
d1
∏`
i=1 T

ai
i ) e(S(M?/M)αs , U2N

d2
∏`
i=1 T

bi
i )

e(M?/M,U3N
d3
∏`
i=1 T

ci
i ) e(M,U3N

d3
∏`
i=1 T

ci
i ) e(V0, N)

∏`
i=1 e(Vi, Ti)

= e(R,U1N
d1
∏`
i=1 T

ai
i ) e(S,U2N

d2
∏`
i=1 T

bi
i ) e(M,U3N

d3
∏`
i=1 T

ci
i ) e(V0, N)

∏`
i=1 e(Vi, Ti)

e(M?/M, {U1N
d1
∏`
i=1 T

ai
i }αr{U2N

d2
∏`
i=1 T

bi
i }αs{U3N

d3
∏`
i=1 T

ci
i })

= Ze(M?/M,H)Φ = Z, (27)

where Φ = (u1 + d1n+
∑`
i=1aiti)αr + (u2 + d2n+

∑`
i=1biti)αs + (u3 + d3n+

∑`
i=1citi), and Φ = 0 due to

(26).
Now, consider the case where Ψ is satisfied in clause 6. There must exist a non-degenerate verification

equation, j∗ such that there exist µ1, µ2, µ3 ∈ Zp, which are publicly computable and verify(
u
(j∗)
1 d

(j∗)
1 a

(j∗)
1 . . . a

(j∗)
`

)
µ1 +

(
u
(j∗)
2 d

(j∗)
2 b

(j∗)
1 . . . b

(j∗)
`

)
µ2 +

(
u
(j∗)
3 d

(j∗)
3 c

(j∗)
1 . . . c

(j∗)
`

)
µ3 = 0

In these conditions, we can attack by first finding such coefficients µ1, µ2, µ3, with µ3 6= 0 (note that
clause 6 guarantees that µ3 can be taken not null). We set R? = RGµ1 , S? = SGµ2 , M? = MGµ3 and
(R?, S?, T1, . . . , T`) is a valid forgery for message (M?, N). Note that M? 6= M because µ3 6= 0. This
signature clearly satisfies the j∗-th verification equation. Note that the rest of verification also hold
because j∗ is a non-degenerate equation and Claim 2 guarantees that at this point all must the verification
equations be proportional between them (when T1, . . . , T`, N are reused).

Finally, if the relation Ψ is satisfied in clause 7, the witness $ = (β1, . . . , β`) is such that for every
verification equation j,

d
(j)
1 +

∑`
i=1a

(j)
i βi = 0 d

(j)
2 +

∑`
i=1b

(j)
i βi = 0 d

(j)
3 +

∑`
i=1c

(j)
i βi = 0 v

(j)
0 +

∑`
i=1v

(j)
i βi = 0 (28)

13



A forgery can be built as follows. Select an arbitrary δ ∈ Z∗p and compute N? = Nδ+1 and Ti
? = TiN

δβi ,
for i ∈ {1, . . . , `}. Then output (R,S, T1

?, . . . , T`
?) for forged messages (M,N?). To see that it is a valid

forgery, consider the following generic verification equation:

e(R,U1N
?d1
∏`
i=1 Ti

?ai) e(S,U2N
?d2
∏`
i=1 Ti

?bi) e(M,U3N
?d3
∏`
i=1 Ti

?ci) e(V0, N
?)
∏`
i=1 e(Vi, Ti

?)

= e(R,U1N
d1Nd1δ

∏`
i=1 T

ai
i N

aiβiδ) e(S,U2N
d2Nd2δ

∏`
i=1 T

bi
i N

biβiδ)

· e(M,U3N
d3Nd3δ

∏`
i=1 T

ci
i N

ciβiδ) e(V0, N
1+δ)

∏`
i=1 e(Vi, TiN

viβiδ)

= Ze(R,N δ(d1+
∑`
i=1aiβi))e(S,Nδ(d2+

∑`
i=1biβi))e(M,N δ(d3+

∑`
i=1ciβi))e(G,Nδ(v0+

∑`
i+1viβi)) = Z (29)

where the last step is due to (28).

Extractability. We extract (αr, αs, β1, . . . , β`) from the first signature (R,S, T1, . . . , T`) in θ for message
(M,N) by using the algebraic extractor. Note that these extracted values must satisfy equations (17)-(20)
when we set γi = ti − nβi for every i ∈ {1, . . . , `} and we set ϕr = r −mαr and ϕs = s−mαs.

We need to identify if there exist two verification equations j, k such that Dtj,k(n, t1, . . . , t`) 6= 0.
Remember that the determinant can be expressed like:

n2(AβjB
β
k −A

β
kB

β
j ) + n (AβjB

γ
k −A

γ
kB

β
j + AγjB

β
k −A

β
kB

γ
j ) + (AγjB

γ
k −A

γ
kB

γ
j )

Note that for the extracted values, the above polynomial is zero if an only if all the coefficients of n
are zero (as argued in above). First observe that parameters in the coefficients of (17)(j) and (17)(k) are

d
(j)
i , a

(j)
i , b

(j)
i , c

(j)
i , d

(k)
i , a

(k)
i , b

(k)
i , c

(k)
i and βi. Since they are all public or available after the extraction,

verifying AβjB
β
k − A

β
kB

β
j = 0 can be easily done. Next, AβjB

γ
k − A

γ
kB

β
j + AγjB

β
k − A

β
kB

γ
j = 0 can be

verified by evaluating:(
U

(k)
1 Nd1

∏`
i=1(TiN

−βi)a
(k)
i

)Bβj (
U

(j)
2 Nd2

∏`
i=1(TiN

−βi)b
(j)
i

)Aβk
?
=
(
U

(k)
2 Nd2

∏`
i=1(TiN

−βi)b
(k)
i

)Aβj (
U

(j)
1 Nd1

∏`
i=1(TiN

−βi)a
(j)
i

)Bβk
(30)

Finally, to verify AγjB
γ
k−A

γ
kB

γ
j = 0, pick two distinct pairs of (αr, αs) that satisfy (17). Then check if both

of them satisfy (18)(j) and (18)(k). In that case, it must be AγjB
γ
k −A

γ
kB

γ
j = 0. If any of the checks failed

for a pair of equations j, k, we conclude that Dtj,k(n, t1, . . . , t`) 6= 0 and output $ = (αr, αs,⊥, . . . ,⊥).

Now we check clause 3, if there exists j such that U
(j)
1 Nd1

∏`
i=1(Ti)

a
(j)
i = 1G2

and U
(j)
2 Nd2

∏`
i=1(Ti)

b
(j)
i 6=

1G2
then output $ = (0, αs,⊥, . . . ,⊥). Else if U

(j)
1 Nd1

∏`
i=1(Ti)

a
(j)
i 6= 1G2

and U
(j)
2 Nd2

∏`
i=1(Ti)

b
(j)
i =

1G2
for some j, output $ = (αr, 0,⊥, . . . ,⊥). Otherwise, continue to the next clause.

Now, if for all verification equations j, U
(j)
1 Nd1

∏`
i=1(Ti)

a
(j)
i = U

(j)
2 Nd2

∏`
i=1(Ti)

b
(j)
i = 1G2 we are in

the condition of clause 4 and we can set the witness to $ = (⊥, . . . ,⊥).

For clause 5, first observe that Aβj , Bβj , Cβj for any j can be computed in Zp using βi and public

parameters. Thus checking (Aβj Bβj Cβj ) ≡ (Aβk Bβk Cβk ) is trivial. For V βj and V βk , it suffices to check

AβkV
β
j = Aβj V

β
k by verifying

(V
(j)
0

∏`
i=1(V

(j)
i )βi)(d

(k)
1 +

∑`
i=1a

(k)
i βi) = (V

(k)
0

∏`
i=1(V

(k)
i )βi)(d

(j)
1 +

∑`
i=1a

(j)
i βi)

in G1. For Atj , B
t
j , C

t
j , A

t
k , Btk, Ctk, a similar verification can be done in G2. For instance, for Atj and Atk,

it suffices to check relation AβkA
t
j = AβjA

t
k by verifying

(U
(j)
1 Nd

(j)
1
∏`
i=1T

a
(j)
i

i )(d
(k)
1 +

∑`
i=1a

(k)
i βi) = (U

(k)
1 Nd

(k)
1
∏`
i=1T

a
(k)
i

i )(d
(j)
1 +

∑`
i=1a

(j)
i βi)

in G2. Finally, for V tj and V tk , we check relation AβkV
t
j = Aβj V

t
k by verifying

{e(V (j)
0 , N)

∏`
i=1e(V

(j)
i , Ti)/Z

(j)}(d
(k)
1 +

∑`
i=1a

(k)
i βi) = {e(V (k)

0 , N)
∏`
i=1e(V

(k)
i , Ti)/Z

(k)}(d
(j)
1 +

∑`
i=1a

(j)
i βi).
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Condition AβjB
β
k −A

β
kB

β
j = 0 is indeed (d

(j)
1 +

∑`
i=1a

(j)
i βi)(d

(k)
2 +

∑`
i=1b

(k)
i βi)− (d

(k)
1 +

∑`
i=1a

(k)
i βi)(d

(j)
2 +∑`

i=1b
(j)
i βi) = 0 which can be verified easily in Zp. AβjB

γ
k −A

γ
kB

β
j 6= 0 is verified by

{U (j)
1

∏`
i=1(Ti/N

βi)a
(j)
i }d

(k)
2 +

∑`
i=1b

(k)
i βi / {U (j)

2

∏`
i=1(Ti/N

βi)b
(j)
i }d

(k)
1 +

∑`
i=1a

(k)
i βi 6= 1G2 .

Similarly, we can check AγjB
β
k −A

β
kB

γ
j 6= 0 by

{U (k)
2

∏`
i=1(Ti/N

βi)b
(k)
i }d

(j)
1 +

∑`
i=1a

(j)
i βi / {U (k)

1

∏`
i=1(Ti/N

βi)a
(k)
i }d

(j)
2 +

∑`
i=1b

(j)
i βi 6= 1G2

.

Once the above verifications succeed, condition AγjB
γ
k − A

γ
kB

γ
j = 0 holds as well. We then set $ =

(αr, αs,⊥, . . . ,⊥).
Checking the condition on clause 6 can be done by solving the system of equations and finding the

publicly computable µ1, µ2, µ3 if it exists. In case µ3 6= 0 can be found, we set $ = (⊥, . . . ,⊥). Otherwise,
the values values µ1, µ2 are not null and such that for every verification equation j, Atjµ1 +Btjµ2 = 0.
Note that, in that case, for every δ ∈ Zp, we can combine (µ1, µ2) with the extracted (αr, αs) and get

Atj(αr + δµ1) +Btj(αs + δµ2) + Ctj = 0

and therefore, we can choose δ = −αs/µ2 and set the witness $ = (αr − αsµ1/µ2, 0,⊥, . . . ,⊥) that
satisfies clause 8 (when coming from clause 6).

Now we examine clause 7. It is in this clause when we use the restriction ` ≤ 3. If there exists an
equation j such that

rank

d
(j)
1 a

(j)
1 . . . a

(j)
`

d
(j)
2 b

(j)
1 . . . b

(j)
`

d
(j)
3 c

(j)
1 . . . c

(j)
`

 = 3

we can solve the system Aβ̂j for β̂1, . . . , β̂` (if there exists a solution) and in case there is a solution, check

whether it satisfies Aβ̂j = 0 ∧ Bβ̂j = 0 ∧ C β̂j = 0 ∧ V β̂j = 0 for all equations j. We note that, because

the above range is 3 and the dimension of β is at most 3, either there do not exist the mentioned β̂i or
they are unique and can be extracted by solving a linear system with known coefficients. If the answer is
affirmative, we are in clause 7 and we output $ = (β̂1, . . . , β̂`), otherwise we go to check clause 8. In case
the above rank is 2 for every verification equation we will show that the extracted (β1, . . . , β`) from the
extractor algorithm is a solution to the system of clause 7 for all equations. It is clear that the system is
satisfied for all degenerated equations. Now, pick a non-degenerate equation j. There exist coefficients
ρ1, ρ2, ρ3 ∈ Zp, not all null, such that(

d
(j)
1 a

(j)
1 . . . a

(j)
`

)
ρ1 +

(
d
(j)
2 b

(j)
1 . . . b

(j)
`

)
ρ2 +

(
d
(j)
3 c

(j)
1 . . . c

(j)
`

)
ρ3 = 0

assume ρ3 is not zero (the other cases are analogous). And set ρ̂1 = −ρ1/ρ3 and ρ̂2 = −ρ2/ρ3. Because at
this point, equations (17) and (18) must be proportional, we have

(
Aβj B

β
j C

β
j

)
≡
(
Aγj B

γ
j C

γ
j

)
. Therefore,

there exist constants δ1, δ2 not both null such that δ1A
β
j = δ2A

γ
j and δ1B

β
j = δ2B

γ
j and δ1C

β
j = δ2C

γ
j .

Note that, additionally,

Cβj = ρ̂1A
β
j + ρ̂2B

β
j and Cγj = u3 + ρ̂1(Aγj − u1) + ρ̂2(Bγj − u2)

multiplying by δ1 and δ2 respectively and comparing the previous equations we get,

δ1ρ̂1A
β
j + δ1ρ̂2B

β
j = δ2u3 + δ2ρ̂1(Aγj − u1) + δ2ρ̂2(Bγj − u2)

but note that δ1ρ̂1A
β
j + δ1ρ̂2B

β
j = δ2ρ̂1A

γ
j + δ2ρ̂2B

γ
j , and simplifying, δ2(u3 − ρ̂1u1 − ρ̂2u2) = 0. But it

cannot be u3 − ρ̂1u1 − ρ̂2u2 = 0 or we would have entered in clause 6. Therefore, it must be δ2 = 0 and
thus, Aβj = Bβj = Cβj = 0 for the extracted β, which also implies V βj = 0. This shows that the extracted
β satisfies the conditions of clause 7 and we can set $ = (β1, . . . , β`).

Finally, if we reached this point, we must be in clause 8. Note that, since we did not enter in clause 7,
there exists a verification equation j such that for the extracted β, Aβj αr +Bβj αs +Cβj = 0 is a non-trivial
equation in (αr, αs) for which its coefficients can be computed. Moreover, all the verification equations

are proportional to it, and since we did not enter in clause 3, it must be Aβj 6= 0. It is clear that we can
compute all solutions over Zp to the equation and in particular the only solution of the form (α∗r , 0) at
this point we return the witness $ = (α∗r , 0,⊥, . . . ,⊥). This completes the proof of extractability.
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From Theorem 1, the following corollary is immediate. It implies that at least six group elements are
necessary as claimed in Table 1.

Corollary 1. If there exists a structure preserving signature scheme that signs bilateral messages over
Type-III bilinear groups and its EUF-CMA security is proved by algebraic black-box reductions to a
non-interactive problem, then its signature must include at least 6 group elements.

It is worth to point out that the above result brings new insights to the case of unilateral messages
in Type-III under non-interactive assumptions. Recall that the 4-element construction in [4] outputs
signatures in G3

1×G2 for messages in G1. Although the total number of elements matches the lower bound
given in [3], it has not been known whether other structures such as G2

1 ×G2
2 are possible. Corollary 1

states that G3
1 ×G2 is the only possible choice and it justifies the optimality of the construction from [4].

The following corollary restricts the number of schemes for bilateral messages with signatures in
G2

1 ×G`2 for arbitrary `, by imposing a condition without which it would be easy to argue extractability
for clause 7.

Corollary 2. If Sig is a signature scheme for messages (M,N) ∈ G1 × G2 with signature elements
(R,S, T1, . . . , T`) ∈ G2

1 ×G`2 is proven EUF-CMA under a non-interactive assumption, it must be such
that all the k verification equations satisfy:

rank


d
(1)
1 d

(1)
2 d

(1)
3 . . . d

(k)
1 d

(k)
2 d

(k)
3

a
(1)
1 b

(1)
1 c

(1)
1 . . . a

(k)
1 b

(k)
1 c

(k)
1

...
a
(1)
` b

(1)
` c

(1)
` . . . a

(k)
` b

(k)
` c

(k)
`

 < `

4 Lower Bounds in Type-II

In Type-II, there are three cases, i.e., 1) messages exist only in G1, 2) messages exist only in G2, and 3)
messages exist in both G1 and G2. Below, we give a bound for the first case. Note that it directly implies
a lower bound for bilateral messages (case 3) as well.

Theorem 2. Any structure preserving signature scheme over Type-II groups with message space M⊂ G1

that yields signatures consisting of 3 group elements cannot have an algebraic black-box reduction from
the EUF-CMA security to non-interactive hardness assumptions if pseudo-random functions exist and the
discrete logarithm problem is hard in G1.

Let M ∈ G1 be a message and (R,S, T1, . . . , T`) be a signature. We first consider two extreme cases
where signatures include elements from one group. If (R,S, T1, . . . , T`) ∈ G2+`

1 , the verification equations
are in the form of

e(R,U1) e(S,U2) e(M,U3)
∏̀
j=1

e(Tj , U3+j) = Z

where Ui and Z are public-keys. Thus, given two signatures on two messages, one can easily obtain a
valid signature on a new message by linearly combining two messages and signatures. Therefore, such
signatures are vulnerable to random message attacks.

We now consider the case where the number of signature elements in G1 is at most 2. Say, (R,S) ∈ G2
1,

T1, . . . , T` ∈ G`2. Let SIGµ be the set of all structure preserving signature schemes whose signature

consists of 2 group elements from G1 and other ` elements from G2. We denote by Ã the group element
in G1 that was mapped from A ∈ G2.

Theorem 2 is shown by combining our Lemma 3 with Theorem 8 from [4].

Lemma 3. For every scheme in SIGµ, there exists a crucial relation.

Proof. According to [5], at least 2 verification equations are required in Type-II for secure signature
with (R,S) ∈ G2

1, T1, . . . , T` ∈ G`2 ∈ SIGµ. Observe that in every structure preserving signature scheme
with signature space G2

1 ×G`2, the j-th verification equation can be written in the following form, where
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M ∈ G1 is a message, U
(j)
i , V

(j)
i are elements in VK , a

(j)
i , b

(j)
i , c

(j)
i , d

(j)
i ∈ Zp for i = 1, . . . , ` are public

parameters, and (R,S, T1, . . . , T`) ∈ G2
1 ×G`2 are signatures,

e(R,U
(j)
1

∏`
i=1 T

a
(j)
i

i ) e(S,U
(j)
2

∏`
i=1 T

b
(j)
i
i ) e(M,U

(j)
3

∏`
i=1 T

c
(j)
i
i )∏`

j=1

∏`
i=1 e(T̃j , T

d
(j)
i

i )
∏`
i=1 e(V

(j)
i , Ti) = Z(j). (31)

Note that, to show the impossibility, it is sufficient to consider a single-element message in G1 rather
than its vector form.

For elements R,S, Ti (i = 1, . . . , `) in a signature, we consider a special representation of the form

R = GϕrMαr , S = GϕsMαs , Ti = Hϕti (32)

for some ϕr, αr, ϕs, αs, ϕti in Zp. Now, consider equation (31) in the exponent:

(ϕr + αrm) (
∑`
i=1a

(j)
i ϕti + u

(j)
1 ) + (ϕs + αsm) (

∑`
i=1b

(j)
i ϕti + u

(j)
2 )

+m (
∑`
i=1c

(j)
i ϕti + u

(j)
3 ) +

∑`
j=1ϕtj

∑`
i=1d

(j)
i ϕti +

∑`
j=1 v

(j)
i ϕti = z (33)

By considering (33) as a polynomial in m, it can be shown that

(
∑`
i=1a

(j)
i ϕti+u

(j)
1 )αr+(

∑`
i=1b

(j)
i ϕti+u

(j)
2 )αs+(

∑`
i=1c

(j)
i ϕti+u

(j)
3 ) = 0 (34)

if the discrete logarithm problem is hard in G1. We denote by Dtj,k(t1, . . . , t`) the determinant of equation
(34) for j and k, when considered as polynomials in (αr, αs). There exists a unique solution (αr, αs) if
and only if Dtj,k(t1, . . . , t`) 6= 0 for two different equations j and k.

We construct a crucial relation for Sig ∈ SIGµ.

Let θ denote a transcript θ := (VK , (M (1), R(1), S(1), T
(1)
1 , . . . , T

(1)
` ), . . . , (M (n), R(n), S(n), T

(n)
1 , . . . , T

(n)
` )).

Definition 8 (Crucial Relation for Sig ∈ SIGµ). Let $ := (ω1, ω2) and given θ, let (R,S, T1, . . . , T`)
be the first signature in θ, for message M . The relation Ψ(θ,$) is decided as follows.

1. If θ is invalid, return 0.
2. Else if there exist verification equations j and k such that Dtj,k(t1, . . . , t`) 6= 0,

– if $ = (αr, αs) where αr and αs satisfy (34) for both verification equations j and k, return 1,
– else return 0.

3. Else if $ = (⊥,⊥) then return 1, else return 0.

Lemma 4. The relation Ψ in Definition 8 is a crucial relation for any Sig ∈ SIGµ with respect to
algebraic algorithms and a message sampler choosing M uniformly.

We show that the relation Ψ in Definition 8 satisfies uniqueness, usefulness, and extractability.

Uniqueness. Uniqueness for clauses 1 and 3 is immediate. We focus on clause 2. In that case, because
Dtj,k(t1, . . . , t`) 6= 0, there exists a unique pair (αr, αs) satisfying equation (34) for both j and k.

Usefulness. Given $ = (αr, αs) ∈ Z2
p, we forge a signature on arbitrary fresh message as follows:

Choose M̂ ∈ G1 randomly. Compute (M?, R?, S?, T ?1 , . . . , T
?
` ) = (M · M̂, R · M̂−αr , S · M̂−αs , T1,

. . . , T`) and output (R?, S?, T ?1 , . . . , T
?
` ) as a forgery for M?. Since it uses the actual αr and αs that

were used by the reduction, it constitutes a valid signature because it satisfies (31) for every verification
equation.

On the other hand, if $ = (⊥,⊥), it means that equation (34) is proportional (as an equation in αr
and αs) for every verification equation j. We say a verification equation is degenerate if

∑`
i=1a

(j)
i ϕti+u

(j)
1 = 0 and

∑`
i=1b

(j)
i ϕti+u

(j)
2 = 0.

Otherwise, it is called non-degenerate. Note that, if T1, . . . , T` are reused, if a non-degenerate verifica-
tion equation holds for certain M,R, S, all verification equations will also hold (because they are all
proportional). This observation allows us to define the following forgery:
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Pick a non-degenerate verification equation j such that
∑`
i=1a

(j)
i ϕti+u

(j)
1 6= 0. Compute M? =

M ·
(
U

(j)
1

∏`
i=1 T̃

a
(j)
i

i

)−1
and R? = R ·

(
U

(j)
3

∏`
i=1 T̃

c
(j)
i
i

)
. Observe that (R?, S, T1, . . . , T`) is a valid

signature for M?, because it satisfies the non-degenerate verification equation j and, because it reuses
T1, . . . , T`, it must satisfy all the others too.

If no non-degenerate verification equation satisfies the previous condition, pick one, say j, such

that
∑`
i=1b

(j)
i ϕti+u

(j)
2 6= 0. Analogously, compute M? = M ·

(
U

(j)
2
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i=1 T̃

b
(j)
i
i

)−1
and S? = S ·(

U
(j)
3

∏`
i=1 T̃

c
(j)
i
i

)
and observe that (R,S?, T1, . . . , T`) is a valid signature for M?.

Finally, if the above is not possible, it is because all verification equations are degenerate for such
T1, . . . , T`. In this case, (∗, ∗, T1, . . . , T`) is a valid signature for every message in G1, where placeholders
∗ can be filled with arbitrary elements in G1.

Extractability. The problem reduces to verifying Dtj,k(t1, . . . , t`) = 0 for every pair of verification
equations j and k. This can be done by exploiting the efficient morphism. Concretely Dtj,k(t1, . . . , t`) = 0
holds if and only if

e(Ũ
(j)
1 , U

(k)
2 )/e(Ũ
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2 ) ·

∏̀
i1=1
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·
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e(T̃i, (U
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i (U

(j)
1 )b

(k)
i (U

(j)
2 )−a

(k)
i (U

(k)
1 )−b

(j)
i ) = 1GT . (35)

If equation (35) holds for some pair j,k, output the extracted (αr, αs) otherwise, output (⊥,⊥).

The above result implies that secure construction with signature elements R ∈ G1 and S, T1, . . . , T`−1 ∈
G2 is also impossible. Additionally, we can say that if all signature elements exist in G2, there exist no
secure SPS scheme based on non-interactive assumption.

Corollary 3. If there exists a structure preserving signature schemes that signs messages in G1 over
Type-II groups and its EUF-CMA security is proved by algebraic black-box reductions to any non-interactive
problems, then its signature must include at least 4 group elements.

5 Discussion and Open Problems

On the tightness of our bound for Type-III. We have shown that 6 elements are necessary and the
construction from [4] shows that 6 elements are also sufficient. This construction requires 3 signature
elements in every source group. A small remaining question would be whether a construction is possible
with 2 elements on one side and 4 elements on the other. Our Corollary 2 gives necessary conditions
on the shape of the verification equations of such a scheme. We believe that the techniques used in the
crucial relation presented in our Definition 7 get us closer to answering to this question.

On q-type and static assumptions. We have closed the gap between lower and upper bounds in Type-III
groups with respect to non-interactive assumptions. However, considering a more detailed classification
of non-interactive assumptions, there exists a gap between those based on q-type and those based on
static assumptions. The framework from [4] falls short of capturing such a difference in the assumptions.
Although seeking for better constructions based on static assumptions is a natural direction in the design
of SPS, it is not known how small their signatures can be. Therefore, closing the gap with respect to
static assumptions is an important open problem.

On constructions over Type-II groups. We next discuss the current status of constructions in the setting
marked as †, ‡, § in Table 1 and (non-)optimality of the lower bounds obtained in this paper.
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– († Bilateral messages, interactive assumptions.) The optimal scheme for unilateral messages in G1

(and the scheme in Type-I) from [7] cannot be straightforwardly used for signing bilateral messages
since the scheme can sign only a single group element. The best existing scheme for this setting is the
7-element scheme in [2] originally designed for Type-I groups. It can be securely used for bilateral
messages in Type-II groups since the construction and security proofs do not use the symmetry of the
pairing, and the underlying q-type assumption is justified in the Type-I generic group model where
an efficient morphism from G2 to G1 does exist. To close the gap between lower and upper bounds in
this setting, finding a 3-element scheme that signs messages consisting of two group elements in G1 is
desired.

– (‡ Unilateral messages in G1 and bilateral messages, q-type assumptions.) The 7-element scheme
from [2] is not known to be optimal, since the current lower bound is 4. We want to note that some
straightforward approaches to get closer to the lower bound fail: First, observe that the 4-element
scheme [3] based on a q-type assumption cannot be used, because it is defined over Type-III bilinear
groups and the assumption does not hold in the Type-II setting. Second, the technique of converting
a SPS scheme from an interactive to a non-interactive assumption by using the first group element in
a message as a random element in a signature (as used in [3, 5, 16]) does not work because the existing
3-element scheme [7] based on an interactive assumption has a limited message space consisting only
of one group element. Closing the gap in this case remains as an open problem.

– (§ All message types, static assumptions.) The construction in [28] instantiated with the DLIN
assumption can be adapted to Type-II groups. It yields in signatures with 9 group elements for
messages consisting of an arbitrary (but preliminary fixed) number of group elements in G1, and
hence can be used to sign unilateral messages in G2 or bilateral messages as well. To the best of our
knowledge, that is currently the smallest scheme (according to the signature size) and it is still far
from our lower bound of 4 signature elements.

On the possibility of showing a lower bound for unilateral messages in G2 in Type-II groups. The authors
of [5] have constructed a SPS scheme over Type-II groups for messages in G2 based on a non-interactive
assumption, with 3 signature elements. This gives an upper bound of 3, while there is a lower bound of 2.
Extrapolating from known lower bounds in different settings, it is natural to conjecture that 3-element
construction is indeed optimal in this case. However, the fact that secure constructions with a single
verification equation exist in Type-II, makes our techniques inapplicable for this case. Finding a scheme
with 2 signature elements in this setting or proving that 3 group elements are needed remains as an open
problem. We conjecture that a 2-element construction based on non-interactive assumptions does not
exist and lean towards the optimality of 3 signature elements.
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