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Abstract. Optimizing performance of Fully Homomorphic Encryption (FHE) is
nowadays an active trend of research in cryptography. One way of improvement is to
use a hybrid construction with a classical symmetric encryption scheme to transfer
encrypted data to the Cloud. This allows to reduce the bandwidth since the expan-
sion factor of symmetric schemes (the ratio between the ciphertext and the plaintext
length) is close to one, whereas for FHE schemes it is in the order of 1,000 to 1,000,000.
However, such a construction requires the decryption circuit of the symmetric scheme
to be easy to evaluate homomorphically. Several works have studied the cost of homo-
morphically evaluating classical block ciphers, and some recent works have suggested
new homomorphic oriented constructions of block ciphers or stream ciphers. Since
the multiplication gate of FHE schemes significantly increases the noise of the ci-
phertext, we cannot afford too many multiplication stages in the decryption circuit.
Consequently, FHE-friendly symmetric encryption schemes have a decryption circuit
with small multiplication depth.
We aim at minimizing the cost of the homomorphic evaluation of the decryption of
symmetric encryption schemes. To do so, we focus on schemes based on learning prob-
lems: Learning With Errors (LWE), Learning Parity with Noise (LPN) and Learning
With Rounding (LWR). We show that they have lower multiplicative depth than
usual block ciphers, and hence allow more FHE operations before a heavy bootstrap-
ping becomes necessary. Moreover, some of them come with a security proof. Finally,
we implement our schemes in HElib. Experimental evidence shows that they achieve
lower amortized and total running time than previous performance from the litera-
ture: our schemes are from 10 to 10,000 more efficient for the time per bit and the
total running time is also reduced by a factor between 20 to 10,000. Of independent
interest, the security of our LWR-based scheme is related to LWE and we provide an
efficient security proof that allows to take smaller parameters.

1 Introduction

Fully Homomorphic Encryption (FHE) is nowadays one of the most active trend of research
in cryptography. In a nutshell, a FHE scheme is an encryption scheme that allows evaluation
of arbitrarily complex programs on encrypted data. This idea has been introduced by Rivest,
Adleman and Dertouzos [32] in 1978, while the first plausible construction has been given
by Gentry [18] in 2009. Since, numerous papers have focused on improving the efficiency
of the constructions. Even if there still remains a huge gap to fill before FHE becomes
practical, it arouses more and more interest and the scope of application is broad, going
from genomics to finance [29]. Recently, the application of FHE techniques to genomics has
been highlighted in the iDASH Privacy and Security Workshop with the Secure Genome
Analysis Competition 4.

One way of improvement has been introduced in [29]. It focuses on minimizing the com-
munication complexity of the scheme. The idea is to use a hybrid encryption scheme: some
parts of the scheme are replaced by a symmetric encryption scheme. Instead of encrypting the

4 http://www.humangenomeprivacy.org/2015/index.html

1

http://www.humangenomeprivacy.org/2015/index.html


data under the FHE scheme, the client will only encrypt its symmetric key under the FHE
scheme, and encrypt its data under the symmetric scheme. The cloud will then homomor-
phically evaluate the decryption of the symmetric scheme on the symmetrically encrypted
data and the homomorphically encrypted symmetric key, to get a ciphertext corresponding
to a homomorphic encryption of the data.

Clearly, such a construction has low communication complexity, since the only online
data transfer is made under the symmetric scheme. However, the cloud might pay a huge
cost at the homomorphic evaluation of the symmetric decryption. Thus, one can look for
the most FHE-friendly symmetric encryption scheme to use in the hybrid construction.

Being FHE-friendly consists in optimizing several criteria. First, as the application we
gave suggests, we want a scheme with a small expansion factor, so that the communication
complexity stays low. Then, other criteria depend on the FHE construction we are building
upon. All current FHE schemes are based on variants of Gentry’s initial idea: ciphertext
consists of encryption of data with noise, and homomorphic operations increase this noise.
When the upper bound of noise is reached, one has to bootstrap, to reduce the noise to its
initial level. Typically, functions are represented as arithmetic circuits and multiplications
have a far higher cost than additions in terms of noise. Thus, we will want to minimize
the multiplicative depth of the decryption circuit of our symmetric scheme. In addition, we
will also take into account the total running time of our homomorphic evaluation step. This
metric highly depends on the chosen FHE scheme, but multiplications often happen to be
the main bottleneck again.

Our Contributions. In this paper, we focus on symmetric schemes having shallow de-
cryption circuits. We study the problem of building secure symmetric encryption scheme
with constant or small decryption circuit, namely with small multiplication depth. Con-
trary to the direction followed by many recent work, that tweak block ciphers or stream
ciphers [3,11], our approach is related to provable security. Indeed, we notice that one can
construct lattice-based schemes with very small decryption circuit and then, we evaluate the
performances of our schemes using HElib to compare them with other symmetric ciphers.
Finally, we try to use HElib features (full packing and parallelization) in order to achieve
better performances. We describe two kinds of ciphers: the first family has its security re-
lated to the difficulty of solving the LPN problem in specific instances, while the second
family has a security proof based on the LWE problem. The first construction is similar
to symmetric cryptography since we do not have a clean security proof and consequently,
we provide a more thorough security analysis. However, the security seems to be easier to
understand than ad-hoc constructions usually used in symmetric cryptography, since the
security problem on which the scheme is based can be formally stated. We present a very
efficient construction specifically tailored to this problem to secure our construction from
Arora-Ge type of attack on LPN. The performance of the schemes from this family can be
10 times more efficient than the most efficient previous cipher. For the second family, we
have a rigorous security proof related to LWE, while the scheme is based on LWR. The
performance of the second family can be very efficient, about 10,000 times faster, but the
caveat is that the decrypted plaintext contains random bits in the least significant bits if
we do not compute homomorphically the truncation using the costly ExtractDigits function.
Therefore, if we want to remove the erroneous bits, the performances become equivalent to
previous ciphers, while being more efficient than AES. In some cases, one can compute with
such noise without having to remove it.

We notice that contrary to what is claimed in many works [29], it is not necessary to
re-encrypt the symmetrically-encrypted ciphertext using the FHE scheme when the server
receives the data. We show in appendix 3.2 that the evaluation of the homomorphic de-
cryption procedure gives ciphertexts encrypted with FHE. This improves the performance
of the scheme, since we homomorphically evaluate the function that maps the key K to the
Dec(K, c), given the ciphertext c and some multiplications in Dec will be simplified once c
is known.
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Then, we describe our efficient FHE-friendly symmetric schemes. We chose to use schemes
based on lattices, and more precisely on learning problems. Our results show that we can get
circuits with very small multiplication depth for the decryption algorithms of these schemes.
In addition, their security relies on hard problems or on hard instances of lattice problems
in the worst cases, as opposed to usual block ciphers.

We first present a scheme whose security is based on the Learning Parity With Noise
problem (LPN) introduced in [20]. We have to specify an error correcting code (ECC) for
this scheme so that the decryption circuit is small. We choose to use a repetition code in
order to simplify the decoding and reduce its circuit in term of multiplications 5. However,
removing decryption failures makes the scheme vulnerable to the Arora-Ge [6] attack and
in order to avoid its most efficient variant [2] using Gröbner basis algorithms, we use a very
efficient transformation, similar to random local function [5], which increases the algebraic
degree of the polynomials system. We provide a detailed analysis of this attack. The function
we propose is also very similar to [1] and we can show that our construction achieves better
influence parameters, but it has higher complexity class since we need a logarithmic depth
circuit.

Then, we introduce another scheme whose security is based on the Learning With Round-
ing problem (LWR) and a very similar version whose security relies directly on the Learning
With Errors (LWE) problem. In order to encrypt many bits using small parameters, we
provide a direct proof from LWE to the security of the scheme. We do not rely on any
reduction from LWE to LWR since the first reduction given by Banerjee et al. [7] requires
exponential parameters and the one by Alwen et al. [4] requires parameter linear in the
number of samples. Here, our reduction is only logarithmic in the number of samples.

Furthermore, we extend both schemes to their ring versions. In this case, we optimized
the number of multiplications using a FFT algorithm in order to compute the polynomial
multiplications. Finally, we extend them to their module versions, which generalizes standard
and ring versions.

Along with a theoretical analysis, we provide implementations of the homomorphic eval-
uation of our schemes in HElib, in order to make practical comparisons. While the homo-
morphic evaluation of AES went down to 11 milliseconds per bit [19] and LowMC, a block
cipher designed to be FHE-friendly (and whose security has recently been called into ques-
tion [13,14]), went down to 3 milliseconds per bit [3], which was the best so far, we go under
a millisecond per bit (with the module version of our LPN scheme). In some scenario, our
performance for the scheme based on LWR are drastically better if we allow FHE-encrypted
plaintexts to contain noise in the least significant bits. Moreover, our schemes are a lot more
flexible, in the sense that they need smaller FHE parameters, and while these performance
were amortized over a computation taking several minutes, the evaluation of our schemes
takes only from a second to a minute.

Related work. Numerous papers have presented homomorphic evaluations of block ci-
phers. It has started in [19], where AES has been chosen as a benchmark for measuring the
performance of HElib. Then, performance has been improved in [28]. AES has then been
used as benchmark for comparing FHE schemes in [12,15]. Similarly, Simon has been used to
compare FHE schemes [26]. Recently, the problem has been taken the other way round, with
works trying to find the most FHE-friendly block cipher. First, a lightweight block cipher like
Prince has been suggested and evaluated [16]. Then, a new block cipher, LowMC, has been
designed specifically for this kind of application [3], as well as for multi-party computations
and zero-knowledge proofs. Finally, using stream ciphers has also been proposed [11].

Organization of the paper. In section 2 we recall definitions about symmetric encryp-
tion and Lattice problems in Cryptography. Then we introduce in section 4 our symmetric
schemes based on learning problems: LPN, LWR and LWE. In App. 3.2, we explain how we

5 More complex ECC exist with constant decoding such as [21] but they are only interesting from
an asymptotic point of view.
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use homomorphic operation more efficiently. The security analysis of the schemes are proved
in the final version. In this version, we also describe the efficiency of our schemes.

2 Preliminaries

We recall basic definitions about symmetric encryption and lattice assumptions on which
the security of our symmetric and homomorphic schemes is based.

2.1 Symmetric Encryption

We will say that a function of k (from positive integers to positive real numbers) is negligible
if it approaches zero faster than any inverse polynomial, and noticeable if it is larger than
some inverse polynomial (for infinitely many values of k).

Definition 1. A symmetric encryption scheme is a tuple (Gen,Enc,Dec) of Probabilistic
Polynomial-time (PPT) algorithms as follows:

– Gen(1λ): given a security parameter λ, output a secret key k;
– Enc(k,m): given a key k and a message m, output a ciphertext c;
– Dec(k, c): given a key k and a ciphertext c, output a message m′;

which satisfy the following correctness property: if k := Gen(1λ), then for all messages m,
Pr[Dec(k,Enc(k,m)) 6= m] is negligible (in λ).

For the sake of clarity, we will often write the key as a subscript and the scheme name
as a superscript of our algorithms, like in EncSk .

Definition 2. A symmetric encryption scheme S is said to be semantically secure (or to
have indistinguishable encryptions) if for all PPT A and for all messages m, it holds that∣∣Pr[A(EncSk (m), 1λ) = 1]− Pr[A(EncSk (0), 1λ) = 1]

∣∣
is negligible (in λ).

Indeed, semantic security is implied by the following property, which will be satisfied by
our schemes.

Definition 3. A symmetric encryption scheme S is said to have pseudo-random ciphertexts
(or to have ciphertexts indistinguishable from random) if no PPT A can distinguish between
ciphertexts from the scheme and the uniform distribution, i.e. for all PPT A and for all
messages m, it holds that∣∣Pr[A(EncSk (m), 1λ) = 1]− Pr[A(r, 1λ) = 1]

∣∣
is negligible (in λ), where r is drawn randomly over the ciphertext space.

Most symmetric encryption schemes are based on a construction called block cipher. A
block cipher is a keyed permutation working on fixed-length block. Formally, a block cipher
E takes as input a key K of length k and a string m of length n and outputs a string c of
length n. It is required that each function EK : m→ E(K,m) is invertible. To construct an
encryption scheme from these building blocks, one has to define what is called a mode of
operation.

2.2 Learning Problems

Given a finite set S and a probability distribution D on S, s ← D denotes the drawing of
an element of S according to D and s← S denotes the random drawing of an element of S
endowed with the uniform probability distribution.
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Learning With Errors. The Gaussian distribution with standard deviation σ is defined on
R by the density function 1√

2πσ
exp(− 1

2 ( xσ )2).

The Learning With Errors problem (LWE) has been introduced in [31]. For s ∈ Zkq , the

LWE distribution DLWE
s,χ is defined over Zkq ×Zq and consists in samples (a, 〈a, s〉+e) where

a← Zkq and e← χ for some distribution χ over Zq. Typically, χ is taken to be some integral
Gaussian distribution when assuming that LWE is hard. As in most works [31], we will
consider here rounded Gaussian distributions: it basically consists in sampling a Gaussian
distribution, reducing the result modulo 1, multiplying it by q and rounding it to the nearest
integer. LWE consists, for s chosen according to some distribution over Zkq (typically, the

uniform distribution), in distinguishing between any desired number of samples from DLWE
s,χ

and the same number of samples drawn from the uniform distribution over Zkq × Zq. For
rounded Gaussian distributions, LWE is usually considered to be hard when the standard
deviation σ verifies σ >

√
k [31].

LWE can be extended into a ring version RLWE [27]. Let R = Z[X]/(P (X)) for a monic
irreducible polynomial P of degree k, and let Rq = R/qR. Generally, P is chosen to be some
power-of-two cyclotomic polynomial, which are of the form X2z + 1. For an element s ∈ Rq,
we define the RLWE distribution DRLWE

s,χ over Rq×Rq by samples (a, a.s+e) where a← Rq
and e ← χk where χk consists in k independent samples from χ and e is interpreted as an
element of Rq. The Ring-LWE problem (RLWE) similarly consists, for s drawn according
to some distribution over Rq, in distinguishing DRLWE

s,χ from the uniform distribution over
Rq ×Rq.

We will also use the Module-LWE problem (MLWE). It has been introduced in [10]
under the name of GLWE, for General LWE. However, we will call it MLWE as in [25],
because it indeed corresponds to introducing a module structure over LWE. For an element
s ∈ Rkq , where the underlying ring polynomial has degree d, we define the MLWE distribution

DMLWE
s,χ over Rkq ×Rq by samples (a, 〈a.s〉+ e) where a← Rkq and e← χd is interpreted as

an element of Rq. MLWE generalizes LWE and RLWE: LWE corresponds to the case where
d = 1 and RLWE corresponds to the case where k = 1.

By a standard hybrid argument, LWE can be extended to several secrets. It can be
shown that the problem which consists in distinguishing samples (a, 〈a, s1〉+e1, . . . , 〈a, sn〉+
en) ∈ Zkq × Znq from the uniform distribution over Zkq × Znq , where each sj ∈ Zkq is chosen
independently for any n = poly(k), is at least as hard as LWE for a single secret s. An
analogous statement can be shown for RLWE and MLWE.

Finally, the LWE [31], RLWE [27] and MLWE [25] hardness assumptions have been
reduced to standard lattice assumptions. The security of MLWE seems to be intermediate
between the security of LWE based on hardness results in arbitrary lattices and the security
of RLWE in ideal lattices.

Learning Parity With Noise. We denote by Bη the Bernoulli distribution of parameter
η ∈ [0, 1], i.e. a bit b ← Bη is chosen such that Pr[b = 1] = η and Pr[b = 0] = 1 − η.
The Learning Parity with Noise problem (LPN) basically consists in LWE for q = 2. The
distribution χ chosen over Z2 will correspond to a Bernoulli distribution. We extend LPN
to RLPN and MPLN. The only difference is that the underlying polynomial will not be
cyclotomic anymore, but some irreducible polynomial modulo 2. Similarly, these problems
are also extended to a polynomial number of secrets. The main difference between LWE and
LPN is that the security of LPN remains heuristic because no reduction has been made so
far to lattice problems.

Learning With Rounding. The Learning With Rounding problem (LWR) has been introduced
in [7] as a derandomization of LWE. The idea is to replace the addition of a random noise
by a rounding function.

Let k be the security parameter and moduli q ≥ p ≥ 2 be integers. We define the
function b.ep : Zq → Zp by bxep = b(p/q).x̄e, where x̄ is an integer congruent to x mod q.
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We extend b.ep component-wise to vectors and matrices over Zq. Let R denote the cyclotomic
polynomial ring R = Z[z]/(zk + 1) for k a power of two. For any modulus q, we define the
quotient ring Rq = R/qR and extend b.ep coefficient-wise to it. Note that we can use any
common rounding method, like the floor or ceiling functions. In our implementations, we
will indeed use the floor functions, because it is equivalent to dropping the least-significant
digits in base 2 when q and p are both powers of 2.

For a vector s ∈ Zkq , the LWR distribution DLWR
s is defined over Zkq × Zp by elements

(a, b〈a, s〉ep) with a← Zkq . For a vector s ∈ Rq, the ring-LWR (RLWR) distribution DRLWR
s

is defined over Rq × Rp by elements (a, ba.sep) with a ← Rq. And for a vector s ∈ Rkq , the

module-LWR (MLWR) distributionDMLWR
s is defined over Rkq×Rp by elements (a, b〈a.s〉ep)

with a← Rkq .

For a given distribution D over s ∈ Zkq , LWR consists in distinguishing between any

desired number of independent samples from DLWR
s and the same number of samples drawn

uniformly and independently from Zkq × Zp. RLWR and MLWR are defined analogously. All
these problems can be extended to several secrets, as stated for LWE.

The security of LWR has been reduced to the one of LWE when q/p is exponential in k
by [7], and when q/p is polynomial in k and linear in the number of samples by [4].

3 Fully-Homomorphic Encryption (FHE)

While classical encryption aims at preserving the privacy of information, homomorphic en-
cryption aims, in addition, at making some computation on the encrypted data.

3.1 FHE Definitions

Formally, we have a message space M with a set of functions f we would like to compute on
messages, and we want an algorithm which efficiently computes functions f ′ on the ciphertext
space C such that Dec(f ′({ci}i)) = f({Dec(ci)}i). Thus, we want the decryption function
to be a homomorphism from C to M for these functions f . This notion, originally called a
privacy homomorphism, was introduced in[32]. Here is a formal definition of a homomorphic
scheme, sometimes also referred to as “somewhat homomorphism”.

Definition 4. Let F be a set of functions. A F-homomorphic encryption (HE) scheme is
a tuple of PPT algorithms (Gen,Encrypt,Decrypt,Eval) as follows:

– Gen(1λ): given a security parameter λ, output a public key pk, a secret key sk and an
evaluation key ek;

– Enc(pk,m): given the public key pk and a message m, output a ciphertext c;

– Dec(sk, c): given the secret key sk and a ciphertext c, output a message m′;

– Eval(ek, f, Ψ = (c1, . . . , cl)): given the evaluation key, a function f and a tuple Ψ of l
ciphertexts, where l is the arity of f , output a ciphertext c′;

and which satisfies the correctness property: for all functions f ∈ F and messages {mi}i≤l,
where l is the arity of f , if (pk, sk, ek) := Gen(1λ) and ci := Enc(pk,mi) for all i, then
Pr[Dec(sk,Eval(ek, f, (c1, . . . , cl))) 6= f(m1, . . . ,ml)] is negligible (in λ).

Definition 5. A HE scheme H is said to be semantically secure if for all PPT A and for
all messages m, it holds that∣∣Pr[A(EncHk (m), 1λ) = 1]− Pr[A(EncHk (0), 1λ) = 1]

∣∣
is negligible (in λ).
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Full homomorphism is a generalization of this concept: in a nutshell, a fully homomorphic
encryption scheme is an encryption scheme that allows evaluation of arbitrarily complex
functions on encrypted messages. The first construction of such a scheme appeared in 2009
[18] and was a major breakthrough.

However, being simply homomorphic for all functions is not enough, since it permits
the trivial solution, where c′ consists of (f, Ψ) and Dec decrypts the ciphertexts and then
applies f . A way of excluding the trivial solution is to require that the distribution of the
ciphertexts output by Eval is statistically close to the one of Enc: this notion is called circuit
privacy. However, most of the literature aims at achieving a weaker property.

Definition 6. A HE scheme is said to be compact if the length of the output of the algorithm
Eval is polynomial in the security parameter λ.

Definition 7. A Fully Homomorphic Encryption (FHE) scheme is a scheme which is com-
pact and F-homomorphic for any class F of functions.

In this work, f will be represented by an arithmetic circuit, as in most of the literature.
Even if we will most of the time use circuits over GF (2), we will sometimes use circuits over
over Zq, for example when dealing with LWR. The following definition is a slight relaxation
of FHE.

Definition 8. A Leveled Homomorphic Encryption (LHE) scheme is a compact CL-homomorphic
scheme HE where GenHE gets an additional input 1L and where CL is the class of all depth-L
arithmetic circuits.

Basically, a homomorphic scheme is leveled if for any depth L, we can fix the parameters
so that any circuit of depth at most L can be evaluated. But unlike a FHE scheme, the
complexity of the algorithms in a LHE might depend on this maximal depth. The BGV
scheme we will present in section 5 is indeed a LHE. It becomes a FHE when considered
along with its bootstrapping functionality.

3.2 Homomorphic evaluation of symmetric encryption schemes

We now give a more precise description of the scenario where a symmetric encryption scheme
is used to improve FHE performance, as described in [29], and on which we will to rely to
analyse the performance of our schemes.

Optimizing communication with the cloud. Consider the setting where a client uploads its
data encrypted under a FHE scheme on a cloud service and wants the cloud to compute on
this data and return encrypted outputs. Typically, FHE schemes come with an expansion
factor of the order of 1,000 to 1,000,000. To mitigate this problem, the client will send its
data encrypted under some semantically secure symmetric encryption scheme (which, by
itself, is not homomorphic at all) along with the homomorphic encryption of its symmetric
key. Then, the steps of symmetric decryption can all be carried out on homomorphically
encrypted entries. Thus, the cloud can obtain the data encrypted under the FHE scheme by
homomorphically evaluating the decryption circuit.

Here is a formal description of the protocol. Let H = (GenH ,EncH ,DecH ,EvalH) be a
FHE scheme and let S = (GenS ,EncS ,DecS) be a symmetric encryption scheme. Let λ
be the security parameter and m be the data the client wants to send to the cloud. Let
(pk, sk, ek) := GenH(1λ) and k := GenS(1λ).

– The client first sends the messages c1 := EncHpk(k) and c2 := EncSk (m) to the cloud.
– Given a couple of ciphertexts (c1, c2) received from the client, the cloud will compute

(either at the reception or just before further computing) x = EncHpk(c2) and then c =

Evalek(DecS , c1, x): this is the step where we need an efficient homomorphic evaluation
of the decryption circuit of our symmetric scheme.
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– Now, the cloud possesses a FHE-encrypted ciphertext c, which means that DecHsk(c) = m.
Furthermore, it can now homomorphically evaluate any function f : for all f , DecHsk(EvalHek(f, c)) =
f(c).

Indeed, if the evaluation algorithm allows constant arguments, i.e. arguments which are
not homomorphically encrypted, this scenario can be optimized further, simply by noticing
that c2 does not have to be homomorphically encrypted. Thus, when receiving c1 and c2,
the cloud will just directly compute c = Evalek(DecS , c2, c1). It still has to homomorphically
evaluate the decryption circuit of the symmetric scheme, but it saves a homomorphic en-
cryption, and operations with constants might be faster. This can also be seen as evaluating
the function K 7→ DecS(K,m), which depends on m.

The total communication complexity of this protocol is the sum of lengths of the public
key, homomorphically encrypted symmetric key and symmetrically encrypted data. However,
the public key and symmetric key are sent only once, are independent of the data, and can
be used for many messages. Therefore, they do not have to be taken into account for the
online complexity of the protocol, and only the expansion factor of the symmetric schemes
is relevant.

Others usages. Even if we focus on homomorphic encryption, note that the schemes we
present could be interesting for some other applications which have the same kind of con-
straints, like multi-party computation [3] or encryption schemes secure against side-channel
attacks. Indeed, in this latter area, researchers try to reduce the nomber of non-linear oper-
ations since these operations are costly when we use masking. In our schemes, the number
of non-linear operations per bits is a small constant.

4 FHE-friendly Symmetric Encryption based on Learning

All the symmetric encryption schemes we will use are based on lattices, and, more precisely,
on learning problems. Some of them will rely on the LPN problem, while the others will rely
on the LWR or on the LWE problem.

4.1 An encryption scheme based on MLPN-C

Our first encryption scheme is a generalization of the scheme introduced in [20], under the
name of LPN− C by Gilbert et al. Let [n,m, d] be a linear binary (error-correcting) code
C, i.e. a linear subspace of Fn2 with dimension m such that d is the minimum `1 distance
between two elements of the code. We associate it with an encoding function E : Fm2 → C
and a decoding function D : C → Fm2 . LPN− C is a symmetric encryption scheme whose
security can be reduced to the hardness of LPN. Let E and D be respectively the encoding
and decoding functions of a [n,m, d] linear binary code.

Definition 9 (LPN− C). Let k and n be polynomials in λ. The symmetric encryption scheme
LPN− C is defined in the following way:

– Gen(1λ): output S ← Zk×n2 ;
– EncS(x): output (a,E(x)⊕ a.S ⊕ e), where a← Zk2 and e← Bnη ;
– DecS(a, y): output D(y ⊕ a.S).

For a message of m bits, this scheme produces a ciphertext of n + k bits. Indeed, the
expansion factor can tend to the one of the linear code we are using, which is n/m, since n
is any polynomial in k. Furthermore, one can consider that a does not have to be sent, and
can be replaced, for example, by the seed used in order to generate it.

The decryption requires k multiplications for the scalar product, in addition to the
multiplications required by the decoding, but the multiplicative depth of the scalar product
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is only 1, to which we have to add the depth of the decoding circuit. Furthermore, as
explained in subsection 3.2, the vector a can be considered as a constant, and thus, the level
of multiplication corresponding to the scalar product prior to the decoding counts for less
than one.

We introduce the ring version of LPN− C. We extend functions E and D over Rm2 by
applying them on vectors corresponding to coefficients of same degree.

Definition 10 (RLPN− C). Let k and n be polynomials in λ. Let consider R chosen as in
RLPN, with underlying polynomial P of degree k. The symmetric encryption scheme RLPN− C

is defined in the following way:

– Gen(1λ): output S ← Rn2 ;

– EncS(x): output (a,E(x) ⊕ a.S ⊕ e), where a ← R2 and e ← Bk×nη is interpreted as an
element of Rn2 ;

– DecS(a, y): output D(y ⊕ a.S).

For a message of m× k bits, the scheme produces a ciphertext of k + k × n bits. Thus,
the expansion factor tends again to the one of the underlying linear code. The decryption
depth is also similar to the one of LPN− C (a polynomial multiplication has multiplicative
depth 1). The main difference in the ring version is the number of bits encrypted for a key
of fixed size: while we were encrypting m bits at once in the standard version, we can now
encrypt m× k bits at once.

Similarly, we extend the scheme to MLPN.

We describe the more general version of our scheme. Similarly, we can define LPN− C

and RLPN− C based on LPN and RLPN problems.

Definition 11 (MLPN− C). Let d, k and n be polynomials in λ. Let consider F2d a finite
field defined by an irreducible polynomial P of degree d. The symmetric encryption scheme
MLPN− C is defined in the following way:

– Gen(1λ): output S ← Fk×n
2d

;

– EncS(x): output (a,E(x)⊕ a.S ⊕ e), where a← Fk2d and e← Bd×nη is interpreted as an
element of Fn2d ;

– DecS(a, y): output D(y ⊕ a.S).

For a message of m bits, this scheme produces a ciphertext of n + k bits. Indeed, the
expansion factor can tend to the one of the linear code we are using, which is n/m, since n
is any polynomial in k. Furthermore, one can consider that a does not have to be sent, and
can be replaced, for example, by the seed used in order to generate it.

We choose the 3-repetition code to have a small multiplication depth circuit of degree

2. We define the encoding scheme for a ∈ F2d as (a2
d−1

, a2
d−1

, a2
d−1

). In order to decode a
code word (a, b, c) ∈ (F2d)3, we compute ab+ bc+ ac. (The normal encoding with would be

(a, a, a) and the decoding (ab+ ac+ bc)2
d−1

, but we prefer to incorporate the power 2d−1 in
the encoding in order to make the homomorphic part more efficient.)

Proposition 1 ([20]). LPN− C (resp. RLPN− C, MLPN− C) is semantically secure as soon
as the corresponding LPN (resp. RLPN, MLPN) problem is hard.

Proof. While the LPN case is proven in [20], the RLPN and MLPN cases follow similarly from
the RLPN and MLPN assumptions. Furthermore, one can notice that as soon that the LPN
(or RLPN or MLPN) problem for several secrets is considered to be hard, as we said via a
hybrid argument, the ciphertext of our scheme consists in some value added to some sample
from this distribution, which is indistinguishable from uniform by assumption, and thus, the
ciphertext is indistinguishable from uniform. ut
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Variant 1. As it stands, if we do not bound the number of errors sent along with a message,
this scheme will produce decryption failures. They will happen when the Hamming weight
of the noise vector e is greater than the correction capacity of the error-correcting code.
We study the probability of decryption failures and we can choose the noise parameter η
so that this probability is very low. However, in this case, more efficient attacks than BKW
algorithm O(2k/ log(k/−log(1−2η))) can be used to recover the secret in time O(k3/(1− η)k).
To thwart attacks, we will increase their complexity using delinearization steps described
later.

Variant 2. A way to prevent decryption failures is to test the Hamming weight of the noise
vector before using it. If it is too large, the sender draws a new noise vector. This implies a
longer encryption running time, but it is only on the client side and not in the homomorphic
part (and in practice, we choose our parameters so that this time remains reasonable).
However, such a modification gives a structure to the noise and we cannot reduce the security
of the scheme to the one of LPN anymore. It makes the scheme vulnerable to the Arora-Ge
attack, and we will study the security in the following section.

An important point is the choice of the error-correcting code used in the scheme. In our
context, we would like a code with shallow decoding circuit, and indeed, codes with shallow
decoding circuits are quite rare. For example, linear codes, which have really simple encoding
circuits, have complicated decoding circuits. We would like to use a 3-repetition code, which
has decoding depth 1. We will keep using such a code in practice as it leads to very efficient
homomorphic performance, but the particular structure given to the noise requires a careful
analysis of the security, that we will do in the following section. Consequently, in order to
also thwart this attack, the delinearization steps can be useful.

Delinearization steps. In order to counter the Arora-Ge attack, we choose to add some noise
on our values after computing the scalar product. In practice, the ciphertext we send consists
of (a,E(x)⊕F (a.S)⊕ e) where F is some function involving enough layers of multiplication
so that the Arora-Ge attack does not work. Of course, this step increases the parameters
we have to choose for homomorphically evaluating our scheme, however, a few steps (3 in
order to have a sufficient security parameter) are needed in order to prevent the attacks. We
admit that such techniques are far away from provable security and come from symmetric
cryptography since F is a kind of cheap non-linear operation. However, contrary to the
symmetric setting, here the adversary cannot control the inputs to this function and many
well-known chosen plaintext attacks are then prohibited and only known plaintext attacks
need to be studied. It is easy to see how to adapt the decryption process.

The function F we choose works as follows: on a vector V , it consecutively applies several
transformations Ti, for i ≤ d, such that [Ti(V )]j = Vj + Vxij

· Vyij , where the set of indices
xij and yij is chosen so that monomials do not cancel. The degree of F in the inputs is
2d. We estimated the number of applications of such transformations needed in order to
counteract the most efficient variant of the Arora-Ge attack and for n = 512, two steps seem
reasonable.

Even though, our scheme has a security proof, the parameters we choose do not allow us to
use the reduction. Indeed, we pick either a structured noise (and Arora-Ge algorithms must
be taken into account) or a very small noise to reduce the decryption failure. Consequently,
the delinearization steps we add increase the complexity of these attacks and a thorough
security analysis is presented in the next subsection.

4.2 Cryptanalysis of MLPN− C

In this section, we study the security of our schemes against different attacks. We have to
do this analysis for two main reasons. First, even if our schemes are lattice-based and their
security can be reduced to some hard problems, we have to look at the most efficient attacks
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which are known in order to determine concrete parameters and [17] is needed for LWR.
Second, we saw that in our scheme based on LPN, handling decryption failures precludes any
reduction and creates vulnerabilities, so we have to look at the different possible attacks.

In what follows, we assume that the code we choose for our schemes based on LPN is a
3-repetition code. This choice is justified by the performance of our homomorphic evaluation.

Arora-Ge attack against Variant 2. The Arora-Ge attack consists in finding polynomials
in the messages which vanishes on the secret key and then to solve the system of equations
we get to determine the key. If we want to avoid decryption failures, we will require to have
error vectors with at most t positive terms, where t is the correction capacity of the code,
and thus any products of t + 1 variables in the yi − 〈a, Si〉 − [E(x)]i will vanish. From [6],
we get that the complexity of such an attack is poly(nt+1). The performance of the attack
can be improved using Gröbner basis [2]. For a system of m equations of degree d over n
variables, one defines what is called a “degree of regularity” D, and the complexity becomes
O(
(
k+D
k

)ω
), where ω is the constant of the linear algebra.

Given the complexity of the attack, a simple countermeasure would be to pick a code
with higher correcting capacity. However, finding a code with higher capacity and which is
easy to evaluate homomorphically proved difficult. In order to prevent this attack, we prefer
to use delinearization steps at the end.

Arora-Ge Attack against Variant 1. If we consider that controlling the error during the
encryption leads to security holes, one could instead try to diminish the ratio of decryption
failures. As we showed, decryption failures when the Hamming weight of the noise vector
is greater than the correction capacity of the code. In other words, we can either decrease
the ratio of error or increase the minimal distance of the code. We reckoned that modifying
the code would worsen our homomorphic performance. On the other hand, we thought that
the delinearization steps, introduced to counter the Arora-Ge attack, increased the security
against BKW and gave some room for improvement on the error side. BKW works over
equations which are linear in the secret variables, but the delinearization steps increase the
degree of each term. Thus, in order to work on linear terms, one will have first to introduce
new variables for each monomial, leading to an increase of the number of variables and a
higher global complexity. Thus, instead of working on vectors of length k, BKW would work

on vectors of size roughly k2
d

, where d is the number of delinearization step.
Now we will study the following attack, which is similar to Arora-Ge:

– Collect m equations (yi − F (〈a, Si〉) − [E(x)]i) = 0 and try to solve the corresponding
system;

– In case of failure, restart.

The first step fails if and only if one of the errors used to generate the values yi is not
null. Let η be the probability that an error is not null. Then, the probability that the first
step works is (1 − η)m(≈ e−ηm) and the number of repetitions is (1 − η)−m(≈ eηm). Now,
in order to solve the system, the most efficient method is to use Gröbner basis. From [8], we

have that the complexity of such a computation is O(
(
k+D
k

)ω
), where D is called degree of

regularity of the system and depends on m, k and d the degree of the equations we have in
our system. So, for fixed values of m, k and d, we can determine what probability η we need
in our scheme for x bits of security: it satisfies eηm

(
k+D
D

)ω
= 2x.

For d = 22 and k = 80 with a large field, the degree of regularity 5 is reached for

m ≈ 390000, and thus we get η = log(280/
(
85
5

)2
)/(390 · 103) ≈ 6 · 10−5, which gives a

decryption failure every 40 MB. For d = 22 and k = 512, the degree of regularity 5 is

reached for m ≈ 560 · 106, and thus we get η = log(280/
(
517
5

)2
)/(560 · 106) ≈ 4 · 10−9,

which gives very few decryption failures (less than one every 1016 bits since when using a
3-repetition code, the error probability is η2).
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Linear Cryptanalysis. We need to assess the resistance of our scheme against linear
cryptanalysis since it is the most efficient known-plaintext attack. The delinearization steps
make the bias constant for this attack, however since the size of the LPN problem is very
large, the problem the adversary tries to solve is a LPN problem and we can estimate its
complexity. One delinearization step is the following non-linear operation (a, b, c) 7→ a + bc
where a, b, c are bits. We can assume that each bit a, b and c is uniform under the LPN
assumption and then, the best linear approximation is a with bias 1/4. For two such steps,

if the inputs are independent, the bias would be around (1/4)2
1

= 2−4. Using the most
efficient algorithm to solve this LPN problem [22], we can estimate that the complexity is
at least 280 if n = 512 (it would be 2−80 even if the bias was 1/8).

On a field Fq, the bias is 1/q−1/q2 on 0 so for a large field, the noise is quickly negligible.

4.3 An encryption scheme based on LWR

We introduce a symmetric encryption scheme whose security can be reduced to the hardness
of the LWE problem. We present the more general form MLWR− SYM, but we can similarly
define LWR− SYM and RLWR− SYM.

Definition 12 (LWR− SYM). Let k and n be polynomials in λ. The symmetric encryption
scheme LWR− SYM is defined in the following way:

– Gen(1λ): output S ← Zk×nq ;

– EncS(x): output (a, x+ ba.Sep), where a← Zkq ;
– DecS(a, y): output y − ba.Sep.

For a message of size n over Zp, this scheme produces a ciphertext consisting of a random
vector of length k over Zq and a vector of length n of Zp. Thus, the expansion factor is

1 + log q
log p

k
n . Now, for the same reasons as for LPN− C, this expansion factor can basically

be considered as 1. The decryption circuit has depth one plus the depth of the rounding
function. When using the floor function and if q and p are power of two, then the rounding
consists in dropping the least significant bits of the result.

As for LPN, we introduce its ring and module versions.

Definition 13 (RLWR− SYM). Let k and n be polynomials in λ. Let consider R as in RLWR,
with underlying polynomial P of degree k. The symmetric encryption scheme RLWR− SYM is
defined in the following way:

– Gen(1λ): output S ← Rq;
– EncS(x): output (a, x+ ba.Sep), where a← Rq;
– DecS(a, y): output (y − ba.Sep).

Definition 14 (MLWR− SYM). Let d, k and n be polynomials in λ. Let consider R, with un-
derlying polynomial P of degree d. The symmetric encryption scheme MLWR− SYM is defined
in the following way:

– Gen(1λ): output S ← Rkq ;

– EncS(x): output (a, x+ ba.Sep), where a← Rkq ;
– DecS(a, y): output (y − ba.Sep).

For a message of size n over Zp, this scheme produces a ciphertext consisting of a random
vector of length k over Zq and a vector of length n of Zp. Thus, the expansion factor is

1 + log q
log p

k
n . Now, for the same reasons as for LPN− C, this expansion factor can basically

be considered as 1. The decryption circuit has depth one plus the depth of the rounding
function. When using the floor function and if q and p are power of two, then the rounding
consists in dropping the least significant bits of the result. The most efficient FHE-friendly
encryption scheme works in only adding the plaintext on the log p most significant bits of
ba.Sep to avoid the costly ExtractDigits homomorphic function and the returned plaintext
contains noise.
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Proposition 2. LWR− SYM (resp. RLWR− SYM, MLWR− SYM) is semantically secure as soon
as the corresponding LWR (resp. RLWR, MLWR) problem is hard.

Proof. By the LWR assumption, (a, ba.Sep) is produced according to a distribution which
is indistinguishable from the uniform distribution. Thus, adding the plaintext to the second
term still produces some couple which is indistinguishable from uniform. The argument holds
for RLWR and MLWR. ut

4.4 An encryption scheme based on LWE

We can adapt LWR− SYM so that its security proof relies directly on the LWE assumption.
This new scheme will basically be the same as the previous one, except that the vector a
will be chosen according to some biased distribution DS . The distribution DS we will use is
defined on Znq and depends on some matrix S ∈ Zk×nq and a distribution χ.

We will quickly present it in the case where k = 1. It verifies the property that Pr[Ds = a]
is proportional to

Pr

[∣∣∣⌊p
q
.(〈a, s〉+ e)

⌉
− p

q
.(〈a, s〉+ e)

∣∣∣ < 1

4

]
,

where e ← χ and 〈a, s〉+ e means that 〈a, s〉 + e is interpreted as an element of Z. This
basically means that we want the value (p/q).(〈a, s〉+ e) to be close to its rounding for our
samples a. One can efficiently sample according to this distribution Ds: sample a uniformly,
and output it if and only if, when sampling e according to χ, the value (p/q).(〈a, s〉+ e) is at
distance less than 1/4 from its rounding. Since the distribution of 〈a, s〉+e is indistinguishable
from uniform, the probability that a vector a gets rejected is (around) 1/2. To extend this
distribution to a matrix S, we will take a distance of 1/2− 1/4n instead of 1/4.

Definition 15 (LWE− SYM). Let k and n be polynomials in λ. The symmetric encryption
scheme LWE− SYM is defined in the following way:

– Gen(1λ): output S ← Zk×nq ;
– EncS(x): output (a, x+ ba.Sep), where a← DS;
– DecS(a, y): output y − ba.Sep.

Our scheme relying on RLWR and MLWR can also be adapted to schemes called RLWE− SYM

and MLWE− SYM in a similar way, that we do not explicit here. We now show that the secu-
rity of LWE− SYM (resp. RLWE− SYM, MLWE− SYM) directly reduces to the LWE (resp. RLWE,
MLWE) hardness assumption. Our reduction is better than previous ones in the case of one
secret. We introduce the problem LWRD (resp. RLWRD, MLWRD) as the same problem as
LWR (resp. RLWR, MLWR) except that a is drawn according to the distribution D. To choose
secure parameters for LWR, we picked k = 128 and p <

√
q according to [17].

Proposition 3. LWE− SYM (resp. RLWE− SYM, MLWE− SYM) is semantically secure as soon
as the corresponding LWE (resp. RLWE, MLWE) problem is hard.

Proof. We only prove the standard version, the two other versions being very similar. We
will prove our statement by reducing LWRD to LWE for one secret first, and then explain how
to extend it to several secrets. Since LWE− SYM basically consists in adding the plaintext to
samples from LWRD, it will prove that our ciphertexts are indistinguishable from uniform.

Consider now an adversary which gets samples from a LWE distribution and has access
to an oracle for LWRD with advantage ε. We explicit how it can solve LWE. Given a sample
(a, b), the adversary checks whether

∣∣b(p/q).be − (p/q).b
∣∣ < 1/4, and rejects if it is not the

case. It collects m samples, and gives them to the LWRD oracle. Clearly, the set of vectors
a which are collected is drawn according to D. Since the probability that a vector a gets
rejected can be bounded by a constant, the number of LWE samples needed is a constant
times m with high probability.
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Now, a sample given to the LWRD oracle is a true LWRD sample if and only bbep =

b〈a, s〉ep, where b = 〈a, s〉+ e. If it is not the case, we have
∣∣bbep− (p/q).(〈a, s〉)

∣∣ > 1/2, and

since all samples satisfy
∣∣bbep − (p/q).b

∣∣ < 1/4, we get that (p/q).e > 1/4. But, assuming
that χ is a Gaussian distribution with standard deviation σ, as in LWE, we have that
Pr[(p/q).e > 1/4] ≤ exp(−π(q/4pσ)2). Thus, by taking q/p > 4σ

√
log(2m/ε), we get that

the probability that a sample for our oracle is wrong is less than ε/2m. Thus, the probability
that all the samples are good is at least (1 − ε/2m)m > 1 − ε/2 (by the union bound).
Therefore, LWE is solved with advantage ε− ε/2.

Now, in order to extend to a matrix S containing n secret vectors, we assume that the
error is a bit smaller, chosen according to a Gaussian with standard deviation σ′ = σ/n. We
will check whether samples (a, b) verify

∣∣b(p/q).bie − (p/q).bi
∣∣ < 1/2 − 1/4n for all i ≤ n,

which happens with probability (1 − 1/2n)n > e−
1
2 . Then, any wrong sample will verify

that (p/q).ei > 1/4n for some i and we have Pr[(p/q).ei > 1/4n] ≤ exp(−π(q/4npσ′)2) =
exp(−π(q/4pσ)2). Then, we get again that the probability that a sample for our oracle is
wrong is less than ε/2m, and the result follows similarly. ut

Since σ is usually chosen to be at least
√
k in LWE, our modulus-to-error ratio q/p

verifies q/p > O(n
√
k logm), which is an improvement compared to previous reductions

which depend on m rather than logm.

The schemes LWR− SYM and LWE− SYM are similar, except that LWE− SYM involves some
checking when generating vectors a. Thus, LWE− SYM has exactly the same efficiency as
LWR− SYM for the homomorphic part. The only difference of performance lies in the sym-
metric encryption, because the generation of the vectors a is a constant factor longer. Thus,
we only present the implementation of LWR− SYM, because we are only interested in the
homomorphic part.

To conclude the presentation of our schemes, we sum up the depth of the decryption
circuits in the table 4.4. We count a depth of 0.5 for a multiplication by a constant, con-
sistently with [19]. Our schemes based on LPN require a scalar product with a constant
and then decoding. In practice, we will use a 3-repetition code (depth 1), and control the
error, requiring 2 additional steps of multiplications, which gives a total depth of 4. For our
schemes based on LWR or LWE, there is again a scalar product, followed by some extraction
step, which returns the most significant bits of the values.

Scheme Depth

LPN-C 0.5+decoding depth
LWR-SYM 0.5+extraction step

Table 1. Depths of our schemes

5 Implementing in HElib

HElib is a software library that implements homomorphic encryption. This library is written
in C++ and uses the NTL mathematical library. It is based on the BGV FHE scheme
introduced by Brakerski, Gentry and Vaikuntanathan in [9].

5.1 Structure of ciphertexts

We describe here the structure of ciphertexts in BGV and HElib, necessary to under-
stand the implementation. The BGV ring-LWE-based scheme is defined over a ring R =
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Z[X]/(φm(X)), where φm(X) is the m-th cyclotomic polynomial. For an arbitrary integer
modulus N , we denote the ring RN = R/NR.

As implemented in HElib, the native plaintext space of the BGV cryptosystem is Rpr

for a prime power pr. The scheme is parametrized by a sequence of decreasing moduli
qL, . . . , q0, and an “i-th level ciphertext” in the scheme is a vector c ∈ (Rqi)

2. Secret keys
are elements s′ ∈ R with small coefficients, and we denote s = (1, s′) ∈ R2. A level-i
ciphertext c = (c0, c1) encrypts a plaintext element m ∈ Rpr with respect to s if we have
[〈s, c〉]qi = [c0 + s · c1]qi = m + pr · e in R, for small error term e. This error term grows
with homomorphic operations of the cryptosystem, and switching from qi+1 to qi is used to
decrease the error term. In practice, HElib provides a routine for finding the smallest value
of m allowing L levels of multiplication.

As observed by Smart and Vercauteren [34], an element of the native plaintext space
α ∈ Rpr can be viewed as encoding a vector of “plaintext slots” containing elements from
some smaller ring extension of Zpr via Chinese remaindering. In this way, a single arithmetic
operation on α corresponds to the same operation applied component-wise to all the slots.
The number and the size of these slots depends on the factorization of φm(X) modulo pr

(this size is the same for all slots). Addition and multiplications of ciphertexts act on the
slots of the corresponding plaintext in parallel.

5.2 Available functionalities

HElib provides the following ciphertext arithmetic functionalities:

– addition, subtraction and multiplication by another ciphertext,
– automorphisms (apply F (X)→ F (Xk)),
– addition and multiplication by a constant.

However, these functionalities do not have the same cost in time, as well as in noise.
Additions are fast compared to automorphisms or multiplications and operations with con-
stants are fast compared to operations with ciphertexts. Concerning the noise management,
multiplications are expensive compared to the other operations, except multiplication with
constants whose cost is roughly half the one of a multiplication with a ciphertext. Thus,
choices of implementation may have huge impact on the performance and the design of the
implementation has to be made specifically for a homomorphic application.

We also used the function ExtractDigits, which performs the extraction of the mod p digits
from a mod pr ciphertext, in our implementation of the LWR− SYM scheme. This function
has a quite long running time compared to the previously mentioned functionalities.

6 Implementation Description

We have implemented the homomorphic evaluation of the decryption of schemes LPN− C,
RLPN− C, MLPN− C, LWR− SYM and RLWR− SYM using the homomorphic library HElib [23,24],
which has already been used in several works about homomorphic evaluations of symmetric
schemes [19,28,3].

It is important to understand that moving values which are in a HE ciphertext is costly.
Thus, when one wants to do operations on some values, it is better to put them into different
HE ciphertexts. He can then pack several similar values in parallel in each ciphertext, and
do several times the same computation at once.

For each version of the schemes, we made a bit-sliced implementation, where each digit of
the plaintext, ciphertext and key are in different HE ciphertexts. The nature of HElib cipher-
texts allows us then to put digits in “slots” and perform several computations in parallel.
We also made a “fully-packed” implementation: each slot contains a fixed number of values
(ϕ(m)/nslots), number which depends on the parameters. This way, many computations
can be done in parallel, leading to a very low running time per bit.
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In more details, we had to put the bits of the vector a and of the columns of the matrix
S in different HE ciphertexts to compute the scalar product efficiently (and the same for
polynomials a and S in ring versions). But packing allowed us to put one row of S in each
HE ciphertext. Basically, there is a direct relation between packing and the fact that we can
use the same vector a for several secrets in learning problems: we highly use this fact when
parallelizing our computations.

In the bit-sliced version, each HE ciphertext contains a row of S, and the resulting
symmetric ciphertext y is contained in only one HE ciphertext. In the fully-packed version,
several vectors a are generated and encoded together in HE ciphertexts, one by slot, while
each row of the symmetric key is encoded in only one slot. Again, the symmetric ciphertext
y is contained in one HE ciphertext. Finally, ring versions are quite similar, except that the
resulting ciphertext y is bigger and encoded in several HE ciphertexts.

One important optimization is that the symmetric ciphertext does not have to be en-
crypted as a HE ciphertext, as explained in subsection 3.2. One can just consider it as a
constant. This approach reduces the computation time, since multiplication by a constant
is less costly than a multiplication between two ciphertexts.

6.1 Implementation of LPN− C

In our implementation of LPN− C, we choose k = 512 and η = 10−7, as suggested in subsec-
tion 4.2, as concrete parameters, in order to get 80 bits of security. The blocksize, i.e. the
number of secrets we can use for a single random vector a, depends on the HElib parame-
ters. In the bit-sliced version, the block size is bounded by the number of slots, and in the
fully-packed version, by the size of the slots.

As explained in subsection 4.2, we used a 3-repetition code, preceded by three iterations of
the delinearization steps. These transformations basically consist in multiplying ciphertexts
between themself. We generated the indexes x and y used in the transformations randomly
(this way, the degree of the values we get is high enough with high probability).

Bit-sliced. As we said, as soon as we want to combine bits together homomorphically, it is
more efficient to encrypt them in different HE ciphertexts. Hence, since we basically want
to compute a scalar product, we will encrypt each bit of the involved vectors in different
HE ciphertexts. So, we have k ciphertexts to represent a and k ciphertexts to represent S.
The parallel nature of HElib allows us to encrypt all the columns of S at the same time:
each slot will correspond to a column (and will contain one bit). Thus, when computing the
scalar product, we will get only one HE ciphertext containing the result, and each slot of
this ciphertext will contain one computed scalar product.

Then, we want to decode a 3-repetition code on 3 repetitions of the LPN− C encryption.
We have 3 HE ciphertexts and we compute a majority circuit on them. For each slot, it
basically consists in computing the operation c1c2 + c1c3 + c2c3. At the end, we get only one
HE ciphertext, which contains one bit per slot.

Fully-packed. In the fully-packed version, we take advantage of the fact that each slot of our
HE ciphertexts contains elements in F2r . Thus, instead of having only one bit in each slot,
we can put as much as r bits into them. However, the main difficulty is that the values in the
slots are considered as polynomials and operations on these values are not made bit-by-bit.
There, we use the fact that LPN can be extended to several secrets.

So, we again have k ciphertexts for a and S. But now, each slot of a will contain a bit
and each slot of S will contain r bits, where r is the size of the slots, or in other words,
the degree of the underlying polynomials. Then, each slot of a is interpreted as a constant
polynomial and the multiplication will then correspond to a bit-by-bit multiplication. The
result of the scalar product is contained in one HE ciphertext and is also fully-packed, i.e.
each slot contains r bits.
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However, the computation of the majority circuit on fully-packed HE ciphertexts does
not work similarly, because multiplications will not be bit-by-bit. Thus, we use some un-
packing technique described in [24]. In a nutshell, it consists in going through a normal
basis representation and to consider the applications which give back a coefficient from a
polynomial as linear functions. There, any of these linear functions is the composition of one
of these linear function with a Frobenius automorphism. Since computing these Frobenius
automorphisms is more efficient than directly applying all the linear functions, we improved
a bit our performance.

This technique gives us back HE ciphertexts encrypted with only one bit by slot, so that
we can compute our majority circuit on them. However, unpacking has a high cost, making
the fully-packed version not so efficient.

6.2 Implementation of LWR− SYM

The implementation is very similar to the one of LPN− C, except that no majority circuit is
needed. We could have implemented the schemes with binary circuits, representing values in
Zq bit by bit, but we choose to use the fact that HElib can handle plaintext space modulo
mr: in our case, m = 2. Thus, the values modulo p are encoded directly modulo p and not bit
by bit. The trickiest part is the rounding operation: since the values contained in the slots
are already in Zq, we have to extract the most significant bits of all the values contained in
the ciphertexts.

Fortunately, HElib already contains such a functionality, called ExtractDigits, but it has
a huge cost. The function ExtractDigits returns r ciphertexts, where the i-th ciphertext
contains the i-th digit of the integers contained in each slot of the input. The way this
function works is described in [24].

In our implementation of LWR− SYM, we choose k = 128. Based on parameters suggested
in [17], we always took p <

√
q. If we do not consider the extraction procedure, then best

performances are given for the biggest values of q (which depend on the HElib parameters,
a bit less than 232 in general). But the extraction procedure highly depends on q, and we
give the best performance for smallest values of q.

6.3 Implementation of ring operations

We implemented polynomial multiplications in two different ways: in a naive way, doing n2

multiplications for two polynomials of degree n, and via a Fourier transform, leading to a
O(n log n) number of multiplications.

Naive implementation The naive implementation of the ring version is quite similar to the
standard version. a and S are still contained in k ciphertexts. The main difference is that,
when multiplying a and S, the result is contained in k ciphertexts again. Thus, even if
the ring version allows to encrypt more bits at the same time, the fact that the product
a.S is encrypted in k ciphertexts leads to a high complexity. Furthermore, the number
of multiplications is still n per bit, so the amortized running time is not really improved
compared to the standard version.

Fourier tranform We present in Appendix A the Schönhage algorithm [33] we used in order to
compute the multiplication of polynomials in fields of characteristic 2 via Fourier transform
(for more details, see [30]).

The implementation is similar to the one of the naive algorithm: we implemented stan-
dard and ring versions. The main interest is that the number of multiplications for the
multiplication via DFT is asymptotically smaller. However, with the concrete parameters
we choose, the gain from using Fourier transforms is far from clear, compared to the naive
multiplication of polynomials. This is not surprising, as Schönhage algorithm leads to a
higher number of homomorphic multiplications with the parameters we choose, in spite of
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a better asymptotic complexity. For example, for RLWR with polynomial X128 + 1, instead
of 128*128=16384 multiplications in the usual method, we get 27*54*54=78732 multiplica-
tions, because we make 27 “small products”. In the case of RLPN, instead of 512*512=262144
multiplications, we get 81*54*54=236196 multiplications, which should be a bit more effi-
cient. However, the massive use of homomorphic additions seems to compensate for this gain.
We believe that the performance could be improved via Fourier transform, for example by
computing small products also via Fourier transform, recursively.

6.4 Implementation of the module version

We implemented the module version, i.e. MLPN− C scheme. The idea of using the module
version was indeed an answer to the fact that the majority circuit does not work in the
fully-packed version. In the module version, since the multiplications are seen as polynomial
multiplications, the operations can be made on fully-packed ciphertexts.

More precisely, d is fixed by the size of the slots. Vectors a and S are encrypted in k
ciphertexts, where each slot is full. Then, the result of a scalar product is a fully-packed
ciphertext. The majority circuit is directly evaluated on fully-packed ciphertexts.

We remark that our operations are operated with underlying polynomials fixed by HElib.
However, since these polynomials are irreducible modulo 2 and there is a homomorphism
between all fields GF (2d), we can pick any of these polynomials, while preserving the secu-
rity.

7 Performance Analysis

In this section, we provide the performance we got from our implementation and compare to
the literature. We run our test on a 4 years-old Mac, with Intel Core i7 running at 2.4GHz.

7.1 HElib parameters and running times

We start by recalling the parameters that we used in HElib. These parameters follow from the
number of levels needed by the computation and are directly computed by HElib routines,
except L, that we have to provide, but we did several tests to find the smallest accepted
value (the number of levels needed by HElib can differ from the theoretical one). They fix
the number of slots and values in each slot that HE ciphertexts contain.

L m ϕ(m) nslots

LPN 5 4859 4704 168
LWR 3 4051 4050 81

LWR+extract 18 15709 15004 682

Table 2. HElib parameters: L=number of levels, m=index of the underlying cyclotomic polynomial,
ϕ(m)=dimension of the underlying ring, nslots=number of slots by ciphertext

We see in Table 2 that there are three kind of sets of parameters: those for LWR which
are very low, those for LPN which are a bit higher, and those used for LWR with extraction,
which are a lot higher. Indeed, the two steps of multiplications we do in LPN to add noise do
not require bigger HElib parameters. Our schemes are a lot more flexible than other schemes
from the literature, in the sense that they require drastically lower parameters.

Table 3 gives a summary of the performance of the different schemes we implemented
in HElib. We see that the fully-packed version of the LWR scheme is the most efficient.
However, one can consider that the form of the output is not processed enough, and this is
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Implementations total running time (s) time (ms) per bit

LPN− C 28 2.2

LPN− C fully-packed 24* 5*

RLPN− C 1300 15

RLPN− C fully-packed 14500* 6*

MLPN− C 53 0.15
LWR− SYM 0.07 0.1 (8/25)

LWR− SYM + extraction 7.3 5.3 (2/8)
LWR− SYM fully-packed 0.05 0.0008 (16/32)

LWR− SYM fully-packed + extraction 160 5.3 (2/8)
RLWR− SYM 28 0.3 (8/22)

RLWR− SYM + extraction 1100 6.3(2/8)
RLWR− SYM fully-packed 31 0.0075 (8/22)

* Running time without additional multiplication steps

Table 3. Total running time and running time by encoded bit of the homomorphic evaluation of
the decryption circuit of our schemes (in parenthesis, for LWR, values of log p and log q)

why we also provide the running time of the extracted version of the LWR scheme, achieving
a total processing of the data.

The schemes based on LWR can have running time down to less than a microsecond per
bit. Their total running time is less than a second for standard version and around 25 seconds
for ring versions. However, when used with an additional extraction phase, the running time
is of the order of few milliseconds per bit and few seconds in total. The LPN-based have
running times similar to the one of LWR with extraction. But the best performance is
achieved by MLPN− C, with around 0.15 millisecond per bit and less than a minute in total
as running time.

For completeness, we also provide in Table 4 the setting performance we got. In the
context of the application we presented in subsection 3.2, there is first a (public and offline)
phase where the parameters are fixed and the key is homomorphically encrypted. Then,
there is a second (online) phase performed by the cloud when receiving the messages, and
consisting in the evaluation of the decryption circuit. We do not consider here client side
operations, since they are not homomorphic (and thus a lot faster).

Implementations HElib setting (s) Key encryption (s)

LPN− C 0.8 9
LPN− C fully-packed 0.7 10

RLPN− C 0.8 10
RLPN− C fully-packed 0.7 12

MLPN− C 0.6 0.4
LWR− SYM 4.5 2

LWR + extraction 32 18
LWR− SYM fully-packed 5.5 1

LWR− SYM fully-packed + extraction 28 19
RLWR− SYM 5.1 2

RLWR + extraction 32 18
RLWR− SYM fully-packed 5 4

RLWR− SYM fully-packed + extraction 28 19

Table 4. Running time of the offline part of the protocol: HElib settings and homomorphic encryp-
tion of the symmetric key
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Performance of these steps are quite rare in the literature. [19] announces a setting time
of around 1.5 minutes. Our setting time is a lot smaller, since our parameters are. The less
efficient step in our approach is the homomorphic encryption of the symmetric key, which
is usually quite big for lattices, but this step can be done offline, before sending any data.
Finally, as we already noticed, the random vector a does not have to be considered as a part
of the symmetric ciphertext and does not have to be homomorphically encrypted, which
leads to very low online running time.

7.2 Comparison to other works

We give in Table 5 a comparison of the performance of our different schemes with the
literature. The symmetric schemes we compare with are AES [19] and LowMC [3]. We chose
to compare with the results of [19,3] because they are the most efficient so far and also
implemented in HElib. We do not include the performance of [11] since the ciphers are very
slow. In addition, both performance are really recent: AES performance has been updated in
2015, and LowMC has been presented in 2015. We chose a homomorphic encryption security
level of 80 for compatibility with these works.

While both encryption and decryption were performed for AES, only encryption perfor-
mance were given concerning LowMC (decryption performance might be slower, as explained
in [19]). However, evaluating encryption could also be meaningful, depending on the mode
of operation used (for example in counter mode). We believe that the performance of the en-
cryption of our schemes should be very similar to the one of decryption, since the operations
which are computed are basically the same.

LowMC had so far achieved the best performance for our problem (around 3 millisec-
onds per bit). However, it is a very recent block cipher, whose security has already been
questioned [13,14]. We believe that the fact that our schemes come with a proof is another
advantage compared to usual block ciphers.

total running time (s) time (ms) per bit

AES− 128 encryption[19] 245 16
AES− 128 decryption[19] 394 26

LowMC [3] 506 3.3
LPN− C 28 2.2
MLPN − C 53 0.15

LWR− SYM+extract 7.3 5.3

LWR− SYM fp 0.05 0.0008

Table 5. Comparison of our performance with the literature

One can see that our schemes are a lot more flexible: the total running time of a ho-
momorphic evaluation is roughly one order of magnitude faster. The parameters required
by our scheme are very small, because their multiplicative depth is very small. Further-
more, their good performance can extend to bigger parameters: since increasing the size of
the parameters allows to pack more bits into the ciphertext, the per bit running time does
not grow very fast. As en example, evaluating LPN− C with a maximum given level of 18
in HElib (which is bigger than for example, the bound used for LowMC) instead of 5, i.e.
leaving 13 levels of multiplications before bootstrapping gets necessary, leads to a per bite
running time of 5.3ms. Thus, we considered that measuring performance with the smallest
parameters allowed by our schemes was relevant.

The amortized cost per bit in our scheme based on LWR is extremely low, four orders
of magnitude lower than the best cost achieved so far. However, one can consider that the
extraction of the bits should be counted in the evaluation time, as computations on the
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ciphertext after the evaluation would often need to do this step. We see that even with the
additional step of extraction, our scheme is still competitive with the best schemes in the
literature. Still, as the extraction step could be included in the bootstrapping that most
real-world application would make after the homomorphic evaluation, we consider that our
timings without extraction are meaningful.

Finally, as we said, we would suggest to use the scheme MLPN− C, which has the short-
est amortized running time, has reasonable total running time and returns ciphertexts on
which we can directly compute. These results clearly show the interest of using lattice-based
symmetric schemes in order to get efficient homomorphic evaluation.

8 Conclusion

Designing FHE-friendly symmetric encryption scheme is an interesting question when trying
to make homomorphic encryption practical. Our work provides a new approach, based on
lattices, which appears to be the most efficient so far.

Our experiments show that the schemes we presented are competitive with previous
propositions. Contrary to other works, which consider block ciphers or stream ciphers, our
schemes are provably secure, under some hardness hypotheses. In addition, they are a lot
more flexible, in the sense that they require smaller parameters and thus, have drastically
lower total running time. We have also shown that encryption schemes with arbitrary shallow
decryption circuits are possible, since our LWR scheme has arguably depth zero.

Nonetheless, there is still room for improvement. First, the way the schemes have been
implemented in HElib might be optimized, especially the Fourier transform used in the
ring versions of the schemes. Parallel computation, which seems a natural assumption for a
cloud service, would also lead to drastically faster performance, since the main computation
contained in our schemes is a scalar product. Furthermore, one could also design a FHE
scheme more “LWR-friendly”, which would in particular allow an easy extraction of the
most significant bits, which is the main bottleneck to the performance of our LWR scheme
in HElib.

References

1. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak pseudorandom
functions in AC0◦MOD2. In: Innovations in Theoretical Computer Science, ITCS’14, Princeton,
NJ, USA, January 12-14, 2014. (2014) 251–260

2. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE
problems. IACR Cryptology ePrint Archive 2014 (2014) 1018

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and
FHE. In Oswald, E., Fischlin, M., eds.: EUROCRYPT 2015, Part I. Volume 9056 of LNCS.,
Springer, Heidelberg (April 2015) 430–454

4. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction,
properties and applications. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I. Volume
8042 of LNCS., Springer, Heidelberg (August 2013) 57–74

5. Applebaum, B.: Cryptographic hardness of random local functions - survey. Electronic Collo-
quium on Computational Complexity (ECCC) 22 (2015) 27

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In Aceto, L., Henzinger,
M., Sgall, J., eds.: ICALP 2011, Part I. Volume 6755 of LNCS., Springer, Heidelberg (July
2011) 403–415

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In Pointcheval, D.,
Johansson, T., eds.: EUROCRYPT 2012. Volume 7237 of LNCS., Springer, Heidelberg (April
2012) 719–737

8. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of gröbner basis computation of semi-
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A Polynomial multiplication in fields of characteristic 2 via
Fourier Transform

We briefly present here the Schönhage algorithm [33] we used in order to compute the
multiplication of polynomials in fields of characteristic 2 (for more details, see [30]). In the
case of LPN, we want to multiply two elements from Z2/(P (X)), where P is some polynomial
irreducible modulo 2. In the case of LWR, the elements are in Z2k/(X

2n + 1). In both cases,
we computed first the multiplication over Z2 and Z2k respectively, before performing the
reduction.

Let K be a field of characteristic 2. The usual algorithm for a Fourier transform cannot
work there since it requires to have roots of unity of large smooth order. We have to work
in an extension of the field, defined by a polynomial which will lead to such roots of unity.

The algorithm reduces the multiplication of two polynomials in K to the multiplication
of elements in AN = K[x]/(x2N + xN + 1), where x is a 3N -th primitive root of unity.
Furthermore, AN is interpreted as AN1

[Y ]/(Y 3N2 + 1), where AN1
= K[x]/(x2N1 +xN1 + 1)

and N = N1N2. The algorithm for multiplying a, b ∈ K[X] of degree n− 1 is as follows:

– Choose N a power of 3 such that N > n. Then pick N1 > N2, both powers of 3, such
that N = N1N2.

– Write

a =

N2−1∑
i=0

(N1−1∑
j=0

aiN1+jx
j

)
(xN1)i

and interpret it as a polynomial over AN1 . Do the same for b. Note that xN1/N2 is a
3N2-th root of unity.

– Do a DFT of length 3N2 over AN1
on a and b, using xN1/N2 as root of unity. Multipli-

cations by powers of x can be performed via additions and cyclic shifts.
– Multiply component-wisely the two vectors of length 3N2 (only 2N2 multiplications are

necessary is the optimized version).
– Do the inverse DFT.
– The j-th coefficient of the i-coefficient in BN1

is added in the (iN1 + j)-th coefficient of
the resulting polynomial.

This algorithm performs 3N2 multiplications in AN1
(2N2 in the optimized version),

because the DFT does not contain any multiplication. The optimized uses some relations
into the coefficients to recover a coefficient from two other ones, leading to a 2/3 factor of
improvement. The cost of a multiplication in AN1

is at most N2
1 (it is the cost of the naive

algorithm, but it could improved, for example by applying the Fourier transform recursively).
Thus the total cost is roughly 2(N/2)3.
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