JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

AntNest: Fully Non-interactive Secure Multi-party
Computation

Lijing Zhou, Licheng Wang*, Yiru Sun and Tianyi Ai

Abstract—In this paper, we focus on the research of non-
interactive secure multi-party computation (MPC). At first, we
propose a fully homomorphic non-interactive verifiable secret
sharing (FHNVSS) scheme. In this scheme, shareholders can
generate shares of any-degree polynomials of shared numbers
without interaction, and the dealer can verify the correctness of
shares sent by shareholders without interaction. We implemented
the FHNVSS scheme in Python with a detailed performance
evaluation. According to our tests, the performance of FHNVSS
is satisfactory. For instance, when the request is a 10-degree
polynomial of secret value, generating a response takes about
0.0017263 s; verifying a response takes about 0.1221394 s;
recovering a result takes about 0.0003862 s. Besides, we make an
extension on the FHNVSS scheme to obtain a fully non-interactive
secure multi-party computation, called AntNest. In the AntNest
scheme, distrustful players can jointly calculate a any-degree
negotiated function, the inputs of which are inputs of all players,
without interaction, and each player can verify the correctness of
responses sent by players without interaction. To the best of our
knowledge, it is the first work to realize that players can jointly
calculate any-degree function, the inputs of which are inputs of
all players, without interaction.

Index Terms—Secure multi-party computation, verifiable se-
cret sharing, non-interactive, full homomorphism.

I. INTRODUCTION

Ecure multi-party computation (MPC) [1] is a significant

technology, where distrustful players compute an agreed
function of their inputs in a secure way. Even if some
malicious players cheat, MPC can guarantee the correctness
of output as well as the privacy of players’ inputs.

There is a long-term problem that all existing information-
theoretic secure MPCs have large round and communica-
tion complexity [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13]. In these constructions, it is the case that
multiplication gates require communication to be processed
(while addition/linear gates usually do not). In CRYPTO 2016,
Damgard et al. [3] proposed that the number of rounds should

L. Zhou was with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Bei Jing
100876, P.R. China. E-mail: 379739494 @qq.com.

L. Wang was with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Bei Jing
100876, PR. China. Corresponding author. E-mail: wanglc2012@126.com.

Y. Sun was with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Bei Jing
100876, P.R. China.

T. Ai, Beijing University of Posts and Telecommunications, Bei Jing
100876, P.R. China.

(©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

be at least the (multiplicative) depth of the circuit, and the
communication complexity is O(ns) for a circuit of size s
(n and s are the number of participants and the number of
multiplication gates respectively).

Specifically, the issue of round and communication com-
plexity existed because all such protocols follow the same
typical “gate-by-gate” design pattern [3]: Players work through
an arithmetic (boolean) circuit on secretly shared inputs, such
that after they execute a sub-protocol that processes a gate, the
output of gate is represented as a new secret sharing among
these players. In particular, a Multiplication Gate Protocol
(MGP) basically takes random shares of two values a, b from
a field as input and random shares of ab as output.

In this paper, we mainly focus on non-interactive secure
MPC, where players can jointly calculate a any-degree nego-
tiated function, the inputs of which are inputs of all players,
without interaction.

A. Our Results

Our contributions are summarized as follows:

o We present a fully non-interactive verifiable secret shar-
ing (FHNVSS) scheme. In the scheme, shareholders
can generate shares of any-degree polynomial of shared
numbers without interaction, and the dealer can verify
the correctness of shares sent by shareholders. A security
analysis of FHNVSS scheme is presented.

o We present detailed performance evaluation of FHNVSS
scheme by deploying it on a Ubuntu 16.04 environment
laptop in Python. According to our tests, the performance
of FHNVSS is satisfactory. For instance, when the request
is a 10-degree polynomial of shared numbers, generating
a response takes about 0.0017263 s; verifying a response
takes about 0.1221394 s; recovering a result takes about
0.0003862 s.

o We propose a Fully Non-interactive Secure Multi-party
Computation, called AntNest. In this AntNest scheme,
distrustful players can jointly calculate an any-degree
negotiated function, the input of which are inputs of all
players, without interaction, they can verify correctness
of responses sent by other players without interaction. A
security analysis of AntNest is given.

B. Related Work

The round complexity and communication complexity of
secure MPC have been two fundamental issues in cryptogra-
phy. There are many studies about these two aspects. In this
subsection, we will present related work about our study at



first, then some comparisons between our previous paper [14]
and this paper will be presented.

Round complexity. The round complexity of an ordered
gate-by-gate protocol must be at least proportional to the
multiplicative depth of the circuit [5]. The work of constant-
round protocols for MPC was initially studied by Beaver et
al. [15]. Subsequently, a long sequence of works constructed
constant-round MPCs (e.g., 2-round [16], [13], [17], [4], 3-
round [18], 4-round [19], [5], [10], 5-round [20], [21], [6]
and 6-round [20]). In particular, in Eurocrypt 2004, Katz
and Ostrovsky [21] established the exact round complexity
of secure two-party computation with respect to blackbox
proofs of security. In CRYPTO 2015, Ostrovsky et al. [10]
provided a 4-round secure two-party computation protocol
based on any enhanced trapdoor permutation, and Ishai et
al. [13] obtained several results on the existence of 2-round
MPC protocols over secure point-to-point channels, without
broadcast or any additional setup. In Ecrypt 2017, Garg et al.
[6] proposed several 5-rounds protocols by assuming quasi-
polynomially-hard injective one-way functions (or 7 rounds
assuming standard polynomially-hard collision-resistant hash
functions). However, our scheme can solve any request of any-
degree polynomial of secret numbers in 1-round.

Communication complexity. Initially, Rabin et al. [22]
proposed that: To securely compute a multiplication of two
secretly shared elements from a finite field based on one
communication round, players have to exchange O(n?) field
elements since each of n players must perform Shamir’s secret
sharing as part of the protocol. After that, Cramer et al. [23]
further proposed a twist on Rabin’s idea that enables one-round
secure multiplication with just O(n) bandwidth in certain
settings, thus they reduced the communication complexity
from quadratic to linear. Recently, in CRYPTO 2016, Damgard
et al. [3] further presented that: In the honest majority setting,
as well as for dishonest majority with preprocessing, any
gate-by-gate protocol must communicate O(n) bits for every
multiplication gate, where n is the number of players. While,
servers (shareholders) of our scheme can generate responses
of any-degree polynomial of secret numbers without any
interaction.

Comparisons with [14]. Recently, in Ref.[14], we proposed
a secure multi-party computation scheme, where shareholders
can generate shares of two-degree polynomials of secret num-
bers without interaction. Temporarily, the secure MPC scheme
proposed in [14] is called Pre-Scheme, and it has the following
limitations:

e Servers (shareholders) can only generate shares of two-
degree polynomial of secret numbers. In other words,
servers cannot get any shares of k-degree (k > 2)
polynomial of secret numbers.

o Pre-Scheme used the pairing (pairing is an expensive
computation) to verify the correctness of responses (these
responses are shares of two-degree polynomial of secret
numbers) sent by servers.

e [14] did not include a complete security analysis of Pre-
Scheme.

Compared with the Pre-Scheme, improvements of AntNest are

as follows:

- Theoretically, distrustful players can jointly calculate any-
degree negotiated function, the input of which are inputs
of all players, without interaction.

- Each player can verify other players compute honestly.
In this verification process, AntNest does not use pairing
to verify responses of players, while Pre-Scheme used.

- We will present a complete security analysis of AntNest.
Moreover, this proof is also valid for the Pre-Scheme
[14].

Organization. The remainder of the paper is organized as
follows. An overview of FHNVSS and AntNest is shown in
Sec.II. Sec.III briefly presents preliminaries. We introduce the
FHNVSS scheme without verifiability and the verifiability of
FHNVSS in Sec.IV-A and Sec.IV-B, respectively. A detailed
performance evaluation is shown in Sec.V. A security analysis
of FHNVSS is presented in Sec.VI. Construction and security
analysis of AntNest are studied in Sec.VII. Finally, a short
conclusion is presented in Sect.VIIIL.

II. AN OVERVIEW OF FULLY HOMOMORPHIC
NON-INTERACTIVE VERIFIABLE SECRET SHARING AND
ANTNEST

In a fully homomorphic non-interactive verifiable secret
sharing (FHNVSS) scheme, components include a dealer and
a certain number of shareholders (servers). A (¢,n) FHNVSS
scheme works as follows:

e Step 1: The dealer generates n core-shares and a verifi-
cation key (VK). After that, he opens VK, then anyone
(including servers) can verify whether VK is correctly
computed by dealer. If VK is invalid, then the dealer has
to regenerate the core-shares and VK, else the participants
join in the next step.

o Step 2: The dealer secretly sends these n core-shares to n
servers respectively. After receiving a core-share, a server
can verify whether his core-share is valid by using VK.
If the server’s core-share is invalid, then he can ignore it
and ask dealer to resend a core-share to him.

o Step 3: The dealer encrypts secret numbers into encrypted
numbers, then he sends the encrypted numbers to servers.

e Step 4: When the dealer needs to get a result that is a
polynomial of secret numbers, he will send a query to n
servers.

e Step 5: According to the query sent by dealer, an active
server will independently generate a response with his
core-share (this process has no interaction with other
servers), then the server will send his response to dealer
securely.

o Step 6: After receiving responses, the dealer can verify
whether responses are correctly computed by correspond-
ing servers. These verifications do not need interaction
with other servers. If a response is invalid, then the
dealer can ignore this response or ask the corresponding
server to resend a response to him. Finally, the dealer
can recover the desired result if he can collect at least ¢
correct responses.

The FHNVSS scheme mainly has the following features:



o Full homomorphism. Servers can perform efficient ho-
momorphic additions and multiplications on encrypted
numbers without decrypting them.

o Confidentiality. Secret numbers shared by dealer are
always confidential as long as less than t servers are
malicious.

« Verifiability. Verification key, core-shares and responses
are verifiable.

— Verification key. When the verification key (VK) is
opened, anyone can verify its validity.

— Core-shares. When a server receives a core-share,
he can verify whether this core-share is correctly
computed by the dealer. Moreover, in this method,
the malicious dealer and incorrect core-shares can be
checked out.

— Responses. When the dealer gets a response sent
by a server, the dealer would verify whether this
response is correctly computed by the server. In this
way, malicious servers and incorrect responses can
be checked out.

By making an extension on the (¢,n) FHNVSS scheme,
t > 2, we obtain a (¢,n) AntNest scheme, where n players
can jointly calculate a negotiated function, the input of which
are numbers shared by all players. Each player independently
works as a dealer of (¢,n) FHNVSS scheme to share his inputs
among the n players, and he also works as a server of (¢,n)
FHNVSS scheme to jointly compute the negotiated function.
The work process of a (¢,) AntNest scheme is as follows:

o Step 1: Each player executes a (¢,n) FHNVSS scheme
independently. He generates n core-shares and a verifi-
cation key (VK). In these n core-shares, one core-share
belongs to this player, and other n — 1 will be sent to
other n — 1 players respectively in the next step. Each
player opens his VK. Anyone (including other players)
can verify whether the VK is correctly computed by
its generator. If a VK is invalid, its generator has to
regenerate his VK. Once all VKs are valid, all players
join in the next step.

o Step 2: Each player secretly sends his n — 1 core-
shares (except his own core-share) to other n — 1 servers
respectively. After receiving a core-share, each player can
verify whether this core-share is correctly computed by
the sender via sender’s VK. If a core-share is invalid, the
receiver can ignore it and request corresponding sender
to re-send it. Once all core-shares are valid, all players
join in the next step.

o Step 3: Each player encrypts his input into encrypted
numbers, then he broadcasts these encrypted numbers.

o Step 4: Players negotiate a function, which will be jointly
calculated by players. Inputs of the negotiated function
are inputs of all players.

o Step 5: According to the negotiated function, each player
can generate a response with his core-shares and encrypt-
ed numbers shared by players, then he broadcasts his
response.

o Step 6: After receiving a response, each player can verify
whether this response is correctly computed via this

sender’s VK. This verification process does not need
interaction. If a player receives an invalid response, then
he can ignore it or request the corresponding player to
re-send it.

o Once a player collects at least ¢ valid responses, he will
recover the correct result of negotiated function.

III. PRELIMINARIES

In this section, we hope to present basic cryptography
techniques of AntNest and the adversary model.

A. Shamir’s Secret Sharing

Alice wants to secretly share a secret value s with n
participants, and arbitrary ¢ of the n participants can recover
s, but less than ¢ participants cannot get anything. In order
do this, Alice needs to generate n shares of s, then secretly
sends the n shares to the n participants respectively. After that,
if someone can collect at least ¢ correct shares, then he can
recover the secret value s. This problem can be resolved by
Shamir’s (t,n) secret sharing (SSS) [24]. In this subsection,
we will present the working process of the SSS.

Firstly, Alice randomly samples a polynomial f(z) of
degree -1 from F,[z] (p is a big prime number) as the
following polynomial:

fl@)=a1z"™ a0 P4t agz+os,

where s is the secret value as well as ag,---
at—1 7é 0.

Secondly, let Py, Ps,...,P, be the n participants and ID);
(2 =1,2,...,n) denote P;’s address. Alice generates P;’s share
as follow:

yat—1 € F]»

Share; = f(ID;),

where i=1, 2, ..,n. Then, Alice secretly sends Shares,
Shares, ...,.Share, to the n participants, respectively.

Finally, if someone collects ¢ correct shares, then he can
use the lagrange interpolation to reconstruct the polynomial
f(x). Without loss of generality, let the ¢ shares be Share;,
Shares, ...,Share;. He can reconstruct the polynomial f(z)
as follow:

—1ID,
ZShaTel H ID—ID

J=1,j#1

Consequently, he can get s = f(0).

Addition homomorphism of SSS. SSS naturally has the
additional homomorphism. It means that the sum of shares
is the share of the sum of corresponding secrets. Moreover,
the threshold number is always immutable during this process
since the degree of the sum of shared polynomials is equal to
the degree of shared polynomials. Therefore, if a dealer can
collect threshold number of sum shares, he can reconstruct
the corresponding polynomial and then get the sum of secrets.
Consequently, SSS naturally has the additional homomorphis-
m.

Multiplication homomeorphism of SSS. Similarly, SSS
naturally also has the multiplicative homomorphism. It denotes



that the product of shares is the share of the product of corre-
sponding secrets. However, the multiplicative homomorphism
has a big limitation that is, with the degree growth of product
of secrets, the degree result polynomial will become larger
and larger. Under this process, it will eventually arrive at
a threshold larger than n so that the final result cannot be
reconstructed. Finally, the multiplicative homomorphism of
SSS is restricted.

B. Pairing

In AntNest, the pairing computation is only used in the
verification process of verification key. After that, pairing will
not be used anymore. Namely, it however will not be used in
the verification processes of core-shares and responses.

Let G and G be the cyclic groups of a large prime order
q. G is the generator of G. A cryptography pairing [25] e
(bilinear map): Gx G — Gy is a map that has a property of
bilinearity. The bilinearity means that

e(aG,bG) = e(G, G)*,

where a,b € Z,.

Remark 1: In the proposed scheme, pairing is only used in
verifying VK.

C. Adversary Model

In this subsection, we present the adversary models of
FHNVSS and AntNest.

In a (t,n) FHNVSS scheme, which includes a dealer and
n shareholders, we have the following assumptions:

o The dealer could generate the verification key (VK) and
core-shares dishonestly, but he does not reveal any secret
data to servers.

o A server could generate a response dishonestly, but the
number of dishonest players is less than ¢.

In a (¢,n) AntNest scheme, ¢ > 2, which includes n players,
we have the following assumptions:

o An honest player honestly generates the verification key
(VK), core-shares and responses, and he does not reveal
any his private data to other players.

o A malicious player could generates the verification key
(VK), core-shares and responses dishonestly, and he
could reveal his private data to other players.

IV. CONSTRUCTION OF FULLY HOMOMORPHIC
NON-INTERACTIVE VERIFIABLE SECRET SHARING
SCHEME

In this section, we will present a fully homomorphic non-
interactive verifiable secret sharing (FHNVSS) scheme. To
clearly present the work process of FHNVSS, we will present
the FHNVSS scheme without verifiability at first. Then we
will give out the verifiability of FHNVSS. Finally, basic
applications of FHNVSS combined with blockchain will be
illustrated.

A. FHNVSS without verifiability

In this subsection, we will present the FHNVSS without
verifiability, where data-senders (dealer and servers) are all
honest. Namely, all data-recepients (servers and dealer) do not
need to verify data received. While, in the next section, we
will specifically show the verification processes of FHNVSS,
where the dealer and servers could be dishonest, and a (¢, n)
FHNVSS will be taken as an example to present the scheme
without verifiability. It contains a dealer and n servers. Let
Sr; denote the i-th server and ID; be the ID of Sr;.

1) Generation of Core-share, Request, Response and Re-
sult: Dealer randomly samples f; (), fo(2), ..., fx(z), which
are (t — 1)-degree polynomials over [F as follows:

t—1 t—2
filg) =wi 12" fwior’  + . Fwiiz+ s
t—1 t—2 2
fa(x) = wo 12" F w2z . Fwe T+ 5

(O]

fe(x) = wk,t—1$t71 + wk,t—2$t72 + .+ wgaT + s"

¢ from 1 to n, dealer computes core-share for server Sr; as
follows:

core-share; = (f1(ID;), fo(ID;), ..., fr(ID;)).

Request. Assume that the dealer wants to get the result
V = Zf:o b;s*. Therefore, he will send a request to n servers,
then servers will generate responses for him. Specifically, the
request includes the following numbers:

{bk,br—1,...,b1,b0}

According to the request, a server will know that the dealer
wants to get Zle bis" + bo, but the server does not know the
secret value s.

Responses. If Sr; is willing to respond the request, he will
use his core-share; to generate a response Resp; as follow:

k
RGSPZ‘ = Z bjfj (IDl) + bo.
j=1
Then, Sr; sends Resp; to the dealer secretly.

Result. If the dealer can collect ¢ valid responses like Resp;
from ¢ servers, then he can use the Lagrange Interpolating to
recover a (¢t — 1)-degree polynomial H (x). Finally, the dealer
can get the desired result Zf:o b;s* by computing H (x)|,—o.

Remark 2: The value k of Zf:o b;s' is unlimited. Specif-
ically, the dealer can purposefully set the k according to
his requirements by providing enough core-shares to servers.
Theoretically, servers of FHNVSS can process any-degree
polynomials of secret numbers in theoretically as long
as the dealer can provide enough core-shares to servers.
For instance, servers can generate responses of 50-degree
polynomials of secret number if their core-shares are as
fiID;), f2(ID;), ..., fs0(ID;).

2) FHNVSS with Sharing Encrypted Numbers: The dealer
has a set of secret numbers that are dy,ds, ..., d,,, which will
be shared with servers. After randomly sampling fi(x) as
mentioned in Eq.1, the dealer performs as follows:

e Encrypt dy,ds, ..., d,, into a1, as, ..., a,, as follows:

aj=d; —s,j=1,2,...,m.



o Generate core-shares (core-share;, core-shares,
share;) as mentioned in Sec.IV-Al.

o Secretly sending core-share; to Sr;, ¢ from 1 to n.

. Open ai,ag, ..

..., core-

vy Q-
After that, the dealer can send a request about the numbers
di,ds, ..., d,,. For instance, a request may be as follow:

X1 XoX5 + X4 X5 X6 X7+ X5 + X7 XS,

where X; denotes the secret number d;, but it does not expose
d;. Then servers can generate corresponding responses accord-
ing to the request. According to this request and encrypted
numbers, a server will generate a response with this request,
encrypted numbers and his core-share. Next, we will present
how dealer and servers work with aq,as, ..., ay,.

At first, assume that: i) the maximum degree of addressable
request is k, ii) the dealer has secretly sent core-share; to S,
i =1,2,...,n, and iii) he has also opened encrypted numbers
{a1,as,...,amn}. Then, servers can help the dealer to get any
result like the following formula:

W vy
Z H lut,ddjt,d7

t=1 j=1

where v, < k and pi.q € Fy, jia € {1,2,...,m}. The dealer
sends a string to servers like the following one:

w UVt

> 1T w0,

t=1j=1
where X, , denote a secret number dj, ,, but it does not
expose dj, ,.

After receiving the above request, Sr; can transmit the
request into a polynomial of = as follow:

w o v

k
W(z) =Y [ meale+aj,)=> bja'.
=0

t=1 j=1

At this moment, the polynomial W (z) can be seen as the
request mentioned in Sec. IV-A1. Therefore, servers can use
W (x) to generate responses. The work processes of generating
responses, verifying responses and recovering result are the
same as the corresponding work processes mentioned in Sec.
IV-Al.

B. Verifiability of FHNVSS

In Sec. IV-A, we described the FHNVSS without verifica-
tion, and we assumed that data-senders (dealer and servers)
are honest. However, in practical applications, data-senders
might incorrectly compute data which would lead to the corre-
sponding data-recepients generates wrong results. Therefore,
data-recepients (servers or dealer) should verify whether re-
ceived data (core-shares or responses) are correctly computed
by corresponding data-senders. In this way, malicious data-
senders and incorrect data can be checked out. Therefore,
in this section, we will present how data-recepients verify
received data.

Specifically, compared with the FHNVSS without verifia-
bility mentioned in Sec.IV-A, the full FHNVSS scheme adds

four parts: (i) the dealer generates and opens the verification
key (VK); (ii) anyone can verify the correctness of VK; (iii)
the server can verify the correctness of his core-share; (iv) the
dealer can verify the correctness of responses sent by servers.

We take the (¢,n) FHNVSS as an example to present the
work process of verification. The (¢,n) FHNVSS scheme
contains a dealer and n servers, and servers can respond at
most k-degree request. Let Sryi,Sro,...,Sr, denote the n
servers. Furthermore, the dealer can recover the desired result
if at least ¢ servers generate valid responses to the dealer.
Moreover, ID; is the ID of Sr;, i = 1,2, ...,n. Furthermore,
let g denote a generator of a cyclic group. We will use g% to
compute a commitment of a to hide a. In the next text, we
will present how to verify verification key (VK), core-shares
and responses.

1) Verify Verification Key: Before the dealer sends the
core-shares to servers, he would generates a verification key
(VK) that will be used in the future verifications. The VK is
constructed as follows:

e The dealer randomly samples fi(x), fa(z),..., fr(x)
from F,[z] as mentioned in Eq.1

o Let C'My(y)y denote the commitments of coefficients of
f(x). For instance, when f(z) = w33 +wyz? + wix +
wg, then

CM¢y@yy = 19" lg"llg"* |lg"" }-
o The verification key (VK) is as follow:
VE = (CMy,(2)y, CM{ gy @)}y s OM g, (2)})

Let CMx denote a commitment of X, which is a scalar.
For instance, C'M, = g®. According to constructions of VK,
CMy;,CMg2,...,C Mg are included in the VK. A VK is valid
iff 7 from 2 to k, if the following equation holds

G(OMS, CMijl) = B(CMsj ) g)

2) Verify Core-shares: Assume that the VK is valid and has
been opened. The core-share of Sr; is as follow:

core-share; = (f1(ID;), fo(ID;), ..., fr(ID;)).

Because commitments of coefficients of fi(x), fa(z), ..., fx(z)
have been provided in VK as well as VK is valid, so Sr; can
verify his core-share; with VK and I D;. j from 1 to k, if the
following equation holds, then the f;(ID;) is valid.

gfj (ID:) = H(CMUJj,t)ID:CMSj'
t=1
If f1(ID;), fo(ID;), ..., fx(ID;) are valid, then Sr;’s core-
share is valid.

3) Verify Responses: In (t,n) FHNVSS, the dealer can
verify whether a response is correctly computed by the cor-
responding server. In this subsection, we will take the case
of request being Zle b;s* + by as an example to present the
process of verifying response. Specifically, the dealer verifies
the response Resp; (1 = 1,2,...,n) as follows:

According to Sec. IV-Al, we know

Resp; = S2F_ be(f;(ID;)) + bo.



Consequently, the dealer can verify the Resp; as follows:
e 7=1,2, ..., k, compute Cij(IDi) as follows:
t—1

Cij(IDi) = H(Cij,r)ID;CMsj»
r=1
e 7 =1,2 ...k, if the following equation holds, then the
response Resp; is valid.

k
H(CMf,y_([Di))bTCMbO.

r=1

Resp; __
gt =

V. PERFORMANCE EVALUATION OF FHNVSS

In this section, we will present a performance evaluation
of FHNVSS by deploying it on a Ubuntu 16.04 environ-
ment laptop. Specifically, the FHNVSS was implemented in
Python on a two core of a 2.60GHz Intel(R) Core (TM) i7-
6500U CPU with 8G RAM. We used high-speed Pairing-
Based Cryptography (PBC) library [26] to compute point
multiplication of elliptic curve and pairing, and utilized GNU
Multiple Precision (GMP) Arithmetic Library [27] to calculate
big number computation.

In the our experiments, FHNVSS was divided into seven
algorithms:

(Gen_VK, Ver_VK, Gen_CS, Ver_CS, Gen_resp, Ver_resp, Recover).

These algorithms are used as follows:

o Gen_VK: Dealer uses Gen_VK to generate verification
key (VK).

o Ver_VK: Servers can use Ver_VK to verify the validation
of VK.

o Gen_CS: Dealer uses Gen_CS to generate core-shares
for servers.

o Ver_CS: Servers can use Ver_CS and VK to verify core-
shares sent by dealer.

o Gen_Resp: Servers can use Gen_Resp to generate
responses according to the request sent by dealer.

« Ver_Resp: Dealer can use Ver_Resp and VK to verify
the validation of responses sent by servers.

o Recover: Dealer can use Recover to recover desired
result with the threshold number of valid responses.

In practical applications, these functions belong to differ-
ent participants (dealer and servers). The affiliation of these
functions is shown in Table I.

TABLE I: Functions of Participant

Participant ‘ Functions of Participant

Gen_VK, Gen_CS
Ver_Resp, Recover
‘ Ver_VK, Ver_CS, Gen_Resp

Dealer

Server

We performed two types of tests as follows:

o Test 1: We deployed (3,7) FHNVSS (a total 7 servers, and
the desired result can be recovered with at least 3 valid
responses) on our laptop. Let k be the largest degree of

addressable request, we set k from 4 to 10. We tested
the performance of Gen_core-share, Gen_VK, Ver_core-
share and Ver_VK. The results of Test 1 are shown in
Table II.

o Test 2: We also deployed (3,7) FHNVSS on our laptop.
Let the largest degree of addressable request be constant
10. We set the degree of request from 2 to 10. We
tested the performance of Rec_result, Gen_response and
Ver_response. The results of Test 2 are shown in Table
111

TABLE II: Performance of algorithms of FHNVSS with the
change of the largest degree of addressable request (second)

k | Gen_Cs Ver_CS Gen_VK Ver_VK

4 0.000329733 0.003045559 0.127948046 0.148387432
5 | 0000474215 0004627943  0.155535466  0.237745762
6 0.000656843 0.005952125 0.201929808 0.368674755
7 0.000918154 0.007400751 0.259971857 0.536798954
8 0.001402143 0.010572672 0.317357063 0.766717434
9 0.001489878 0.012337208 0.375114679 1.056947708
10 0.002088308 0.014226913 0.435570243 1.331381321
11 0.002505302 0.017073154 0.493043661 1.681715012
12 0.003757325 0.021838427 0.572894812 2.194091082

We deployed (3,7) FHNVSS to show the performance of algorithms Gen_CS,
Gen_VK, Ver_CS, Ver_VK. k denotes the largest degree of addressable request. The
finite field is based on a 256-bit big prime number.

TABLE III: Performance of algorithms of FHNVSS with the
change of degree of request (second)

Degree of request ‘ Recover Gen_Resp Ver_Resp
2 0.000478268 0.001681805 0.007747173
3 0.000378373 0.001621246 0.016930582
4 0.000452042 0.001915455 0.023883823
5 0.000365019 0.001704931 0.032199383
6 0.000339508 0.001774073 0.049633026
7 0.000391245 0.001723289 0.065804005
8 0.000404119 0.001615524 0.081865788
9 0.000323057 0.001732349 0.096564293
10 0.000386238 0.001726389 0.122139454

We deployed (3,7) FHNVSS with the largest degree of addressable request being 10 to
show the performance of algorithms Recover, Gen_Resp, Ver_Resp. Moreover, the
finite field is based on a 256-bit big prime number.

VI. SECURITY ANALYSIS OF FHNVSS

In this section, we will take the (¢,n) FHNVSS as an
example to discuss the security of the proposed FHNVSS,
and the maximum degree of polynomial that the dealer can
query is k. Because the FHNVSS is a threshold cryptography
scheme, its security denotes that ¢ — 1 malicious servers cannot
jointly recover the key secret value s.

According to Sec. IV-A, the secretly shared polynomials
among servers are as follows:

fi(x), f2(2), .y fr(2).



Malicious servers know that fy(z), fo(x), f3(x), ..., fx(z)
can be expressed as the following (¢t — 1)-degree polynomials,
but they do not know coefficients of these functions.

fi(z) = wl,tflfL't_1 + w1,t72$t_2 +...twir+s
fo(x) = wo 12t +wo s 0zt + L+ way T + 52

fe(®) = w127+ wp 0zt 2 + o+ wp 1z + SF

They hope to use their core-shares to solve the secret value s. If
s is obtained, malicious servers will get all plaintext numbers
shared by dealer.

Next, we will prove that ¢ — 1 malicious servers cannot
solve the secret value s with their core-shares, although they
work jointly. Without loss of generality, we assume that
Sri,Srsy,...,Sri_1 are the ¢ — 1 malicious servers as well
as other servers are honest. According to Sec. IV-A, we know
that the core-share kept by Sr; (i = 1,2,...,t—1) is (f1(ID;),
fo2(IDy), f3(IDy), ..., fr(ID;)) as shown in Table IV.

TABLE IV: Core-shares of servers

Server ‘ Sry Sra Sry_1
fiID1)  fi(ID2) fi(ID¢—y)
Core-shares | 12{P1)  f2(ID2) f2(IDi—1)
fa(ID1)  fs(ID2) fa(ID¢_y)
fe(ID1)  fr(ID2) F(IDy—1)

In order to solve coefficients of fi(x), fo(x), f3(z), ...,
fx(x), the t—1 malicious servers can construct linear equations
by using their core-shares as follows:

t—1 t—2
f1(IDg) = wy 4 _1ID5™ " +wy 4 oIDE™ 2 + ... 4wy 1IDg + s

t—1 t—2
f1UD1) =wy 4 1 IDY T w4 oIDIT? 4 b wy 11Dy + s
@

t—1 t—2
f1IDy_1) =wy 1 IDy Ty +wy g oIDy T4 ... +wy1IDy_y +s

i—1 -2
f2ID2) = wo ¢ 1ID5™ ' dwy 4 2IDE™% 4 . 4wy 11Dy + 52 ®

. t—1 t—2
[ f2IDy) = wo 4 1ID] "' dwy 4 oID] ™% 4 .. 4wy 1 IDy + 52

t—1 t—2
faIDy_1) = wo 4 1IDI ] +wo 4 oIDI"5 4+ .. 4wy 11Dy + 52

2

+ ..+ wp 1 IDy + sF
) ,

FeUDo) = wy s 1 IDS ' twy ¢ oIDE™2 4 4wy 1Dy + P

@)

t—1 t—
{ fr(ID1) = wy 4 1ID] +wp 4 —pIDY

t—1 t—2 :
FeUIDy_1) =wy 4 1IDL_§ +wy 4 oIDI "7 + ...+ wy 1I1Dy_q + sF

For Eq.2, there are ¢ — 1 equations and ¢ variables. The ¢
variables are btf_l, b{_z, s b{, s. Moreover, according to the
theory of linear algebra, we know that s is a free variable.
Namely, s can be an arbitrary number. Consequently, s cannot
be determined by Eq.2.

For Eq.3, there are ¢ — 1 equations and ¢ variables. The ¢
variables are b2, b2 ,, ..., b5, s. Moreover, according to the
theory of linear algebra, we can also know that s is a free
variable. Consequently, s cannot be determined by Eq.2 and
Eq.3.

Similarly, for Eq.4, s is a free variable still. Consequently,
s cannot be determined by Eq.2, Eq.3...., Eq.4.

In a word, s is always un-determined, and the ¢—1 malicious
servers cannot recover the key secret value s although they
jointly work together.

VII. ANTNEST

In this section, we will make an extension on (¢,n)
(t > 2) FHNVSS to obtain a fully non-interactive multi-
party computation scheme, called AntNest. In a (¢, n) AntNest
scheme, n players jointly compute a negotiated function, the
inputs of which are inputs of all players, and honest player
does not reveal his own private data (include his inputs)
to others. Because the MPC scheme AntNest is based on
FHNVSS, properties of non-interactive and verifiability are
same as FHNVSS. That is to say, players can jointly compute
with inputs of all players without interaction; players can
verify VK, core-shares and responses without interaction. The
construction of AntNest will be presented first, then we will
discuss the security of AntNest.

A. Construction of AntNest

A (t,n) AntNest scheme includes n players (n > ¢ > 2).
Each player works as a dealer of (¢,n) FHNVSS to confiden-
tially share his data with other players, and he also works as
a server of FHNVSS to jointly compute a function negotiated
by players, the inputs of which are data shared by all players.
In the following content, we will take a (¢,n) AntNest as an
example to present the work process of the scheme. Let these
n players be Py, Ps, ..., P,.

e Step 1: ¢ from 1 to n, P; executes a (t,n) FUNVSS
scheme among the n players independently. In this pro-
cess all n players act as n servers of this (¢,n) FUNVSS
scheme and the key secret sampled by P; is s;. Specif-
ically, P; executes algorithms Gen_VK and Gen_CS
to generate a verification key (V K;) and n core-shares
(CS;1,CS;2,...,C8; ) respectively. He opens the V K;
and securely sends C'S; ; (j = 1,2,...,n, j # 1) to P},
and he securely keeps the C'S; ;. The V K; can be verified
by other players with the algorithm Ver_VK. If VK is
invalid, P; has to re-generate this VK;. CS;; can be
verified by P; with the algorithm Ver_CS. If C'S; ; is
invalid, P; can request P; to re-send a CS;; until a
valid core-share is received. Once each player opens a
valid verification key and sends valid core-shares to other
players, they join in the next step.

e Step 2: ¢ from 1 to n, P; uses his secret numbers
(4,1, Mi 2, -vy Nim,;) to generates his encrypted numbers
(encng 1, encnga, ..., encn; ,,) by computing

encn; j =cn;j — S, (j=1,2,...,m)

and sends them to other players. These numbers are as
P;’s inputs of the function negotiated by players in the
next step.

o Step 3: These n players negotiate a function, which will
be jointly calculated by them. The inputs of this function
are secret numbers shared by players. The function is a
sum of n polynomials as follow:

n
> 95 (051,152, 0 Mjm, )
=1

where g; is a polynomial of nj1,7;2, ..., 7j,m;-



e Step 4: ¢ from 1 to n, 7 from 1 to n, according to
the formula g; in the negotiated function, FP; executes
the algorithm Gen_Resp to generate a response Resp; i
with (C'S;;) and (encn; 1, encn; g, ..., encn; ;). After
that, he adds all Resp; ;, Resps i, ..., Respy ; to obtain
the final response Resp;. Then he broadcasts his response
Resp; to other players.

o Step 5: After receiving a response Resp;, a player
verifies it with VK,V Ky, ..., VK, and ID,. Specifi-
cally, the player computes all CMy, (1p,), CMg,(1D,)
«.CMy, (rp,)- After that, the player multiples these com-
mitments to obtain a commitment as follow:

CMyinai = CMy, (1p,)C My, 1D,y C My, (1D,)-

If CMyinar,i = gftesPi | the response Resp; is valid, else
the player can request the corresponding player re-send
a response until a valid response is received.

« Step 6: Once a player collects at least ¢ valid responses, he
can use Lagrangian Interpolation to recover a polynomial
H(x). Then the correct result of negotiated function is
equal to H(z)|z—o-

B. Security analysis of AntNest

In this subsection, we will discuss the security of (¢,n)
AntNest (n >>t > 2).

e P’s i = 1,2,...,n) inputs are always confidential as
long as the number of malicious players is less than ¢.
P;’s inputs are shared among P, P, ..., P, via a (t,n)
FHNVSS. A player can recover P;’s inputs iff he can
get ¢ valid core-shares of P; such as (C'S; 1, CS;2, ...,
CS; ). However, this player cannot get these core-shares
as long as the number of malicious players is less than
t. Special case: P;’s inputs are always confidential as
long as he does not reveal his C'S; ;. A player recovers
Py’s inputs iff he can get all core-shares C'S; 1, CS; 2,
..., CS; . However, this player cannot get C'S; ; as long
as P; does not reveal it.

e Only-one jointly computing. Honest players will not
reveal their inputs. The number of honest players is at
least ¢ (¢ > 2). For an honest/malicious player, the result
of negotiated function includes at least two/three unde-
termined inputs, which are secretly kept by other honest
players, for him. Consequently, this honest/malicious
player cannot solve inputs of other honest players from
result.

o Multi-jointly computing with the same inputs.

— Negotiated functions should not be used to increase
the advantage for solving inputs of players. For
instance, the following case is unallowed. The first
function is as follow:

Fy =21 + 22 + 23 + 24.
The second negotiated function is as follow:
Fy =21+ 22 + 73 — 24.

Any player can obtain x4 by computing (F; — F3)/2.

— Players can jointly compute at most ¢ — 2 function-
s with the same inputs. For instance, in a (4,5)
AntNest, five players are Py, P», P53, Py, P; and z;
is the input of P; (z = 1,2, 3,4,5). According to our
point, in this instance, players can jointly compute
at most 2 negotiated functions with the same inputs.
Specifically, because the protocol is of (4, 5), it could
includes a malicious player who is willing to reveal
his input to others. For example, the malicious player
is Ps. Therefore, x5 could be known by all players.
Other four players are honest and they do not reveal
their inputs. For anyone of honest players, the result
of a negotiated function includes three undetermined
inputs from other three honest players. Consequently,
to keep inputs of honestly players being confidential,
the number of negotiated functions is at most 2.

VIII. CONCLUSIONS

In this paper, we propose a fully homomorphic non-
interactive verifiable secret sharing (FHNVSS) scheme. In
this scheme, shareholders can generate shares of any-degree
polynomial of shared numbers without interaction, and the
dealer can verify whether shareholders are honest without
interaction. We implemented the FHNVSS scheme in Python
with a detailed performance evaluation. Besides, we make an
extension on the FHNVSS scheme to obtain a fully non-
interactive secure multi-party computation, called AntNest,
where distrustful players can jointly calculate a any-degree
negotiated function, the input of which are inputs of all play-
ers, without interaction, and each player can verify whether
other players calculate honestly without interaction.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program (No. 2016YFB0800602), the National
Natural Science Foundation of China (NSFC) (No. 61502048),
and Shandong provincial Key Research and Development
Program of China (2018CXGC0701, 2018GGX106005).

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] C.Y. Protocols for Secure Computations (Extended Abstract). 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982; IEEE Computer Society.

[2] D.G.; YI; A.P. Efficient Multi-party Computation: From Passive to
Active Security via Secure SIMD Circuits. 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015; Springer.

[3] I.D;; J.B.N.; A.P; M.A.R. On the Communication Required for Uncon-
ditionally Secure Multiplication. 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016; Springer.

[4] E.B.; N.G.; Y.I. Group-Based Secure Computation: Optimizing Rounds,
Communication, and Computation. 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017; Springer.

[5] PA; AR.C.; AJ. A New Approach to Round-Optimal Secure Multiparty
Computation. 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017; Springer.



[6] A.G.; S.K.; O.P. On the Exact Round Complexity of Self-composable
Two-Party Computation. 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017; Springer.

[71 A.A.; RL.; T.M. Topology-Hiding Computation on All Graphs. 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017; Springer.

[8] B.A.;LD.; Y.I; M.N.; L.Z. Secure Arithmetic Computation with Constant
Computational Overhead. 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017; Springer.

[9] C.H.; M.V. On the Power of Secure Two-Party Computation. 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016; Springer.

[10] R.O.; S.R.; A.S. Round-Optimal Black-Box Two-Party Computation.
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015; Springer.

[11] PM.; M.R. Non-interactive Secure 2PC in the Offline/Online and
Batch Settings. 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017; Springer.

[12] J.A.G.; R.O.; V.Z. The Price of Low Communication in Secure Multi-
party Computation. 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017; Springer.

[13] YI; RK.; EXK.; A.P. Secure Computation with Minimal Interaction,
Revisited. 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015; Springer.

[14] L.Z.; L.W.; Y.S.; P.V. BeeKeeper: A Blockchain-based IoT System with
Secure Storage and Homomorphic Computation. In: IEEE Access 2018.
DOI:10.1109/ACCESS.2018.2847632.

[15] B.D.; M.S.; R.P. The round complexity of secure protocols (extended
abstract). In: Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, Maryland, USA, 13-17 May 1990, pp.
503-513, ACM.

[16] S.G.; C.G.; S.H.; M.R. Two-Round Secure MPC from Indistinguisha-
bility Obfuscation. 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Springer.

[17] PM.; D.W. Two Round Multiparty Computation via Multi-key FHE.
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Springer.

[18] G.A.; AJ.; AL;; ET.; V.V.; D.W. Multiparty Computation with Low
Communication, Computation and Interaction via Threshold FHE. 31st
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012, Springer.

[19] Z.B.; S.H.; A.P. Four Round Secure Computation Without Setup. 15th
International Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Springer.

[20] S.G.; PM.; O.P;; A.P. The Exact Round Complexity of Secure Compu-
tation. 35th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Springer.

[21] J.K.; R.O. Round-Optimal Secure Two-Party Computation. 24th Annual
International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004; Springer.

[22] R.G.; M.O.R.; T.R. Simplified VSS and Fact-Track Multiparty Com-
putations with Applications to Threshold Cryptography. Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Distributed
Computing, PODC’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998,
ACM.

[23] R.C.; ID.; R.H. Atomic Secure Multi-party Multiplication with Low
Communication. 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Barcelona, Spain, May
20-24, 2007, Springer.

[24] A. S. How to Share a Secret. Commun
22(11):  612-613,  10.1145/359168.359176.
http://doi.acm.org/10.1145/359168.359176.

[25] P.S.L.M.B.; M.N. Pairing-friendly elliptic curves of prime order. 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11-
12, 2005, Springer.

[26] Pairing-Based Cryptography
s://github.com/debatem1/pypbc.

[27] GNU Multiple Precision Arithmetic Library. Available online: http-
s://github.com/aleaxit/gmpy.

1979.
Available

ACM
online:

library.  Available online: http-

Lijing Zhou received the B.Sc degree in mathematics and applied math-
ematics from Inner Mongolia Normal University, China, in 2009, and the
M.S. degree in cryptography from Xidian University, China, in 2013, and he
is currently pursuing the Ph.D degree in information security from Beijing
University of Posts and Telecommunications. His current research interests
include blockchain technology and privacy and cryptography.

Licheng Wang received B.S. degree in computer science from Northwest
Normal University, China, in 1995, and M.S. degree in mathematics from
Nanjing University, China, in 2001, and received Ph.D degree in cryptography
from Shanghai Jiaotong University, China, in 2007. He is currently associate
professor with Beijing University of Posts and Telecommunications.

Yiru Sun received the B.S. degree in mathematics and applied mathematics
from Inner Mongolia Normal University, China, in 2009, and the M.S. degree
in cryptography from Xidian University, China, in 2014, and she is currently
pursuing the Ph.D degree in information security from Beijing University
of Posts and Telecommunications. Her current research interests include
blockchain technology and privacy and quantum cryptography.

Tianyi Ai was studing the B.S. degree in software engineering from Jilin
University, China, in 2015, and he is currently pursuing the M.S. degree in
computer sience from Beijing University of Posts and Telecommunications.
His current research interests include blockchain technology and privacy and
cryptography.



