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Abstract. The increasing number of cryptocurrencies, as well as the ris-
ing number of actors within each single cryptocurrency, inevitably leads
to tensions between the respective communities. As with open source
projects, (protocol) forks are often the result of broad disagreement. Usu-
ally, after a permanent fork both communities “mine” their own business
and the conflict is resolved. But what if this is not the case? In this paper,
we outline the possibility of malicious forking and consensus techniques
that aim at destroying the other branch of a protocol fork. Thereby, we
illustrate how merged mining can be used as an attack method against a
permissionless PoW cryptocurrency, which itself involuntarily serves as
the parent chain for an attacking merge mined branch of a hard fork.

Keywords: Merged Mining · Cryptocurrencies · Game Theory

1 Introduction

The concept of forking is a core design property of Nakamoto consensus (NC).
Even without the interference of malicious actors, the proposal of a block by
two different miners at approximately the same point in time can trigger a fork.
Such a fork eventually resolves as soon as new blocks on top of either branch
are found and propagated. Apart from these temporary forks that are resolved
when one branch takes the lead, there also exists the concept of a permanent
fork, also referred to as a chain split. In such a case, the end result are two
different systems. This can happen intentionally or unintentionally, for example,
when the underlying protocol has to be updated.

In this context, the loosely defined terms hard fork and soft fork have estab-
lished themselves as descriptors of different classes of upgrade mechanisms for the
underlying rules.The term hard fork has established itself [3, 7] as a descriptor
for protocol changes that can incur a permanent split of the blockchain, as they
permit or even enforce the creation of blocks that are considered invalid under
previous protocol rules. In contrast to this, soft forks intend to retain some level
of compatibility with older protocol versions, specifically towards clients adher-
ing to previous protocol rules. Apart from these two more frequently used types
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of forks, also an approach termed velvet fork, which expands upon the concept
of a soft fork, was outlined by Kiayias et al. [9]. Specifically, velvet forks intend
to avoid the possibility of disagreement by a change of rules through render-
ing modifications to the protocol backward compatible and inclusive to legacy
blocks. So, in contrast to temporary forks, which can happen during normal op-
eration, hard-, soft- and velvet forks refer to a protocol upgrade that might or
might not lead to a permanent fork, i.e., a chain split.

We expand upon the concept of different protocol changes by discussing
the potential security implications that can arise from permanent hard forks
(protocol changes) that are interleaved with the original protocol/system in a
malicious way. We describe the pitchfork as an example to enforce rule changes
in a targeted cryptocurrency, denoted as Π. In a pitchfork, the attacker creates
a different protocol version Π′ and uses techniques from merged mining to in-
terleave his new hard forked cryptocurrency with the targeted parent chain Π
s.t., mining “bad blocks” in the parent chain is a prerequisite for being accepted
as a valid PoW in the new cryptocurrency which consists of the pitchfork child
chain Π′.

Our construction highlights some interesting questions. In particular, with
regards to the underlying (game-theoretic) incentive model, such attacks can
lead to negative side effects in permissionless cryptocurrencies based on NC.

2 System Model and Goals of a Pitchfork

The increasing number of cryptocurrencies, as well as the rising number of ac-
tors within every single cryptocurrency, inevitably leads to tensions between the
respective communities. As with open-source projects, (protocol) forks are often
the result of broad disagreement. Usually, after a permanent fork (chain split),
both communities “mine” their own business and the conflict is resolved. But
what if this is not the case? In this paper, we outline the possibility of malicious
forking and consensus techniques that aim at destroying the other branch of a
protocol hard fork (protocol update). Thereby, we illustrate how merged mining
can be used as an attack method against a permissionless PoW cryptocurrency,
which itself involuntarily serves as the parent chain for an attacking merge mined
branch of a hard fork.

Merged mining is already known for posing a potential issue to the child
cryptocurrencies, for example demonstrated in the case of CoiledCoin3. How-
ever, so far, no concrete example has been given that merged mining can also
pose a risk to the parent chain. Since (parent) cryptocurrencies can not easily
prevent being merge mined4, an attack strategy using this approach would be
applicable against a variety of permissionless PoW cryptocurrencies. In this pa-
per, we describe a scenario where merged mining is used as a form of attack
against a parent chain in the context of a hostile protocol fork.

3 Cf. https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
4 The inclusion of a hash value within a block to provably attributed it to the creator

of the proof-of-work (PoW) is enough to support merged mining [8]
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2.1 Actors

For our attack scenario, we assume a permissionless PoW-based cryptocurrency
Π, whose miners cannot agree on whether or not to change the consensus rules.
Some of the miners want to adapt the consensus rules in a way such that newly
mined blocks may not be valid under the old rules, i.e., perform a hard fork, or
protocol update. Thereby, we differentiate between the following actors:

– Antiquated or backward-compatible miners (A): The fraction of miners
(with hashrate pA) in a currently active cryptocurrency Π that does not
want to change the consensus rules of Π.

– Byzantine, or change enforcing miners (B): The fraction of miners (with
hashrate pB) in a currently active cryptocurrency Π, that wants to change
the consensus rules, i.e., perform a hard fork/protocol update. Moreover,
they want that only their branch of the fork survives.

– Indifferent, independent, or neutral miners (I): The set of miners (with
hashrate pI) that has no hard opinion on whether or not to change the
consensus rules. They want to maximize their profits and act economically
rational to achieve this goal, with the limitation that they want to avoid
changes as far as possible. If there is no imminent need that justifies the
implementation costs for adapting to changes, they will not react5.

For our example, we assume that B wants to increase the block size, while A does
not want to implement any rule change. The goal of the attackers in B is twofold:
1) Enforce a change of the consensus rules in the target cryptocurrency. 2)
Disrupt the operation of the old branch of the hard forked target cryptocurrency
(Π), which does not follow the new consensus rules Π′.

2.2 Characteristics of a Pitchfork

For this paper, we are only interested in forking scenarios that are not bilateral.
In a bilateral fork, conflicting changes are intentionally introduced to ensure
that two separate cryptocurrencies emerge [16]. An example of such a scenario
would be the changed chain ID between Ethereum and Ethereum Classic. It
is commonly believed that in a non-bilateral forking event, the only reliable
possibility to enforce a change requires that the majority of the mining power
supports the change. Thereby, two main cases can be distinguished according
to [16]:

If the introduced change reduces the number of blocks that are considered
valid under the new consensus rules, all newly mined blocks are still considered
valid under the old rules, but some blocks which previously would have been
considered valid are no longer considered valid under the new rules. An example
of such a scenario would be a block size decrease. In this case, the first goal
(enforce) of our attack is easy to achieve if pB > pA + pI holds since any fork

5 This should capture the observation that not all miners immediately perform merged
mining if it is possible, even though it would be rational to do so [8].
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introduced by pB will eventually become the longest chain and be adopted by
pA and pI because of the longest heaviest chain rule. Therefore, in this case,
the rules have been successfully changed from Π to a subset Π′ since pA is
the minority in this case. If A decides to continue a cryptocurrency under the
original rules Π, such that larger blocks are again possible, they have to declare
themselves as a new currency since the original one has been overtaken and the
rules changed to a subset. Therefore, the goal to enforce is clearly reached in
such a case. However, the disruption goal cannot be reached directly if all miners
in A create a new cryptocurrency that follows the original rules Π.

If the introduced change expands the set of blocks that are considered valid
under the new consensus rules, then some blocks following the new rules will not
be considered valid under the old rules. Therefore, any mined block that is only
valid under the new rules will cause a fork. An example of such a scenario would
be a block size increase6.In this case, a permanent hard fork will only occur
if the chain containing blocks following the new rules grows faster, i.e., pB >
pA + pI holds. The result would be that the forking event creates two different
currencies: cryptocurrency Π′, which includes big blocks, and cryptocurrency
Π, which forked from the main chain after the first big block. Therefore, again
the disruption goal cannot be reached directly. To reach this goal, some miners
in B could be required to switch to the original cryptocurrency Π and disrupt
its regular operation, e.g., by mining empty blocks. This, of course, has the
drawback that the respective attacking miners that switched from Π′ to Π do
not gain any profits in Π′, and their rewards in Π will be worthless if they succeed
in rendering Π unusable.

The pitchfork attack method proposed in this paper aims to achieve both
attack goals simultaneously, even in cases where pB < pA + pI holds.

3 Pitchfork Attack Description

The basic idea of a pitchfork attack is to use merged mining as a form of at-
tack against the other branch of a fork in a permissionless PoW cryptocurrency
resulting from a disputed consensus rule change. The pitchfork should disrupt
the normal operation of the attacked branch to such an extent that the miners
abandon the attacked branch and switch to the branch of the hard fork, which
performs merged mining and follows the new consensus rules. We call the cryp-
tocurrency up to the point of the fork ancestor cryptocurrency Π̄. After the
forking event, the cryptocurrency which still follows the same rules is denoted
as Π, whereas the change enforcing cryptocurrency branch that uses merged
mining and the new consensus rules is denoted as Π′.

To execute the attack, the new merge mined branch Π′ accepts valid empty
blocks of Π as a PoW for Π′. In the nomenclature of merged mining, the chain Π,
which should be attacked, is called the parent chain, and chain Π′ is called the
child chain. For a valid parent block b of Π, the following additional requirements

6 Our example, in which B wants to increase the block size and A does not want to
implement any rule change, would resemble such an expanding protocol change.
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Fig. 1. Example of blocks mined after the hard fork into two cryptocurrencies Π and
Π′u.

need to be satisfied: i) The block b has to be empty. Therefore, the contained
Merkle tree root in the header of the respective block must only include the
hash of the (mandatory) coinbase transaction. Given the corresponding coinbase
transaction, it can then be verified that b is indeed empty. ii) The coinbase
transaction of b must include the hash of a valid block b′ for Π′. The header of
block b′ contains a Merkle tree root with the actual transactions performed in
Π′.

Figure 1 shows the two cryptocurrencies after the fork. The last block in the
ancestor cryptocurrency Π̄ before the forking event is b0. The first empty block
that is merge mined is b1 in this example. This block (b1) is valid under the old
rules and fulfills the difficulty target in Π, except that it is empty. Moreover, the
block b1 was mined by a miner in B, which happens with probability pB, and
contains the hash of block b′1 in its coinbase. Therefore b1 serves as a valid PoW
for Π′ as well. Block b2 was not mined by a miner in B, which happens with
probability 1− (pB + pI), and therefore it is not empty and does not contain a
hash for a valid block for Π′ in its coinbase. This shows that the two chains are
not necessarily synchronized regarding their number of blocks. The block interval
in Π′ depends on the difficulty target of Π′. Since we assume that the attacker
does not control the majority of the hashrate (pB < pA + pI), the difficulty D
in Π′ should be lower than in Π at the beginning of the attack, i.e., DΠ′ < DΠ

holds. If the difficulty has been adjusted in Π′, then the overall number of blocks
should be approximately the same for both chains. In such a case, there might
be empty blocks such as ��b4, which do fulfill the difficulty target for Π′ but not
for Π. Still, if DΠ′ < DΠ holds, then over time, a fraction of all blocks in Π
corresponding to pB will be mined by a miner in B. If we assume that pB ≈ 0.33,
then approximately every third block in Π should be empty.

PoW Difficulty: Theoretically, it would be possible that Π′ requires the same
or even a higher difficulty than Π. If DΠ′ ≥ DΠ, then chain Π′ would contain
fewer blocks than chain Π. This, of course, would have a negative effect on
the latency in chain Π′, i.e., the time it takes till a transaction is confirmed.
However, any merge mined blocks that meet the difficulty requirement of DΠ′

will be considered valid in Π. For example, when DΠ′ = DΠ, the number of blocks
in Π′ relative to Π would only correspond to the fraction of the hashrate (pB)
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that performs merged mining. Nevertheless, since chain Π′ increased the block
size, the throughput could theoretically remain the same or even be higher than
in chain Π (depending on the actual implementation). Some examples regarding
an increased block size are discussed in [6, 4]. Alternatively, Bitcoin-NG [5] could
also be applicable. The latter approach would have the added benefit that the
negative impact on latency and confirmation times is mitigated. To illustrate
our attack, it is not of particular relevance which adaptation is used to increase
the throughput in Π′.

3.1 Effects of the Attack

In the simplest case, if no countermeasures are taken by the chain under attack,
a pitchfork reduces the throughput of the target chain Π by the number of empty
blocks corresponding to the hashrate of the attackers (pB). Considering the lim-
ited block size in Π and events in Bitcoin, or other cryptocurrencies, where
the number of unconfirmed transactions in the mempool peaked, a hashrate
of pB ≈ 0.33 mining solely empty blocks, would likely have an impact on the
duration of such periods of congestion, and hence also transaction fees and con-
firmation times. This could sway both users and miners in I to switch to the
attacking chain Π′, which further reinforces the attack. Two other advantages
of the attack are that it is pseudonymous and that the risk in terms of currency
units in Π, as well as its severeness, is parameterizable.

Pseudonymous: Since the pitchfork attack is executed by miners through pro-
ducing new blocks that are, in addition, merged mined with the attacking chain,
it is in theory possible to hide the identities of the attackers because no unspent
transaction outputs need to be involved in the attack that could have a traceable
history. However, additional care needs to be taken by these miners to ensure
that their identity is not inadvertently revealed through their behavior [8].

Parameterizable: The attack is not an all-in-move, and its costs, in terms of
currency units in Π, can be parameterized. The goal of the attack is to disrupt
the original chain Π, but if this fails, the attackers may not lose much. Due to
merged mining, the main costs of a failed attack result from the foregone profits
from transaction fees that are not collected in chain Π. Additional costs created
by merged mining, i.e., running an additional full node for chain Π can be negli-
gible compared to the overall costs related to mining [?]. Moreover, even a failed
attack on Π can still be profitable for the attacking miners since the attackers
in B are early adopters of Π′. If the value of the newly created cryptocurrency
Π′ increases enough, the additional income may not only compensate for the
reduced income from mining empty blocks in Π but could even create a sur-
plus for the miners in Π′. In addition, the attack can be made compatible with
other available cryptocurrencies that can be merged mined with Π. Therefore,
additional revenue channels from existing merge mined cryptocurrencies are not
affected by the pitchfork and can even help to subsidize the attack.
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As a further parameterization for the attack, it is also possible to execute it
in stages. To test whether there is enough support for chain Π′, it is possible
to first start with a relatively low risk to the attackers by not requiring them
to mine empty blocks and instead only demand the creation of smaller blocks
that can still include high fee transactions. From there, the attackers can reduce
the number of permissible transactions step by step. At a final stage, all coins
earned through mining empty blocks in Π can also be used to fund additional
attacks, such as triggering additional spam transactions in Π as soon as the
cooldown period of 100 blocks has passed. For instance, splitting the coinbase
rewards into many individual outputs of a high enough value with different lock
times and rendering the output scripts as anyone can spend can lead to a large
influx of additional transactions as users (and miners) compete to scoop up these
free currency units. This is easy to verify as an additional rule in Π′. However,
more complex attack scenarios such as those outlined in [1, 14, 11] may also be
included as additional consensus rules.

4 Countermeasures

In this section, we outline some countermeasures that can be taken by players
in A, as well as their effectiveness.

4.1 Exclude Empty Blocks in Π

The miners in A can decide to fork off empty blocks and just build on top of
blocks containing transactions. This requires the coordinated action of all miners
in A. If pA > pB + pI , this approach will work in general. A possible counter-
reaction by the attackers in Π′ would be to introduce dummy transactions to
themselves in their blocks in Π. Therefore, it has to be ensured that those trans-
actions are indeed dummies. For example: All used output addresses of every
transaction belong to the same entity, but this must not be possible to correlate
given just the block bn in Π. One way to achieve this is to require that all out-
put addresses in a block have been derived from the miner’s public key of the
respective block, like in a Hierarchically Deterministic (HD) Wallet7 construc-
tion. The master public key property of such a construction allows that future
ECDSA public keys can be derived from current ones. This is done by adding a
multiplication of the base point with a scalar value to the current public key. The
corresponding secret key is derived in the same manner but can only be com-
puted by its owner. If it is not possible to perform a transaction to an address
for which the miner does not have the corresponding private key, the utility of
a block only containing transactions of the respective miner is very limited for
users of Π. To check this condition on an arbitrary block bn, the public key of
the miner, as well as the scalar value for the multiplication, is required. These
values can be added to the coinbase transaction of the corresponding block b′n
in Π′.
7 Cf. BIP32 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
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If such dummy transactions are used, the miners of A would be required to
monitor the chain of Π′ to deduce which block in Π has been merged mined
with Π′ and includes only dummy transactions. If the miners of A find such a
block, they can still cause a fork in Π to ignore it. Besides being more complex,
this also poses a potential risk for all transactions in Π. Since the block bn could
be released before b′n, there is no way to tell whether or not bn was indeed
merged mined. And hence includes a hash to b′n before b′n has been published
in Π′. With this knowledge, miners in B can intentionally create forks in Π by
holding back new blocks in Π′ for a while. By slightly relaxing the rules for
dummy transactions and allowing, for example, one transaction output address
that is not required to be derivable by the HD construction, double-spends can
be executed more easily in Π. In this particular case, miners of merged mined
blocks can include a regular transaction that they want to double-spend in their
block, being assured that this block will get excluded in retrospect by all miners
pA in Π if b′n is released in Π′. Therefore, more fine-grained exclusion rules on
the transaction level would be necessary.

These examples illustrate that it is non-trivial to change the consensus rules
in Π such that the effects of a pitchfork attack are mitigated. Every change of the
defenders in A leads to an arms race with the attackers in B. Moreover, excluding
all merge mined blocks in Π requires active monitoring of Π′ to detect them.
Therefore, at least the miners in A have to change their individual consensus
rules for Π – which they wanted to avoid in the first place.

4.2 Launch a Counter-attack on Π′

Miners in A can use their mining power to counter-attack the attacking chain
Π′. However, this has several limitations: Since every block in Π′ requires an
empty parent block in Π as part of its PoW, miners cannot create empty merge
mined blocks in Π′ while at the same time creating full blocks in Π. To stall the
pitchfork Π′, at least a fraction of pA (p′A ≤ pA) has to mine empty blocks in Π
to also create empty merge mined blocks for Π′. Though, thereby the counter-
attackers could actually help the pitchfork attack.

To clearly overtake the pitchfork chain Π′, the counter-attacking miners need
to have more than 50% of the hashrate in Π′. If not, the lost throughput caused
by empty blocks in Π′ might be compensated by the increased block size. This
introduces the first constraint for the counter-attackers, i.e., that the hashrate
p′A they dedicate to the counter-attack must be larger than the attack hashrate
p′A > pB.

However, the counter-attackers must also take care not to push the total
hashrate p′A + pB, which is dedicated towards attacking Π over 50%. Other-
wise, more destructive attack rules than mining empty blocks may be rendered
effective. For example, requiring non-empty blocks to be ignored or anyone-can-
spend transactions. If the defenders retain the majority in Π, and if they are
able to reliably identify all merge-mined attack blocks, they can exclude them
in Π. Thus, the second constraint requires that for a counter-attack, the bound
pB + p′A < 0.5 for the share of blocks in the heaviest chain of Π holds.
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Depending on the exact implementation of merged mining in Π′, the counter-
attackers have some options to avoid that their empty blocks for Π, which they
are required to provide as PoW for Π′, cause further harm to Π. Therefore, we
differentiate between counter-attacks without direct negative consequences on Π
and counter-attacks with direct negative consequences on Π.

An example for a counter-attack without direct negative consequences on Π
would be to only submit PoW solutions to Π′ that fulfill the difficulty target for
Π′ but not for Π. This counter-attack approach has the marked disadvantage
that any block meeting the difficulty target of Π also cannot be submitted as
solutions in Π′, effectively reducing the counter-attackers’ hashrate p′A in Π′ by
a factor dependent on the particular difference in difficulty between Π′ and Π. A
better counter-attack without direct negative consequences on Π can be achieved
if the defenders intentionally construct blocks for the parent chain Π that are
unlikely to end up in the main chain yet are still accepted as a valid proof-of-
work in Π′. For instance, stale branches in Π could be created and extended.
However, this is only effective if the freshness requirements for parent blocks in
Π′ are not too tight. In both cases, since p′A is no longer contributing toward
the effective hashrate of Π, its remaining honest miners, pI + pA− p′A must still
retain a hashrate that exceeds that of the adversary to ensure that honest blocks
constitute a majority of the heaviest chain. Therefore, the original attacker gains
an advantage from merged mining since he can use his full hashrate in both chains
at the same time. Moreover, the counter-attacking fraction of the miners would
forgo their rewards in Π for the duration of the counter-attack.

We now compare the two cases of counter-attacks with and without direct
negative consequences on the parent chain Π and calculate the maximum tol-
erable hashrate of pB, such that the counter-attack succeeds in dominating at
least one of the two systems, i.e., A has more than half of the hashrate on at
least one system. For this analysis, we make the simplifying assumption that
the total hashrate of indifferent miners pI is zero. Hence the total hashrate of
A is pA = 1− pB. This hashrate can be split between the two chains Π and Π′

arbitrarily to launch the counter-attack.

Counter-attack without Direct Negative Consequences on Π In this
case, we assume that direct negative consequences from the pitchfork attack on
the parent chain Π can be avoided while creating merge mined child chain blocks
for Π. For example, merged mined empty blocks of the parent chain are accepted
as a valid PoW for the child chain, even if they do not have a valid predecessor
in the parent chain. Indirect negative consequences of the counter-attack, like,
for example, an overall hashrate reduction that works on the longest heaviest
chain in Π, is ignored for this analysis.

Figure 2 shows the hashrates achievable by A on the respective chains Π and
Π′ for defending and counter-attacking. The figure is parameterized by different
values for the hashrate of the pitchfork attacker (pB). It can be observed that in
this case, an attacker with pB > 1

3 total hashrate cannot be countered on both
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Fig. 2. Hashrates of the defender/counter-attacker in the respective chains Π and Π′

for different values of pitchfork attacker hashrate pB. The colored orange square marks
the area in which the counter-attackers A loses in both chains, whereas the colored
blue square marks the area in which the counter-attackers A can retain the majority
in both systems.

chains simultaneously without losing the majority pA < 0.5 on one of the two
chains.

Theorem 1. Assuming the invested counter-attack hashrate does not directly
strengthen the attack on the merge mined parent chain Π. Then, to successfully
perform a counter-attack in which A dominates a merge minded pitchfork child
chain Π′, the attacker hashrate pB must be less than 1

3 , s.t. A can dominate both
chains (i.e., have more than half of the hashrate in both chains).

Proof. Since the pitchfork attack utilizes merged mining, the hashrate of the
attacker pB is available in both systems, Π and Π′. To overtake and dominate
the merge mined child chain Π′, the most a defender with hashrate pA can invest
in terms of hashrate is 1

2 , as otherwise, we would lose in protocol Π. To keep
control of the parent, the following inequality has to hold: pA

2 > pB. Since we are
in a two-player model, the hashrates are defined as: pA = 1−pB. Replacing pA in
our inequality then gives us the maximum hashrate of the attacker 1−pB

2 > pB,
which simplifies to pB < 1

3 , and provides the upper bound for the hashrate of
the attacker s.t., the defender A can win in both chains.

Figure 3 shows a visualization of this scenario in which merged mining the
parent is possible without causing the negative side effects intended by the pitch-
fork attack on the parent chain. In this example, pB = 1

3 and thus no party can
clearly win either chain.
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Fig. 3. Visual comparison of hashrates in the two systems Π and Π′, before and after
counter attacking the merge minded pitchfork protocol Π′, when merged mining of the
parent is possible without negative effects on the parent chain. In this example, the
hashrate of the attacker is pB = 1

3
, which results in a situation where no player can

clearly win on any of the two chains in case of a counter-attack.

This result for permissionless PoW cryptocurrencies has an interesting re-
lation to a paper by Lindell et al. [12], in which the authors prove that au-
thenticated Byzantine Agreement protocols only remain secure under parallel or
concurrent composition (even for just two executions), when more than 2/3 of
the participating parties are honest.

Counter-attack with Direct Negative Consequences on Π In this case,
we assume that direct negative consequences of the attack on the parent chain
Π cannot be avoided while creating merge mined child chain blocks for Π.

Theorem 2. Assuming the invested counter-attack hashrate directly strength-
ens the attack on the merge mined parent chain Π. Then, to successfully perform
a counter-attack in which A dominates a merge mined pitchfork child chain Π′,
with no ability to avoid damage on the target chain, the attacker hashrate pB
must be less than 1

4 , s.t. A can dominate both chains (i.e., have more than half
of the hashrate on both chains).

Proof. Since the pitchfork attack utilizes merged mining, the hashrate of the
attacker is available in both systems. The difference now is that the defenders
can not switch parts of their hashrate to the pitchfork chain running Π′ without
harming the target chain running Π. We denote the hashrate that switches and
gets “malicious” in Π with p′A. To determine the maximum pB, the following
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conditions have to hold:

pB + p′A < pA (Ensures dominance of A on targeted parent chain) (1)

pB < p′A (Ensures dominance of A on child chain) (2)

pB + p′A + pA = 1 (Overall hashrate is bound by 1) (3)

This gives us pA > 1
2 and pB < 1−pA

2 . Solving this for the point where the
hashrate/power on both chains is equal (i.e., pB = p′A and pB + p′A = pA) gives
us the upper bound pB < 1

4 for the attacker hashrate s.t., the defender A can
win on both chains.

pB + p′A − pA = 0 (4)

pB + p′A + pA = 1 (5)

pB = p′A (6)

2pB + 2pB = 1 (7)

pB =
1

4
(8)

Figure 4 shows a visualization of this scenario in which merged mining the
parent is not possible without negative side effects on the parent chain. In this
example, pB = 1

4 and thus no party can clearly win either chain in case of a
counter-attack.

4.3 Do nothing

Given the undesired side effects of the other countermeasures discussed so far,
one option for the defenders A would be to do nothing. Then, the users of
Π have to live with a reduced throughput in the size of pB. This would work
and dry out the funds of the attackers B, if the reduced gains from missed
transaction fees in Π cannot be compensated by the new gains of mining an
additional cryptocurrency, Π′. If the gains in Π′ overcompensate the losses in Π,
then the surplus in funds can be reinvested into new mining hardware to increase
the overall share in the mining ecosystem until pB accounts for the majority of
mining power. Then, they would be able to overtake Π directly.

In other words, the success of ignoring the pitchfork attack depends on the
balance between lost income and newly gained income. If the loss in income from
pitchfork mining Π can be avoided, for example, if the consensus rules of Π are
designed in a way such that the transaction fees in Π do not count towards the
income of the miner but instead are burned, then mining empty blocks would
not have any disadvantage. Another option would be to require more complex
attacks on Π as a PoW for Π′. Such attacks might even be profitable in the
target cryptocurrency Π.
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Before counter attack:

Π pB + pA = pΠ = 1
pB pA

pB = pΠ′Π′
pB

After counter attack:

pB + pA · 2
3

= pΠΠ
pB pA · 1

3
pA · 2

3

pB + pA · 1
3

= pΠ′Π′
pB p′A

Fig. 4. Visual comparison of hashrates in the two systems Π and Π′, before and after
counter attacking the merge minded pitchfork protocol Π′, when merged mining of the
parent is not possibe without negative side effects on the parent chain. In this example,
the hashrate of the attacker is pB = 1

4
, which results in a situation where no player can

clearly win on any of the two chains in case of a counter-attack.

5 Related Attacks, Potential Enhancement, and Further
Analysis of Incentive Manipulation

In [8], it is argued that merged mining could also be used as an attack vector
against the parent chain. However, no concrete examples are given. In this pa-
per, we outline that merged mining can be used as an attack method against a
PoW cryptocurrency in the context of a hostile protocol hard fork. The pitch-
fork attack is an example of such a technique, which poses interesting questions
regarding the interplay of different cryptocurrencies, as well as their incentive
structures. The difficulties regarding counter-attacking a Pitchfork attack on
a permissionless PoW cryptocurrency have an interesting relation to a paper
by Lindell et al. [12], in which the authors prove that authenticated Byzantine
Agreement protocols only remain secure under parallel or concurrent compo-
sition (even for just two executions) when more than 2/3 of the participating
parties are honest.

A natural question now is if there are other attack possibilities on permis-
sionless PoW cryptocurrencies leveraging such incentive and concurrency issues.
Different bribing methods that can be used in hostile blockchain takeovers are
described in [2], placing the focus on attacks where the attacker has an extrinsic
motivation to disrupt the consensus process, i.e., Goldfinger attacks [10]. The ex-
ample given in this paper is a concrete instance of such a situation. The pitchfork
attack can also be viewed as a subsidized Goldfinger attack. Therefore, some of
the described methods for Goldfinger attacks might also be used in conjunction
with our proposed attack. This also holds true for the large body of work on brib-
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ing [1, 13] and incentive attacks that distract the hashrate of participants [14,
15].

The general idea of such an offensive consensus attack, like the pitchfork, is
that the participants of the offensive system are required to provably attack a
different system as part of the consensus rules. We show that such attacks are
theoretically possible and can lead to an arms race in which defenders are forced
to adapt their consensus rules. Still, the consequences, as well as the economic
and game-theoretic incentives of such attacks, have yet to be analyzed in greater
detail to better understand if they are practicable and, if so, how to protect
against them.
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