
How to leverage hardness of constant-degree
expanding polynomials over R

to build iO

Aayush Jain
aayushjain@cs.ucla.edu

Amit Sahai
sahai@cs.ucla.edu

UCLA

Abstract. In this work, we introduce and construct D-restricted Func-
tional Encryption (FE) for any constant D ≥ 3, based only on the
SXDH assumption over bilinear groups. This generalizes the notion of
3-restricted FE recently introduced and constructed by Ananth et al.
(ePrint 2018) in the generic bilinear group model.

A D = (d+ 2)-restricted FE scheme is a secret key FE scheme that
allows an encryptor to efficiently encrypt a message of the form M =
(x,y, z). Here, x ∈ Fd×n

p and y, z ∈ Fn
p. Function keys can be issued for

a function f = ΣI=(i1,..,id,j,k) cI ·x[1, i1] · · ·x[d, id] · y[j] · z[k] where the
coefficients cI ∈ Fp. Knowing the function key and the ciphertext, one
can learn f(x,y, z), if this value is bounded in absolute value by some
polynomial in the security parameter and n. The security requirement is
that the ciphertext hides y and z, although it is not required to hide x.
Thus x can be seen as a public attribute.

D-restricted FE allows for useful evaluation of constant-degree
polynomials, while only requiring the SXDH assumption over bilinear
groups. As such, it is a powerful tool for leveraging hardness that exists
in constant-degree expanding families of polynomials over R. In partic-
ular, we build upon the work of Ananth et al. to show how to build
indistinguishability obfuscation (iO) assuming only SXDH over bilinear
groups, LWE, and assumptions relating to weak pseudorandom proper-
ties of constant-degree expanding polynomials over R.

1 Introduction

Program obfuscation transforms a computer program P into an equivalent pro-
gram O(P) such that any secrets present within P are “as hard as possible” to
extract from O(P). This property can be formalized by the notion of indistin-
guishability obfuscation (iO) [11, 37]. Formally, iO requires that given any two
equivalent programs P1 and P2 of the same size, a computationally bounded
adversary cannot distinguish O(P1) from O(P2). iO has far-reaching applica-
tion [30, 56], significantly expanding the scope of problems to which cryptogra-
phy can be applied [56, 42, 29, 23, 32, 40, 15, 36, 39, 20].

2 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

The work of [30] gave the first mathematical candidate iO construction, and
since then several additional candidates have been proposed and studied [28, 25,
33, 26, 38, 19, 10, 54, 4, 9, 21, 17, 24, 41, 18, 38, 22, 52, 51, 27, 43, 48, 7, 47].

Constructing iO without MMaps. Until 2018, all known constructions relied on
multilinear maps [25, 26, 28, 33]. Unfortunately, multilinear map constructions
are complex and surviving multilinear map security models [31, 13, 49] are them-
selves complex and difficult to analyze, as they have had to be modified in light
of a sequence of attacks on multilinear map candidates [21, 17, 24, 41, 18, 38, 22,
52, 51].

This state of affairs is troubling scientifically, as we would like to be able to
reduce the security of iO to problems that are simple to state, and where the
underlying mathematics has a long history of study.

Everything old is new again: low-degree polynomials over the reals. Human-
ity has studied solving systems of (low-degree) polynomials over the reals for
hundreds of years. Is it possible to use hardness associated with polynomial sys-
tems over the reals cryptographically? Surprisingly, despite hundreds of years of
study, remarkably little is known about average-case hardness corresponding to
expanding polynomial systems, where the number of real variables is n, and the
polynomial equations over them is n1+󰂃 for 󰂃 > 0.

The recent works of [5, 46, 1] introduced a new way constructing iO without
relying on multilinear maps, by looking to hardness that may be present in
degree two [5, 46, 1] or degree three [5] expanding polynomial systems over the
reals.

The primary goal of our work is to extend the approach proposed by [5] to
be able to use hardness associated with suitable expanding polynomial systems
of any constant degree.

Leveraging low degree pseudorandomness over Z to build iO. The key idea be-
hind the work of [5] is to posit the existence of weak pseudorandom objects
that are closely related to polynomials of degree 2 or 3 over the integers. They
then introduce the crucial notion of 3-restricted functional encryption, which is
a notion of functional encryption that allows for a restricted but still useful eval-
uation of degree-3 polynomials. This notion allows for the natural application of
expanding families of degree-3 polynomials. (See below for further discussion on
restricted-FE and its uses.)

Departing from previous work [7, 44, 47] that required at least trilinear maps
to construct any meaningful FE for degree-3 functions, [5] show how to construct
3-restricted FE using only bilinear maps. Finally, by combining 3-restricted FE
with the weak pseudorandom objects mentioned above, they achieve iO (also
assuming LWE).

The goals of our present work are two-fold:

– To show how to extend the above approach beyond degree 3, to any constant
degree D for D ≥ 3. To do so, the key ingredient we construct is D-restricted
FE, again only using bilinear maps regardless of the constant D.

Title Suppressed Due to Excessive Length 3

– Furthermore, we construct D-restricted FE assuming only the SXDH as-
sumption to hold over the bilinear map groups, instead of the generic bilinear
model that was needed in [5].

We now elaborate.

D-restricted FE. AD-restricted FE scheme naturally generalizes the notion of 3-
restricted FE scheme from [5]. We will writeD = d+2 for notational convenience.
Such a scheme is a secret key FE scheme that allows an encryptor to encrypt a
message of the form M = (x,y, z). Here, x ∈ Fd×n and y, z ∈ Fn

p. Function keys
can be issued for a function f = ΣI=(i1,..,id,j,k) cI · x[1, i1] · · ·x[d, id] · y[j] · z[k]
where the coefficients cI ∈ Fp. Knowing the key and the ciphertext, one can
learn f(x,y, z), if this value is bounded in absolute value by some polynomial in
the security parameter and n. The security requirement is that ciphertext hides
y and z, although it is not required to hide x. Thus x can be seen as a public
attribute. For implications to iO, we require that encryption complexity should
grow only linearly in n (upto polynomial factor in the security parameter).

Observe that for a given family of degree-D polynomials Q fixed in a func-
tion key, the notion of D-restricted FE allows an encryptor to choose the values
of all variables x,y, z at the time of encryption, and the decryptor will obtain
Q(x,y, z). This allows for the most natural use of degree-D polynomials. We
stress this point because other, less natural uses, are possible without using D-
restricted FE, but these are unsatisfactory: One example would be where along
with the polynomial Q the values of all variables x would also be fixed inside the
function key. This would reduce the degree-D polynomials Q to quadratic poly-
nomials, and just quadratic FE would then suffice (see, e.g., [46, 1]). However,
again, this latter, less natural, approach would not allow x to be chosen freshly
with each encryption. With our notion of D-restricted FE, such an unnatural
setting – where some variables are fixed but others are freshly chosen with each
encryption – can be avoided completely.

Why is it important to go beyond degree 3? At the core of the new works that
construct iO without multilinear maps is the following key question: For some
constant D, do there exist “expanding” distributions of polynomials q1, . . . , qm
of degree D, where m = n1+󰂃 with polynomially-bounded coefficients, such that
if one obtains x = (x1, . . . , xn) ∈ Zn by sampling each xi from a “nice” distri-
bution with polynomially-bounded support, then is it hard to solve for x given
q1(x), . . . , qm(x)? Remarkably, even though this question has a many-hundred
year history within mathematics and nearly every branch of science, surprisingly
little is known about hardness in this setting! And yet the hardness of such in-
version problems is necessary (though not sufficient, see below) for this new line
of work on constructing iO.

Recently, [12] gave evidence that such problems may not be hard for D = 2.
The case for D = 3 is less studied, and seems related to questions like the hard-
ness of RANDOM 3-SAT. However, it seems that increasingD to larger constants
should give us more confidence that hard distributions exist. For example, for

4 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

D = 5 and larger, this becomes related to the hardness of natural generalizations
of the Goldreich PRG [35, 53]. It is also likely that as D grows, hardness “kicks
in” for smaller values of n, similar to how the hardness of RANDOM k-SAT for
constant k > 3 can be observed experimentally for much smaller values of n,
than for RANDOM 3-SAT. Thus, our study could impact efficiency, as well.

Since studying the hardness of solving expanding families of polynomial equa-
tions over R is an exciting new line of cryptanalytic research, it is particularly
important to study what values of D are cryptographically interesting. Before
our work, only D = 2 and D = 3 were known to lead to iO; our work shows that
hardness for any constant degree D is interesting and cryptographically useful.

We stress that ensuring the hardness of solving for x given q1(x), . . . , qm(x)
is just the first step. Our work also clarifies the actual hardness assumptions
that we need to imply iO as the following two assumptions. Since D > 2, let
D = d+ 2 for the rest of the discussion.

Weak LWE with leakage. This assumption says that there exists distributions χ
over the integers and Q over families of multilinear degree-D polynomials such
that the following two distributions are weakly indistinguishable, meaning that
no efficient adversary can correctly identify the distribution from which a sample
arose with probability above 1

2 + 1/4λ.
Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n,B, 󰂃) to obtain

polynomials (q1, ..., q⌊n1+󰂃⌋). Sample a secret s ← Zλ
p and sample aj,i ← Zλ

p for
j ∈ [d], i ∈ [n]. Finally, for every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ, and write
ej = (ej,1, . . . , ej,n), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{aj,i, 〈aj,i, s〉+ ej,i mod p}j∈[d],i∈[n]

along with

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+󰂃]

Distribution D2 is the same as D1, except that we additionally sample e′j,i ←
χ for j ∈ [d], i ∈ [n]. The output is now

{aj,i, 〈aj,i, s〉+ e′j,i mod p}j∈[d],i∈[n]

along with

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+󰂃]

We can think of the polynomials qk(e1, . . . , ed,y, z) as “leaking” some in-
formation about the LWE errors ej,i. The assumption above states that such
leakage provides only a limited advantage to the adversary. Critically, the fact
that there are n2 > n1+󰂃 quadratic monomials involving just y and z above,
which are not used in the LWE samples at all, is crucial to avoiding linearization
attacks over Zp in the spirit of Arora-Ge [8]. For more discussion of the security
of the above assumption in the context of D = 3, see [12].

The second assumption deals only with expanding degree-D polynomials over
the reals, and requires that these polynomials are weakly perturbation resilient.

Title Suppressed Due to Excessive Length 5

Weak Perturbation-Resilience. The second assumption is that there exists poly-
nomials that for the same parameters above the following two distributions are
weakly indistinguishable. By weakly indistinguishability we mean that no effi-
cient adversary can correctly identify the distribution from which a sample arose
with probability above 1− 2/λ. Let δi ∈ Z be such that |δi| < B(λ, n) for some
polynomial B and i ∈ [n1+󰂃]:

DistributionD1 consists of the evaluated polynomial samples. That is, we output:

{qk, qk(e1, . . . , ed,y, z)}k∈[n1+󰂃]

Distribution D2 consists of the evaluated polynomial samples with added per-
turbations δi for i ∈ [n1+󰂃]. That is, we output:

{qk, qk(e1, . . . , ed,y, z) + δk}k∈[n1+󰂃]

These assumptions are sketched here informally; the formal definitions are
given in Section 5.

Our Results: Our results can be summarized as follows. First, we construct a
(d+ 2) restricted FE scheme from SXDH assumption.

Theorem 1. Assuming SXDH over bilinear maps, there is a construction of
a (d+ 2) restricted FE scheme for any constant d ≥ 1.

Then, we give candidates of perturbation resilient generators that can be
implemented using a (d + 2) restricted FE scheme. Finally, using such a per-
turbation resilient generator and (d+ 2) restricted FE, we construct iO via the
approach given by [5]. Here is our final theorem.

Theorem 2. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1− 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with

• Stretch of k1+󰂃 (length of input being k bits) for some constant 󰂃 > 0.
• Block locality d+ 2.
• Security with distinguishing gap bounded by adv1 against adversaries of
sub-exponential size.

– d∆RG with distinguishing gap bounded by adv2 against adversaries of size
2λ. Details about the notion of d∆RG can be found in Sections 5 and 6.

there exists a secure iO scheme for P/poly.

We now proceed to more detailed, but still informal, technical overview of
our techniques.

6 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

2 Technical Overview

(d + 2)-restricted FE. The key technical tool constructed in this work is the
notion of (d + 2)−restricted FE (dFE for short) for any constant integer d ≥ 1.
We recall that a dFE scheme over Fp is a secret key functional encryption scheme

for the functions f of the following form: f : Fn×(d+2)
p → Fp. To be precise, f

takes as input (x,y, z) where x ∈ Fn×(d)
p and y, z ∈ Fn

p. Then it computes
f(x,y, z) = ΣI=(i1,..,id,j,k)cI ·x[1, i1] · · ·x[d, id] ·y[j] ·z[k] where each coefficient
cI ∈ Fp. We require the decryption to be efficient only if the output is bounded
in norm by a polynomial bound B(λ, n). Security of a dFE scheme intuitively
requires that ciphertext only reveals the d public components x and the output
of the decryption.

Before we describe our construction, let us first recall the construction of
3-restricted FE from [5]:

3-restricted FE [5]. Before getting to 3 restricted FE, let’s first recap how secret
key quadratic functional encryption schemes [45] work at a high level. Let’s say
that the encryptor wants to encrypt y, z ∈ Fn

p. The master secret key consists
of two secret random vectors β,γ ∈ Fn

p that are used for enforcement of com-
putations done on y and z respectively. The idea is that the encryptor encodes
y and β using some randomness r, and similarly encodes z and γ together as
well. These encodings are created using bilinear maps in one of the two base
groups. These encodings are constructed so that the decryptor can compute an
encoding of [g(y, z)−rg(β,γ)]t in the target group for any quadratic function g.
The function key for the given function f is constructed in such a manner that
it allows the decryptor to compute the encoding [rf(β,γ)]t in the target group.
Thus the output [f(y, z)]t can be recovered in the exponent by computing the
sum of [rf(β,γ)]t and [f(y, z)− rf(β,γ)]t in the exponent. As long as f(y, z)
is polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use bilin-
ear maps. However, the work of [5] built upon this idea nevertheless to construct
a 3-restricted FE scheme. Recall, in a 3-restricted FE one wants to encrypt three
vectors x,y, z ∈ Fn

p. While y and z are required to be hidden, x is not required
to be hidden.

In their scheme, in addition to β,γ ∈ Fn
p in case of a quadratic FE, another

vector α ∈ Fn
p is also sampled that is used to enforce the correctness of the x part

of the computation. As before, given the ciphertext one can compute [y[j]z[k]−
rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as these encodings do
not involve x in any way. Thus, in addition, an encoding of r(x[i]−α[i]) is also
given in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding
encodings of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding
of r(x[i]−α[i]) to form the encoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
󰀃
y[j]z[k]− rβ[j]γ[k]

󰀄
+ r(x[i]−α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Title Suppressed Due to Excessive Length 7

Above, since x[i] is public, the decryptor can herself take (y[j]z[k]−rβ[j]γ[k]),
which she already has, and multiply it with x[i] in the exponent. This allows
her to compute encoding of [x[i]y[j]z[k]− rα[i]β[j]γ[k]]t. Combining these en-
codings appropriately, she can obtain [g(x,y, z)− rg(α,β,γ)]t for any degree-3
multilinear function g. Given the function key for f and the ciphertext, one can
compute [rf(α,β,γ)]t which can be used to unmask the output. This is because
the ciphertext contains an encoding of r in one of the base groups and the func-
tion key contains an encoding of f(α,β,γ) in the other group and pairing them
results in [rf(α,β,γ)]t.

The work of [5] shows how to analyze the security of the construction above
in a generic bilinear group model.

Towards constructing (d+ 2)−restricted FE. Now let’s consider how we can ex-
tend the approach discussed above for the case of d = 2. Suppose now we want to
encrypt u,x,y and z. Here y, z are supposed to be private while x and u are not
required to be hidden. Let’s now also have φ ∈ Fn

p to enforce u part of the compu-
tation. How can we generalize the idea above to allow for degree-4 computations?
One straightforward idea is to release encodings of r(u[i1]x[i2]− φ[i1]α[i2]) for
i1, i2 ∈ [n] in the ciphertext instead of encodings of r(x[i2] − α[i2]) like before.
This would permit the computation of [f(u,x,y, z)− rf(φ,α,β,γ)]t. However,
such an approach would not be efficient enough for our needs: we require the
complexity of encryption to be linear in n. However, the approach above would
need to provide n2 encodings corresponding to r(u[i1]x[i2]−φ[i1]α[i2]) for every
i1, i2 ∈ [n].

Our first idea: A “ladder” of enforcement. Let’s now take a step back. Notice
that our 3-restricted FE scheme already allows one to compute [x[i2]y[j]z[k]−
rα[i2]β[j]γ[k]]t for any i2, j, k ∈ [n]. We want to leverage this existing capability
to bootstrap to degree-4 computations.

Suppose the decryptor is also able to generate the encoding [r(u[i1]−φ[i1]) ·
α[i2]β[j]γ[k]]t for any i1, i2, j, k ∈ [n]. Then, she can generate the encoding
[u[i1]x[i2]y[j]z[k]− φ[i1]α[i2]β[j]γ[k]]t as follows:

r(u[i1]− φ[i1])α[i2]β[j]γ[k] + u[i1] ·
󰀃
x[i2]y[j]z[k]− rα[i2]β[j]γ[k]

󰀄

=u[i1]x[i2]y[j]z[k]− rφ[i1]α[i2]β[j]γ[k]

Notice that u is public so the decryptor can herself take (x[i2]y[j]z[k] −
rα[i2]β[j]γ[k]), which she already has, and multiply it with u[i1] in the expo-
nent. To allow the computation of [r(u[i1]−φ[i1])α[i2]β[j]γ[k]]t we can provide
additionally encodings of (u[i1]− rφ[i1]) in the ciphertexts for i1 ∈ [n] and cor-
responding encodings of α[i2]β[j]γ[k] for i2, j, k ∈ [n] in the function key that
can be paired together.

What next? As before, the decryptor can homomorphically compute on these
encodings and learn [f(u,x,y, z) − rf(φ,α,β,γ)]t. Finally, the decryptor can
compute [rf(φ,α,β,γ)]t by pairing an encoding of r given in the ciphertext and

8 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

and encoding of f(φ,α,β,γ) given in the function key. Thus, the output can be
unmasked in the exponent.

Observe that this solution preserves linear efficiency of the ciphertext. As of
now we have not told anything about how security is argued. From computation
point of view, this solution indeed turns out to be insightful as this process can
now be generalized to form a ladder of enforcement for any constant degree-D
computations.

Laddered computations for any constant degree (d + 2). First let’s set up some
notation. Let x ∈ Fd×n

p be the public part of the plain-text and y, z ∈ Fn
p. Let

α ∈ Fd×n
p be the vector of random field elements corresponding to x. Similarly,

β and γ in Fn
p be the vector of random elements correspoding to y and z re-

spectively.

The next observation is the following. Suppose the decryptor can generate
the following terms by pairing encodings present in the ciphertext and encodings
present in the functional key, for every I = (i1, .., id, j, k) ∈ [n]D.

– [y[j]z[k]− rβjγk]t for j, k ∈ [n].
– [r(x[d, id]−α[d, id]) · β[j]γ[k]]t
– [r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]]t
– . . .
– [r(x[1, i1]−α[1, i1]) ·α[2, i2] · · ·α[d, id]β[j]γ[k]]t

As before, the decryptor can also obtain an encoding [rf(α,β,γ)]t corre-
sponding to the degree-D multilinear function f in the function key.

The main observation to generalize the D = 4 case discussed above is then
the following. Consider the first two terms: [y[j]z[k] + rβjγk]t and [r(x[d, id] −
α[d, id])β[j]γ[k]]t and note that:

x[d, id](y[j]z[k]− rβjγk) + r(x[d, id]−α[d, id])β[j]γ[k]

=x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k]

This observation allows the decryptor to compute an encoding

Intd = [x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k]]t

using encodings of the first two types in the list above.
Next observe that using the encoding,

[r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]]t

and encoding Intd one can compute

Intd−1 = [x[d− 1, id−1]x[d, id]y[j]z[k]− rα[d− 1, id−1]α[d, id]β[j]γ[k]]t

Title Suppressed Due to Excessive Length 9

This is because,

x[d− 1, id−1] · (x[d, id]y[j]z[k]− rα[d, id]β[j]γ[k])

+ r(x[d− 1, id−1]−α[d− 1, id−1]) ·α[d, id]β[j]γ[k]

=x[d− 1, id−1]x[d, id]y[j]z[k]− rα[d− 1, id−1]α[d, id]β[j]γ[k]

Continuing this way up a “ladder” the decryptor can compute

MonI = [Πℓ∈[d]x[ℓ, iℓ]y[j]z[k]− rΠℓ∈[d]α[ℓ, iℓ]β[j]γ[k]]t

Observe that the term Πℓ∈[d]x[ℓ, iℓ]y[j]z[k] − rΠℓ∈[d]α[ℓ, iℓ]β[j]γ[k] corre-
sponding to MonI can be generated as a linear combination of terms from the
list above. OnceMonI is computed then the decryptor can do the following. Since
f = ΣI=(i1,..,id,j,k)cIx[1, i1] · · ·x[d, id]y[j]z[k], the decryptor can then compute:

Monf = [f(x,y, z)− rf(α,β,γ)]t

Finally using [rf(α,β,γ)]t the decryptor can recover [f(x,y, z)]t

How to base security on SXDH? So far, we have just described a potential
computation pattern that allows the decryptor to obtain the function output
given a function key and a ciphertext. Any scheme that allows constructing the
terms described above in the ladder is guaranteed to satisfy correctness. But
how do we argue security?

We rely on a primitive called Canonical Function Hiding Inner Product En-
cryption (cIPE for short). A cIPE scheme allows the decryptor to compute the
inner product of a vector encoded in the ciphertext, with a vector encoded in
the function key. Also, intuitively, cIPE guarantees that the vector embedded in
the function key is also hidden given the function key. More precisely, given any
vectors v,v′,u,u′ such that 〈u,v〉 = 〈u′,v′〉, no efficient adversary can distin-
guish between a ciphertext encoding u and a function key encoding v, from a
ciphertext encoding u′ and a function key encoding v′.

Furthermore, syntactically speaking, in a cIPE scheme, we will require the
following to be true:

– The encryption algorithm just computes exponentiation and multiplication
operations in G1. The encryption of a vector (a1, .., a4) can just be computed
knowing gai

1 for i ∈ [4] and the master secret key.
– Key generation algorithm just computes exponentiation and multiplication

operation inG2. The function key for a vector (b1, .., b4) can just be computed
knowing gbi2 for i ∈ [4] and the master secret key.

– The decryption process just computes pairing operations and then computes
group multiplications over Gt. The output is produced in Gt. The element
gat is represented as [a]t for the rest of the paper.

Such a cIPE scheme was given by [44], where it was instantiated from SXDH
over bilinear maps. That work also used cIPE to build quadratic FE from SXDH.

10 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

We will also make use of cIPE in our construction of D-restricted FE. Note,
however, that unlike in the case of quadratic FE, our construction, and crucially
our proof of security, will also need to incorporate the “ladder” enforcement
mechanism sketched above. We are able to do so still relying only on the SXDH
assumption.

We note that the size of the vectors encrypted using a cIPE scheme cannot
grow with n, to achieve linear efficiency. In fact, we just use four-dimensional
vectors.

Realizing the Ladder: Warm-up Construction for d+ 2 = 4. Here is a warm-up
construction for the case of d = 2 (i.e. D=4).
Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Run cIPE setup as follows. sk0 ← cIPE.Setup(1λ, 14). Thus these keys are
used to encrypt vectors in F4

p.
– Then run cIPE setup algorithm 2 · n times. That is, for every ℓ ∈ [2] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(1λ, 14).
– Sample α ← F2×n

p . Also sample β,γ ← Fn
p.

– For every set I = (i1, i2, j, k) in [n]4 do the following. Let I ′ = (i2, j, k) and

I
′′
= (j, k). Compute Key

(1,i1)
I′ =

cIPE.KeyGen(sk(1,i1), (α[2, i2]β[j]γ[k],α[1, i1]α[2, i2]β[j]γ[k], 0, 0))

Similarly, compute Key
(2,i2)

I
′′ =

cIPE.KeyGen(sk(2,i2), (β[j]γ[k],α[2, i2]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

Enc(MSK,x,y, z): The input messageM = (x,y, z) consists of a public attribute

x ∈ F2×n
p and private vectors y, z ∈ Fn

p. Perform the following operations:

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(1λ, 14).
– Compute CTCj ← cIPE.Enc(sk, (y[j],β[j], 0, 0)) for j ∈ [n]
– Compute CTKk ← cIPE.Enc(sk, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [2], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r,
0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[2],iℓ∈[n],j∈[n],k∈[n])

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).

Title Suppressed Due to Excessive Length 11

– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key
(ℓ,iℓ)
I }ℓ,iℓ,I).

Observe how the computation proceeds. This scheme allows to generate all
terms in the ladder described above as follows:

Consider all terms associated with the vector I = (i1, i2, j, k) ∈ [n]4.

– [y[j]z[k]− rβjγk]t = cIPE.Dec(CTKk,CTCj)

– [r(x[2, i2] − α[2, i2])β[j]γ[k]]t = cIPE.Dec(Key
(2,i2)

I
′′ ,CT(2,i2)) where I

′′
=

(j, k).

– [r(x[1, i1] − α[1, i1])α[2, i2]β[j]γ[k]]t = cIPE.Dec(Key
(1,i1)

I
′ ,CT(1,i1)) where

I
′′
= (i2, j, k)

– [rf(α,β,γ)]t = cIPE.Dec(Key0,f ,CT0).

Thus, we can compute [f(x,y, z)]t. We now briefly describe how security is
proven.

Security Proof: Key Points. We use SXDH and function hiding property of the
cIPE scheme crucially to argue security. The hybrid strategy is the following.

1. First we switch y to 0 vector in the challenge ciphertext, changing one
component at a time.

2. To maintain correctness of output, we simultaneously introduce an offset in
the function key to maintain correctness of decryption.

3. Once y is switched, z can be switched to vector 0, due to the function hiding
property of the cIPE scheme. This is because the inner products remain the
same in both the case as y is always 0 and inner product of any vector
with all zero vector is 0. Finally, we are in the hybrid where the challenge
ciphertext just depends on x and in particular totally independent of y and
z.

Step (1) is most challenging here, and requires careful pebbling and hard-
wiring arguments made using SXDH and function hiding security property of
cIPE. We point the reader to a detailed proof provided in Section ??.

New ∆RG candidates: Our construction of D-restricted FE enables us to mean-
ingfully consider ∆RG candidates that are implementable by D-restricted FE
using degree-D polynomials. This enables a much richer class of potential ∆RG
candidates than those implementable by 3-restricted FE [5]. In Section 6, we de-
scribe a few of the new avenues for constructing ∆RG candidates that we open
by our construction of D-restricted FE.

Reader’s Guide. The rest of the paper is organized as follows. In Section 3 we
recall the definition of indistinguishability obfuscation and other prerequisites
for the paper. In Section 4 we define formally the notions of (d + 2) restricted
FE. Thereafter, in Section 5 perturbation resilient generator (∆RG for short) is

12 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

defined. Both primitives are central to this paper. In Section 6 we give candidate
constructions of ∆RG and show how to implement it using a (d + 2) restricted
FE scheme. In Section 7 we show how to construct (d + 2) restricted FE using
SXDH. Finally, in Section 8 we stitch all these primitives to show how to build
obfuscation.

3 Preliminaries

We denote the security parameter by λ. For a distribution X we denote by
x ← X the process of sampling a value x from the distribution X. Similarly,
for a set X we denote by x ← X the process of sampling x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, .., n}. A
function negl : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensem-
bles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
every probabilistic polynomial time adversary A there exists a negligible func-

tion negl such that

󰀏󰀏󰀏󰀏Prx←Xλ
[A(1λ, x) = 1] − Pry←Yλ

[A(1λ, y) = 1]

󰀏󰀏󰀏󰀏 ≤ negl(λ)

for every sufficiently large λ ∈ N.
For a field element a ∈ Fp represented in [−p/2, p/2], we say that −B < a <

B for some positive integer B if its representative in [−p/2, p/2] lies in [−B,B].

Definition 1 (Distinguishing Gap). For any adversary A and two distribu-
tions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, define A’s distinguishing gap in distin-
guishing these distributions to be |Prx←Xλ

[A(1λ, x) = 1]−Pry←Yλ
[A(1λ, y) = 1]|

By boldfaced letters such as v we will denote multidimensional matrices.
Whenever dimension is unspecified we mean them as vectors.

Throughout, we denote by an adversary an interactive machine that takes
part in a protocol with the challenger. Thus, we model such an adversary as a
tuple of circuits (C1, ..., Ct) where t is the number of messages exchanged. Each
circuit takes as input the state output by the previous circuit, among other
messages. The size of adversary is defined as sum of size of each circuit.

3.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak
et al. [11], guarantees that the obfuscation of two circuits are computationally
indistinguishable as long as they both are equivalent circuits, i.e., the output of
both the circuits are the same on every input. Formally,

Definition 2 (Indistinguishability Obfuscator (iO) for Circuits). A uni-
form PPT algorithm iO is called an indistinguishability obfuscator for a circuit
family {Cλ}λ∈N, where Cλ consists of circuits C of the form C : {0, 1}n → {0, 1}
with n = n(λ), if the following holds:

Title Suppressed Due to Excessive Length 13

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n,
we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ, C)] = 1

– Indistinguishability: For any PPT distinguisher D, there exists a negli-
gible function negl(·) such that the following holds: for all sufficiently large
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}n and |C0| = |C1|, we have:

󰀏󰀏󰀏Pr [D(λ, iO(λ, C0)) = 1]− Pr[D(λ, iO(λ, C1)) = 1]
󰀏󰀏󰀏 ≤ negl(λ)

– Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that
|iO(λ, C)| = poly(λ, C).

3.2 Bilinear Maps and Assumptions

Let PPGen be a probabilistic polynomial time algorithm that on input 1λ returns
a description (e,G1, G2, GT , g1, g2,p) of asymmetric pairing groups where G1,
G2 and GT are groups of order p for a 2λ bit prime p. g1 and g2 are generators
of G1 and G2 respectively. e : G1 ×G2 → GT is an efficiently computable non-
degenerate bilinear map. Define gt = e(g1, g2) as the generator of GT .

Representation: We use the following representation to describe group ele-
ments. For any b ∈ {1, 2, T} define by [x]b for x ∈ Fp as gxb . This notation will
be used throughout. We now describe SXDH assumption relative to PPGen.

Definition 3. (SXDH Assumption relative to PPGen.) We say that SXDH
assumption holds relative to PPGen, if (e,G1, G2, GT , g1, g2,p) ← PPGen, then
for any group gℓ for ℓ ∈ {1, 2, t}, it holds that, for any polynomial time adversary
A:

| Pr
r,s,u←Fp

[A([r]ℓ, [s]ℓ, [r · s]ℓ) = 1]− Pr
r,s,u←Fp

[A([r]ℓ, [s]ℓ, [u]ℓ) = 1]| ≤ negl(λ)

Further, if negl(λ) is O(2−λc

) for some c > 0, then we say that subexponential
SXDH holds relative to PPGen.

3.3 Canonical Function Hiding Inner Product FE

We now describe the notion of a canonical function hiding inner product FE
proposed by [44]. A canonical function hiding scheme FE scheme consists of the
following algorithms:

– PPSetup(1λ) → pp. On input the security parameter, PPSetup, outputs pa-
rameters pp, which contain description of the groups and the plain text space
Zp.

14 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– Setup(pp, 1n) → sk. The setup algorithm takes as input the length of vector
1n and parameters pp and outputs a secret key sk. We assume that pp is
always implicitly given as input to this algorithm and the algorithms below
(sometimes we omit this for ease of notation).

– Enc(sk,x) → CT. The encryption algorithm takes as input a vector x ∈ Zn
p

and outputs a ciphertext CT.
– KeyGen(sk,y) → sky. The key generation algorithm on input the master

secret key sk and a function vector y ∈ Zn
p and outputs a function key sky

– Dec(1B , sky,CT) → m∗. The decryption algorithm takes as input a cipher-
text CT, a function key sky and a bound B and it outputs a value m∗.
Further, it is run in two steps. First step Dec0, computes [〈x,y〉]T (if the
keys and ciphertexts were issued for x and y) and then the second step,
Dec1, computes its discrete log, if this value lies in [−B,B]

A cIPE scheme satisfies linear efficiency, correctness, function hiding security
and a canonical structure requirement. All of these are described in Section D.

4 Key Notion 1: (d + 2)−restricted FE

In this section we describe the notion of a (d+2)-restricted functional encryption
scheme (denoted by dFE). Let d denote any positive integer constant. Informally,
dFE scheme is a functional encryption scheme that supports homogeneous poly-
nomials of degree d+2 having degree 1 in d+2 input vectors. d out of those d+2
vectors are public. This is a generalisation of the notion of a three restricted FE
scheme proposed by [5].

Notation: Throughout, we denote by boldfaced letters (multi-dimensional) ma-
trices, where dimensions are either explicitly or implicitly defined.

Function class of interest: Consider a set of functions FdFE = FdFE,λ,p,n = {f :

Fn(d+2)
p → Fp} where Fp is a finite field of order p(λ). Here n is seen as a function

of λ. Each f ∈ Fλ,p,n takes as input d+2 vectors (x[1], ...,x[d],y, z) of length n
over Fp and computes a polynomial of the form Σci1,...,id,j,k ·x[1, i1] · ... ·x[d, id] ·
y[j] ·z[k], where ci1,..,id,j,k are coefficients from Fp for very i1, ..., id, j, k ∈ [n]d+2.

Syntax. Consider the set of functions FdFE,λ,p,n as described above. A (d +
2)−restricted functional encryption scheme dFE for the class of functions FdFE

(described above) consists of the following PPT algorithms:

– Setup, Setup(1λ, 1n): On input security parameter λ (and the number of
inputs n = poly(λ)), it outputs the master secret key MSK.

– Encryption, Enc(MSK,x[1], ...,x[d],y, z): On input the encryption keyMSK
and input vectors x ∈ Fd×n

p , y and z (all in Fn
p) it outputs ciphertext CT.

Here x is seen as a public attribute and y and z are thought of as private
messages.

Title Suppressed Due to Excessive Length 15

– Key Generation, KeyGen(MSK, f): On input the master secret key MSK
and a function f ∈ FdFE, it outputs a functional key sk[f].

– Decryption, Dec(sk[f], 1B ,CT): On input functional key sk[f], a bound
B = poly(λ) and a ciphertext CT, it outputs the result out.

We define correctness property below.

B-Correctness. Consider any function f ∈ FdFE and any plaintext x,y, z ∈ Fp

(dimensions are defined above). Consider the following process:

– sk[f] ← KeyGen(MSK, f).
– CT ← Enc(MSK,x,y, z)
– If f(x,y, z) ∈ [−B,B], set θ = f(x,y, z), otherwise set θ = ⊥.

The following should hold:

Pr
󰀅
Dec(sk[f], 1B ,CT) = θ

󰀆
≥ 1− negl(λ),

for some negligible function negl.
Linear Efficiency: We require that for any message (x,y, z) where x ∈

Fd×n
p and y, z ∈ Fn

p the following happens:

– Let MSK ← Setup(1λ, 1n).
– Compute CT ← Enc(MSK,x,y, z).

The size of encryption circuit computing CT is less than n×(d+2) log2 p·poly(λ).
Here poly is some polynomial independent of n.

4.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master se-
cret key MSK, function f and a value θ, it computes the semi-functional key
sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1|y|, 1|z|): On input the master
encryption key MSK, a public attribute x and length of messages y, z, it com-
putes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary al-
gorithms. We will model the security definitions along the same lines as semi-
functional FE.

Definition 4 (Indistinguishability of Semi-functional Ciphertexts). A
(d + 2)-restricted functional encryption scheme dFE for a class of functions
FdFE = {FdFE,λ,p,n}λ∈N is said to satisfy indistinguishability of semi-functional
ciphertexts property if there exists a constant c > 0 such that for sufficiently

16 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

large λ ∈ N and any adversary A of size 2λ
c

, the probability that A succeeds in
the following experiment is 2−λc

.

Expt(1λ,b):

1. A specifies the following:

– Challenge message M∗ = (x,y, z). Here y, z is in Fn
p and x is in Fd×n

p .
– It can also specify additional messages {Mk = (xk,yk, zk)}k∈[q] Here

yk, zk is in Fn
p and xk is in Fd×n

p . Here q is a polynomial in n,λ.
– It also specifies functions f1, . . . , fη and hardwired values θ1, . . . , θη where

η is a polynomial in n,λ.

2. The challenger checks if θk = fk(x,y, z) for every k ∈ [η]. If this check fails,
the challenger aborts the experiment.

3. The challenger computes the following
– Compute sk[fk, θk] ← sfKG(MSK, fk, θk), for every k ∈ [η].
– If b = 0, compute CT∗ ← sfEnc(MSK,x, 1|y|, 1|z|). Else, compute CT∗ ←

Enc(MSK,x,y, z).
– CTi ← Enc(MSK,Mi), for every i ∈ [q].

4. The challenger sends
󰀃
{CTi}i∈[q],CT

∗, {sk[fk, θk]}k∈[η]

󰀄
to A.

5. The adversary outputs a bit b′.

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it out-
puts b′ = b with probability 1

2 + ε.

We now define indistinguishability of semi-functional keys property.

Definition 5 (Indistinguishability of Semi-functional Keys). A (d+ 2)-
restricted FE scheme dFE for a class of functions FdFE = {FdFE,λ,p,n}λ∈N is said
to satisfy indistinguishability of semi-functional keys property if there
exists a constant c > 0 such that for all sufficiently large λ, any PPT adversary
A of size 2λ

c

, the probability that A succeeds in the following experiment is 2−λc

.

Expt(1λ,b):

1. A specifies the following:
– It can specify messages Mj = {(xi,yi, zi)}j∈[q] for some polynomial q.

Here yi, zi is in Fn
p and xi is in Fd×n

p .
– It specifies functions f1, . . . , fη ∈ FdFE and hardwired values θ1, . . . , θη ∈

Fp. Here η is some polynomial in λ, n.
2. Challenger computes the following :

– If b = 0, compute sk[fi]
∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise,

compute sk[fi]
∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].

– CTi ← Enc(MSK,Mj), for every j ∈ [q].
3. Challenger then sends

󰀃
{CTi}i∈[q], {sk[fi]∗}i∈[η]

󰀄
to A.

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability
1
2 + ε.

Title Suppressed Due to Excessive Length 17

If a (d + 2)-restricted FE scheme satisfies both the above definitions, then it is
said to satisfy semi-functional security.

Definition 6 (Semi-functional Security). Consider a (d + 2)-restricted FE
scheme dFE for a class of functions F . We say that dFE satisfies semi-functional
security if it satisfies indistinguishability of semi-functional ciphertexts property
(Definition 4) and indistinguishability of semi-functional keys property (Defini-
tion 5).

Remark: Two remarks are in order:

1. First, we define sub-exponential security here as that notion is useful for our
construction of iO. The definition can be adapted to polynomial security
naturally.

2. Semi-functional security implies indistinguishability based notion naturally.
This is pointed out in [7].

5 Key Notion 2: Perturbation Resilient Generator

Now we describe the notion of a Perturbation Resilient Generator (∆RG for
short), proposed by [5]. A ∆RG consists of the following algorithms:

– Setup(1λ, 1n, B) → (pp, Seed). The setup algorithm takes as input a security
parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed ∈ {0, 1}∗ and public parameters pp.

– Eval(pp, Seed) → (h1, ..., hℓ), evaluation algorithm output a vector (h1, ..., hℓ) ∈
Zℓ. Here ℓ is the stretch of ∆RG.

We have following properties of a ∆RG scheme.

Efficiency: We require for Setup(1λ, 1n, B) → (pp, Seed) and Eval(pp, Seed) →
(h1, ..., hℓ),

– |Seed| = n · poly(λ) for some polynomial poly independent of n. The size of
Seed is linear in n.

– For all i ∈ [ℓ], |hi| < poly(λ, n). The norm of each output component hi in
Z is bounded by some polynomial in λ and n.

Perturbation Resilience: We require that for large enough security parame-
ter λ, for every polynomial B, there exists a large enough polynomial nB(λ)
such that for any n > nB , there exists an efficient sampler H such that for
Setup(1λ, 1n, B) → (pp, Seed) and Eval(pp, Seed) → (h1, ..., hℓ), we have that for
any distinguisher D of size 2λ

|Pr[D(x
$←− D1) = 1]− Pr[D(x

$←− D2) = 1]| < 1− 2/λ

Here D1 and D2 are defined below:

18 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– DistributionD1: Compute Setup(1λ, 1n, B) → (pp, Seed) and Eval(pp, Seed) →
(h1, ..., hℓ). Output (pp, h1, ..., hℓ).

– Distribution D2: Compute Setup(1λ, 1n, B) → (pp, Seed) and H(pp, Seed) →
(h1, .., hℓ). Output (pp, h1 + a1, ..., hℓ + aℓ).

Remark: Note that one could view ∆RG as a candidate sampler H itself.
Now we describe the notion of Perturbation Resilient Generator implementable

by a (d+ 2)-restricted FE scheme (d∆RG for short.)

5.1 ∆RG implementable by (d + 2)−restricted FE

A ∆RG scheme implementable by (d + 2)-Restricted FE (d∆RG for short) is a
perturbation resilient generator with additional properties. We describe syntax
again for a complete specification.

– Setup(1λ, 1n, B) → (pp, Seed). The setup algorithm takes as input a secu-
rity parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed and public parameters pp. Here, Seed = (Seed.pub(1),
Seed.pub(2), ..., Seed.pub(d), Seed.priv(1), Seed.priv(2)) is a vector on Fp for a
modulus p, which is also the modulus used in (d+ 2)-restricted FE scheme.
There are d + 2 components of this vector, where d of the d + 2 compo-

nens are public and two components are private, each in Fnpoly(λ)
p . Also

each part can be partitioned into subcomponents as follows. Seed.pub(j) =
(Seed.pub(j, 1), ..., Seed.pub(j, n)) for j ∈ [d], Seed.priv(j) = (Seed.priv(j, 1),

...., Seed.priv(j, n)) for j ∈ [2]. Here, each sub component is in Fpoly(λ)
p for

some fixed polynomial poly independent of n. Also, pp = (Seed.pub(1), . . . ,
Seed.pub(d), q1, .., qℓ) where each qi is a degree d + 2 multilinear polyno-
mial described below. We require syntactically there exists two algorithms
SetupSeed and SetupPoly such that Setup can be decomposed follows:
1. SetupSeed(1λ, 1n, B) → Seed. The SetupSeed algorithm outputs the seed.
2. SetupPoly(1λ, 1n, B) → q1, ..., qℓ. The SetupPoly algorithm outputs q1, .., qℓ.

– Eval(pp, Seed) → (h1, ..., hℓ), evaluation algorithm output a vector (h1, ..., hℓ) ∈
Zℓ. Here for i ∈ [ℓ], hi = qi(Seed) and ℓ is the stretch of d∆RG. Here qi is a
homoegenous multilinear degree d+2 polynomial where each monomial has
degree 1 in {pub(j)}j∈[d+2] and {priv(j)}j∈[2] components of the seed.

The security and efficiency requirements are same as before.
Remark: To construct iO we need the stretch of d∆RG to be equal to ℓ = n1+󰂃

for some constant 󰂃 > 0.

6 d∆RG Candidates

We now describe our candidate for d∆RG implementable by a (d+2)− restricted
FE scheme. All these candidates use a large enough prime modulus p = O(2λ),
which is the same as the modulus used by (d + 2)−restricted FE. Then, let χ
be a distribution used to sample input elements over Z. Let Q denote a poly-
nomial sampler. Next we give candidate in terms of χ and Q but give concrete
instantiations later.

Title Suppressed Due to Excessive Length 19

6.1 d∆RG Candidate

– Setup(1λ, 1n, B) → (pp, Seed). Sample a secret s ← F1×n∆RG
p for n∆RG =

poly(λ) such that LWEn∆RG,n·d,p,χ holds. Here χ is a bounded distribution
with bound poly(λ) (see Section C.1 for definitions). Let Q denote an effi-
ciently samplable distribution of homogeneous degree (d + 2) polynomials
(instantiated later). Then proceed with SetupSeed as follows:

1. Sample ai,j ← F1×n∆RG
p for i ∈ [d], j ∈ [n].

2. Sample ei,j ← χ for i ∈ [d], j ∈ [n].

3. Compute ri,j = 〈ai,j , s〉+ ei,j mod p in Fp for i ∈ [d], j ∈ [n].

4. Define wi,j = (ai,j , ri,j) for i ∈ [d], j ∈ [d].

5. Set Seed.pub(j, i) = wj,i for j ∈ [d], i ∈ [n].

6. Sample yi, zi ← χ for i ∈ [n].

7. Set t = (−s, 1). Note that 〈wj,i, t〉 = ej,i for j ∈ [d], i ∈ [n].

8. Set y′
i = yi ⊗d t. (tensor t, d times)

9. Set Seed.priv(1, i) = y′
i for i ∈ [n].

10. Set Seed.priv(2, i) = zi for i ∈ [n].

Now we describe SetupPoly. Fix η = n1+󰂃.

1. Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).

2. Sample polynomials q′ℓ for ℓ ∈ [η] as follows.

3. q′ℓ = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,idyjzk where coefficients cI are bounded
by poly(λ). These polynomials are sampled according to Q

4. Define qi be a multilinear homogeneous degree d + 2 polynomial takes
as input Seed = ({wj,i}j∈[d],i∈[n],y

′
1, . . . ,y

′
n, z). Then it computes each

monomial cIe1,i1 · · · ed,idyjzk as follows and then adds all the results
(thus computes q′i(e1, . . . , ed,y, z)):

• Compute cI〈w1,i1 , t〉 · · · 〈wd,id , t〉yjzk. This step requires y′
i = yi⊗dt

to perform this computation.

5. Output q1, ..., qη.

– Eval(pp, Seed) → (h1, ..., hη), evaluation algorithm output a vector (h1, ..., hη) ∈
Zη. Here for i ∈ [η], hi = qi(Seed) and η is the stretch of d∆RG. Here qi is a
degree d+2 homogenenous multilinear polynomial (defined above) which is
degree 1 in d public and 2 private components of the seed.

Efficiency:

1. Note that Seed contains n · d LWE samples wi,j for i ∈ [d], j ∈ [n] of
dimension n∆RG. Along with the samples, it contains elements y′

i = yi ⊗d t
for i ∈ [n] and elements zi for i ∈ [n]. Note that the size of these elements
are bounded by poly(λ) and is independent of n.

2. The values hi = qi(Seed) = ΣI=(i1,..,id,j,k)cIe1,i1 · · · ed,idyjzk. Since χ is a
bounded distribution, bounded by poly(λ, n), and coefficients cI are also
polynomially bounded, each |hi| < poly(λ, n) for i ∈ [m].

20 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

6.2 Instantiations

We now give various instantiations of Q. Let χ be the discrete gaussian distribu-
tion with 0 mean and standard deviation n. The following candidate is proposed
by [12] based on the investigation of the hardness of families of expanding poly-
nomials over the reals.

Instantiation 1: 3SAT Based Candidate. Let t = B2λ. Sample each polynomial q′i
for i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj ,yj , zj).

Here xj ∈ χd×n and yj , zj ∈ χn for j ∈ [t]. In other words, q′i is a sum of t
polynomials q′i,j over t disjoint set of variables. Let d = 1 for this candidate.

Now we describe how to sample q′i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗, z∗ ∈ {0, 1}n.
2. To sample q′i,j do the following. Sample three indices randomly and indepen-

dently i1, i2, i3 ← [n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly
such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕ x∗[i1]⊕ y∗[i2]⊕ z∗[i3] = 1.

3. Set q′i,j(xj ,yj , zj) = 1 − (b1,i,j · xj [i1] + (1 − b1,i,j) · (1 − xj [i1])) · (b2,i,j ·
yj [i2] + (1− b2,i,j) · (1− yj [i2])) · ((b3,i,j · zj [i3] + (1− b3,i,j) · (1− zj [i3]))

Remark:

1. Note that any clause of the form a1 ∨ a2 ∨ a3 can be written as 1 − (1 −
a1)(1− a2)(1− a3) over integers where a1, a2, a3 are literals in first case and
take values in {0, 1}, and thus any random satisfiable 3SAT formula can be
converted to polynomials in this manner.

2. Similarly, the above construction can be generalised to degree (d + 2)-SAT
style construction by considering (d + 2)−SAT for any constant positive
integer d and translating them to polynomials.

Instantiation 2: Goldreich’s One-way Function Based Candidate. Goldreich’s
one-way function [35] consists of a predicate P involving d + 2 variables and
computes a boolean function that can be expressed a degree d + 2 polynomial
over the integers. Our candidate q′i,j(xj ,yj , zj) consists of the following step.

1. Sample d+ 2 indices i1, ..., id+2 ∈ [n].
2. Output q′i,j = P (xj [1, i1], . . . ,xj [d, id],yj [id+1], zj [id+2]).

For d = 3, [53] provided with the following candidate.
P (a1, .., a5) = a1⊕a2⊕a3⊕a4a5 where each ai ∈ {0, 1}. Note that this can be

naturally converted to a polynomial as follows. Rewrite a⊕b = (1−a)b+(1−b)a
and this immediately gives rise to a polynomial over the integers.

6.3 Simplifying Assumptions

In this section, we remark that d∆RG assumption can be simplified from being
an exponential family of assumptions to two simpler assumptions as follows. We
provide two sub-assumptions, which together imply d∆RG assumptions.

Title Suppressed Due to Excessive Length 21

LWE with degree d + 2 leakage. There exists a polynomial sampler Q and a
constant 󰂃 > 0, such that for every large enough λ ∈ N, and every polynomial
bound B = B(λ) there exist large enough polynomial nB = λc such that for
every positive integer n > nB , there exists a poly(n)−bounded discrete gaus-
sian distribution χ such that the following two distrbutions are close (we define
closeness later). We define the following two distributions:

Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, 󰂃) = (q1, ..., q⌊n1+󰂃⌋).

– (Sample Secret.) Sample a secret s ← Zλ
p

– Sample aj,i ← Zλ
p for j ∈ [d], i ∈ [n].

– (Sample LWE Errors.) For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ.
Write ej = (ej,1, . . . , ej,n) for j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).

– Output {aj,i, 〈aj,i, s〉+ ej,i mod p}j∈[d],i∈[n] and
{qk, qk(e1, . . . , ed,y, z)}k∈[⌊n1+󰂃⌋]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, 󰂃) = (q1, ..., q⌊n1+󰂃⌋).

– (Sample Secret.) Sample a secret s ← Zλ
p

– Sample aj,i ← Zλ
p for j ∈ [d], i ∈ [n].

– (Sample independent LWE Errors.) For every j ∈ [d], i ∈ [n], sample
ej,i, e

′
j,i, yi, zi ← χ. 1 Write e′j = (e′j,1, . . . , e

′
j,n), ej = (ej,1, . . . , ej,n) for

j ∈ [d], y = (y1, . . . , yn) and z = (z1, . . . , zn).
– Output {aj,i, 〈aj,i, s〉+ e′j,i mod p}j∈[d],i∈[n] and

{qk, qk(e1, . . . , ed,y, z)}k∈[⌊n1+󰂃⌋]

The assumption states that there exists a constant 󰂃adv > 0 such that for
any adversary A of size 2λ

󰂃adv , the following holds:

|Pr[A(D1) = 1]− Pr[A(D2) = 1]| < 1/2λ

Remark. This assumption says that to a bounded adversary, the advantage
of distinguishing the tuple consisting of polynomials samples, along with cor-
related LWE samples with tuple consisting of polynomials samples, along with
uncorrelated LWE samples is bounded by 1/2λ. Second assumption says that
the tuple of polynomial samples looks close to independent discrete gaussian
variables with a large enough variance and 0 mean. Below we define the notion
of a (B, δ)−smooth distribution.

Definition 7. (B, δ)−Smooth distribution N is an efficiently samplable distri-
bution over Z with the property that ∆(N ,N + b) ≤ δ for any b ∈ [−B,B].

1 Thus, we can observe that χ should be a distribution such that LWE assumption
holds with respect to χ and parameters specified above

22 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Weak Pseudo-Independence Generator Assumption [3, 46]. For the parameters
defined above, the assumption states that there exists a constant 󰂃adv > 0 such
that for any adversary A of size 2λ

󰂃adv , the following holds:

|Pr[A(D1) = 1]− Pr[A(D2) = 1]| < 1− 3/λ

where distributions are defined below.
Distribution D1:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, 󰂃) = (q1, ..., q⌊n1+󰂃⌋).
– For every j ∈ [d], i ∈ [n], sample ej,i, yi, zi ← χ. Write ej = (ej,1, . . . , ej,n)

for j ∈ [d], y = (y1, . . . ,yn) and z = (z1, . . . , zn).
– Output {qk, qk(e1, . . . , ed,y, z)}k∈[⌊n1+󰂃⌋]

Distribution D2:

– Fix a prime modulus p = O(2λ).
– (Sample Polynomials.) Run Q(n,B, 󰂃) = (q1, ..., q⌊n1+󰂃⌋).
– Output {qk, hk ← N}k∈[⌊n1+󰂃⌋]

Here N is a (B, 1
n2λ)−smooth distribution.

Thus we have,

Claim. Assuming,

1. LWE with degree d+ 2 leakage.
2. Weak Pseudo-Independence Generator Assumption

There exists a d∆RG scheme.

Proof. (Sketch.) This is immediate and the proof goes in three hybrids. First, we
use LWE with degree d+2 leakage assumption with 1/2λ security loss. In the next
hybrid, we sample from N given to us by Weak Pseudo-Independence Generator
Assumption. With that, we have another 1−3/λ loss in the security. Finally, we
move to a hybrid where all perturbations are 0. This leads to a security loss of
n1+󰂃 × 1

n2λ < 1
n1−󰂃λ due to statistical distance. Adding these security losses, we

prove the claim. Thus H just uses N to sample each component independently.

7 Constructing (d + 2) restricted FE from bilinear maps

In this section we describe our construction for a d+ 2−restricted FE scheme.
We now describe our construction as follows:

7.1 Construction

Ingredients: Our main ingredient is a secret-key function hiding canonical function-
hiding inner product functional encryption cIPE (refer Section D for a definition).

Title Suppressed Due to Excessive Length 23

Notation: We denote by Fp the field on which the computation is done in slotted
encodings.

1. By boldfaced letters, we denote (multi-dimensional) matrices, where dimen-
sions are specified. Messages are of the form (x,y, z). Here, x ∈ Fd×n

p .
y, z ∈ Fn

p.
2. Function class of interest:We consider a set of functions FdFE = FdFE,λ,p,n =

{f : Fn(d+2)
p → Fp} where Fp is a finite field of order p(λ). Here n is

seen as a function of λ. Each f ∈ Fλ,p,n takes as input d + 2 vectors
(x[1], . . . ,x[d],y, z) over Fp and computes a polynomial of the formΣci1,...,id,j,k·
x[1, i1] · · ·x[d, id] · y[j] · z[k], where ci1,...,id,j,k are coefficients from Fp.

Notation. For a secret key generated for the cIPE encryption algorithm, by
using primed variables such as sk′ we denote the secret key that is not gener-
ated during the setup of the dFE scheme but during its encryption algorithm.
We describe the construction below.

Setup(1λ, 1n): On input security parameter 1λ and length 1n,

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys are

used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, . . . , id, j, k) ∈ [n]d−ℓ+2 compute

Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

KeyGen(MSK, f): On input the master secret key MSK and function f ,

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0, 0, 0))

– Output skf = (Key0,f , {Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

Enc(MSK,x,y, z): The input messageM = (x,y, z) consists of a public attribute

x ∈ Fd×n
p and private vectors y, z ∈ Fn

p. Perform the following operations:

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14).
– Compute CTCj ← cIPE.Enc(sk, (y[j],β[j], 0, 0)) for j ∈ [n]

24 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– Compute CTKk ← cIPE.Enc(sk, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r, 0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Dec(1B , skf ,CT):

– Parse CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n]).

– Parse skf = {Key0,f ,Key
(ℓ,iℓ)
I }ℓ,iℓ,I .

– For every ℓ ∈ [d] and I = (iℓ, . . . , id, j, k) ∈ [n]d−ℓ+3 do the following. Let
I ′ be such that I = iℓ||I ′. In other words, I ′ has all but first element of I.

Compute Mon
(ℓ,iℓ)
I′ = cIPE.Dec(Key

(ℓ,iℓ)
I′ ,CT(ℓ,iℓ)) = [r(x[ℓ, iℓ]−α[ℓ, iℓ])α[ℓ−

1, iℓ−1] · · ·α[d, id]β[j]γ[k]]T .

– Compute Mon0 = cIPE.Dec(Key0,f ,CT0) = [rf(α,β,γ)]T .

– Compute Mon(j,k) = cIPE.Dec(CTKk,CTCj) = [y[j]z[k]− rβ[j]γ[k]]T .

– Let f = ΣI=(i1,...,id,j,k)cIx[1, i1] · · ·x[d, id]y[j]z[k]. Now fix I = (i1, . . . , id, j, k).
For the monomial corresponding to I compute IntI = [x[1, i1] · · ·x[d, id]y[j]z[k]−
rα[1, i1] · · ·α[d, id]β[j]γ[k]]T as follows.

1. For v ∈ [d], denote Iv = (iv, . . . , id, j, k) and I ′
v = (iv+1, . . . , id, j, k) .

2. Compute IntI = Πv∈[d]Mon(v,iv)I′
v

ρIv
. We describe ρIv

shortly.

3. We want these coefficients ρIv such that IntI = [Σv∈[d]ρv(x[v, iv]α[v +
1, iv+1] · · ·α[d, id]β[j]γ[k]− rα[v, iv] · · ·α[d, id]β[j]γ[k])]T .

4. This defines ρI1 = 1 and ρIv = x[1, i1], . . . ,x[v − 1, iv−1] for v ∈ [d].

5. This can be verified for d = 2 as follows.

x[1, i1]x[2, i2](y[j]z[k]− rβ[j]γ[k]) + x[1, i1]r(x[2, i2]

−α[i2])β[j]γ[k] + r(x[1, i1]−α[1, i1])α[i2]β[j]γ[k]

=x[1, i1]x[2, i2]y[j]z[k]− rα[1, i1]α[2, i2]β[j]β[k]

In this way, the process holds for any d.

– Finally compute Int1 = ΠI=(i1,..,id)Int
cI
I = [f(x,y, z)− rf(α,β,γ)]T .

– Compute Int1 ·Mon0 = [f(x,y, z)]T . Using brute force, check if |f(x,y, z)| <
B. If that is the case, output f(x,y, z) otherwise output ⊥.

We now discuss correctness and linear efficiency:

Correctness: Correctness is implicit from the description of the decryption algo-
rithm.

Linear Efficiency: Note that ciphertext is of the following form:

CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n]). Thus there are

n × (d + 1) + 1 cIPE ciphertexts and n cIPE function keys for vectors of length
4. Hence, the claim holds due to the efficiency of cIPE.

Title Suppressed Due to Excessive Length 25

7.2 Security Proof

Here is our theorem.

Theorem 3. Assuming SXDH holds relative to PPGen, the construction de-
scribed in Section 7 satisfies semi-functional security.

First we describe the semi-functional encryption and key generation algo-
rithm.
sfKG(MSK, f,∆): On input the master secret keyMSK, function f and a value∆,
perform the following steps. The change from regular key generation algorithm
is marked with boldfaced [Change].

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, 0, 0))

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

Note that the decryption of a functional ciphertext using a semi-functional
key is identical as ∆ is in in a slot that does not interfere with the computation.

We now describe semi-functional encryption algorithm:
sfEnc(MSK,x, 1n): On input the public attribute x ∈ Fd×n

p and MSK. Per-
form the following operations. The change from regular encryption algorithm
is marked with boldfaced [Change].

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r ← Fp.
– [Change] Compute CT0 = cIPE.Enc(sk0, (r, 1, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– [Change] Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [n]. Note

that 0 is encrypted instead of y[j].
– [Change] Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n]. Note

that 0 is encrypted instead of z[k].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r, 0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Note that the decryption of semi-functional ciphertext with a semi-functional
key with value ∆ will return f(x,0,0)+∆ = ∆ as the output of the decryption.

Indistinguishability of Semi-Functional Key: This is straight-forward to show

Lemma 1. Assuming cIPE is a canonical function hiding inner product FE
scheme, the scheme described in Section 7, satisfies indistinguishability of semi-
functional keys property.

Proof. The only difference between the distribution of keys and ciphertexts
corresponding to challenge bit 0 and challenge bit 1 in the security game of

26 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

semi-functional key security is the following. If challenge bit is 0, the func-
tion keys are functionally generated while if challenge bit is 1 the function keys
are semi-functionally generated. A function key for a function f is of the form

skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I). The only difference lies in the compo-

nent Key0,f . If challenge bit is 0, it is generated as cIPE.KeyGen(sk0, (θf , 0, 0, 0))
otherwise as cIPE.KeyGen(sk0, (θf ,∆, 0, 0)). Note in both the cases ciphertexts
generated by sk0 always has 0 in the second slot, so the inner products in both
the cases remain the same. The proof now holds because of the function hiding
security of cIPE.

Theorem 4. Assuming SXDH holds relative to PPGen, the scheme described in
Section 7, satisfies indistinguishability of semi-functional ciphertexts property.

Proof. We now list hybrids and prove indistinguishability between them. In the
first hybrid the challenge ciphertext is generated honestly and the keys are semi-
functionally generated. In the last hybrid, the challenge ciphertext is generated
semi-functionally and the keys are semi-functionally generated.
Setup(1λ, 1n): On input security parameter λ,

Hybrid0 :

1. The challenger does setup for the scheme as follows:

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2

compute

Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r ← Fp.
– Compute CT0 = cIPE.Enc(sk0, (r, 0, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [n].
– Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r,
0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Title Suppressed Due to Excessive Length 27

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f .

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, 0, 0))

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

28 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Hybrid1 :

1. The challenger does setup for the scheme as follows:

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2

compute

Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ, iℓ] · · ·

α[d, id]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r ← Fp.
– [Change] Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [n].
– Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r,
0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf , 0))

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 2. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid0 and Hybrid1 is the way how chal-
lenge ciphertext component CT0 and function key components Key0,f for all
queried functions f are generated. In Hybrid0,

– CT0 is generated as an encryption of (r, 0, 0, 0)

Title Suppressed Due to Excessive Length 29

– Key0,f is generated as a key for the vector (θf ,∆, 0, 0)

In Hybrid1,

– CT0 is generated as an encryption of (0, 0, 1, 0)
– Key0,f is generated as a key for the vector (θf ,∆, rθf , 0)

Thus observe that the decryption of all CT[ind]0 for ind ∈ [L] and CT0 with
keys Key0,f stay the same and thus, by the security of cIPE encryption scheme,
the proof follows.

30 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Next hybrid is the following: Hybrid2 :

1. This hybrid is the same as the previous hybrid except that the challenge ci-

phertext, CT, and keys Key
(ℓ,iℓ)
I for every ℓ ∈ [d], iℓ ∈ [n] and I = (iℓ+1, ..., id, j, k) ∈

[n]d+2−ℓ are generated differently.
– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– [Change] Sample r ← Fp (randomness used for the ciphertext).
– [Change] For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈

[n]d−ℓ+2 compute

Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ, iℓ] · · ·

α[d, id]β[j]γ[k], (x[ℓ, iℓ]−α[ℓ, iℓ])rα[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [n].
– Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k], 0, 0)) for k ∈ [n].

– [Change] For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ)

, (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf , 0))

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 3. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid1 and Hybrid2 is the way how func-

tion key component Key
(ℓ,iℓ)
I and challenge ciphertext component CT(ℓ,iℓ) are

generated for ℓ ∈ [d], iℓ ∈ [n] and I = (iℓ+1, ..., id, j, k) ∈ [n]d+2−ℓ.
In Hybrid1,

Title Suppressed Due to Excessive Length 31

– CT(ℓ,iℓ) is generated as an encryption of (rx[ℓ, iℓ],−r, 0, 0)

– Key
(ℓ,iℓ)
I is generated as a key for the vector (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k]

,α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0, 0)

In Hybrid2,

– CT(ℓ,iℓ) is generated as an encryption of (0, 0, 1, 0)

– Key
(ℓ,iℓ)
I is generated as a key for the vector (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k]

,α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k], r(x[ℓ, iℓ]−α[ℓ, iℓ])α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k]
, 0)

Thus observe that the decryption of all CT[ind](ℓ,iℓ) and CT(ℓ,iℓ) with keys

Key
(ℓ,iℓ)
I for ind ∈ [L] stay the same and thus, by function hiding security of cIPE

encryption scheme, the proof follows.

32 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Now we describe a sequence of hybrids and prove indistinguishability between
them. Denote Hybrid3,0 = Hybrid2 and then define Hybrid3,t∈[n] :

1. This hybrid is the same as the previous hybrid except that the challenge
ciphertext, CT, and key components Key0,f are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2 com-

pute Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], (x[ℓ, iℓ]−α[ℓ, iℓ])rα[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– [Change] Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [t] and

CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) otherwise.
– Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf+∆′, 0)) where

∆′ = f(x,y, z)− f(x,yt, z) where yt = (0, .., 0, yt+1, ..., yn).

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Since indistinguishability of these hybrids require further sub-hybrids, we
describe it later in Section 7.3.

Title Suppressed Due to Excessive Length 33

Hybrid4 :

1. This hybrid is the same as the previous hybrid except that the challenge
ciphertext, CT, and key components Key0,f are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2 com-

pute Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], (x[ℓ, iℓ]−α[ℓ, iℓ])rα[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [n] .
– [Change] Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf+∆′, 0)) where

∆ = ∆′ = f(x,y, z)

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 4. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid3,n) = 1]− Pr[A(Hybrid4)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid3,n and Hybrid4 is the way how
challenge ciphertext components CTKk for k ∈ [n] are generated.

In Hybrid3,n,

– CTKk is generated as a cIPE key for the vector (z[k],−rγ[k], 0, 0).

34 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

In Hybrid4,

– CTKk is generated as a cIPE key for the vector (0,−rγ[k], 0, 0).

Thus observe that the decryption of all CTCj with keys CTKk for j, k ∈ [n]
is the same in both hybrids and thus, by the security of cIPE encryption scheme,
the proof follows.

Title Suppressed Due to Excessive Length 35

Hybrid5 :

1. This hybrid is the same as the previous hybrid except that the challenge

ciphertext, CT and the cIPE keys Key
(ℓ,iℓ)
I are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– [Change] For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈

[n]d−ℓ+2 compute Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ),

(α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [n] .
– Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n].

– [Change] For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) =

cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],−r, 0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf + ∆′, 0)) where ∆ =

∆′ = f(x,y, z)

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 5. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid5)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid4 and Hybrid5 is the way how chal-
lenge ciphertext components CTℓ,iℓ for ℓ ∈ [d], iℓ ∈ [n] and function key compo-

nents Key
(ℓ,iℓ)
I are generated.

In Hybrid4,

36 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– CT(ℓ,iℓ) is generated for the vector (0, 0, 1, 0).

– Key
(ℓ,iℓ)
I is generated for vector

(α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k], r(x[ℓ, iℓ]−
α[ℓ, iℓ])α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0).

In Hybrid5,

– CT(ℓ,iℓ) is generated for the vector (rx[ℓ, iℓ],−r, 0, 0).

– Key
(ℓ,iℓ)
I is generated for vector

(α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0, 0).

Thus observe that the decryption of all CT(ℓ,iℓ) (as well as CT[ind](ℓ,iℓ)) with

keys Key
(ℓ,iℓ)
I for ind ∈ [L] is the same in both hybrids and thus, by the security

of cIPE encryption scheme, the proof follows.

Title Suppressed Due to Excessive Length 37

Hybrid6 :

1. This hybrid is the same as the previous hybrid except that the challenge ci-
phertext component, CT0 and the cIPE keys Key0,f are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2

compute

Key
(ℓ,iℓ)
I = cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], 0, 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– [Change] Compute CT0 = cIPE.Enc(sk0, (r, 1, 0, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [n] .
– Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (rx[ℓ, iℓ],
− r, 0, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, 0, 0)) where ∆ =

∆′ = f(x,y, z)

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 6. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid5) = 1]− Pr[A(Hybrid6)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid5 and Hybrid6 is the way how chal-
lenge ciphertext components CT0 and function key components Key0,f for i ∈ [n]
and functions f are generated.

In Hybrid5,

38 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– CT0 is generated for the vector (0, 0, 1, 0).
– Key0,f is generated for (θf ,∆, rθf +∆, 0).

In Hybrid6,

– CT0 is generated for the vector (r, 1, 0, 0).
– Key0,f is generated for (θf ,∆, 0, 0).

Thus observe that the decryption of all CT[ind]0 (as well as CT0) with keys
Key0,f for functions f and ind ∈ [L] is the same in both hybrids and thus, by
the security of cIPE encryption scheme, the proof follows.

The last hybrid exactly corresponds to the security game when both the
challenge ciphertexts as well as the function keys are generated using the semi-
functional algorithms and thus the claim holds.

7.3 Indistinguishability of Hybrid3,t and Hybrid3,t+1

Let us now recall Hybrid3,t. Note that Hybrid2 = Hybrid3,0.

1. This hybrid is the same as the previous hybrid except that the challenge
ciphertext, CT, and key components Key0,f are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2

compute Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k],

(x[ℓ, iℓ]−α[ℓ, iℓ])rα[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– [Change] Compute CTCj ← cIPE.Enc(sk′, (0,β[j], 0, 0)) for j ∈ [t] and

CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) otherwise.

Title Suppressed Due to Excessive Length 39

– Compute CTKk ← cIPE.Enc(sk′, (0,−rγ[k], 0, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).

– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf+∆′, 0)) where
∆′ = f(x,y, z)− f(x,yt, z) where yt = (0, .., 0, yt+1, ..., yn).

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 7. Assuming subexponenital SXDH, for any p.p.t. distinguisher A, |Pr[
A(Hybrid3,t)] − Pr[A(Hybrid3,t+1)]| < 2−λc

for some constant c > 0 and
t ∈ [0, .., n− 1].

Proof Structure: We prove indistinguishability between Hybrid3,0 and
Hybrid3,1 and then claim that arguments generalise for indistinguishability of
the general case. Namely, the following is the sequence of hybrids (we describe
them formally later):

1. Hybrid3,0,1 : This hybrid is the same as Hybrid3,0 except that challenge
ciphertexts and other ciphertexts are generated differently. Namely CTC1

and CTKk for k ∈ [n] are generated differently. CTC1 is generated as an
encryption of vector (0, 0, 1, 0). CTKk is generated as a cIPE key for the
vector (z[k],−rγ[k],y[1]z[k]−rβ[1]γ[k], 0). The same changes are performed
in other queried ciphertexts. Note that this can be done due to the security
of cIPE. Due to canonical structure of cIPE, now it ensures that r, β[1] and
γ are encoded in group 2. Note that α is also encoded in group 2.

2. Hybrid3,0,2 : This hybrid is same as the previous hybrid except that now
we replace rα[ℓ, iℓ] · · ·α[d, id]β[1]γ[k] for every ℓ ∈ [d] and iℓ, ..., id ∈ [n] and
k ∈ [n] with a truly random wiℓ,...,id,1,k ← Fp. Note that this can be done
using SXDH in steps. First we set rβ[1]γ[k] as w1,k and then rα[d, id]β[1]γ[k]
as α[d, id]w1,k and then finally replace it by wid,1,k. This process generalizes
and we can replace all such monomials with independent random elements.

3. Hybrid3,0,3 This hybrid is the same as the previous one now we replace
y[1] = 0 and simultaneously introduce an offset. This is specified shortly.

4. Hybrid3,0,4 This hybrid is the same as the previous one except now we
switch back wiℓ,..,id,1,k with rα[ℓ, iℓ] · · ·α[d, id]β[1]γ[k]. This hybrid is same
as Hybrid3,1

Hybrid3,0,1

40 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

1. This hybrid is the same as the previous hybrid except that the challenge
ciphertext component, CTC1, and CTKk for every k ∈ [n] (and the same
components of other ciphertexts CT[ind] for ind ∈ [L]) are generated differ-
ently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2

compute Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+1, iℓ+1] · · ·α[d, id]β[j]γ[k],α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k],

(x[ℓ, iℓ]−α[ℓ, iℓ])rα[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k], 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– [Change] Compute CTC1 = cIPE.Enc(sk′, (0, 0, 1, 0)) and compute CTCj ←

cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [2, .., n].
– [Change] Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k],y[1]z[k]−rβ[1]γ[k], 0))

for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Other ciphertexts CT[ind] are generated as follows.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r[ind] from Fp

– Compute CT[ind]0 = cIPE.Enc(sk0, (r[ind], 0, 0, 0)).
– Sample sk′[ind] ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– [Change] Compute CTC[ind]1 = cIPE.Enc(sk′[ind], (0, 0, 1, 0)) and com-

pute CTC[ind]j ← cIPE.Enc(sk′[ind], (y[ind][j],β[j], 0, 0)) for j ∈ [2, .., n].
– [Change] Compute CTK[ind]k ← cIPE.Enc(sk′[ind], (z[ind][k],−r[ind]γ[k],

y[ind][1]z[ind][k]− r[ind]β[1]γ[k], 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ)[ind] = cIPE.Enc(sk(ℓ,iℓ), (r[ind]
x[ind][ℓ, iℓ],−r[ind], 0, 0)).

– Output CT[ind] = (x[ind],CT[ind]0,CTC[ind]j ,CTK[ind]k,CT
(ℓ,iℓ)[ind]) for

ℓ ∈ [d], iℓ ∈ [n], j ∈ [n], k ∈ [n]

Title Suppressed Due to Excessive Length 41

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute θf = f(α,β,γ).
– Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆, rθf , 0))

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 8. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid3,0) = 1]− Pr[A(Hybrid3,0,1)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The only difference between Hybrid3,0 and Hybrid3,0,1 is the way how
challenge ciphertext components CTC1 and CTKk for k ∈ [n] are generated as
well as CTC[ind]1 and CTK[ind]k for k ∈ [n] are generated.

In Hybrid3,0,

– CTC1 is generated for the vector (y[1],β[1], 0, 0). CTC[ind]1 is generated
for the vector (y[ind][1],β[1], 0, 0). Note that each index ind as well as the
challenge ciphertext uses different cIPE master secret key.

– CTKk is generated for (z[k],−rγ[k], 0, 0). CTK[ind]k is generated for (z[ind][k],
− r[ind]γ[k], 0, 0).

In Hybrid3,0,1,

– CTC1 is generated for the vector (0, 0, 1, 0). CTC[ind]1 is generated for the
vector (0, 0, 1, 0). Note that each index ind as well as the challenge ciphertext
uses different cIPE master secret key.

– CTKk is generated for (z[k],−rγ[k],y[1]z[k] − rβ[1]γ[k], 0). CTK[ind]k is
generated for
(z[ind][k],−r[ind]γ[k],y[ind][1]z[ind][k]− r[ind]β[1]γ[k], 0).

Thus observe that the decryption of all CTC[ind]j (as well as CTCj) with
keys CTKk for ind ∈ [L] and j, k ∈ [n] is the same in both hybrids and thus, by
the security of cIPE encryption scheme, the proof follows.

Hybrid3,0,2

1. This hybrid is the same as the previous hybrid except that now we apply
SXDH wherever r and β[1] is involved in the product.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).

42 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– [Change] For every ℓ ∈ [d] and I = (iℓ, ..., id, j, k),
set wI = rα[ℓ, iℓ] · · ·α[ℓ, id]β[j]γ[k] for j ∕= 1, and randomly sampled
element otherwise.

– [Change] For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ, ..., id, j, k) ∈ [n]d−ℓ+3

and I ′ = (iℓ+1, ..., id, j, k)

compute Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k]

,α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], (x[ℓ, iℓ]wI′ − wI , 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC1 = cIPE.Enc(sk′, (0, 0, 1, 0)) and compute

CTCj ← cIPE.Enc(sk′, (y[j],β[j], 0, 0)) for j ∈ [2, .., n].
– [Change] Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k],y[1]z[k]−w1,k, 0))

for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Other ciphertexts CT[ind] are generated as follows.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r[ind] from Fp

– Compute CT[ind]0 = cIPE.Enc(sk0, (r[ind], 0, 0, 0)).
– Sample sk′[ind] ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC[ind]1 = cIPE.Enc(sk′[ind], (0, 0, 1, 0)) and compute CTC[ind]j ←

cIPE.Enc(sk′[ind], (y[ind][j],β[j], 0, 0)) for j ∈ [2, .., n].
– Compute CTK[ind]k ← cIPE.Enc(sk′[ind], (z[ind][k],−r[ind]γ[k],y[ind][1]z[ind][k]−

r[ind]β[1]γ[k], 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ)[ind] = cIPE.Enc(sk(ℓ,iℓ),
(r[ind]x[ind][ℓ, iℓ],−r[ind], 0, 0)).

– Output CT[ind] = (x[ind],CT[ind]0,CTC[ind]j ,CTK[ind]k,CT
(ℓ,iℓ)[ind]) for

all ℓ ∈ [d], iℓ ∈ [n], j ∈ [n], k ∈ [n]

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

Title Suppressed Due to Excessive Length 43

– [Change] Compute φf = ΣIcIwI . Note that any monomial of the form
rα[1, i1] · · ·α[d, id]β[j]γ is replaced with random wi1,..,iℓ,j,k if j = 1 and
unchanged otherwise. This φf is used below.

– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆,φf , 0)).

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 9. If SXDH holds relative to PPGen, then, for any polymomial time
distinguisher A, |Pr[A(Hybrid3,0,1) = 1] − Pr[A(Hybrid3,0,2)]| < 2−λ󰂃

for
some constant 󰂃 > 0

Proof. The only difference between Hybrid3,0,1 and Hybrid3,0,2 is the way
how challenge ciphertext components CTKk, function key components Key0,f
and CT(ℓ,iℓ) are generated. In all the components exponents α, γ, r and β[1]
only appear in group 2 (cIPE key elements). Thus we can apply SXDH in steps
as follows. Starting from Hybrid3,0,1:

1. Replace all occurrences of rβ[1] with w1.
2. Then replace all occurrences of (rβ[1]) · γ[k] with w1,k.
3. Inductively for all I = (iℓ, ..., id, 1, k) replace rα[ℓ, iℓ · · ·α[d, id]β[1]γ[k] with

a random wI . Note this can be done because corresponding elements α, r,
β[1] and γ occur only in group 2.

This distribution exactly corresponds to Hybrid3,0,2.

Hybrid3,0,3

1. This hybrid is the same as the previous hybrid except that the challenge
ciphertext component CTKk for every k ∈ [n] and Key0,f for all queried f
are generated differently.

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– For every ℓ ∈ [d] and I = (iℓ, ..., id, j, k) set wI = rα[ℓ, iℓ] · · ·α[ℓ, id]β[j]γ[k]

for j ∕= 1, and randomly sampled element otherwise.
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ, ..., id, j, k) ∈ [n]d−ℓ+3 and

I ′ = (iℓ+1, ..., id, j, k)

compute Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k]

,α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], (x[ℓ, iℓ]wI′ − wI , 0))

44 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC1 = cIPE.Enc(sk′, (0, 0, 1, 0)) and compute CTCj ← cIPE.Enc(sk′,

(y[j],β[j], 0, 0)) for j ∈ [2, .., n].
– [Change] Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k], 0−w1,k, 0)) for

k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Other ciphertexts CT[ind] are generated as follows.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r[ind] from Fp

– Compute CT[ind]0 = cIPE.Enc(sk0, (r[ind], 0, 0, 0)).
– Sample sk′[ind] ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC[ind]1 = cIPE.Enc(sk′[ind], (0, 0, 1, 0)) and compute CTC[ind]j ←

cIPE.Enc(sk′[ind], (y[ind][j],β[j], 0, 0)) for j ∈ [2, .., n].
– Compute CTK[ind]k ← cIPE.Enc(sk′[ind], (z[ind][k],−r[ind]γ[k],y[ind][1]z[ind][k]−

r[ind]β[1]γ[k], 0)) for k ∈ [n].
– For every ℓ ∈ [d], iℓ ∈ [n], compute

CT(ℓ,iℓ)[ind] = cIPE.Enc(sk(ℓ,iℓ), (r[ind]x[ind][ℓ, iℓ],−r[ind], 0, 0)).

– Output CT[ind] = (x[ind],CT[ind]0,CTC[ind]j ,CTK[ind]k,CT
(ℓ,iℓ)[ind]) for

all ℓ ∈ [d], iℓ ∈ [n], j ∈ [n], k ∈ [n].

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– [Change] Compute φf = ΣIcIwI + f(x,y, z)− f(x,y1, z). Here y1 =
(0, y2, ..., yn). Note that any monomial rα[1, i1] · · ·α[d, id]β[j]γ is re-
placed with random wi1,..,iℓ,j,k if j = 1 and unchanged otherwise. This
φf is used below.

– [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆,φf , 0)).

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 10. For any distinguisher A, |Pr[A(Hybrid3,0,2) = 1]−Pr[A(Hybrid3,0,3)]| =
0 (statistical indistinguishability)

Title Suppressed Due to Excessive Length 45

Proof. Let us now look at the hardwirings made in CTKk for k ∈ [n] (correspond-
ing to the third component). They are described below in both the hybrids.

Distribution Hybrid3,0,2 :

– CTKk for k ∈ [n] has y[1]z[k] + w1,k.
– For every ℓ ∈ [d], vector I = (iℓ, ..., id, j, k) and vector I ′ = (iℓ+1, ..., id, j, k)

with j = 1, Key
(ℓ,iℓ)
I′ has x[ℓ, iℓ]wI′ − wI hardwired.

– Key0,f hasΣI=(i1,...,id,j,k)cIwI hardwired where f = ΣI=(i1,..,id,j,k)cIx[1, i1] · · ·
x[d, id]y[j]z[k].

Distribution Hybrid3,0,3 :

– CTKk for k ∈ [n] has w1,k hardwired.
– For every ℓ ∈ [d], vector I = (iℓ, ..., id, j, k) and vector I ′ = (iℓ+1, ..., id, j, k)

with j = 1, Key
(ℓ,iℓ)
I′ has x[ℓ, iℓ]wI′ − wI hardwired.

– Key0,f has ΣI=(i1,...,id,j,k)cIwI + ΣI=(i1,...,id,1,k)cIx[1, i1] · · ·x[d, id]y[1]z[k]
hardwired where f = ΣI=(i1,..,id,j,k)cIx[1, i1] · · ·x[d, id]y[j]z[k].

We claim these distributions are identical. We start from Distribution
Hybrid3,0,2 and perform a change in variables to land toDistribution Hybrid3,0,3.
Here is the next distribution.

Distribution 1

– CTKk for k ∈ [n] has y[1]z[k] + w1,k hardwired. Set w′
1,k = y[1]z[k] + w1,k.

– For every ℓ ∈ [d], vector I = (iℓ, ..., id, j, k) and vector I ′ = (iℓ+1, ..., id, j, k)

with j = 1, Key
(ℓ,iℓ)
I′ has x[ℓ, iℓ]wI′−wI hardwired. Set w′

I = x[ℓ, iℓ]wI′−wI .
– Key0,f has ψf = ΣI=(i1,...,id,j,k)cIwI hardwired where f = ΣI=(i1,..,id,j,k)cIx[1, i1]

· · ·x[d, id]y[j]z[k]. We can decompose ψf = ψf,1 + ψf, ∕=1. Here ψf, ∕=1 =
ΣI=(i1,...,id,j ∕=1,k)cIrα[1, i1] · · ·α[d, id]β[j]β[k] and ψf,1 = ΣI=(iℓ,...,id,1,k)cIwI

– We can re-write ψf,1 = ΣI=(iℓ,...,id,1,k)ρ
′
Iw

′
I + f(x,y − y1, z) . This follows

from correctness of decryption. Note that these coefficients ρ′I are derived
from the coefficients ρIv

for v ∈ [d] (which intern depends only on x) and the
description of polynomial f as pointed out in the description of decryption
algorithm. Here y1 = (0, y2, ..., yn)

Now we describe our distribution 2.
Distribution 2

– Set w′
1,k randomly in CTKk for k ∈ [n].

– For every ℓ ∈ [d] vector I = (iℓ, ..., id, j, k) and vector I ′ = (iℓ+1, ..., id, j, k)

with j = 1, Key
(ℓ,iℓ)
I′ has w′

I hardwired. Set w′
I randomly.

– Key0,f has ψf = ΣI=(i1,...,id,j,k)cIwI hardwired where f = ΣI=(i1,..,id,j,k)cIx[1, i1]
· · ·x[d, id]y[j]z[k]. We can decompose ψf = ψf,1 + ψf, ∕=1. Here ψf, ∕=1 =
ΣI=(i1,...,id,j ∕=1,k)cIrα[1, i1] · · ·α[d, id]β[j]β[k] and ψf,1 = ΣI=(iℓ,...,id,1,k)cIwI

– We can re-write ψf,1 = ΣI=(iℓ,...,id,1,k)ρ
′
Iw

′
I + f(x,y − y1, z) . This follows

from correctness of decryption. Note that these coefficients ρ′I are derived
from the coefficients ρIv for v ∈ [d] (which intern depends only on x) and the
description of polynomial f as pointed out in the description of decryption
algorithm. Here y1 = (0, y2, ..., yn)

46 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Note that Distribution 1 is identical to Distribution 2 as
for every I = (iℓ, ..., id, 1, k) and I ′ = (iℓ+1, .., id, 1, k) w

′
I = x[ℓ, iℓ]wI′ − wI

and w′
1,k = y[1]z[k]−w1,k. Since wI is chosen randomly and independently from

wI′ , the claim follows. Once we have this, we can show that Distribution 2 is
identical to Distribution 3 (just by re-writing differently).

Distribution 3

– CTKk for k ∈ [n] has w1,k chosen randomly. Set w′
1,k = w1,k.

– For every ℓ ∈ [d] vector I = (iℓ, ..., id, j, k) and vector I ′ = (iℓ+1, ..., id, j, k)

with j = 1, Key
(ℓ,iℓ)
I′ has x[ℓ, iℓ]wI′−wI hardwired. Set w′

I = x[ℓ, iℓ]wI′−wI .
– Key0,f has ψf = ΣI=(i1,...,id,j,k)cIwI hardwired where f = ΣI=(i1,..,id,j,k)cI

x[1, i1] · · ·x[d, id]y[j]z[k]. Note that ψf = ψf,1 + ψf, ∕=1. Here ψf, ∕=1 =
ΣI=(i1,...,id,j ∕=1,k)cIrα[1, i1] · · ·α[d, id]β[j]β[k] and ψf,1 = +f(x,y−y1, z)+
ΣI=(iℓ,...,id,1,k)ρ

′
Iw

′
I . Note that these coefficients ρ′I are derived from the co-

efficients ρIv
for v ∈ [d] (which intern depends only on x) and the poly-

nomial f as pointed out in the description of decryption algorithm. Here
y1 = (0, y2, . . . , yn)

Note that thisDistribution 3 corresponds to theDistribution Hybrid3,0,3

and we are done.

Hybrid3,0,4

1. This hybrid is the same as the previous hybrid except that we replace wI

for I = (iℓ, ..., id, 1, k) with rα[ℓ, iℓ] · · ·α[d, id]β[1]γ[k]

– Sample pp ← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
– Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 14). Thus these keys

are used to encrypt vectors in F4
p.

– Then run cIPE setup algorithm n · d times. That is, for every ℓ ∈ [d] and

iℓ ∈ [n], compute sk(ℓ,iℓ) ← cIPE.Setup(pp, 14).
– Sample α ← Fd×n

p . Also sample β,γ ← Fn
p.

– Sample r ← Fp (randomness used for the ciphertext).
– [Change] For every ℓ ∈ [d] and I = (iℓ, ..., id, j, k) set wI = rα[ℓ, iℓ] · · ·α[ℓ, id]β[j]γ[k]
– For ℓ ∈ [d], iℓ ∈ [n] and every set I = (iℓ+1, ..., id, j, k) ∈ [n]d−ℓ+2 and

I ′ = (iℓ+1, ..., id, j, k)

compute Key
(ℓ,iℓ)
I =

cIPE.KeyGen(sk(ℓ,iℓ), (α[ℓ+ 1, iℓ+1] · · ·α[d, id]β[j]γ[k],

α[ℓ, iℓ] · · ·α[d, id]β[j]γ[k], (x[ℓ, iℓ]wI′ − wI , 0))

– Output MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0)

2. Then adversary releases challenge messages mi = (xi,yi, zi) for i ∈ [L]. It
also gives out a challenge message m = (x,y, z) in Zd×n

p . We now describe
how the challenge ciphertext CT is generated. Other ciphertexts CT[i] for
i ∈ [L] are generated similarly as in previous hybrids.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

Title Suppressed Due to Excessive Length 47

– Compute CT0 = cIPE.Enc(sk0, (0, 0, 1, 0)).
– Sample sk′ ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC1 = cIPE.Enc(sk′, (0, 0, 1, 0)) and compute CTCj ← cIPE.Enc(sk′,

(y[j],β[j], 0, 0)) for j ∈ [2, .., n].
– Compute CTKk ← cIPE.Enc(sk′, (z[k],−rγ[k], 0− w1,k, 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ) = cIPE.Enc(sk(ℓ,iℓ), (0, 0, 1, 0)).

– Output CT = (x,CT0, {CTCj ,CTKk,CT
(ℓ,iℓ)}ℓ∈[d],iℓ∈[n],j∈[n],k∈[n])

Other ciphertexts CT[ind] are generated as follows.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– Sample r[ind] from Fp

– Compute CT[ind]0 = cIPE.Enc(sk0, (r[ind], 0, 0, 0)).
– Sample sk′[ind] ← cIPE.Setup(pp, 14). Note a 1 placed in the second slot.
– Compute CTC[ind]1 = cIPE.Enc(sk′[ind], (0, 0, 1, 0)).
– Compute CTC[ind]j ← cIPE.Enc(sk′[ind], (y[ind][j],β[j], 0, 0)) for j ∈

[2, .., n].
– Compute CTK[ind]k ← cIPE.Enc(sk′[ind], (z[ind][k],−r[ind]γ[k],y[ind][1]

z[ind][k]− r[ind]β[1]γ[k], 0)) for k ∈ [n].

– For every ℓ ∈ [d], iℓ ∈ [n], compute CT(ℓ,iℓ)[ind] = cIPE.Enc(sk(ℓ,iℓ),
(r[ind]x[ind][ℓ, iℓ],−r[ind], 0, 0)).

– Output CT[ind] = (x[ind],CT[ind]0,CTC[ind]j ,CTK[ind]k,CT
(ℓ,iℓ)[ind]) for

all ℓ ∈ [d], iℓ ∈ [n], j ∈ [n], k ∈ [n].

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us
say ∆i = fi(m) for i ∈ [L]. Then adversary is given semi-functional keys
generated as follows. Below we denote the procedure for a single function f
and corresponding value ∆.

– Parse MSK = ({sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I ,α,β,γ, sk0).

– [Change] Compute φf = ΣIcIwI + f(x,y, z)− f(x,y1, z). Here y1 =
(0, y2, ..., yn). Note that φf = rθf + f(x,y, z) − f(x,y1, z) This φf is
used below.

– Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆,φf , 0)).

– Output skf = (Key0,f , {sk(ℓ,iℓ),Key
(ℓ,iℓ)
I }ℓ,iℓ,I)

4. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 11. If SXDH holds relative to PPGen, then, for any polymomial time
distinguisher A, |Pr[A(Hybrid3,0,3) = 1] − Pr[A(Hybrid3,0,4)]| < 2−λ󰂃

for
some constant 󰂃 > 0

Proof. The proof of this similar to lemma 9.

Lemma 12. Due to security of cIPE, for any polymomial time distinguisher A,
|Pr[A(Hybrid3,1) = 1]− Pr[A(Hybrid3,0,4)]| < 2−λ󰂃

for some constant 󰂃 > 0

Proof. The proof of this lemma is identical to the proof of lemma 8.

48 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

8 Construction of iO

Having constructed (d+ 2)−restricted FE for d ≥ 1 from SXDH, we are ready
to build iO. First step is to build a semi-functional FE scheme for degree d+ 2
polynomials. In [5], they showed that:

Theorem 5. Assuming tempered degree three encoding scheme and three-restricted
FE scheme exists, there exists a semi-functional FE scheme for cubic polynomi-
als.

A natural generalisation to degree (d+2) goes via the notion of degree (d+2)
tempered encodings. We define semi-functional FE for degree (d+2) polynomials
in Section A and degree (d+ 2) tempered encodings in Section B. In Section B,
we construct degree (d + 2) tempered encodings from a perturbation resilient
generator implementable by a (d + 2) restricted FE scheme. Thus we have the
following theorem:

Theorem 6. For any constant integer d ≥ 1, Assuming:

1. Subexponentially hard LWE
2. Perturbation resilient generators implementable by (d + 2) degree restricted

FE for any constant d ≥ 1 with a stretch of k1+󰂃 (k being the input size and
󰂃 > 0 is a constant).

There exists a degree (d+ 2) tempered encoding scheme.

Once we have tempered degree (d + 2) encoding scheme, as shown in [5]2, the
following holds:

Theorem 7. For any constant integer d ≥ 1, Assuming:

1. Tempered degree (d+ 2)−encoding scheme for any constant d ≥ 1.
2. (d+ 2)−degree restricted FE for any constant d ≥ 1.

There exists a degree (d+2) semi-functional FE scheme for degree (d+2) poly-
nomials.

Let us now define a circuit class Cn,s

Definition 8. Let λ be a security parameter. By Cn,s we denote the class of
circuits C : {0, 1}n → {0, 1}∗ with size bounded by s(n,λ) and depth λ. Here both
s and n are polynomials in λ. In particular, this class contains NC1 circuits of
size s(n,λ).

Then, as observed by [5, 47], such a degree (d+2)−semi-functional FE scheme
can be used to construct semi-functional FE for circuits with weak security (refer
[5] for a definition).

2 Although, in [5], the claims were proven for d = 1, the framework and the proof does
follow for any constant d.

Title Suppressed Due to Excessive Length 49

Theorem 8. For any constant integer d ≥ 1, Assuming:

1. Semi-functional FE scheme for degree d + 2 polynomials for any constant
d ≥ 1.

2. Block-local PRGs with block locality d+2 with stretch k1+󰂃 for some constant
󰂃 > 0 (k being the input size).

There exist semi-functional FE scheme for circuits (with distinguishing gap 1−
1/λ) for class Cn,s with s = n1+󰂃′ for some constant 󰂃′ > 0.

Finally, [5] showed how to perform security amplification for such a semi-
functional FE scheme for circuits to construct sublinear secret key FE for circuits.
This amplified scheme can be bootstrapped to iO using works of [6, 16]. Here
are the final theorem that we achieve:

Theorem 9. For any constant d ≥ 1, Assuming

– Subexponentially secure LWE.
– Subexponentially secure (d+ 2)−restricted FE scheme 3.
– PRGs with

• Stretch of k1+󰂃 (length of input being k bits) for some constant 󰂃 > 0.
• Block locality d+ 2.
• Security with negl distinguishing gap against adversaries of sub-exponential
size4.

– d∆RG with a stretch of k1+󰂃′ for some constant 󰂃′ > 0.

there exists a subexponentially secure sublinear secret key FE scheme for Cn,s for
s = n1+ε for some constant ε > 0.

Once, we have subexponentially secure secret key FE for Cn,s, then we invoke
the following theorem from [7, 47]. This theorem is based on the work of [14],
which showed that sublinear secret key FE implies sublinear public key FE
(assuming LWE), and the work of [6, 16] which showed that any subexponentially
secure sublinear public key FE implies iO.

Theorem 10 ([47, 7]). Assuming

– Subexponentially secure LWE.
– Subexponentially secure sublinear secret key FE for Cn,s for s = n1+ε for

some constant ε > 0.

there an indistinguishability obfuscation scheme for P/poly.

Thus, we have the following result.

Theorem 11. For any constant integer d ≥ 1, Assuming

3 This can be implemented from SXDH for any constant positive integer d
4 As pointed out in [5], we can allow a trade-off between the required level of security
of d∆RG and a d+ 2-block local PRG.

50 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

– Subexponentially secure LWE.
– Subexponentially secure (d+ 2)−restricted FE scheme 5.
– PRGs with

• Stretch of k1+󰂃 (length of input being k bits) for some constant 󰂃 > 0.
• Block locality d+ 2.
• Security with negl distinguishing gap against adversaries of sub-exponential
size6.

– d∆RG with a stretch of k1+󰂃′ for some constant 󰂃′ > 0.

there exists an iO scheme for P/poly.

Since, (d + 2)−restricted FE can be implemented using SXDH, we get the fol-
lowing theorem.

Theorem 12. For any constant integer d ≥ 1, Assuming

– Subexponentially hard LWE.
– Subexponentially hard SXDH
– PRGs with

• Stretch of k1+󰂃 (length of input being k bits) for some constant 󰂃 > 0.
• Block locality d+ 2.
• Security with negl distinguishing gap against adversaries of sub-exponential
size.

– d∆RG with a stretch of k1+󰂃′ for some constant 󰂃′ > 07.

there exists an iO scheme for P/poly.

Here is the version with the tradeoff.

Theorem 13. For any constant integer d ≥ 1, two distinguishing gaps adv1, adv2,
if adv1 + adv2 ≤ 1− 2/λ then assuming,

– Subexponentially hard LWE.
– Subexponentially hard SXDH.
– PRGs with

• Stretch of k1+󰂃 (length of input being k bits) for some constant 󰂃 > 0.
• Block locality d+ 2.
• Security with distinguishing gap bounded by adv1 against adversaries of
sub-exponential size.

– d∆RG with distinguishing gap bounded by adv2 against adversaries of size 2λ
8.

there exists a secure iO scheme for P/poly.

5 This can be implemented from SXDH for d
6 As pointed out in [5], we can allow a trade-off between the required level of security
of d∆RG and a d+ 2-block local PRG.

7 Instantiations can be found in Section 6.2
8 Instantiations can be found in Section 6.2

Title Suppressed Due to Excessive Length 51

9 Acknowledgement

We would like to thank Prabhanjan Ananth for preliminary discussions on the
concept of a d + 2 restricted FE scheme. We would also like to thank Pravesh
Kothari, Sam Hopkins and Boaz Barak for many useful discussions about our
d∆RG Candidates.

Aayush Jain and Amit Sahai are supported in part from a DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348,
BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Re-
search Grant. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the ARL under Contract W911NF-
15-C- 0205.

Aayush Jain is also supported by a Google PhD Fellowship in Privacy and
Security.

The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Founda-
tion, Google, or the U.S. Government.

References

1. Agrawal, S.: New methods for indistinguishability obfuscation: Bootstrapping and
instantiation. IACR Cryptology ePrint Archive 2018, 633 (2018)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
CRYPTO. pp. 297–314 (2014)

3. Ananth, P., Brakerski, Z., Khuarana, D., Sahai, A.: New approach against the
locality barrier in obfuscation: Pseudo-independent generators. Unpublished Work
(2017)

4. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding
Barrington’s theorem. In: ACM CCS. pp. 646–658 (2014)

5. Ananth, P., Jain, A., Khurana, D., Sahai, A.: Indistinguishability obfuscation with-
out multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness.
IACR Cryptology ePrint Archive 2018, 615 (2018)

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Advances in Cryptology–CRYPTO 2015, pp. 308–326. Springer (2015)

7. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. EUROCRYPT (2017)

8. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Au-
tomata, Languages and Programming - 38th International Colloquium, ICALP
2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I. pp. 403–415 (2011)

9. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
New mathematical tools, and the case of evasive circuits. In: Advances in Cryptol-
ogy - EUROCRYPT. pp. 764–791 (2016)

10. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: CRYPTO. pp. 221–238 (2014)

11. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings. pp. 1–18 (2001)

52 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

12. Barak, B., Hopkins, S., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets
program obfuscation, revisited. Unpublished Work (2018)

13. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on
GGH15. IACR Cryptology ePrint Archive 2018, 511 (2018)

14. Bitansky, N., Nishimaki, R., Passelgue, A., Wichs, D.: From cryptomania to ob-
fustopia through secret-key functional encryption. Cryptology ePrint Archive, Re-
port 2016/558 (2016), http://eprint.iacr.org/2016/558

15. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
nash equilibrium. In: FOCS (2015)

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS. IEEE (2015)

17. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014),
http://eprint.iacr.org/2014/930

18. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015), http://eprint.iacr.org/

19. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: TCC. pp. 1–25 (2014)

20. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and uces:
The case of computationally unpredictable sources. In: CRYPTO. pp. 188–205
(2014)

21. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: EUROCRYPT (2015)

22. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new clt multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015), http://eprint.iacr.org/

23. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

24. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: CRYPTO (2015)

25. Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 476–493
(2013)

26. Coron, J.S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: CRYPTO (2015)

27. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low
noise multilinear maps. IACR Cryptology ePrint Archive 2016, 599 (2016)

28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings (2013)

29. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Theory of Cryptography - 11th Theory of Cryptog-
raphy Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Pro-
ceedings. pp. 74–94 (2014)

30. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

Title Suppressed Due to Excessive Length 53

31. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II. pp. 241–268 (2016)

32. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: CRYPTO (2016)

33. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: TCC. pp. 498–527 (2015)

34. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: CRYPTO.
pp. 75–92 (2013)

35. Goldreich, O.: Candidate one-way functions based on expander graphs. IACR
Cryptology ePrint Archive 2000, 63 (2000), http://eprint.iacr.org/2000/063

36. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi,
E., Zhou, H.: Multi-input functional encryption. In: EUROCRYPT (2014)

37. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: TCC. pp. 194–
213 (2007)

38. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive 2015, 866 (2015)

39. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. In: ASIACRYPT. pp. 715–744 (2016)

40. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In: EUROCRYPT (2014)

41. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint Archive
2015, 301 (2015)

42. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

43. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 28–57. Springer (2016)

44. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 prgs. In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part I. pp. 599–629 (2017)

45. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In: CRYPTO. pp. 599–629. Springer (2017)

46. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to in-
distinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018)

47. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and
block-wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017),
http://eprint.iacr.org/2017/250

48. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from ddh-like as-
sumptions on constant-degree graded encodings. In: FOCS. pp. 11–20. IEEE (2016)

49. Ma, F., Zhandry, M.: New multilinear maps from CLT13 with provable security
against zeroizing attacks. IACR Cryptology ePrint Archive 2017, 946 (2017)

50. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT. pp. 700–718 (2012)

51. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. In: Advances in Cryptol-
ogy - CRYPTO (2016)

54 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

52. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the inte-
gers. Cryptology ePrint Archive, Report 2015/941 (2015), http://eprint.iacr.org/

53. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: FOCS.
pp. 136–145 (2003)

54. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I. pp. 500–517 (2014)

55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC. pp. 84–93 (2005)

56. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014. pp. 475–484. ACM (2014). https://doi.org/10.1145/2591796.2591825,
http://doi.acm.org/10.1145/2591796.2591825

A (Stateful) Semi-Functional Functional Encryption for
degree d + 2 Polynomials

In this section, we define the notion of Semi-Functional Functional Encryption
(referred to as FEd) for degree (d + 2) polynomials for any constant positive
integer d. It is a direct generalisation of semi-functional FE for cubic polynomials
in [5].

Function class of interest for FEd: We consider functional encryption scheme
for degree d + 2 homogenous polynomials over variables over integers Z. For-
mally, consider a set of functions FFEd,λ,n = {f : [−ρ, ρ]

n → Z} where ρ is
some constant. Here n is interpreted as a function of λ. Each f ∈ FFEd,λ,n takes
as input x = (x1, .., xn) ∈ [−ρ, ρ]

n
and computes a polynomial of the form

ΣI=(i1,..,id+2)∈[n]d+2cIΠℓ∈[d+2]x[iℓ] over Z (where some variables can repeat).
The sum of absolute values of the coefficients ΣI |cI | < w(λ) for some polyno-
mial w independent of n. Such polynomials contain the set of degree (d+2) ran-
domizing polynomials constructed by [47] and thus suffice for iO. Constructing
functional encryption for homogenous polynomials suffice to construct functional
encryption for all degree d+2 polynomials with bounded norm. This is because
we can always write any polynomial as a homogeneous polynomial in the same
variables and an artificially introduced variable set to 1.

Syntax. Consider the set of functions FFEd
= FFEd,λ,n as described above. A

semi-functional functional encryption scheme FEd for the class of functions FFEd

(described above) consists of the following PPT algorithms:

– Setup, Setup(1λ, 1n): On input security parameter λ and the length of the
message 1n, it outputs the master secret key MSK.

– Encryption, Enc(MSK,x): On input the encryption key MSK and a vector
of integers x = (x1, .., xn) ∈ [−ρ, ρ]

n
, it outputs ciphertext CT.

Title Suppressed Due to Excessive Length 55

– Key Generation, KeyGen(MSK, i, f): On input the master secret key MSK
and an index i ∈ [η] denoting the index of the function in [η], function
f ∈ FFEd

, it outputs a functional key skf . Here, η denotes the number of
key queries possible. Note that this algorithm is allowed to be stateful.

– Decryption, Dec(skf ,CT): On input functional key skf and a ciphertext
CT, it outputs the result out.

We define correctness property below.

Correctness. Consider any function f ∈ FFEd
, any index i ∈ [η] and any plaintext

integer vector x ∈ [−ρ, ρ]
n
. Consider the following process:

– MSK ← Setup(1λ, 1n)
– skf ← KeyGen(MSK, i, f).
– CT ← Enc(MSK,x)

Let θ = 1 if f(x) ∕= 0, θ = 0 otherwise. The following should hold:

Pr [Dec(skf ,CT) = θ] ≥ 1− negl(λ),

for some negligible function negl.

Remark 1. We consider a form of semi-functional functional encryption where
the decryption algorithm only allows the decryptor to learn if the functional
value f(x) is 0 or not.

Linear Efficiency: We require that for any message x ∈ [−ρ, ρ]
n
the following

holds:

– Let MSK ← Setup(1λ, 1n).
– Compute CT ← Enc(MSK,x).

The size of the circuit computing CT is less than npoly(λ, log n). Here poly is
some fixed polynomial independent of n.

A.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, i, f, θ): On input the master
secret key MSK, function f , an index i and a value θ, it computes the semi-
functional key skf,θ.

Semi-functional Encryption, sfEnc(MSK, 1n): On input the master encryp-
tion key MSK, and the length 1n, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional keys property.

Throughout the definition we denote by Sη a set of tuples of dimension η
over FFEd

. Thus Sη ⊆ Fη
FEd

.

56 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Definition 9 (Sη-Bounded Indistinguishability of Semi-functional Keys).
A Semi-Functional FE scheme for degree d + 2 polynomials FEd for a class
of functions FFEd

= {FFE3,λ,n}λ∈N is said to satisfy Sη−bounded indistin-
guishability of semi-functional keys property if there exists a constant
c > 0 such that for any sufficiently large λ ∈ N and any adversary A of size 2λ

c

,
the probability that A succeeds in the following experiment is 2−λc

.
Expt(1λ, 1n,b):

1. A specifies the following:
– It can specify messages Mj = {xi}j∈[q]. Here each vector is in [−ρ, ρ]n

– It specifies function queries as follows:
• It specifies (f1, . . . , fη) ∈ Sη ⊆ Fη

FEd
.

• It specifies values θ1, . . . , θη.
2. The challenger computes the following:

– MSK ← Setup(1λ, 1n)
– CTi ← Enc(MSK,Mj), for every j ∈ [q].
– If b = 0, compute sk∗fi ← KeyGen(MSK, i, fi). Otherwise, compute sk∗fi ←

sfKG(MSK, i, fi, θi) for all i ∈ [η].
3. Challenger sends {CTi}i∈q and {sk∗fi}i∈[η] to A:
4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability
1
2 + ε.

Definition 10 (Sη-Bounded Indistinguishability of Semi-functional Ci-
phertexts). For a semi-functional FE scheme FEd for a class of functions
FFEd

= {FFEd,λ,n}λ∈N , the Sη−bounded indistinguishability of semi-functional
ciphertexts property is associated with two experiments. The experiments are
parameterised with aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ ,M

∗ = (x), f1, .., fη).
Exptaux(1

λ, 1n,b):

1. The challenger sets θi = fi(x) for i ∈ [η]. The challenger computes the
following:

2. Compute MSK ← Setup(1λ, 1n).
3. Compute skfk,θk ← sfKG(MSK, k, fk, θk), for every k ∈ [η].
4. CTi ← Enc(MSK,Mi), for every i ∈ Γ .
5. If b = 0, compute CT∗ ← Enc(MSK,M∗).
6. If b = 1 compute CT∗ ← sfEnc(MSK, 1n).
7. Output the following:

(a) CTi for i ∈ Γ and CT∗.
(b) skfk,θk for k ∈ [η]
(c) M∗ and {Mi}i∈Γ

(d) f1, . . . , fη

A semi-functional FE scheme FEd associated with plaintext space R = [−δ, δ]
is said to satisfy η−indistinguishability of semi–functional ciphertexts
property if the following happens: ∃c > 0 such that, ∀λ > λ0, polynomial n =

Title Suppressed Due to Excessive Length 57

n(λ), polynomial Γ , for any messages {Mi}i∈Γ ∈ Rn, M∗ ∈ Rn , (f1, .., fη) ∈ Sη

and any adversary A of size 2λ
c

,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 2/λ+ negl(λ)

where aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ ,M
∗ = (x), f1, .., fη)

If a FEd scheme satisfies both the above definitions, then it is said to satisfy
semi-functional security.

Definition 11 (Sη−Bounded Semi-functional Security). Consider a semi-
functional FE scheme for degree d + 2 polynomials FEd for a class of functions
FFEd

. We say that FEd satisfies Sη−bounded semi-functional security if
it satisfies Sη−bounded indistinguishability of semi-functional ciphertexts prop-
erty (Definition 10) and Sη−bounded indistinguishability of semi-functional keys
property (Definition 9).

B Tempered degree (d + 2) Encoding

In this section, we describe the notion of a tempered degree (d + 2) encoding
scheme (TDE for short). The encodings in this scheme are associated with a ring
Zp, for an integer p ∈ Z≥0 that is fixed by the setup algorithm. The plaintext
elements are sampled from the set R ∈ ∩[−δ, δ] for some constant δ. TDE consists
of the following polynomial time algorithms:

– Setup, Setup(1λ, 1n): On input security parameter λ, the number of inputs
n, this algorithm outputs public parameters params.

– Setup-Encode, SetupEnc(params) : On input params, this algorithm out-
puts secret encoding parameters sp.

– Setup-Decode, SetupDec(params) : On input params, this algorithm out-
puts (public) decoding parameters (q1, ..., qη) where η = n1+󰂃 described in
the security definition.

– Encode, Encode(sp, a, ind, S): On input the secret parameter sp, a plain-
text element a ∈ R, a level S = i with i ∈ {1, ..., d + 2} and an index
ind ∈ [n], it outputs an encoding [a]S,ind with respect to the level S and an
index ind. Without loss of generality, this algorithm is deterministic as all
the randomness can be chosen during SetupEnc. This encoding satisfies two
properties:
• The encoding [a]S,ind = ([a]S,ind.pub(1), ..., [a]S,ind.pub(d), [a]S,ind.priv(1), [a]S,ind.priv(2))
consists of d public components [a]S,ind.pub(i) for i ∈ [d] and two private
components [a]S,ind.priv(1) and [a]S,ind.priv(2).

• [a]S,ind.pub(i) for i ∈ [d], [a]S,ind.priv(1) and [a]S,ind.priv(2) are vectors
over Zp.

– Decode, Decode(q, f, {[x[1, i]]1,i}i∈[n],, {[x[d+ 2, i]]d+2,i}i∈[n]) : The de-
code algorithm takes as input a decoding parameter q, a polynomial f =
ΣI=(i1,...,id+2)∈[n]dγIx[1, i1] · · ·x[d+2, id+2] with coefficients |γI | ≤ δ. It also
takes encodings {[x[j, i]]j,i}i∈[n],j∈[d+2]. It outputs leak ∈ Zp.

58 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Efficiency Properties: Consider the following experiment associated with any
n,λ ∈ N, any index ind ∈ [n], any level ℓ ∈ [d+ 2] and any plaintext x ∈ [−δ, δ]:

1. Setup(1λ, 1n) → params

2. SetupEnc(params) → sp

3. Encode(sp, x, ind, ℓ) → [x]ℓ,ind

Then we require the circuit size computing [x]ℓ,ind is less than poly(λ, log n) for
some fixed polynomial poly.

(X, d+2)-Multilinear polynomials. We define the notion of (X, d+2) multilinear
polynomials below.

Definition 12 ((X, d+2)-Multilinear). Let X = x[i, j] for i ∈ [d+2], j ∈ [n]
be d + 2 sets of variables. A polynomial p ∈ Zp[x[1, 1], . . . ,x[1, n] . . . ,x[d +
2, 1], . . . ,x[d+2, n]] is (X, d+2)-multilinear if every term in the expansion of p
is of the form τI · x[1, I[1]] · · ·x[d+ 2, I[d+ 2]], for some I ∈ [n]d+2, τI ∈ Zp.

degree d + 2 Evaluation and Correctness: Consider the following experiment
associated with any n,λ ∈ N, any index ind ∈ [n], any index indQ ∈ [η], any
level ℓ ∈ [d + 2], any polynomial f = ΣIγIx[1, I[1]] · · ·x[d + 2, I[d + 2]] with
γI ∈ [−δ, δ] and any plaintexts x ∈ [−δ, δ](d+2)×n for i ∈ [n]:

1. Setup(1λ, 1n) → params

2. SetupEnc(params) → sp

3. SetupDec(params) → (q1, . . . , qη)

4. Encode(sp,x[j, i], j, i) → [x[j, i]]j,i for i ∈ [n], j ∈ [d+ 2]

5. Let q = qindQ
6. Decode(q, f, {[x[j, i]]j,i}j∈[d+2],i∈[n]) → leak

degree d + 2 Evaluation: We now describe degree d + 2 evaluation property.
This property states that the Decode(q, f, {[x[j, i]]j,i}j∈[d+2],i∈[n]) algorithm eval-
uates an efficiently computable homogeneous degree d+2 polynomial φq,f which
depends on params, f, q, and which is a (Y, d + 2)-multilinear polynomial over
Zp with:

– Y[j] = ({[x[k, i]]j,i.pub(j)}i∈[n],k∈[d+2]) for j ∈ [d].

– Y[d+ j] = ({[x[k, i]]j,i.priv(j)}i∈[n],k∈[d+2]) for j ∈ [2].

Correctness: We require that with overwhelming probability over the random-
ness of the algorithms:

– If f(x) = 0, |leak| < TDEbound(λ, n) for some polynomial TDEbound.

– Otherwise, |leak| > TDEbound(λ, n).

Title Suppressed Due to Excessive Length 59

B.1 Tempered Security

We present the definition of Tempered Security. Let F be a family of homogenous
(Y, d+2)-multilinear δ-bounded polynomials, for some sets of vectors Y (where
Y is of size (d+2)×n). We define Sη to be a subset of η-sized product F×· · ·×F
(also, written as Fη).

We first describe the experiments associated with tempered security property.
The experiment is associated with a deterministic polynomial time algorithm
Sim. It is also parameterised by aux = (1λ, 1n,x, f1, . . . , fη). Each vector x is in
R(d+2)×n and f1, . . . , fη ∈ Sη.
Exptaux(1

λ, 1n, 0):

1. Challenger performs Setup(1λ, 1n) → params
2. The challenger samples (q1, . . . , qη) ← SetupDec(params).
3. Challenger performs SetupEnc(params) → sp.
4. Now compute encodings as follows.

– Compute the encodings, [x[k, i]]k,i ← Encode(sp,x[k, i], k, i) for every
k ∈ [d+ 2], i ∈ [n].

5. Compute leakj ← Decode(qj , fj , {[x[k, i]]k,i}k∈[d+2],i∈[n]) for j ∈ [η].
6. Output the following:

(a) Public components of the encodings, {[x[k, i]]k,i.pub(j)}k∈[d+2],i∈[n],j∈[d].
(b) Decoding parameters qj for j ∈ [η]
(c) Output of decodings, {leakj}j∈[η].

Exptaux(1
λ, 1n, 1):

1. Challenger performs Setup(1λ, 1n) → params
2. The challenger samples (q1, . . . , qη) ← SetupDec(params).
3. Challenger performs SetupEnc(params) → sp.
4. Now compute encodings as follows.

– Compute the encodings, [x[k, i]]k,i ← Encode(sp, 0, k, i) for every k ∈
[d+ 2], i ∈ [n].

5. Compute the following for all j ∈ [η]:

󰁥leakj ← Sim
󰀃
qj , fj , {[x[k, i]]k,i}k∈[d+2],i∈[n], fj(x,y, z)

󰀄

to obtain the simulated outputs.
6. Output the following:

(a) Public components of the encodings, {[x[k, i]]k,i.pub(j)}k∈[d+2],i∈[n],j∈[d].
(b) Decoding parameters qj for j ∈ [η]

(c) Output of decodings, {󰁥leakj}j∈[η].

Definition 13 (Tempered Security). A tempered degree (d + 2) encoding
scheme TDE = (Setup, SetupEnc, SetupDec,Encode,Decode) associated with plain-
text space R = [−δ, δ] is said to satisfy Tempered security for polynomials
(with coefficients over [−δ, δ]) if there exists an algorithm Sim so that following
happens:

60 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

∃c > 0, such that for all large enough security parameter λ ∈ N, and polyno-
mial n = n(λ) and any x ∈ R(d+2)×n, (f1, .., fη) ∈ Sη and adversary A of size
2λ

c

,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 2/λ+ negl(λ)

where aux = (1λ, 1n,x, f1, . . . , fη) and negl(λ) is some negligible function.

Few remarks are in order:

Remark 2. One can imagine Sη to be an arbitrary subset of F×· · ·×F . However,
to pursue our approach, we will set Sη as the η−sized product of degree d + 2
polynomials in n(λ) variables with the sum of absolute value of coefficients being
bounded by some polynomial (in λ) independent of n. As described later, it turns
out that this set contains the set of randomizing polynomials constructed by [47],
and suffices to get iO.

Remark 3. (On number of query polynomials) In the definition above, an im-
plicit restriction on the number of polynomials (i.e., η polynomials). Indeed, in
the instantiation, we only support η = n1+ε for some 0 < 󰂃 < 0.5. This choice
of parameters will suffice for our construction of iO. This ε will be set later.

C TDE Construction

C.1 LWE Preliminaries

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup
whose linear span is Rm. The basis of Λ is a linearly independent set of vectors
whose linear combinations are exactly Λ. Every integer lattice is generated as the
Z-linear combination of linearly independent vectors B = {b1, . . . , bm} ⊂ Zm.
For a matrix A ∈ Zdim×m

p , we define the “p-ary” integer lattices:

Λ⊥
p = {e ∈ Zm|Ae = 0 mod p}, Λu

p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥

p .
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive

parameter σ ∈ R, let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function
on Rm with center c and parameter σ. Next, we let ρσ,c(Λ) =

󰁓
x∈Λ ρσ,c(x) be

the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=
ρσ,c(y)
ρσ,c(Λ) . We abbreviate

this as DΛ,σ when c = 0. We note that DZm,σ is
√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of
a matrix R ∈ Rm×m is defined to be supx∈Sm ||Rx||. The LWE problem was
introduced by Regev [55], who showed that solving it on average is as hard as
(quantumly) solving several standard lattice problems in the worst case.

Title Suppressed Due to Excessive Length 61

Definition 14 (LWE). For an integer p = p(dim) ≥ 2, and an error distri-
bution χ = χ(dim) over Zp, the Learning With Errors problem LWEdi,m,p,χ

is to distinguish between the following pairs of distributions (e.g. as given by a
sampling oracle O ∈ {Os,O$}):

{A, sTA+ xT} and {A,u}

where A←Zdim×m
q , s←Zdim

p , u←Zm
p , and x ← χm.

Gadget matrix. The gadget matrix described below is proposed in [50, 2].

Definition 15. Let m = dim · ⌈logp⌉, and define the gadget matrix G = g2 ⊗
Idim ∈ Zdim×m

p , where the vector g2 = (1, 2, 4, . . . , 2⌊logp⌋) ∈ Z⌈logp⌉
p . We will

also refer to this gadget matrix as “powers-of-two” matrix. We define the in-
verse function G−1 : Zdim×m

p → {0, 1}m×m which expands each entry a ∈ Zp

of the input matrix into a column of size ⌈logp⌉ consisting of the bits of binary
representations. We have the property that for any matrix A ∈ Zdim×m

p , it holds
that G ·G−1(A) = A.

C.2 Our TDE construction:

Below we present our TDE construction. This construction is inspired from the
homomorphic encryption construction of [34].
Setting the parameters: Set the following parameters:

– dim = λc1 for some constant c1 > 0. This is the dimension of the secret.
– Let p = O(2λ

c2
) be a prime and m = dim⌈logp⌉ is some polynomial, such

that LWEdim,m,pχ holds for a distribution χ bounded by a polynomial B3(λ).
– Let η = ℓ = n1+󰂃 be the stretch of d∆RG for some constant 󰂃 > 0.
– Sη: We set Sη to be (Fn,B4)

η. Here, Fn,B4 is the set of homoegenous mul-
tilinear degree d + 2 polynomials with sum of absolute value of coefficients
in [0, B4] for some polynomial B4(λ). This choice turns out to be sufficient
to construct iO. Looking ahead, these polynomials will come from the set
of degree three randomizing polynomials [47], which satisfy this property.
These polynomials can be implemented by our dFE scheme.

– B: The bound B is set to bemd+2Bd+2
3 B4. This is computed as the maximum

norm on the encodings for any function f ∈ Fn,B4 before smudging with
d∆RG samples.

– TDEbound : TDEbound is the maximum norm of the decoded value for any
function f ∈ Fn,B4 which evaluates to 0. It can be upper bounded by B +
poly(λ, n) for some polynomial poly(λ, n). Here, poly(λ, n) is the bound on
the output of d∆RG, as described in the definition.

We describe a non-commutative product lemma that will be useful to describe
our construction. In particular, the function Fncp described in the below lemma
will be used in the decode algorithm.

62 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Lemma 13 (Non-commutative Product Lemma). Suppose we have a vec-
tor a ∈ Z1×dim

q , matrices U ∈ Zdim×m
q ,V ∈ Zm×m

q . There is a function Fncp :

Znm2×1
q × Zdim×m

q → Z1×m
q that given a ⊗V and U, computes aUV. That is,

Fncp(a⊗V,U) outputs aUV. Moreover, Fncp(a⊗V,U) = (q1(a⊗V,U), . . . , qm(a⊗
V,U)), where qi is a quadratic polynomial with every term being a product of
an element in a⊗V and an element in U.

Proof. Let a = [a1 · · · adim]. The (i, j)th element in U is denoted by ui,j , for
every i ∈ [dim], j ∈ [m]. The (i, j)th element in V is denoted by vi,j .

Observe that the ith element, for every i ∈ [m], in aU is denoted by
󰁓m

j=1 ajuij .

The ith element in aUV, for i ∈ [m], is denoted by
󰁓m

k=1(
󰁓dim

j=1 ajukj) ·vik. The
expression

󰁓m
k=1(

󰁓n
j=1 ajukj) · vik can be rewritten as,

󰁓m
k=1

󰁓n
j=1(ajvik) ·ukj .

Recall that a⊗V is a vector consisting of ajvik, for every i ∈ [dim], j ∈ [m], k ∈
[m]. Thus,

󰁓m
k=1

󰁓n
j=1(ajvik) · ukj is a quadratic polynomial, denoted by qi,

with every term being a product of an element in aV and an element in U.
Thus, qi(aV,U) computes the ith element in aUV, for i ∈ [m]. This completes
the proof.

Construction. We describe the scheme TDE below.

– Setup, Setup(1λ, 1n): On input security parameter λ, 1n, it sets params =
(1λ, 1n,p, B). Function class Sη and parameters B are instantiated later.

– SetupEncode, SetupEnc(params): On input params = (1λ, 1n,p, B), run
the following steps:

1. Sample t
$←− Fdim×1

p and C
$←− Fdim×m

p .

2. Set b = CTt+ eT, where e ← χm with ||e||∞ ≤ B3.

3. Set A = [CT||b]T in F(dim+1)×m
p .

4. Also set s = (tT,−1) in F1×(dim+1)
p

5. Sample Seed ← d∆RG.SetupSeed(1λ, 1n, B).
Without loss of generality assume that Seed = (Seed.pub(1), . . . , Seed.pub(d), Seed.priv(1),
Seed.priv(2)). Here Seed.pub(j) = (Seed.pub(j, 1), . . . , Seed.pub(j, n)) and
Seed.priv(i) = (Seed.priv(i, 1), . . . , Seed.priv(i, n)) for i ∈ [1, 2], j ∈ [d] are
vectors in Fn

p.
6. Output sp = (s,A, Seed)

– Encode, Encode(sp, x, ind, ℓ): On input sp = (s,A, Seed), plaintext x ∈
[−ρ, ρ], index ind ∈ [n] and level ℓ ∈ [d+ 2], proceed according to the three
cases:
Sample uniformly Rℓ,ind

$←− {0, 1}m×m. Let G ∈ F(dim+1)×m
p denote the

gadget matrix and let its inverse function beG−1(·), as given in Definition 15.
sGeκ = ⌊ p

2κ ⌋, where eκ is an indicator vector of dimension m with the κth

position containing 1 and the rest of the elements are zero. κ is chosen
so that 2κ is the smallest power greater than the maximum value of the
computation i.e. nd+2Bd+2

3 B4. Compute ([x]ℓ,ind.pub(1), . . . , [x]ℓ,ind.pub(d),
, [x]ℓ,ind.priv(1), [x]ℓ,ind.priv(2)) as follows.
Case ℓ = 1:

Title Suppressed Due to Excessive Length 63

• Compute Mℓ,ind = ARℓ,ind + xG.
• [x]ℓ,ind.pub(1) = (Mℓ,ind, Seed.pub(ℓ, ind)).
• [x]ℓ,ind.pub(j) = (1, Seed.pub(j, ind)) for j ∈ [2, d]
• [x]ℓ,ind.priv(j) = (1, Seed.priv(j, ind)) for j ∈ [2].

Case ℓ ∈ [2, d]:
• Compute Mℓ,ind = ARℓ,ind + xG.
• [x]ℓ,ind.pub(ℓ) = (1, (G)−1(Mℓ,ind)).
• [x]ℓ,ind.pub(j) = 1 for j ∈ [d] \ {ℓ}
• [x]ℓ,ind.priv(j) = 1 for j ∈ [2].

Case ℓ = d+ 1:
• Compute Mℓ,ind = ARℓ,ind + xG.
• [x]ℓ,ind.pub(j) = (1) for j ∈ [d].
• [x]ℓ,ind.priv(1) = s⊗G−1(Mℓ,ind).
• [x]ℓ,ind.priv(2) = 1.

Case ℓ = d+ 2:
• Compute Mℓ,ind = ARℓ,ind + xG.
• [x]ℓ,ind.pub(j) = (1) for j ∈ [d].
• [x]ℓ,ind.priv(1) = 1.
• [x]ℓ,ind.priv(2) = G−1(Mℓ,ind).

We also assume that all these public and private parts of the encodings are
padded appropriately with string consisting of zeroes such that their lengths
are same. This length is equal to ℓenc = (dim ·m+m2 + poly(λ)) logp.

Output ([x]ℓ,ind.pub(1), . . . , [x]ℓ,ind.pub(d), [x]ℓ,ind.priv(1), [x]ℓ,ind.priv(2)).
– Setup-Decode, SetupDec(params): On input params = (1λ, 1n,p, B), gen-

erate
d∆RG.SetupPoly(1λ, 1n, B) → q1, . . . , qη. Each qi is a polynomial that takes
as input Seed and outputs an integer.

– Decode, Decode(q, f, {[x[j, i]]j,i}i∈[n],j∈[d+2]): Let f ∈ Sη = ΣI=(i1,..,id,j,k)γIx[1, i1] · · ·x[d+
2, k]. Decode algorithm works in two step. First it computes an element
uf ∈ Z and then it computes vq ∈ Z. It outputs uf+vq. First we describe how
uf is computed. This element is computed monomial by monomial, for every
monomial in f . That is compute, uf,I , where I = (i1, .., id, j, k) ∈ [n]d+2 for
the monomial x[1, i1] · · ·x[d+2, k] and then output uf = ΣIγIuf,I . Now we
describe how to compute uf,I .
• First observe that for every encoding [x[j, i]]j,i for j ∈ [d + 2], i ∈ [n], if
j ∕= 1, d + 1, d + 2, there is a ciphertext Mj,i encrypting x[j, i] occurs
in the public component j (in its bit-decomposed form) . If j = d + 1,
s⊗G−1(Md+1,i) occurs in the private component 1. If j = d+2, Md+2,i

in private component 2. If j = 1, the bit-decomposed version M1,i occurs
in public component 1.

• Compute uf,I = sM1,I[1] ·G−1(M2,I[2]) · · ·G−1(Md+2,I[d+2]) · eκ. This
step needs to compute a function guaranteed by Lemma 13.

• Compute vq = q(Seed). Note that both steps can be implemented by
homogeneous multilinear degree d+ 2 polynomial which has degree 1 in
pub(j) components for j ∈ [d+2] and priv(j) for j ∈ [2]. Thus both these
steps are implementable by (d+ 2)−restricted FE.

64 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

Output uf + vq.

We now prove the following properties.

Correctness: Correctness is immediate, following is a sketch. uf = ef+f(x)⌊p/2κ⌋
where ef is some bounded FHE error. If f(x) = 0, then uf is small, otherwise
it is larger than ⌊p/2κ⌋. Note that v is always small as it is d∆RG computation.

degree d+ 2 Evaluation Property. The degree d+ 2 evaluation property can be
observed from the description of Decode.

Security. We prove security below.

Theorem 14. The above scheme satisfies tempered security assuming that d∆RG
is a secure perturbation resilient generator implementable by a (d+2) restricted
FE scheme and learning with errors.

Proof. We first describe the simulator associated with the above scheme.

Sim(qj , fj , {[x[j, i]]j,i}j∈[d+2],i∈[n], fj(x)): On input polynomial qj , function fj

associated with index j ∈ [η], encodings {[x[j, i]]j,i}j∈[d+2],i∈[n] and output fj(x),

– Using [x[1, i]]1,i for i ∈ [n] recover Seed. Let H denote the associated effi-
cient sampler with the d∆RG. This exists as d∆RG is a secure perturbation
resilient generator. Compute H(pp, Seed) → (h1, ..., hη).

– Then output fj(x)⌊p/2κ⌋+ hj .

We describe the hybrids below. Let aux = (1λ, 1n,x, f1, ..., fη). Vector x is in
R(d+2)×n.

Hybrid1: This corresponds to the real experiment. In particular, the output of
this hybrid is:

1. Challenger performs Setup(1λ, 1n) → params
2. The challenger samples (q1, ..., qη) ← SetupDec(params).
3. Challenger performs SetupEnc(params) → sp.
4. Now compute encodings as follows.

– Compute the encodings, [x[j, i]]j,i ← Encode(sp,x[j, i], i, j) for every i ∈
[n], j ∈ [d+ 2].

5. Compute leakk ← Decode(qk, fk, {[x[j, i]]j,i}j∈[d+2],i∈[n]) for k ∈ [η].
6. Output the following:

(a) Public components of the encodings, {[x[j, i]]j,i.pub(k)}i∈[n],j∈[d+2],k∈[d].
(b) Decoding parameters {qj} for j ∈ [η].
(c) Output of decodings, {leakj}j∈[η].

Hybrid2: In this hybrid, the leakage output by decode is instead generated by
the simulator.

Title Suppressed Due to Excessive Length 65

1. Challenger performs Setup(1λ, 1n) → params
2. The challenger samples (q1, ..., qη) ← SetupDec(params).
3. Challenger performs SetupEnc(params) → sp.
4. Now compute encodings as follows.

– Compute the encodings, [x[j, i]]j,i ← Encode(sp,x[j, i], i, j) for every i ∈
[n], j ∈ [d+ 2].

5. Compute {󰁥leakj}j∈[η] ← Sim
󰀃
qj , fj , {[x[j, i]]j,i}j∈[d+2],i∈[n], fj(x)

󰀄
.

6. Output the following:

(a) Public components of the encodings, {[x[j, i]]j,i.pub(k)}i∈[n],j∈[d+2],k∈[d].
(b) Decoding parameters {qj} for j ∈ [η].

(c) Output of decodings, {󰁥leakj}j∈[η].

Claim. Suppose that the d∆RG assumption is true then for any adversary A of
size at most 2λ, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2)]| ≤ 1− 2/λ+ negl(λ)

Proof. The only difference between Hybrid1 and Hybrid2 is in how the η
number of leakages are generated. In Hybrid1, the jth leakage is of the form
qj(·) + aj . Note that aj = ej,fhe + fj(x) ·

󰀇
p
2κ

󰀈
, where ej,fhe is some value in the

range [−B,B]. InHybrid2, the j
th leakage is of the form 󰁧leakj = hj+fj(x)·

󰀇
p
2κ

󰀈
.

Suppose the output distributions of Hybrid1 and Hybrid2 are computa-
tionally distinguishable with probability greater than 1− 2/λ+ negl(λ), we can
design an attacker that breaks the d∆RG assumption as follows. This attacker
first generates (e1,fhe, . . . , eη,fhe): this is performed by first generating the TDE
encodings and then computing (e1,fhe, . . . , eη,fhe) as a function of these encod-
ings. The attacker submits this tuple to the challenger of the 3∆RG. The chal-
lenger returns the polynomials (q1, . . . , qη) and (leak1, . . . , leakη). The attacker
then submits the degree (d + 2)−tempered encodings along with (q1, . . . , qη)
and (leak1 + f1(x) ·

󰀇
p
2κ

󰀈
, . . . , leakη + fη(x) ·

󰀇
p
2κ

󰀈
) to the distinguisher (who

distinguishes Hybrid1 and Hybrid2). The output of the attacker is the same
as the output of the distinguisher. Thus, if the distinguisher distinguishes with
probability ε then the attacker breaks d∆RG with probability ε.

Hybrid3: In this hybrid, generate the encodings as encodings of zeroes. In par-
ticular, execute the following operations.

1. Challenger performs Setup(1λ, 1n) → params
2. The challenger samples (q1, ..., qη) ← SetupDec(params).
3. Challenger performs SetupEnc(params) → sp.
4. Now compute encodings as follows.

– Compute the encodings, [x[j, i]]j,i ← Encode(sp, 0, i, j) for every i ∈
[n], j ∈ [d+ 2].

5. Compute {󰁥leakj}j∈[η] ← Sim
󰀃
qj , fj , {[x[j, i]]j,i}j∈[d+2],i∈[n], fj(x)

󰀄
.

6. Output the following:

(a) Public components of the encodings, {[x[j, i]]j,i.pub(k)}i∈[n],j∈[d+2],k∈[d].
(b) Decoding parameters {qj} for j ∈ [η].

66 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

(c) Output of decodings, {󰁥leakj}j∈[η].

Claim. Suppose the learning with errors assumption is true, then for any adver-
sary A of size 2λ, it holds that |Pr[A(Hybrid2) = 1]−Pr[A(Hybrid3) = 1]| ≤
2−λ.

Proof. We show the indistinguishability of Hybrid2 and Hybrid3 by consider-
ing the following sub-hybrids.

Hybrid2.1: The only change between hybrids Hybrid2 and Hybrid2.1 are in

the generation of b. In this hybrid, generate b
$←− Fm

p .

The indistinguishability of hybrids Hybrid2 and Hybrid2.1 follow from the
learning with errors assumption.

Hybrid2.2: The only change betweenHybrid2.1 andHybrid2.2 is in the genera-
tion of the public parts of the encodings. Specifically, for every i ∈ [n], ℓ ∈ [d+2],
Mℓ,i = Uℓ,i + x[j, i]G is generated using a random matrix Uj,i.

The statistical indistinguishability of Hybrid2.1 and Hybrid2.2 follows from the
extended leftover hash lemma.

Hybrid2.3: The only change betweenHybrid2.2 andHybrid2.3 is in the genera-
tion of the public parts of the encodings. Specifically, for every i ∈ [n], ℓ ∈ [d+2],
generate Mℓ,i = Ui,ℓ +0 ·G. Generate Seed as before. The output distributions
of Hybrid2.2 and Hybrid2.3 are identical.

Hybrid2.4: The only change betweenHybrid2.2 andHybrid2.3 is in the genera-
tion of the public parts of the encodings. Specifically, for every i ∈ [n], ℓ ∈ [d+2],
generate Mℓ,i = ARℓ,i + 0G.

The statistical indistinguishability of the output distributions of Hybrid2.3

and Hybrid2.4 follows from the extended leftover hash lemma.

Finally, learning with errors assumption implies that the output distributions of
Hybrid2.4 and Hybrid3 are computationally indistinguishable. This concludes
the proof.

D Canonical Function Hiding Inner Product FE

We now describe the notion of a canonical function hiding inner product FE
proposed by [44]. A canonical function hiding scheme FE scheme consists of the
following algorithms:

– PPSetup(1λ) → pp. On input the security parameter, PPSetup, outputs pa-
rameters pp, which contain description of the groups and the plain text space
Zp.

Title Suppressed Due to Excessive Length 67

– Setup(pp, 1n) → sk. The setup algorithm takes as input the length of vector
1n and parameters pp and outputs a secret key sk. We assume that pp is
always implicitly given as input to this algorithm and the algorithms below
(sometimes we omit this for ease of notation).

– Enc(sk,x) → CT. The encryption algorithm takes as input a vector x ∈ Zn
p

and outputs a ciphertext CT.
– KeyGen(sk,y) → sky. The key generation algorithm on input the master

secret key sk and a function vector y ∈ Zn
p and outputs a function key sky

– Dec(1B , sky,CT) → m∗. The decryption algorithm takes as input a cipher-
text CT, a function key sky and a bound B and it outputs a value m∗.
Further, it is run in two steps. First step Dec0, computes [〈x,y〉]T (if the
keys and ciphertexts were issued for x and y) and then the second step,
Dec1, computes its discrete log, if this value lies in [−B,B]

We now list the requirements:

B-Correctness: Consider the following process:

1. PPSetup(1λ) → pp
2. Setup(pp, 1n) → sk. Fix any x, y ∈ Zn

p

3. KeyGen(sk,y) → sky.
4. Enc(sk,x) → CT
5. Dec(1B , sky,CT) = θ

We require with overwhelming probability the following holds: θ = 〈x,y〉 if
〈x,y〉 ∈ [−B,B] and ⊥ otherwise

Linear Efficiency: We require that for any message (x,y) ∈ Fn
p the following

happens:

– Let sk ← Setup(1λ, 1n).
– Compute CT ← Enc(sk,x).
– Compute sky ← KeyGen(sk,y)

The size of the circuit computing CT and sky is less than n log2 p · poly′(λ) <
npoly(λ). Here poly is some polynomial independent of n.

Canonical Structure: We require the scheme consists of a canonical structure
described as follows:

1. PPSetup runs PPGen (the algorithm used to sample bilinear map parameters)
and outputs a bilinear map (e,G1, G2, GT , g1, g2) and a plaintext space Zp

which is the order of G1, G2 and GT .
2. Encryption algorithm encodes the message vector on group G1.
3. Key generation algorithm encodes the function vector on group G2.
4. Encryption, setup and key generation algorithm do not use pairing operation

at all.

68 Aayush Jain aayushjain@cs.ucla.edu Amit Sahai sahai@cs.ucla.edu

5. The decryption algorithm just computes homomorphically a degree 2 poly-
nomial (namely inner product), on the encodings in the secret key and the
secret key (by using pairing e) and then computes discrete log (by doing
brute force) on the resulting element in the target group.

We note this structure is satisfied by the construction proposed in [44].

Function hiding security: We say that a secret key IPE scheme cIPE is µ−function
hiding if for any stateful p.p.t. adversary A and sufficently large λ ∈ N and
n = λc for any constant c the following occurs:

|Pr[Aα←D0(α)] = 1−Pr[Aα←D1(α)]| < µ(λ) Where the distributions D0 and
D1 are generated as follows:
Distribution Db

1. Run PPSetup(1λ) → pp.
2. Run Setup(pp, 1n) → (pp, sk).
3. Adversary A on input pp outputs (x0

i ,x
1
i) and (y0

i ,y
1
i) for i ∈ [L] for some

L = poly(λ). Here each vector is in Zn
p. It is required that 〈x0

i ,y
0
j 〉 = 〈x1

i ,y
1
j 〉

for i, j ∈ [L].
4. Compute CTi = Enc(sk,xb

i) for i ∈ [L] and ski = KeyGen(sk,yb
i) for i ∈ [L].

5. Output {CTi, ski}i∈[L].

Theorem 15 (Imported Theorem [44]). Assuming subexponential SXDH
holds relative to PPGen, there exists a subexponential canonical function hiding
inner product functional encryption scheme.

