
Identity-based Broadcast Encryption with
Efficient Revocation

Aijun Ge1,2,3, Puwen Wei1

1Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, China

2 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, China

3 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, China
{geaijun@163.com, pwei@sdu.edu.cn}

Abstract. Identity-based broadcast encryption (IBBE) is an effective
method to protect the data security and privacy in multi-receiver scenar-
ios, which can make broadcast encryption more practical. This paper fur-
ther expands the study of scalable revocation methodology in the setting
of IBBE, where a key authority releases a key update material periodi-
cally in such a way that only non-revoked users can update their decryp-
tion keys. Following the binary tree data structure approach, a concrete
instantiation of revocable IBBE scheme is proposed using asymmetric
pairings of prime order bilinear groups. Moreover, this scheme can with-
stand decryption key exposure, which is proven to be semi-adaptively
secure under chosen plaintext attacks in the standard model by reduc-
tion to static complexity assumptions. In particular, the proposed scheme
is very efficient both in terms of computation costs and communication
bandwidth, as the ciphertext size is constant, regardless of the number
of recipients. To demonstrate the practicality, it is further implemented
in Charm, a framework for rapid prototyping of cryptographic primitives.

Keywords: Broadcast encryption, revocation, asymmetric pairings, prov-
able security, constant size ciphertext

1 Introduction

Broadcast encryption (BE), first introduced by Fiat and Naor [13], is a cryp-
tographic paradigm that enables delivering encrypted content over a broadcast
channel in a way that only qualified users are able to decrypt the content. For a
BE in the public key setting, there is a dealer which is empolyed to generate and
distribute decryption keys for users. A sender can encrypt to a set of receivers by
choosing their public keys adaptively, and the encrypted data can be decrypted
only by the user with the private key in the set of receivers. A BE scheme is
collusion resistant if no information about the encrypted data is leaked, even if
all users that are not qualified collude. BE has a wide range of applications such
as pay-TV, encrypted file systems and digital right management.

Identity-based encryption (IBE) is an advanced form of public key encryption
in which the public key of a user is some unique information about the identity of
the user (e.g., a user’s IP or email address). Moreover, as public keys are derived
from identifiers, IBE scheme eliminates the need for a public key infrastructure
(PKI). In the IBE system, a trusted third party called the private key generator
(PKG) can generate the corresponding secret keys associated with each user’s
public identities. A sender who has access to the public parameters of the system
can encrypt a message using the receiver’s identity as the public key, and only
the intended receiver who obtains its decryption key from PKG can decrypt.

Identity-based broadcast encryption (IBBE) can be seen as a natural gen-
eralization of IBE, i.e., BE in the identity-based setting, which recognizes the
users in a BE scheme with their identities, instead of indexes assigned by the
system. The number of valid identities in the IBBE scheme can be exponential
with the security parameter, while the number of public keys in the public key
broadcast setting is only polynomial with the security parameter. IBBE is an
effective method to protect the data security and privacy in multi-receiver sce-
narios. In an IBBE scheme, a sender can broadcast an encrypted message to any
set of intended users, which is called privileged set. If the size of the privileged
set is 1, the resulting IBBE scheme would be an IBE scheme obviously. For the
trivial solution to construct an IBBE scheme which encrypts the message once
for each identity using an IBE scheme, the resulting ciphertext would be linear
in the privileged set, which is inefficient especially for a large set of receivers.

In 2007, Delerablée [11] presented the first IBBE scheme with constant size
ciphertext, though it is only weak selective-ID secure in the random oracle model.
This construction makes use of the hybrid encryption paradigm: key encapsula-
tion mechanism (KEM) and data encapsulation mechanism (DEM) framework
where the broadcast ciphertext only encrypts a short symmetric key used to
encrypt the long messages, which is also adopted by most BE schemes. Very
recently, Ramanna [31] proposed a novel IBBE scheme with constant size ci-
phertext that can achieve adaptive security in the standard model.

One desirable functionality of multi-user cryptosystems is the support for
membership revocation. For example, malicious users should be driven out im-
mediately from the system, and even for the honest users should be revoked if
their private keys get stolen or lost. Key revocation is well studied in BE such
as [28,19]. However, realizing efficient user revocation mechanism in the IBE
setting turned out to be very challenging. Compared with traditional public key
encryption in the PKI setting, IBE simplifies the key management problem by
avoiding public key certificates. Therefore, users cannot be easily revoked by
digital certificates and certificate revocation lists. As a result, the key revocation
problem in IBE is not as simple as in tradition PKI setting.

The first practical IBE scheme, proposed by Boneh and Franklin [5] from
the Weil pairing, also suggested a straightforward revocation method for IBE
schemes: dividing the lifetime of the system into discrete time periods and re-
freshing the private key for non-revoked users periodically. Unfortunately, this
approach is not scalable and very inefficient because all non-revoked users should

2

update their private keys via a secure channel, and the workload on the PKG
grows linearly in the number of non-revoked users. To address this problem,
Boldyreva et al. [6] proposed a scalable revocable IBE (RIBE) scheme which
employed the tree based revocation techniques from [28] to reduce the PKG’s
workload to only logarithmic (instead of linear) in the number of users. Moreover,
each non-revoked user can derive a decryption key from the public update key,
while revoked users cannot compute their decryption keys. There is no secure
channel that is required for non-revoked users to update their private keys.

After the work of Boldyreva et al. [6], Seo and Emura [33] introduced a new
security notion called decryption key exposure resistance (DKER), which can
better capture the the realistic threat of IBE system. Generally speaking, this
security definition can guarantee that the confidentiality of ciphertexts is not
compromised even if a user’s decryption key at some periods has been exposed.
Though DKER seems to be a natural security notion, Seo and Emura have
proved that Boldyreva et al.’s RIBE scheme is vulnerable against decryption key
exposure. Using Boldyreva et al.’s revocation methodology, Seo and Emura [33]
also proposed the first RIBE scheme that is adaptive secure with DKER, which
has become the default security requirements for RIBE scheme. Since then, a
lot of followup works of RIBE schemes with DKER have been proposed. Among
them, the most recently scheme by Watanabe et al. [38] based on the modified
Jutla-Roy IBE scheme [16] is the first adaptively secure RIBE scheme with
DKER that can achieve short public parameters in prime order groups.

As the set of qualified users can change in each broadcast emission, efficient
revocation of individual users or user groups is the primary objective of broadcast
encryption. For the IBBE scheme, which is a natural generalization of BE in
the identity-based setting, however, there is still no provably secure scalable
revocation methodology has been proposed so far, even in Boldyreva et al.’s
security model. Motivated by this, we further expand the study of revocable
IBBE (RIBBE). We mainly focus on the construction of RIBBE scheme with
DKER. In particular, we would like to have a construction that has constant size
ciphertexts, which is more efficient and less bandwidth consuming compared with
schemes of ciphertexts that are linear in the set of receivers.

Our Contribution In this paper, we propose a novel construction of re-
vocable IBBE scheme with constant size ciphertexts. To prove its security with
DKER, we first define the syntax of revocable IBBE scheme using KEM-DEM
paradigm and its security model, which takes into account the realistic threat
of decryption key exposure for the scenario of IBBE. To the best of our knowl-
edge, this is the first construction of revocable IBBE with provable security.
Specifically, our revocable IBBE scheme has the following merits.

1. Our scheme is a KEM which can produce a symmetric key along with a
header, thus long messages can be encrypted under the short symmetric key.
For simplicity, we only discuss the header size in the KEM, which is constant
in our construction, regardless of the number of underlying receivers, which is
very efficient both in the communication overheads and computational costs.
Furthermore, only 4 group elements together with a tag are needed in the

3

ciphertexts header of our revocable IBBE scheme, which can be comparable
to the revocable IBE scheme in [38]. Moreover, we implement it in Charm

framework [3], more details of which can be deferred to Section 6.
2. The public parameters in our scheme is linear in the maximum size of the

privileged identities set: m, which is predetermined and fixed in the setup
phase. The private key for each user is linear in the value of m∗ log2N , where
the maximal value of system users N is also a predetermined value in the
setup phase of the revocable IBBE system.

3. Our scheme also follows Boldyreval et al.’s revocation methodology [6] with
the binary-tree data structure approach, which reduces the amount of work
in key update from linear to logarithmic complexity in the maximal number
of system users N . For each time period, the PKG will broadcast update key
information through a public channel, which is useless for already revoked
users. Only the non-revoked user can combine the update key and his private
key to derive a decryption key that can be used to decrypt proper ciphertexts.
More precisely, according to [33], the size of update key is O(rlog2(N/r)) if
r 6 N/2, or O(N − r) if r > N/2, where r is the number of revoked users.

4. Our construction is built upon prime order bilinear groups of Type-3 pair-
ings under mild variants of the Symmetric eXternal Diffie-Hellman (SXDH)
assumption: the Augmented Decisional Diffie-Hellman on G1 (ADDH1) and
Decisional Diffie-Hellman on G2 (DDH2). Note that ADDH1 assumption
is first defined by Watanabe et al. in [38], which is proved in the generic
bilinear group model.

5. With regard to the security, our revocable IBBE scheme is semi-adaptively
secure with DKER under chosen plaintext attacks. Semi-adaptive securi-
ty, first proposed by Chen and Wee [10], is a notion of security that lies
between selective and adaptive security for functional encryption systems.
More particularly, if we set the maximum size of receivers m to be m = 1,
the resulting revocable IBBE scheme is a revocable IBE system, which can
achieve adaptive security with DKER.

At a high level, our design approach is very similar to the Seo and Emura’s
technique of transforming IBE to RIBE in [33,38]. Firstly, there should be a basic
IBE scheme that satisfies the requirement of (1) the secret key re-randomization
property and (2) applicability of Boneh-Boyen technique [4]. Then, an adaptive-
ly secure RIBE scheme with DKER is constructed by applying the Seo-Emura
technique. Similarly, we also employ a basic IBBE scheme and the Boneh-Boyen
IBE scheme [4] as the building blocks. To achieve short ciphertexts and fast
decryption, the basic IBBE is derived from the most recently proposed IBBE
scheme of Ramanna [31], with necessary modifications mainly for the public pa-
rameters part to achieve the secret key re-randomization property. The security
of the revocable IBBE scheme with DKER can be reduced to the adaptive secu-
rity of the basic IBBE scheme. We note that it is not a trivial work to construct
a revocable IBBE with adaptive security even given a revocable IBE scheme.
The primary challenge in the security proof is how to simulate decryption keys
for identities of the privileged recipients. While there is only one target identity

4

in the setting of RIBE, there will be multiple private keys and decryption keys
that can be used to decrypt the challenge ciphertext. Note that the privileged
recipients are chosen adaptively by the adversary, even the number of privileged
recipients is unknown until the challenge phase, which makes it more compli-
cated to simulate in the security proof. We partially overcome these issues by
using the semi-adaptive security model, where the adversary should submit the
privileged recipients just after receiving the public parameters. More technique
will be needed to achieve adaptive security for revocable IBBE. As a side prod-
uct, we also propose a new construction of revocable IBE scheme with adaptive
security, which can be as a complementary of Watanabe et al.’s revocable IBE
scheme [38]. In addition, because of using a different strategy, the adaptive se-
curity proof of the resulting RIBE scheme in this paper seems more succinct,
compared with the security proof in the full version of [38].

Related Work. Hierarchical identity-based encryption (HIBE) is a simple
extension of IBE which further supports a key delegation functionality. Revo-
cable HIBE can support the revocation of user’s private keys to manage the
dynamic credentials of users in an HIBE system. Several improvement and vari-
ants with different properties have been proposed since the first revocable HIBE
scheme with DKER introduced by Seo and Emura in [34]. Among them, the
most popular revocable HIBE must be those given in [35,12,24], the security of
which are proven in the selective model where an adversary should submits the
challenge identity or the revocation list before he receives the public parameter-
s. Revocable HIBE with DKER that is secure in the adaptive adversary model
has been proposed in [36,20]. Unfortunately, these constructions are built upon
composite order (product of three primes) bilinear groups, which is inefficient
to implement compared with prime order groups implementation. We note that,
contrary to HIBE, no organization of the users is needed in our revocable IBBE
scheme to have constant size of ciphertexts, i.e., no hierarchy between identities
in our revocable IBBE system.

Besides bilinear maps on elliptic curve, lattice is also a powerful tool to build
cryptographic primitives. Lattice-based constructions, which are conjectured to
be resistant to attacks by both classical and quantum computers, are currently
important candidates for post-quantum cryptography. Chen et al. [8] proposed
the first revocable IBE scheme (without DKER) in the lattice setting. Recently,
Katsumata et al. [17] solved the open problem of achieving revocable (H)IBE
with DKER in the lattice setting by proposing a new tool called the level con-
version keys without relying on the key re-randomization property. In addition,
revocable IBE scheme from codes with rank metric is proposed in [7], which is
only proven selective security in the random oracle model.

We stress that the notion of revocation in this paper is referred to indirect
revocation sometimes, since the key authority indirectly enables revocation by
forcing revoked users to be unable to update their keys. A direct revocation
mechanism has been studied for attribute-based encryption [2] and predicate
encryption [27]. This approach requires the sender to carry out the revocation by
specifying a set of revoked users in the ciphertext, and hence it does not need any

5

private key update procedures on the recipients’s side. Recently, another notion
of recipient-revocable identity-based broadcast encryption has been proposed
in [32,22], which mainly focuses on how to remove some of the recipients from
the set of receivers stated in the original ciphertext after the ciphertext has
been generated, but without revealing the message content. Therefore, these
systems [32,22] cannot follow the notion of revocable IBBE in this paper.

Server-aided revocable IBE, recently proposed by Qin et al. [30], is a novel
system where most of the workloads on users are outsourced to an untrusted
server. The server manages users’ public key and key updates sent by the PKG
periodically, and users can compute decryption keys without communicating
with either the PKG or the server. Server-aided revocable IBE [29] and server-
aide directly revocable predicate encryption [23] in the lattice setting have been
proposed recently, which can satisfy selective security without DKER. It is pos-
sible to employ this construction methodology in our revocable IBBE scheme,
which can obtain a server-aided revocable IBBE scheme with DKER.

Organization. The rest of the paper is organized as follows. In the next
section, we review some preliminaries used throughout this paper, including the
rigorous definitions and security model of revocable IBBE scheme. In Section 3,
we present an adaptive secure IBBE scheme with short ciphertexts modified from
Ramanna’s original inner production encryption scheme [31], which is used as
the core building block of our revocable IBBE scheme. In Section 4, we propose a
concrete construction of revocable IBBE with DKER that can achieve constant
size of ciphertext, together with proof of security in Section 5. To show its
practicability we implement the proposed scheme in Section 6. Finally, Section 7
concludes this paper.

2 Preliminaries

2.1 Asymmetric Pairings and Hardness Assumptions

Let G1,G2,GT be cyclic multiplicative groups of the same prime order p. Let g be
a generator of G1 and h be a generator of G2. A bilinear map e : G1×G2 → GT
has the following properties:

– Bilinearity: For all g ∈ G1, h ∈ G2 and all a, b ∈ Z∗p, e(ga, hb) = e(g, h)ab.
– Non-degeneracy: e(g, h) 6= 1.
– Computability: It is efficient to compute e(u, v) for any u ∈ G1 and v ∈ G2.

It is called symmetric (or Type-1) pairing if G1 = G2; otherwise, the pairing
is asymmetric. Two types of asymmetric pairing can be further classified: Type-
2 and Type-3. If there is an efficiently computable isomorphism either from G2

to G1 or from G1 to G2, then the bilinear map e is called a Type-2 pairing. If
no efficiently computable isomorphism is known, then we call it Type-3 pairing.
Our constructions in this work are based on Type-3 pairing, which is the most
efficient setting from an implementation point according to [14,9].

The security of our construction is based on the Augmented Decisional Diffie-
Hellman on G1 (ADDH1), which is proved security in the generic bilinear group

6

model by Watanabe et al. [38], and Decisional Diffie-Hellman on G2 (DDH2)
assumptions. Below, we describe these assumptions.

Let G = (p, e,G1,G2,GT) be a Type-3 pairing with generators g1 ∈ G1 and

g2 ∈ G2. Denote D= (g1, g
µ
1 , g

α2
1 , gβα1 , g2, g

α
2 , g

βα
2 , gβα2

2 , g
1/β
2) with the following

distribution: α, α2, µ
R←− Zp, β, η

R←− Z∗p. A PPT algorithm A given D and Z,
whose task is to distinguish Z = Z0 = gµα2

1 (the case A will output 0) or
Z = Z1 = gµα2+η

1 (the case A will output 1), has advantage AdvADDH1
G,A (λ) in

solving the ADDH1 problem as:

AdvADDH1
G,A (λ) = |Pr [A(G, D, Z0) = 1]− Pr [A(G, D, Z1) = 1]| .

Definition 1. We say that the ADDH1 assumption holds if the advantage for
all PPT adversaries AdvADDH1

G,A (λ) is negligible in the security parameter λ in
solving the ADDH1 problem relative to a Type-3 pairing G of the group G1.

Now we introduce the DDH2 assumption, which is defined as follows.

Definition 2. We say that the DDH2 assumption holds for the group G2 of
Type-3 pairing G = (p, e,G1,G2,GT) if the advantage AdvDDH2

G,A (λ) which equals∣∣Pr [A(G, D, gµα2) = 1]− Pr
[
A(G, D, gµα+η2) = 1

]∣∣ is negligible in λ for all PPT

algorithms A with D = (g1, g2, g
µ
2 , g

α
2) and the distribution: α, µ

R←− Zp, η
R←−Z∗p.

Note that the dual of the above definition 2 with the roles of G1 and G2

reversed is Decisional Diffie-Hellman in G1 (DDH1) assumption. The Symmetric
eXternal Diffie-Hellman (SXDH) assumption holds if both DDH1 and DDH2
problems are intracable. It can be easily verified that ADDH1 problem is not
harder than DDH1, as an instance of DDH1 is embedded in the instance of
ADDH1, and an algorithm to solve DDH1 can also be used to solve the ADDH1.

2.2 KUnodes Algorithm

To achieve scalable user revocation, we follow the node selection algorithm
KUNode algorithm by using a binary tree data structure as in the previous RIBE
schemes [6,33,21,38]. We employ similar notations as follows. For a binary tree
BT with N leaves, we denote by root the root node of BT. For a non-leaf node θ,
we write θL and θR as the left and right child of θ, respectively. For a leaf node
η, we write Path(η) as the set of nodes on the path from η to root (both η and
root are inclusive). Each user is assigned to a leaf node η of BT. If a user who is
associated with η is revoked on a time period t, then (η, t) is in the revocation
list RL, i.e., (η, t) ∈RL.

The KUNode algorithm which takes as input a binary tree BT, a revocation
list RL as well as a time period t, is executed as follows. It first sets X := Y := ∅.
For each (ηi, ti) ∈ RL, if ti 6 t then it adds Path(ηi) to X as: X := X∪Path(ηi).
Then, for each x ∈ X, it will add xL to Y for the case xL /∈ X, and it will add
xR to Y for the case xR /∈ X. Finally, it will output Y if Y 6= ∅. Otherwise, for
the case Y = ∅, it will output Y = {root}.

7

Note that the output of KUNode algorithm Y is a minimal set of nodes in BT

such that for any leaf node η listed in RL, it must hold that Path(η) ∩ Y = ∅.
But for the non-revoked leaf node η′, there is exactly one node θ ∈ Y such that
θ is an ancestor of η′. Two instances of the KUNode algorithm for the graphical
description are illustrated below in Figure 1.

Fig. 1. Two instances of the KUNode algorithm

2.3 Syntax of Revocable IBBE Scheme

A revocable IBBE scheme RIBBE is described as follows: For simplicity, we
omit the description of the security parameter λ and the public parameter PP
in the input of all algorithms except for the Setup algorithm.

– Setup(λ,m,N): The setup algorithm takes as input the security parameter
λ, the maximum size m of the set of privileged identities for one encryption
together with the number of users N , and it returns the public parameters
PP , the master secret key MSK, the initial revocation list RL = ∅ and a
state ST . The algorithm also defines the identity space ID, the time space
T and the key space K for the DEM.

– SKGen(MSK, ID, ST): The secret key generation algorithm takes as input
the master secret key MSK, an identity ID ∈ ID, and the state information
ST . It outputs a private key SKID associated with ID and updated ST .

– KeyUp(MSK,T,RL, ST): The key update generation algorithm takes as
input the master secret key MSK, a key update time T ∈ T , the revocation
list RL and the state ST , and then outputs the update key KUT .

– DKGen(SKID,KUT): The decryption key generation algorithm takes a
secret key SKID and key update KUT as input, and outputs a decryption
key DKID,T or a symbol ⊥ indicating that ID has been revoked by time T .

– Encap(T, S): The encapsulation algorithm takes as input the current time
T ∈ T and a set of identities S = {ID1, ..., IDn} with n ≤ m, and it returns

8

a pair (Hdr,K), where Hdr is called the header and K ∈ K is the session
key for the symmetric encryption scheme.
When a message M ∈ {0, 1}∗ is broadcasted to receivers in S, the sender
can compute the encryption CM of M under the symmetric key K ∈ K of
DEM and broadcasts (T, S,Hdr, CM). We will refer to (T, S,Hdr) as the
full header and CM as the broadcast body.

– Decap(T, S,Hdr,DKID,T): This algorithm takes as input the full header
(T, S,Hdr) with a set of identities S = {ID1, ..., IDn} (satisfying that n ≤
m), a decryption key DKID,T 6= ⊥ corresponding an identity ID and time
T . If ID ∈ S the algorithm outputs the session key K which is then used to
decrypt the broadcast body CM to obtain the original message M .

– Revoke(ID, T,RL, ST): The stateful revocation algorithm takes an identity
to be revoked ID∈ID, a revocation time T ∈T , the current revocation list
RL and the state ST as input, and outputs an updated revocation list RL.

Correctness. The correctness property requires that for all security parameter
λ ∈ N, all (PP,MSK)← Setup(λ,m,N), all possible state ST , a revocation
list RL and for all sets S ⊆ ID with |S| ≤ m, if ID ∈ S is not revoked on
the time T ∈T , then for (SKID, ST)←SKGen(MSK, ID, ST), (KUT , ST)←
KeyUp(MSK,T,RL,ST),DKID,T←DKGen(SKID,KUT), (Hdr,K)←Encap(T,S),
it should be satisfied that: Decap(T, S,Hdr,DKID,T)=K.

REMARK. Note that for m = 1, the above definition of revocable IBBE
scheme is equal to a revocable IBE system, as is used in [33,38].

2.4 Security Models

The security model of RIBE was first introduced by Boldyreva et al. [6] and
it was refined by Seo and Emura [33] by considering the realistic threat of de-
cryption key exposure. We define IND-CPA security of a revocable IBBE system
with decryption key exposure resistant, which is indistinguishable against cho-
sen plaintext attacks for adaptive adversary. We basically refine the definition
of [33], by adding extra restrictions for the scenario of broadcast encryption.
We describe the security model using the following IND-CPA game between a
PPT adversary A and a challenger C.

Setup: The challenger C runs Setup(λ,m,N) algorithm of the revocable
IBBE scheme RIBBE to get the public parameters PP , the master secret key
MSK, a revocation list RL and a state ST . C keeps MSK,RL, ST to itself and
gives PP to the adversary A.

Key Extraction Phase 1: The adversary A can make a polynomial number
of key extraction queries adaptively, which are processed as follows:

– If this is a private key query for an identity ID, then it gives the correspond-
ing private key SKID to A by running SKGen(MSK, ID, ST) algorithm;

– If this is an update key query for the time T , then it gives the corresponding
update key KUT to A by running KeyUp(MSK,T,RL, ST) algorithm;

– If this is a decryption key query for ID and T , then it gives the corresponding
decryption key DKID,T to A by running DKGen(SKID,KUT) algorithm;

9

– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then it updates the revocation list RL by running
Revoke(ID, T,RL, ST) algorithm with the following restriction: The revo-
cation query cannot be queried at a time period T if the update key query
for T was issued.

We note that the update key query and the revocation query can be queried at
a time period which is later or equal to that of all previous queries, which means
they are requested in non-decreasing order of time. In addition, the decryption
key query cannot be queried at T before issuing T to the update key query.

Challenge: When A decides that phase 1 is over, a challenge time T ∗ and a
challenge privileged set S∗ = {ID1, ID2, ..., IDn} with n ≤ m are provided with
the following constraints:

– If a private key query for an identity ID ∈ S∗ has been requested, then this
identity ID must be revoked at some time T ≤ T ∗;

– There is no decryption key query for any ID in S∗ and T ∗ has been requested.

C runs Encap algorithm to obtain (Hdr,K0) = Encap(S∗, T ∗) and choose a
random K1 from the key space K. C then picks a random coin β ∈ {0, 1} and
returns (Hdr,Kβ) to A.

Key Extraction Phase 2: The adversary A can continue to issue a poly-
nomial number of additional key extraction queries as phase 1 with the same
constraints, C will respond as before.

Guess: Eventually, the adversary A outputs a guess β′ ∈ {0, 1}, and wins
the game if β′ = β.

Definition 3. (Adaptive Security) Let AdvIND-CPA
A,RIBBE = |Pr(β′ = β)− 1/2| be the

advantage for A in winning the IND-CPA game defined above. We say that a
revocable IBBE scheme is adaptively secure under chosen plaintext attacks if for
all polynomial-time adversary A, the advantage in winning the above experiment
AdvIND-CPA

A,RIBBE is negligible with respect to the security parameter λ.

This security model above can capture realistic threat of decryption key
exposure, as the adversary can make decryption key queries. This model reflects
the scenario where all users get together and collude as in ordinary IBBE, since
the adversary can get any user’s private key except for S∗. Furthermore, even
users in S∗ can be corrupted, as long as they are revoked before the challenge
time T ∗. This is called adaptive security as the privileged set S∗ is not chosen
at the beginning. We can also define the selective security that is weaker than
adaptive security similarly, except that the challenge S∗ and T ∗ must be declared
by the adversary before it sees the public parameters. In addition, we can define
the semi-adaptive security that lies between selective and adaptive security.

Definition 4. (Selective Security) The selective security of revocable IBBE un-
der chosen plaintext attacks is similar to the adaptive security except that the
adversary A should submit a challenge set S∗ and challenge time T ∗ before
it receives the public parameters. The advantage is defined as AdvsIND-CPA

A,RIBBE =

10

|Pr(β′ = β)− 1/2|. We say that a revocable IBBE scheme is secure under cho-
sen plaintext attacks in the selective model if for all polynomial-time adversary
A, the advantage in winning the above experiment AdvsIND-CPA

A,RIBBE is negligible with
respect to the security parameter λ.

Definition 5. (Semi-adaptive Security) The semi-adaptive security of revocable
IBBE under chosen plaintext attacks is similar to the adaptive security except
that the adversary A should submit a challenge set S∗ after it receives the public
parameters but before it makes any key extracton query. The advantage is defined
as AdvsaIND-CPA

A,RIBBE = |Pr(β′ = β)− 1/2|. We say that a revocable IBBE scheme is
semi-adaptively secure under chosen plaintext attacks if for all polynomial-time
adversary A, the advantage in winning the above experiment AdvsaIND-CPA

A,RIBBE is
negligible with respect to the security parameter λ.

3 The Basic IBBE Scheme

We now present our construction of identity-based broadcast encryption scheme
with short ciphertexts. The core of our construction relies on realizing the in-
clusion relationship between one identity and a subset of identities from inner
product. Note that the technique of deriving an IBBE scheme from the inner pro-
duction encryption can be traced to the work of Katz et al. [18]. For each identity
ID∈Zp, we can express it by setting a vector x= (x0, x1, · · · , xm), where xi =
IDi mod p for i= 0, 1, ...,m. For a subset S = {ID1, ID2, ..., IDn} with n6m,
we can define a vector y=(y0, y1, · · · , ym), where PS [Z]=

∏
IDj∈S (Z − IDj)=∑n

i=0 yiZ
i. If n<m, the coordinates yn+1, · · · , ym are all set to 0. It is easy to

verify that PS [ID]=
∑m
i=0 yi(ID)

i
=〈x,y〉 = 0 if and only if ID∈S.

3.1 Construction

As stated before, our basic IBBE scheme shares the same high level structure
as the construction in [31]. In order to achieve the secret key re-randomization
peoperty, each component of the master secret key needs to be available in the
public parameters in some form of elements in source groups. We note that the

extra public group elements, especially for the part of (gβα1 , gβα1

2 , gβα2

2 , g
1/β
2),

will play an important role in the security proof of the subsequent revocable
IBBE scheme. It is also worth mentioning that the security proof cannot be
immediately applied, since some materials of the master secret key from [31]
have been exposed in the public parameters. More precisely, our basic IBBE
scheme

∏
IBBE is constructed as follows.

– Setup(λ,m): Generate a Type-3 pairing G = (p, e,G1,G2,GT) of prime
order p > 2λ with two random generators g1 ∈ G1 and g2 ∈ G2. Le m be the
maximum size of the legitimate set for one encryption, two random (m+ 1)-
dimensional vectors are chosen from Zp with u1 = (u1,0, u1,1, · · · , u1,m),

u2 = (u2,0, u2,1, · · · , u2,m). Choose α1, α2, w1, w2
R←− Zp, b, β

R←− Z∗p, set

11

u = u1 + bu2 = (u0, u1, · · · , um), w = w1 + bw2, α = α1 + bα2, and compute
U1 = gu1 , W1 = gw1 , gT = e(g1, g2)α. The master key is MSK = (gα1

2 , gα2
2),

and the public parameter PP is defined to be:

PP = (g1, g
b
1,U1,W1, gT , g2, g

u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα1 , gβα1

2 , gβα2

2 , g
1/β
2).

– KeyGen(PP,MSK, ID): For a user with an identity ID ∈ Zp, this al-

gorithm chooses r
R←− Zp and random tags ktag1, · · · , ktagm

R←− Zp. The
private key SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)

m
i=1} is defined to be:

K1 = gα1
2 · (g

w1
2)r,K2 = gα2

2 · (g
w2
2)r,K3 = gr2. For i = 1, 2, ...,m:

K4,i=((gw1
2)ktagi ·gu1,i

2 /(g
u1,0

2)(ID)i)r, K5,i=((gw2
2)ktagi ·gu2,i

2 /(g
u2,0

2)(ID)i)r.
– Encap(PP, S): Assuming that the privileged set is S = {ID1, ID2, ..., IDn}

with n 6 m for notational simplicity. The algorithm defines a vector y =
(y0, y1, · · · , ym) as the coefficient from PS [Z]=

∏
IDj∈S (Z − IDj)=

∑n
i=0 yiZ

i.
It then picks randomly s, ctag ∈ Zp, and computes the session key K = gT

s

which is used to encrypt the message, together with the header Hdr =
(C1, C2, C3, ctag), where C1 = gs1, C2 = (gb1)s, C3 = (W ctag

1 ·
∏n
i=0 (gui1)

yi)s.
– Decap(PP,S,Hdr,SKID): The algorithm defines the vector y=(y0,y1,· · ·,ym)

according to the set S from the polynomial PS [Z] as above. It then computes
ktag=

∑m
i=1 yi ·ktagi. If ktag = ctag, the output is ⊥. Otherwise it computes:

A = (e(C1,
∏m
i=1K

yi
4,i) · e(C2,

∏m
i=1K

yi
5,i)/e(C3,K3))

1
ktag−ctag , and returns

the session key: K = e(C1,K1) · e(C2,K2) ·A−1.

CORRECTNESS . We observe that if ID∈S, we have 〈x,y〉=
∑m
i=0 yi(ID)

i
=0,

and y0 = −
∑m
i=1 yi(ID)

i
. Then we have:∏m

i=1
Kyi

4,i = ((gw1
2)

∑m
i=1 yiktagi ·

∏m

i=1
(g
u1,i

2)
yi/
∏m

i=1
(g
u1,0

2)
∑m
i=1 yi(ID)i

)r

= (g
w1

∑m
i=1 yiktagi

2 · g
∑m
i=0 yiu1,i

2)r = (gw1·ktag
2 · g

∑m
i=0 yiu1,i

2)r;∏m

i=1
Kyi

5,i = (gw2·ktag
2 · g

∑m
i=0 yiu2,i

2)r;

e(C1,
∏m

i=1
Kyi

4,i)e(C2,
∏m

i=1
Kyi

5,i) = e(gs1, g
r(w·ktag+

∑m
i=0 yiui)

2);

A = (e(C1,
∏m

i=1
Kyi

4,i)e(C2,
∏m

i=1
Kyi

5,i) · e(C3,K3)−1)
1

ktag−ctag = e(gs1, g
rw
2);

K = e(C1,K1)e(C2,K2)A−1 = e(gs1, g
α1+rw1
2)e((gb1)s, gα2+rw2

2)/e(gs1, g
rw
2)

= e(gs1, g
α1
2)e((gb1)s, gα2

2) = e(gs1, g
α1+bα2
2) = gT

s.

3.2 Security Proof

We prove the security of the above basic IBBE scheme inspired from Ramanna’s
original inner production encryption scheme [31] following the theorem:

Theorem 1. Suppose the ADDH1 and DDH2 assumptions hold in the Type-3
pairing G = (p, e,G1,G2,GT), the basic IBBE scheme

∏
IBBE in Section 3.1 is

adaptively secure.

12

Our security proof is obtained by applying the Waters’ dual system methodol-
ogy [37] via a hybrid argument over a sequence of games. Before we describe
these games, we introduce the semi-functional headers and secret keys in terms
of a transformation on a normal header or key. Note that these algorithms are
provided for definitional purposes and only used in the security proof, but not in
a real system. In particular, they do not need to be efficiently computable from
the public parameters.
SFEncap(PP,MSK,S, gw1

1 , gu1
1): The algorithm first runs the Encap algorith-

m on a set S = {ID1, ..., IDn} to generate a normal header-session key pair
(Hdr′,K ′) with Hdr′ = (C ′1, C

′
2, C

′
3, ctag

′). Then it randomly chooses µ ∈ Zp,
and sets the semi-functional session key K = K ′ · e(gµ1 , g

α1
2), together with

C2 = C ′2, ctag = ctag′. It then sets C1 = C ′1 · g
µ
1 , C3 = C ′3 · g

µ(〈y,u1〉+ctag·w1)
1 ,

where y = (y0, y1, · · · , ym) is the coefficient from PS [Z] =
∏
IDj∈S (Z − IDj) =∑n

i=0 yiZ
i. The resulting header Hdr = (C1, C2, C3, ctag) is returned as the

semi-functional header. Additionally, gw1
1 and gu1

1 are needed to generate the
semi-functional header in this algorithm.

SFKeyGen(PP,MSK, ID, g
1/b
2): The algorithm first runs the KeyGen algo-

rithm to generate a normal private key SK ′ID={K ′1,K ′2,K ′3,(K ′4,i,K ′5,i, ktag′i)mi=1}.
Then it chooses a random γ ∈ Zp, and sets K1 = K ′1 · g

γ
2 ,K2 = K ′2/g

γ/b
2 , leaving

the other elements {K3, (K4,i,K5,i)
m
i=1} and the tags {(ktagi)mi=1} unchanged.

The resulting key SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)
m
i=1} is returned as the

semi-functional secret key. Note that g
1/b
2 is also needed in this algorithm.

We observe that if one applies the decapsulation procedure with a semi-
functional key and a normal header, decapsulation will succeed as e(C1, g

γ
2) =

e(C2, g
γ/b
2). That is, a normal header when decapsulated with a semi-functional

user key returns the corresponding normal session key. Similarly, decapsulation
of a semi-functional header by a normal key will also succeed because of:

A′ = e(gµ1 ,
∏m
i=1K

yi
4,i)/e(g

µ(〈y,u1〉+ctag·w1)
1 ,K3)

1
ktag−ctag = e(gµ·w1

1 , gr2),

e(gµ1 ,K1)/A′ = e(gµ1 , g
α1
2 · (g

w1
2)r)/e(gµ·w1

1 , gr2) = e(gµ1 , g
α1
2),

which equals the extra component of the semi-functional session key. However,
when a semi-functional key is used to decapsulate a semi-functional header, the
resulting session key will have an additional term of e(gµ1 , g

γ
2), which means

decapsulation will fail when both the header and user’s key are semi-functional.
We now present a sequence of games between an adversaryA and a challenger

C defined as follows:

– GameReal: The real IBBE security game, which is basically follows the adap-
tive security model of [15].

– Game0: The same as GameReal, except that the challenge header and session
key are semi-functional.

– Gamek: The same as Game0, except that the first k private keys are semi-
functional for 1 6 k 6 q, where q is the number of key extraction queries
made by the adversary A.

– GameFinal: The same as Gameq, except that the challenge session key is a
random element of GT .

13

Our proof will progress as follows, which can show that each game defined above
is indistinguishable from the next under a complexity assumption. First, we
transit from GameReal to Game0, where the adversary A’s advantage is bounded
by the DDH1 assumption. Then we transit from Gamek−1 to Gamek for each 1 6
k 6 q, and the adversary A’s advantage is bounded by the DDH2 assumption.
We note that in Gameq both the challenge header and all the private keys are
semi-functional. At this point any private keys the challenger C gives out are
not useful in decapsulating the header. Finally, we transit Gameq to GameFinal
under the ADDH1 assumption. It is easy to check that the header-session key
pair given to the adversary A is independent with β in GameFinal, where the
adversary has no advantage unconditionally.

We denote AdvGameReal

A,IBBE , AdvGame0
A,IBBE, AdvGamek

A,IBBE (1 6 k 6 q) and AdvGameFinal

A,IBBE

as the advantage in GameReal, Game0, Gamek and GameFinal, respectively. Our
hybrid argument is accomplished in the following lemmas:

Lemma 1. If there is an adversary A with
∣∣∣AdvGameReal

A,IBBE −Adv
Game0
A,IBBE

∣∣∣ = ε, we

can build an algorithm C0 with advantage AdvDDH1
C0,G = ε in breaking the DDH1

assumption for the Type-3 pairing G.

Lemma 2. Suppose that there exists an adversary A that makes at most q

queries with advantage
∣∣∣AdvGamek−1

A,IBBE −Adv
Gamek
A,IBBE

∣∣∣ = ε for some k where 1 6

k 6 q. Then we can build an algorithm Ck with advantage AdvDDH2
Ck,G = ε in

breaking the DDH2 assumption for the Type-3 pairing G.

Lemma 3. If there is an adversary A with
∣∣∣AdvGameq

A,IBBE−Adv
GameFinal

A,IBBE

∣∣∣= ε, we

can build an algorithm C with advantage AdvADDH1
C,G = ε in breaking the ADDH1

assumption for the Type-3 pairing G.

The indistinguishability of GameReal and Game0 as well as that of Gamek−1
and Gamek for 1 6 k 6 q can be proved similarly as the way in [31]. Due to
space constraints, the proof for Lemma 1 and Lemma 2 is omitted here, but
can be found in the full version. Here we only present the proof for Lemma 3 in
Appendix A, which is the most non-trivial part in the theorem.

In addition, we note that the value of β is information theoretically hidden
from the adversary A in GameFinal, the probability in which A wins is exactly 1

2 .

Hence, A has no advantage in GameFinal:
∣∣∣AdvGameFinal

A,IBBE − 1
2

∣∣∣= 0. Thus, we have

the advantage of A in breaking the security of our basic IBBE scheme
∏

IBBE:

AdvIND -CPA
A,IBBE =

∣∣∣AdvGameReal

A,IBBE −
1
2

∣∣∣6 ∣∣∣AdvGameReal

A,IBBE −Adv
GameFinal

A,IBBE

∣∣∣+∣∣∣AdvGameFinal

A,IBBE −
1
2

∣∣∣
6
∣∣∣AdvGameReal

A,IBBE −AdvGame0
A,IBBE

∣∣∣+ q∑
k=1

∣∣∣AdvGamek−1
A,IBBE −Adv

Gamek
A,IBBE

∣∣∣+∣∣∣AdvGameq
A,IBBE−Adv

GameFinal

A,IBBE

∣∣∣
= AdvDDH1

C,G + q ·AdvDDH2
C,G +AdvADDH1

C,G .

14

Since the number of key extraction queries q is bounded by polynomial size, the
advantage AdvIND-CPA

A,IBBE defined above is negligible under the DDH1, DDH2 and
ADDH1 assumptions. This completes the proof of Theorem 1. ut

4 Construction of Revocable IBBE Scheme

In this section, we present an efficient revocable IBBE scheme with constant size
of headers, which is proven semi-adaptively secure in the standard model based
on the IBBE scheme described in Section 3.1. As mentioned before, we basically
follow the simple two-level HIBE (without delegating property) strategy in our
construction. That is, the first level using the adaptively secure IBBE scheme,
is assigned for identity, and the second level using the selectively secure Boneh-
Boyen IBE [4], is assigned for the polynomial bounded time period. Our revocable
IBBE scheme

∏
RIBBE is described as follows:

– Setup(λ,m,N): Given the security parameter λ, PKG generates a Type-3
pairing G = (p, e,G1,G2,GT) of prime order p. Also, two random generators
g1 ∈ G1 and g2 ∈ G2 are chosen as well as e(g1, g2) ∈ GT is computed.
As the maximum number of privileged identities is m, PKG then chooses
from Zp two random (m+1)-dimensional vectors u1 = (u1,0, u1,1, · · · , u1,m),
u2 = (u2,0, u2,1, · · · , u2,m). Assuming that there are at most N users in the
revocable IBBE systems, where N is a power of two for simplicity, a binary
tree BT with N leaves is chosen. To generate the system public parameters
PP , the authority PKG does the following:

1. Choose randomly b
R←− Z∗p, α1, α2, w1, w2, z1, z2, ẑ1, ẑ2

R←− Zp;
2. Set u = u1 + bu2, w = w1 + bw2, α = α1 + bα2;
3. Compute U1 =gu1 ,W1 =gw1 ,gT =e(g1, g2)α,Z1 =gz1+b·z21 ,Ẑ1 =gẑ1+b·ẑ21 ;
4. Finally, output public parameters to be:
PP = (g1, g

b
1,U1,W1, Z1, Ẑ1, gT , g2, g

u1
2 , gu2

2 , gw1
2 , gw2

2 , gz12 , g
z2
2 , g

ẑ1
2 , g

ẑ2
2).

The master key is defined MSK=(gα1
2 ,g

α2
2), and the revocation list is RL=∅.

– SKGen(PP,MSK, ID, ST): For a user associated with an identity ID ∈
Zp, PKG first chooses m random tags: ktag1, · · · , ktagm from Zp. It then
picks an unassigned leaf node η randomly from BT and stores ID in this
node η. For each node θ ∈ Path(BT, η), the authority does the following:

1. Recall Hθ = (H1,θ, H2,θ) from BT if it was defined. Otherwise, choose

H1,θ, H2,θ
R←− G2 and store Hθ in the node θ;

2. Choose rθ randomly from Zp, and compute:
K1,θ=H1,θ·(gw1

2)rθ , K2,θ=H2,θ·(gw2
2)rθ ,K3,θ=grθ2 ; For each i=1, 2, ...,m:

K4,i,θ=g
rθ(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,K5,i,θ=g

rθ(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

Return the private secret key SKID and an updated state ST with SKID =
{K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi)

m
i=1}θ∈Path(BT,η).

– KeyUp(PP,MSK, T,RL, ST): PKG parses MSK as (gα1
2 , gα2

2), and pub-
lishes key updates at time period T for each node θ ∈ KUNode(BT,RL, T)
in the following steps:

15

1. Retrieve Hθ = (H1,θ, H2,θ) from the state ST (As noted in [33], Hθ is
always pre-defined in the SKGen algorithm).

2. Choose sθ
R←− Zp, and compute:

KU1,θ=gα1
2 g

sθ(z1+T ·ẑ1)
2 H−11,θ ,KU2,θ=gα2

2 g
sθ(z2+T ·ẑ2)
2 H−12,θ ,KU3,θ=gsθ2 .

Return the key update KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T).
– DKGen(PP, SKID,KUT): Parse KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈J and
SKID={K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi)

m
i=1}θ∈I for some set of nodes

I and J . The user will return ⊥ if I ∩ J = ∅. Otherwise, choose θ ∈ I ∩ J ,
r′θ, s

′
θ∈Zp, computeDKID,T ={DK1,DK2,DK3,DK

′
3,(DK4,i,DK5,i,ktagi)

m
i=1}:

DK1 = K1,θ ·KU1,θ ·g
r′θ·w1

2 g
s′θ·(z1+T ·ẑ1)
2 , DK2 =K2,θ ·KU2,θ ·g

r′θ·w2

2 g
s′θ·(z2+T ·ẑ2)
2 ,

DK3 = K3,θ · g
r′θ
2 , DK

′
3 = KU3,θ · g

s′θ
2 . For i = 1, 2, ...,m:

DK4,i=K4,i,θ·g
r′θ·(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,DK5,i=K5,i,θ·g

r′θ·(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

– Encap(PP, T, S): To encrypt the privileged identity set S={ID1,ID2,...,IDn}
with n 6 m, the algorithm defines a vector y = (y0, y1, · · · , ym) as the asso-
ciated coefficient from: PS [Z] =

∏
IDj∈S (Z − IDj) =

∑n
i=0 yiZ

i. Note that
the coordinates yn+1, · · · , ym are all set to 0 if n < m. Given the public pa-

rameters PP with U1 = gu1 = (gu0
1 , gu1

1 , · · · , gum1), it picks s, ctag
R←− Zp, and

computes the session key K = gT
s and the header Hdr=(C1,C2,C3, C4, ctag)

with C1 = gs1, C2 = (gb1)s, C3 = (Z1 · ẐT1)s, C4 = (W ctag
1 ·

∏n
i=0 (gui1)

yi)s.
– Decap(PP, T, S,Hdr,DKID,T): For ID ∈ S, it parses DKID,T and Hdr as
{DK1, DK2, DK3,DK ′3, (DK4,i, DK5,i, ktagi)

m
i=1} and (C1, C2, C3, C4, ctag),

respectively. This algorithm then computes ktag =
∑m
i=1 yi · ktagi, where yi

is the coefficient of the polynomial PS [Z]. If ktag = ctag, the output is ⊥.
Otherwise it computes:
A = e(C1, DK1) · e(C2, DK2)/e(C3, DK

′
3),

B = (e(C1,
∏n
i=1 (DK4,i)

yi) · e(C2,
∏n
i=1 (DK5,i)

yi)/e(C4, DK3))
1

ktag−ctag ,
and returns K = A/B as the session key.

– Revoke(ID, T,RL, ST): This revocation algorithm updates the revocation
list RL by adding (η, ID, T), where η is the leaf node associated with ID.

CORRECTNESS . The correctness of our revocable RIBBE scheme follows from
the correctness analysis of IBBE in Section 3.1, and it is omitted here.

5 Security Analysis

Theorem 2. If the ADDH1 assumption and DDH2 assumption hold, the pro-
posed revocable IBBE scheme

∏
RIBBE is semi-adaptively secure under chosen

plaintext attacks. More particularly, if we set the maximum size of the set of
receivers for one encryption m to be m = 1, the above revocable IBBE scheme∏

RIBBE is a revocable IBE system
∏

RIBE, which is adaptively secure against
chosen plaintext attacks under the same assumptions.

The proof of Theorem 2 proceeds in the following two Theorems: Theorem 3
and Theorem 4. We first provide a reduction in the semi-adaptive model to the

16

(non-revocable) basic IBBE scheme
∏

IBBE described in Section 3.1, which has
been proven to be adaptively secure in Section 3.2 under the ADDH1 and DDH2
assumptions. Therefore, the revocable IBBE scheme

∏
RIBBE is semi-adaptivey

secure under the ADDH1 and DDH2 assumptions.

Theorem 3. If the underlying IBBE scheme
∏

IBBE described in Section 3.1 is
adaptively secure against chosen plaintext attacks, then the proposed revocable
IBBE scheme

∏
RIBBE in Section 4 is semi-adaptively secure.

Proof. Suppose there exists an adversary A that attacks the above revocable
IBBE scheme

∏
RIBBE with a non-negligible advantage ε, we will construct a

PPT algorithm C to break the adaptive security of the basic IBBE scheme
∏

IBBE

described in Section 3.1, following the strategy-dividing lemma in [17]. Namely,
when the challenge set S∗ = {ID∗1 , ID∗2 , ..., ID∗n} is given by the (semi-adaptive)
adversary A, we can divide A’s strategy into the following n + 1 types: Type-
0,Type-1,...,Type-n. A is a Type-k adversary if the number of identities for
ID ∈ S∗ that A issues private key query is exactly k. In particular, A is a Type-
0 adversary if A has not issued any ID ∈ S∗ for the private key query, and A
is a Type-n adversary if A has queried private keys of all users in S∗. It is easy
to check that Type-0, Type-1,..., Type-n can cover all possible strategies of A,
and each Type-k is mutually exclusive with publicly detectable in the security
game. For each k = 0, 1, ..., n, let Ak denote an adversary that always follow the
Type-k strategy (and never break the promise). We can prove that the advantage
for each Ak in attacking the revocable IBBE scheme

∏
RIBBE is negligible if the

underlying IBBE scheme
∏

IBBE described in Section 3.1 is adaptively secure.
Thus, for general adversary A following an arbitrary strategy,

∏
RIBBE satisfies

semi-adaptive security, as the advantage AdvsaIND-CPA
A,RIBBE 6

∑n
k=0Adv

saIND-CPA
Ak,RIBBE is

also negligible for polynomial size of n. In other words, we can divide the proof
of Theorem 3 into n+ 1 sub-proofs of Lemma 4.

Lemma 4. If the underlying IBBE scheme
∏

IBBE described in Section 3.1 is
adaptively secure against chosen plaintext attacks, then the advantage of a Type-k
adversary Ak against the proposed revocable IBBE scheme

∏
RIBBE in Section 4

is negligible.

Proof of Lemma 4. At the beginning, C receives public parameters of
∏

IBBE:

(g1,g
b
1,U1 = gu1+bu2

1 ,W1 = gw1+bw2
1 ,gT,g2,g

u1
2 ,g

u2
2 ,g

w1
2 ,g

w2
2 ,g

βα
1 ,gβα1

2 ,gβα2

2 ,g
1/β
2). Dur-

ing the process, C can access to the secret key generation oracle KeyGenIBBE(·),
that is, if C sends this oracle KeyGenIBBE(·) an identity ID, then it will receive
a private key of SKID = {K1,K2,K3, (K4,i,K5,i, ktagi)

m
i=1} with:

K1 = gα1
2 · (g

w1
2)r,K2 = gα2

2 · (g
w2
2)r,K3 = gr2,

K4,i = ((gw1
2)ktagi · gu1,i

2 /(g
u1,0

2)(ID)i)r, K5,i = ((gw2
2)ktagi · gu2,i

2 /(g
u2,0

2)(ID)i)r.
Then C interacts with Ak as follows:

Setup: C should guess the right time period T ∗ that Ak will submit the target
identity in the challenge ciphertext phase. For the rest of the proof, assuming
that C’s guess is correct, which holds with probability 1/ |T |. Note that C will

17

terminate the simulation once C finds that the guess is wrong, and a random bit
β′ will be outputted. C then proceeds as follows:

1. It first creates a binary tree BT with N leaves. It initializes RL and ST as
an empty set respectively.

2. C chooses z′1, z
′
2, ẑ
′
1, ẑ
′
2

R←− Zp and computes:

Z1 = gz1+b·z21 = g
z′1
1 (gb1)z

′
2/(gβα1)T

∗
, Ẑ1 = gẑ1+b·ẑ21 = g

ẑ′1
1 (gb1)ẑ

′
2(gβα1),

gz12 = g
z′1
2 /(g

βα1

2)T
∗
, gz22 = g

z′2
2 /(g

βα2

2)T
∗
, gẑ12 = g

ẑ′1
2 g

βα1

2 , gẑ22 = g
ẑ′2
2 g

βα2

2 ,
which implicitly sets:
z1 = z′1 − T ∗ · βα1, z2 = z′2 − T ∗ · βα2, ẑ1 = ẑ′1 + βα1, ẑ2 = ẑ′2 + βα2.

3. C then sends to Ak the public parameters of
∏

RIBBE as:

PP = (g1, g
b
1,U1,W1, Z1, Ẑ1, gT , g2, g

u1
2 , gu2

2 , gw1
2 , gw2

2 , gz12 , g
z2
2 , g

ẑ1
2 , g

ẑ2
2).

Challenge Set: Ak submits a challenge set S∗ = {ID∗1 , ID∗2 , ..., ID∗n} to the
challenger C, which will be used in the challenge ciphertexts. As the Type-k
adversary Ak only issues k private key query for any identity ID∗ ∈S∗, C will
choose k random leaf nodes L∗k = {η∗1 , η∗2 , ..., η∗k} from BT. η∗i will be assigned
to an identity ID∗∈S∗ that is issued by Ak for the private key. We emphasize
that η∗i is not necessary assigned to ID∗i ∈ S∗.
Key Extraction Phase 1: Ak may adaptively make a polynomial number of
queries, which are processed as follows:

– If this is a private key query for an identity ID, C performs the following:
1. It first checks whether ID ∈ S∗ or not. If ID ∈ S∗, C will assign ID

to a random undefined leaf η∗ ∈ L∗k and saves (ID, η∗) to ST . Fur-
thermore, C chooses m random tags: ktag1, · · · , ktagm from Zp, and
stores these tags for ID. Otherwise, ID /∈ S∗, C assigns ID to a ran-
dom undefined leaf η outside of L∗k from BT and saves (ID, η) to ST .
C can transfer ID to the oracle: KeyGenIBBE(·) and gets the private
key {K1,K2,K3,(K4,i,K5,i,ktagi)

m
i=1}. C also stores these given tags for ID.

We denote N∗k as all the nodes from the root node to the leaf nodes
which are assigned to identities queried in the challenge set S∗: N∗k =⋃k
i=1 Path(BT, η∗i).

2. For each node θ ∈ Path(BT, η), C can retrieve Hθ if it was defined.

Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2 and stores Hθ in the

node θ. Note that θ can be further divided into the following two types
according to N∗k :
• Case θ /∈N∗k : In this case, ID /∈ S∗ and C has gotten a private key of
ID from the oracle KeyGenIBBE(·): {K1,K2,K3,(K4,i,K5,i,ktagi)

m
i=1}. C

further chooses rθ
R←−Zp, and computes:

K1,θ=K1 ·(gw1
2)rθ ·H1,θ,K2,θ=K2 · (gw2

2)rθ ·H2,θ,K3,θ = K3 · grθ2 ,

K4,i,θ = K4,i · g
rθ(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,

K5,i,θ = K5,i · g
rθ(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

REMARK . Here we implicitly set H1,θ := gα1
2 H1,θ, H2,θ := gα2

2 H2,θ,
rθ := r + rθ, where r denotes the internal randomness of K3.

18

• Case θ∈N∗k : C can retrieve the tags ktag1, · · · , ktagm corresponding

to ID. Then it chooses rθ
R←−Zp, and computes:

K1,θ = H1,θ · (gw1
2)rθ ,K2,θ = H2,θ · (gw2

2)rθ ,K3,θ = grθ2 ;

K4,i,θ=g
rθ(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,K5,i,θ=g

rθ(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

3. Finally, it stores and outputs the private key SKID to Ak with:
SKID={K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi)

m
i=1}θ∈Path(BT,η).

– If this is an update key query for the time T , C first runs KUNode(BT,RL, T)
algorithm with the current revocation list RL and time T . For each node
θ ∈ KUNode(BT,RL, T), C can retrieve Hθ if it was defined. Otherwise, it

chooses Hθ=(H1,θ,H2,θ)
R←−G2 and stores Hθ in the node θ. Then it chooses

sθ
R←−Zp, checks whether θ∈N∗k , and computes:

• Case θ∈N∗k : KU1,θ = (gz12 (gẑ12)T)sθH−1
1,θ (g

1
β
2)

−
z′1+T ẑ

′
1

T−T∗ ,

KU2,θ = (gz22 (gẑ22)T)sθH−1
2,θ (g

1
β
2)

−
z′2+T ẑ

′
2

T−T∗ , KU3,θ = g
sθ
2 (g

1
β
2)

− 1
T−T∗ .

REMARK . In this case, we implicitly set sθ := sθ − 1
β(T−T∗) . We further em-

phasize that for T = T ∗, there will be no node θ such that θ ∈ KUNode(BT,RL, T)∩
N∗
k , as the corresponding SKID with ID ∈ S∗ must be revoked before T ∗ ac-

cording to the restriction.
• Case θ /∈N∗

k :
KU1,θ= (gz12 (gẑ12)T)sθH−1

1,θ ,KU2,θ=(gz22 (gẑ22)T)sθH−1
2,θ ,KU3,θ=g

sθ
2 .

Finally, C stores and outputs the update key KUT to Ak with:
KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T).

– For a decryption key query with an identity ID and time T , if ID is not
revoked before T (otherwise, C can output⊥), C can generate the correspond-
ing decryption key DKID,T in the following way, regardless of the strategy
taken by A:

• Case ID∈S∗: C selects random exponents s, r, ktag1, · · · , ktagm
R←− Zp

and creates the decryption DKID,T as:

DK1 = (gz12 (gẑ12)T)s(gw1
2)r(g

1
β
2)
−
z′1+T ẑ

′
1

T−T∗ ,

DK2 = (gz22 (gẑ22)T)s(gw2
2)r(g

1
β
2)
−
z′2+T ẑ

′
2

T−T∗ , DK3 = gr2, DK
′
3 = gs2,

DK4,i = g
r(u1,i−(ID)i·u1,0+ktagi·w1)
2 , DK5,i = g

r(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

• Case ID /∈S∗: In this case, C transfers ID to the oracle: KeyGenIBBE(·),
and gets the private key {K1,K2,K3,(K4,i,K5,i,ktagi)

m
i=1}. C further choos-

es r, s
R←−Zp, and computes:

DK1 =K1(gz12 (gẑ12)T)s(gw1
2)r, DK2 =K2(gz22 (gẑ22)T)s(gw2

2)r,
DK3 =K3g

r
2, DK

′
3 =gs2;

DK4,i = K4,ig
r(u1,i−(ID)i·u1,0+ktagi·w1)
2 ,

DK5,i = K5,ig
r(u2,i−(ID)i·u2,0+ktagi·w2)
2 .

REMARK . Note that T will never equal to T ∗ in the case of ID ∈ S∗
according to the restriction in the security model of Section 2.4.
Finally, C stores and outputs the decryption key DKID,T to A with:
DKID,T ={DK1, DK2, DK3, DK

′
3, (DK4,i, DK5,i, ktagi)

m
i=1}.

19

– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then C updates the revocation list RL by running
Revoke(ID, T,RL, ST) algorithm.

Challenge Cihphertexts: Once Ak decides that the Key Extraction Phase
1 is over, C sends the challenge privileged set S∗ = {ID∗1 , ID∗2 , ..., ID∗n} to
the challenger in the IND-CPA game of the IBBE scheme

∏
IBBE and gets

(Hdr∗,K∗) with Hdr∗ = (C∗1 , C
∗
2 , C

∗
3 , ctag

∗). Note that (Hdr∗,K∗0) is obtained
from the challenger of

∏
IBBE by running Encap algorithm with (Hdr∗,K∗0) =

Encap(S∗), and K∗1 is a random element from the key space K of
∏

IBBE. It
is C’s task to decide K∗ = K∗0 or K∗ = K∗1 . C sets C1 = C∗1 , C2 = C∗2 , C3 =
(C∗1)z

′
1+T

∗ẑ′1 ·(C∗2)z
′
2+T

∗ẑ′2 , C4 = C∗3 , ctag = ctag∗ and sends (Hdr = (C1, C2, C3, C4, ctag),K∗)
to A as the challenge header and session key pair.

Key Extraction Phase 2: Same as Key Extraction Phase 1.

Guess: Finally, A outputs a guess β′ ∈ {0, 1}, and C will transfer it to the
challenger in the IND-CPA game of the IBBE scheme

∏
IBBE.

Now we show that the simulation is correct. That is, the distribution of all
the above transcriptions between Ak and C is identical to the real experiment
from the viewpoint of Ak. Firstly, the public parameters PP is correct as the
exponents z′1, z

′
2, ẑ
′
1, ẑ
′
2 ∈ Zp are randomly chosen. Secondly, we show that the

private keys are correct. For each node θ ∈ Path(BT, η), it can be easily verified
that the private keys are of the same distribution in the case of θ∈N∗k . In the
case of θ /∈ N∗k , the private key for (K1,θ,K2,θ) is also correctly distributed from
the setting H ′1,θ = gα1

2 ·H1,θ, H
′
2,θ = gα2

2 ·H2,θ, r
′
θ = r + rθ as

K1,θ = K1 · (gw1
2)rθ ·H1,θ = (gα1

2 ·H1,θ) · (gw1
2)r+rθ = H ′1,θ · (g

w1
2)r

′
θ ,

K2,θ = K2 · (gw2
2)rθ ·H2,θ = (gα1

2 ·H1,θ) · (gw2
2)r+rθ = H ′2,θ · (g

w2
2)r

′
θ .

Thirdly, we show that the update key is correct. In case of θ∈N∗k , we have
that a time related update key is correctly distributed from the setting s′θ =
sθ − 1

β(T−T∗) as it holds that:

KU1,θ=(gz12 (gẑ12)T)sθH−11,θ (g
1
β
2)
−
z′1+T ẑ

′
1

T−T∗ =(g
z′1−T

∗βα1

2 (g
ẑ′1
2 g

βα1

2)T)sθg
−
z′1+T ẑ

′
1

β(T−T∗)
2 H−11,θ

= gα1
2 (g

z′1+T ẑ
′
1

2 g
(T−T∗)βα1

2)sθg
−
z′1+T ẑ

′
1

β(T−T∗)
2 · g−α1

2 ·H−11,θ

= gα1
2 (g

z′1+T ẑ
′
1

2 g
(T−T∗)βα1

2)sθ · (gα1β(T−T∗)+z′1+T ẑ
′
1

2)
− 1
β(T−T∗) ·H−11,θ

= gα1
2 (g

z′1+T ẑ
′
1

2 g
(T−T∗)βα1

2)
sθ−

1
β(T−T∗) ·H−11,θ

= gα1
2 (g

z′1+T ẑ
′
1

2 g
(T−T∗)βα1

2)s
′
θ ·H−11,θ

= gα1
2 (gz12 (gẑ12)T)s

′
θ ·H−11,θ ,

KU2,θ=(gz22 (gẑ22)T)sθH−12,θ (g
1
β
2)
−
z′2+T ẑ

′
2

T−T∗ =(g
z′2−T

∗βα2

2 (g
ẑ′2
2 g

βα2

2)T)sθg
−
z′2+T ẑ

′
2

β(T−T∗)
2 H−12,θ

= gα2
2 (g

z′2+T ẑ
′
2

2 g
(T−T∗)βα2

2)sθg
−
z′2+T ẑ

′
2

β(T−T∗)
2 · g−α2

2 ·H−12,θ

20

= gα2
2 (g

z′2+T ẑ
′
2

2 g
(T−T∗)βα2

2)s
′
θ ·H−12,θ = gα2

2 (gz22 (gẑ22)T)s
′
θ ·H−12,θ ,

KU3,θ = gsθ2 (g
1
β
2)
− 1
T−T∗ = g

sθ−
1

β(T−T∗)
2 = g

s′θ
2 .

In case of θ /∈ N∗k , the update key is correctly distributed from the setting
H ′1,θ=gα1

2 H1,θ, H
′
2,θ=gα2

2 H2,θ, s
′
θ = sθ as:

KU1,θ=(gz12 (gẑ12)T)sθH−11,θ=gα1
2 (gz12 (gẑ12)T)sθg−α1

2 H−11,θ=gα1
2 (gz12 (gẑ12)T)sθ(H ′1,θ)

−1,

KU2,θ = (gz22 (gẑ22)T)sθH−12,θ = gα2
2 (gz22 (gẑ22)T)sθ (H ′2,θ)

−1,KU3,θ = gsθ2 = g
s′θ
2 .

Fourthly, we show that the decryption key is correct. As we have proved be-
fore, both the private key SKID and the update key KUT are correctly distribut-
ed, the resulting decryption key must be correctly distributed by running the
DKGen(SKID,KUT) algorithm. Furthermore, if ID is not revoked before T , we
can prove that the decryption key for (DK1,θ, DK2,θ) is also correctly distributed
directly with SKID = {K1,θ,K2,θ,K3,θ, (K4,i,θ,K5,i,θ, ktagi,θ)

m
i=1}θ∈Path(BT,η)

and KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T).
In the case of ID ∈ S∗, for the time T 6= T ∗, there must exist a node

θ ∈ KUNode(BT,RL, T) ∩N∗n with KU1,θ = (gz12 (gẑ12)T)sθH−11,θ (g
1
β
2)
−
z′1+T ẑ

′
1

T−T∗ =

gα1
2 (gz12 (gẑ12)T)s

′
θ ·H−11,θ andK1,θ = H1,θ·(gw1

2)rθ . According to the DKGen(SKID,KUT)
algorithm:
K1,θ ·KU1,θ=H1,θ · (gw1

2)rθ ·gα1
2 (gz12 (gẑ12)T)s

′
θ ·H−11,θ =gα1

2 · (g
w1
2)rθ · (gz12 (gẑ12)T)s

′
θ ,

K2,θ ·KU2,θ=H2,θ · (gw2
2)rθ ·gα2

2 (gz22 (gẑ22)T)s
′
θ ·H−12,θ =gα2

2 · (g
w2
2)rθ · (gz22 (gẑ22)T)s

′
θ .

Thus,DK1 =K1,θ·KU1,θ·g
r′θ·w1

2 g
s′θ·(z1+T ·ẑ1)
2 andDK2 =K2,θ·KU2,θ·g

r′θ·w2

2 g
s′θ·(z2+T ·ẑ2)
2

have the correct distribution.
In the case of ID /∈ S∗, as K1,θ = K1 ·(gw1

2)rθ ·H1,θ,K2,θ = K2 ·(gw2
2)rθ ·H2,θ

and KU1,θ = (gz12 (gẑ12)T)sθH−11,θ ,KU2,θ = (gz22 (gẑ22)T)sθH−12,θ , it is easy to check:

K1,θ ·KU1,θ = K1 ·(gw1
2)rθ ·H1,θ ·(gz12 (gẑ12)T)sθH−11,θ = K1 ·(gw1

2)rθ ·(gz12 (gẑ12)T)sθ ,

K2,θ ·KU2,θ = K2 · (gw2
2)rθ ·H1,θ(g

z2
2 (gẑ22)T)sθH−11,θ = K2 · (gw2

2)rθ · (gz22 (gẑ22)T)sθ .
Thus, DK1 and DK2 also have the correct distribution.

Finally, we show that the challenge ciphertext is correct. For the challenge
session key K∗0 = gsT , the challenge header Hdr∗ = (C∗1 , C

∗
2 , C

∗
3 , ctag

∗) that
C receives with a privileged set S∗ = {ID∗1 , ID∗2 , ..., ID∗n} is of the following
distribution: C∗1 = gs1, C

∗
2 = (gb1)s, C∗3 = (W ctag

1 ·
∏n
i=0 (gui1)

yi)s. Thus, for the
same privileged set S∗, the challenge header Hdr = (C1, C2, C3, C4, ctag) that
A is given from C is also well formed since:

C3 = (Z1 · ẐT
∗

1)s = (g
z′1
1 (gb1)z

′
2(gβα1)−T

∗ · (gẑ
′
1

1 (gb1)ẑ
′
2(gβα1))T

∗
)s

= (g
z′1+ẑ

′
1·T
∗

1 (gb1)z
′
2+ẑ

′
2·T
∗
)s = (C∗1)z

′
1+ẑ

′
1·T
∗ · (C∗2)z

′
2+ẑ

′
2·T
∗
.

This completes the proof of Lemma 4. ut

Theorem 4. The resulting revocable IBE scheme
∏

RIBE is adaptively secure
under chosen plaintext attacks for m = 1, if the basic IBBE scheme

∏
IBBE

described in Section 3.1 is adaptively secure.

Proof. If there exists an adversary A that attacks the above revocable IBE
scheme

∏
RIBE with a non-negligible advantage, we will construct a PPT al-

gorithm C to break the adaptive security of the IBE scheme
∏

IBE for m = 1

21

described in Section 3.1. In the following proof, we will omit some detailed dis-
cussion due to page limitation. Especially, we focus on the part that are different
from the proof of Theorem 3.

At the beginning, C receives public parameters of the IBE scheme
∏

IBE:

(g1, g
b
1,U1 =gu1+bu2

1 ,W1 =gw1+bw2
1 ,gT , g2,g

u1
2 ,g

u2
2 , gw1

2 , gw2
2 ,g

βα
1 ,gβα1

2 ,gβα2

2 ,g
1/β
2) with

u1 = (u1,0, u1,1),u2 =(u2,0, u2,1) for m = 1. During the process, C can access to
the secret key generation oracle KeyGenIBE(·), which can receive a private key of
SKID={K1,K2,K3,K4,K5, ktag} with:K1 =gα1

2 ·(g
w1
2)r,K2 =gα2

2 ·(g
w2
2)r,K3 =

gr2, K4 =((gw1
2)ktagg

u1,1

2 (g
−u1,0

2)ID)r,K5 =((gw2
2)ktagg

u2,1

2 (g
−u2,0

2)ID)r.

As the adversary A won’t declare the target identity ID∗ and time period
T ∗ at the initial phase for the adaptive security model, C should first guess the
right T ∗ that A submits the target identity in the challenge phase, which holds
with probability 1/ |T | for polynomial-size T .

Furthermore, for the challenge ID∗, C should guess the exact index of queries
i∗ that A issues ID∗ to the SKGen or DKGen oracles for the first time. More
precisely, i∗ ∈ {1, 2, · · · , q1} denotes that A first issues ID∗ to C at the i∗-
th identity for the private key query or the decryption key query in the Key
Extraction Phase 1, where q1 is the maximum number of private key queries
and the decryption key queries before the challenge phase. i∗ = q1 + 1 denotes
that A does not query any private key or decryption for ID∗ before the challenge
phase, but it can issue a private key query or decryption key query for ID∗ in the
Key Extraction Phase 2. C makes a random guess i∗ ∈ {1, 2, · · · , q1, q1 + 1}
for the adversary A. Similar as in [33], the adversary A can be divided into the
following two types: A is a Type-a adversary if i∗ ∈ {1, 2, · · · , q1}; and A is a
Type-b adversary if i∗ = q1 + 1. Note that A is a still a Type-b adversary even
A has never queried ID∗ for any private key or decryption key, in which case
the target identity ID∗ is already known by C in the challenge phase. In the rest
of the proof, we assume that C’s guess for i∗ is right. Once C finds the guess is
wrong, it terminates the simulation and outputs a random bit β′ ∈ {0, 1}.
Setup: C first creates a binary tree BT with N leaves. It chooses a random leaf
node η∗ for a target identity ID∗ in advance, that is, η∗ is pre-assigned to ID∗

that will be used in the challenge phase. C then chooses z′1, z
′
2, ẑ
′
1, ẑ
′
2

R←− Zp and

computes: Z1 = gz1+b·z21 = g
z′1
1 (gb1)z

′
2/(gβα1)T

∗
, Ẑ1 = gẑ1+b·ẑ21 = g

ẑ′1
1 (gb1)ẑ

′
2(gβα1),

gz12 = g
z′1
2 /(g

βα1

2)T
∗
, gz22 = g

z′2
2 /(g

βα2

2)T
∗
, gẑ12 = g

ẑ′1
2 g

βα1

2 , gẑ22 = g
ẑ′2
2 g

βα2

2 . Finally,
the public parameters PP of

∏
RIBE is then sent to A with:

PP = (g1, g
b
1,U1,W1, Z1, Ẑ1, gT , g2, g

u1
2 , gu2

2 , gw1
2 , gw2

2 , gz12 , g
z2
2 , g

ẑ1
2 , g

ẑ2
2).

Key Extraction Phase 1 for Type-a adversary: A is a Type-a adversary
in the case of i∗ 6 q1. C will keep an integer i to count the number of queries
from A for private key or decryption key up to the current time. Similar as
in [38], we also classify type-a adversary more specifically: type-a-1 and type-a-0
adversary. A is a type-a-0 adversary if the private key of ID∗ has been queried.
Otherwise, A is a type-a-0 adversary if A has never queried the private key
SKID∗ . C interacts with A in the following steps:

22

– If this is a private key or decryption key query for an identity ID from a
type-a-1 adversary A, C performs as follows:
• Case i < i∗: In this case, ID 6= ID∗, C will transfer ID to the oracle:

KeyGenIBE(·), and can get the private key {K1,K2,K3,K4,K5, ktag}.
C then assigns ID to a random leaf η from BT and stores ID in the leaf
node η if ID is first issued to C for the private key or decryption key,
otherwise, C uses the stored leaf node η for ID.
∗ Private key query: If this is a private key query for an identity ID,

for each node θ ∈ Path(BT, η), C can retrieve Hθ if it was defined.

Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2 and stores Hθ in the

node θ. C chooses rθ randomly from Zp, and computes the private
key according to θ:
1. If θ∈Path(BT, η∗):
K1,θ = H1,θ · (gw1

2)rθ ,K2,θ = H2,θ · (gw2
2)rθ ,

K3,θ = grθ2 , K4,θ = ((gw1
2)ktag · gu1,1

2 /(g
u1,0

2)ID)rθ ,
K5,θ = ((gw2

2)ktag · gu2,1

2 /(g
u2,0

2)ID)rθ , ktag := ktag.
2. If θ /∈Path(BT, η∗): K1,θ=K1 ·(gw1

2)rθ ·H1,θ,K2,θ=K2 ·(gw2
2)rθ ·

H2,θ,
K3,θ=K3 · grθ2 , K4,θ=K4 ·((gw1

2)ktag · gu1,1

2 /(g
u1,0

2)ID)rθ ,
K5,θ=K5 ·((gw2

2)ktag · gu2,1

2 /(g
u2,0

2)ID)rθ , ktag := ktag.
∗ Decryption key query: If this is a decryption key query for an identity

ID and time T , C selects random exponents s, r
R←− Zp and creates

the decryption DKID,T as: DK1 = K1 · (gz12 (gẑ12)T)s(gw1
2)r, DK2 =

K2 · (gz22 (gẑ22)T)s(gw2
2)r, DK3 = gr2, DK

′
3 = gs2,

DK4 = g
r(u1,1−(ID)·u1,0+ktag·w1)
2 , DK5 = g

r(u2,1−(ID)·u2,0+ktag·w2)
2 .

• Case i = i∗: C identifies this identity ID as the target identity ID∗ and
stores ID∗ in the leaf node η∗, which is pre-assigned in the Setup phase.
C also assigns ID to a random tag: ktag ∈ Zp.
∗ Private key query: If this is a private key query for an identity ID,

for each node θ ∈ Path(BT, η∗), C can retrieve Hθ if it was defined.

Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2 and stores Hθ in the

node θ. C further chooses rθ randomly from Zp, and computes:
K1,θ = H1,θ · (gw1

2)rθ ,K2,θ = H2,θ · (gw2
2)rθ ,K3,θ = grθ2 , ktag := ktag,

K4,θ=((gw1
2)ktag · gu1,1

2 /(g
u1,0

2)ID)rθ ,K5,θ=((gw2
2)ktag · gu2,1

2 /(g
u2,0

2)ID)rθ .
∗ Decryption key query: If this is a decryption key query for the i-

dentity ID = ID∗ and time T 6= T ∗, C selects random exponents

s, r
R←− Zp and creates the decryption DKID,T as:

DK1 = (gz12 (gẑ12)T)s(gw1
2)r(g

1
β
2)
−
z′1+T ẑ

′
1

T−T∗ ,

DK2 = (gz22 (gẑ22)T)s(gw2
2)r(g

1
β
2)
−
z′2+T ẑ

′
2

T−T∗ , DK3 = gr2, DK
′
3 = gs2,

DK4 = g
r(u1,1−(ID)·u1,0+ktag·w1)
2 , DK5 = g

r(u2,1−(ID)·u2,0+ktag·w2)
2 .

• Case i > i∗: C does the same process as in the case of i < i∗.
– If this is an update key query from a type-a-1 adversary A, C performs as

follows:, C first runs KUNode(BT,RL, T) algorithm with the current revo-
cation list RL and time T . For each node θ ∈ KUNode(BT,RL, T), C can

23

retrieve Hθ if it was defined. Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2

and stores Hθ in the node θ. Then it chooses sθ
R←− Zp, and computes:

• If θ∈Path(BT, η∗) : KU1,θ = (gz12 (gẑ12)T)sθ ·H−1
1,θ · (g

1
β
2)

−
z′1+T ẑ

′
1

T−T∗ ,

KU2,θ = (gz22 (gẑ22)T)sθ ·H−1
2,θ · (g

1
β
2)

−
z′2+T ẑ

′
2

T−T∗ , KU3,θ = g
sθ
2 · (g

1
β
2)

− 1
T−T∗ .

REMARK . Note that ID∗ must have been revoked before the time T = T ∗,
so there will be no θ such that θ ∈ Path(BT, η∗) ∩ KUNode(BT,RL, T ∗), as
we restrict that the i∗-th identity query corresponding to ID∗ is a private key
query.

• If θ /∈ Path(BT, η∗):
KU1,θ = (gz12 (gẑ12)T)sθH−1

1,θ ,KU2,θ = (gz22 (gẑ22)T)sθH−1
2,θ ,KU3,θ = g

sθ
2 .

Finally, C stores and outputs the update key KUT to A with:
KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T).

– If this is a private key or decryption key query for an identity ID from a
type-a-0 adversary A, C performs as follows:
• Case i < i∗: In this case, ID 6= ID∗, C will transfer ID to the oracle:

KeyGenIBE(·), and can get the private key {K1,K2,K3,K4,K5, ktag}.
C then assigns ID to a random leaf η from BT and stores ID in the leaf
node η if ID is first issued to C for the private key or decryption key,
otherwise, C uses the stored leaf node η for ID.
∗ Private key query: If this is a private key query for an identity ID,

for each node θ ∈ Path(BT, η), C can retrieve Hθ if it was defined.

Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2 and stores Hθ in the

node θ. C chooses rθ randomly from Zp, and computes the private
key as following:
K1,θ=K1 · (gw1

2)rθ ·H1,θ,K2,θ=K2 · (gw2
2)rθ ·H2,θ,

K3,θ=K3 · grθ2 , K4,θ=K4 ·((gw1
2)ktag · gu1,1

2 /(g
u1,0

2)ID)rθ ,
K5,θ=K5 ·((gw2

2)ktag · gu2,1

2 /(g
u2,0

2)ID)rθ , ktag := ktag.
∗ Decryption key query: If this is a decryption key query for an identity

ID and time T , C selects random exponents s, r
R←− Zp and creates

the decryption DKID,T as: DK1 = K1 · (gz12 (gẑ12)T)s(gw1
2)r, DK2 =

K2 · (gz22 (gẑ22)T)s(gw2
2)r, DK3 = gr2, DK

′
3 = gs2,

DK4 = g
r(u1,1−(ID)·u1,0+ktag·w1)
2 , DK5 = g

r(u2,1−(ID)·u2,0+ktag·w2)
2 .

• Case i = i∗: C identifies this identity ID as the target identity ID∗ and
stores ID∗ in the leaf node η∗, which is pre-assigned in the Setup phase.
Note that there’s no private key query for ID∗ in the case of type-a-0
adversary. Given a decryption key query for the identity ID = ID∗ and

time T 6= T ∗, C selects random exponents s, r, ktag
R←− Zp and creates

the decryption DKID,T as:

DK1 = (gz12 (gẑ12)T)s(gw1
2)r(g

1
β
2)
−
z′1+T ẑ

′
1

T−T∗ ,

DK2 = (gz22 (gẑ22)T)s(gw2
2)r(g

1
β
2)
−
z′2+T ẑ

′
2

T−T∗ , DK3 = gr2, DK
′
3 = gs2,

DK4 = g
r(u1,1−(ID)·u1,0+ktag·w1)
2 , DK5 = g

r(u2,1−(ID)·u2,0+ktag·w2)
2 .

• Case i > i∗: C does the same process as in the case of i < i∗.

24

– If this is an update key query from a type-a-0 adversary A, C first run-
s KUNode(BT,RL, T) algorithm with the current revocation list RL and
time T . For each node θ ∈ KUNode(BT,RL, T), C can retrieve Hθ if it

was defined. Otherwise, it chooses Hθ = (H1,θ, H2,θ)
R←− G2 and stores

Hθ in the node θ. Then it chooses sθ
R←− Zp, and computes: KU1,θ =

(gz12 (gẑ12)T)sθH−11,θ ,KU2,θ = (gz22 (gẑ22)T)sθH−12,θ ,KU3,θ = gsθ2 .
Finally, C stores and outputs the update key KUT to A with:
KUT = {KU1,θ,KU2,θ,KU3,θ}θ∈KUNode(BT,RL,T).

– If this is a revocation key query for an identity to be revoked ID and
a revocation time T , then C updates the revocation list RL by running
Revoke(ID, T,RL, ST) algorithm.

Key Extraction Phase 1 for Type-b adversary: In this case, i∗ = q1 + 1.
For a Type-b adversary A, there is no need for C to keep an integer i to count
the number of queries from A, as the target identity ID∗ that A issues is only
after the challenge phase, which is already known by C. Similarly as the proof
above, we have to classify Type-b adversary into Type-b-1 adversary and Type-
b-0 adversary, depending on the private key of the challenge identity ID∗ has
been queried or not. A is said to be a type-b-1 adversary if the private key of
ID∗ has been queried (in key extraction phase 2). Otherwise, A is a type-b-0
adversary if A has never queried the private key SKID∗ . For all the of queries
from a Type-b adversary, including the privacy key, update key query, decryption
key query and revocation key query, C acts almost identical to those in the key
extraction phase 1 for a Type-a adversary, so they are omitted here.
Challenge: Now A sends the challenge identity ID∗ and time T ∗ to C. We
assume that C’s guess is right. If the guess is wrong, C terminates the simula-
tion and outputs a random bit β′ ∈ {0, 1}. C then sends the challenge identity
ID∗ to the challenger in the IND-CPA game of the IBE scheme

∏
IBE and gets

(Hdr∗,K∗) with Hdr∗ = (C∗1 , C
∗
2 , C

∗
3 , ctag

∗). Note that (Hdr∗,K∗0) is obtained
from the challenger of

∏
IBE by running Encap algorithm with (Hdr∗,K∗0) =

Encap(S∗), and K∗1 is a random element from the key space K of
∏

IBE. C sets

C1 =C∗1 , C2 =C∗2 , C3 =(C∗1)z
′
1+T

∗ẑ′1 ·(C∗2)z
′
2+T

∗ẑ′2 , C4 =C∗3 , ctag=ctag∗ and sends
(Hdr=(C1,C2,C3,C4,ctag),K

∗) to A as the challenge header and session key pair.
Key Extraction Phase 2: Same as Key Extraction Phase 1.
Guess: Finally, A outputs a guess β′ ∈ {0, 1}, and C will transfer it to the
challenger in the IND-CPA game of the IBE scheme

∏
IBE.

We note that during the simulation, C can access to the secret key generation
oracle KeyGenIBE(·) only for identities that ID 6= ID∗. A can query the private
key for ID∗ or the decryption key related to ID∗ related to time T 6= T ∗. In
this case, C can also simulate the correct private key SKID∗ or decryption key
DKID∗,T , the distribution of which is identical to those in the real experiment.
Furthermore, we can prove that the distribution of all transcriptions between A
and C is same as those generated by real algorithm. The analysis is very similar
to the proof of Theorem 3, and is omitted here.

This completes the proof of Theorem 4. ut

25

6 Experimental and Evaluation

To demonstrate its practicality, we implement the proposed revocable IBBE
scheme in Python 3.3.1 using the Charm 0.43 framework [3], a programming
framework for cryptographic primitives. For the Type-3 pairings, we choose the
default Miyaji-Nakabayashi-Takano elliptic curve group [26] with base field size
224 bits (MNT224) to establish our scheme, which can provide 96-bit security
level [39]. All programs are running on a laptop with Intelr CoreTM i3-4010U
CPU@1.70GH and 4.0GB RAM using operating system 32-bit Ubuntu 13.04.

Fig. 2. Average time cost of all algorithms for different choices of m and d

Figure 2 and Figure 3 demonstrates the average time costs of all kinds of
algorithms in our scheme. The data is measured by the benchmark tool provided
by Charm. The average time cost is recorded after running each program using
the MNT224 curve and other related parameter for 100 times. We perform the
experiment in the following way: first setup the system with the maximum size
of privileged set m and the total number of system users N , then generate a
secret key, update key periodically via a public channel for the revocation list
RL, generate the decryption key, encrypt a message given a privileged set S and
decrypt the ciphertext.

Figure 2 (left) plots the influence of the maximum size of privileged set
m on the efficiency of our scheme, where m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the
total number of system users is set to be N = 64, and there is no users is
revoked (i.e., RL = ∅). For the Encap algorithm, the privileged identity is set as
S = {user1@email.com, ...,userm@email.com} for m = 1, 2, ..., 10. The user with
identity user1@email.com that is not revoked can always correctly decrypt during
this experiment. Note that for m = 1, this is an adaptively secure revocable IBE
scheme, which is proven in Lemma 4. As we see in Figure 2(a), SKGen algorithm
consumes the most computation costs. This is because (3m+3)∗(log2N) elements
are needed for each private key, which will take O(m ∗ (log2N)) exponentiations
of G2. The operations on group G2 are more expensive than that of G1, about 11
times for exponentiations according to [1]. Note that the private key is generated
only one time from PKG via a secure channel for each user in the system. For

26

the more frequent activity of KeyUp algorithm in the PKG side, the average
time cost is bounded by just 0.14s.

Figure 2 (right) plots the time taken by the total number of system users
N ∈ {22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212}, in which case the maximum size of
privileged set for one encryption is set to bem = 10, and the revocation list RL =
∅. One can see that the time cost of the Setup algorithm grows exponentially
in the depth d of the binary tree, which means the computation overhead is
still linear in the number of system users N , where N = 2d. The reason is that
PKG should assign each identity into a random leaf node in the binary tree,
and maintain the state information ST . It is worth mentioning that PKG can
use a pseudorandom generator instead of storing the random values for each
node in the binary tree, which is suggested in the Libert-Vergnaud scheme [25].
In terms of secret key generation algorithm SKGen, the compution overhead
is linear in the depth of the binary tree, as the secret key is associated with
the path from root to the leaf node. The compution overhead of the DKGen,
Decap and KeyUp algorithms are all under 1 second, which are independent
of the number of system users. Sepcifically, the average time cost of the Encap
algorithm is just 31.2 ms, which makes our revocable IBBE scheme very efficient.

Fig. 3. Average time cost of KeyUp algorithm for different numbers of r

Figure 3 (left) demonstrates the time cost of KeyUp algorithm for different
numbers of users to be revoked r from 1 to 50, where the total number of system
users is set to be N = 64. Note that the random leaf node assignment tech-
nique [33] is used in our scheme. When a new user joins the system, it is assigned a
random leaf node in the tree. In our implementation, each identity is pre-assigned
a random leaf node via the built-in function random.shuffle () in the system
setup phase. The revocation list isRL = {user1@email.com, ...,userj@email.com}
for j = 1, 2, ..., 50. We can see that the time overhead of this KeyUp algorithm
in all cases is upper bounded by 2.5s. More specifically, if each identity is assigned
a leaf node in sequence without the random leaf node assignment technique [33],
the average time costs of the KeyUp algorithm would be present in Figure 3
(right). We can say that r = 32 will have the least computation overhead, as
there will be only one node in the KUNode algorithm of the KeyUp algorithm.

27

7 Conclusion

Providing an efficient revocation mechanism is necessary in the IBE setting and
BE setting where a large number of users are involved, especially when consid-
ering practical deployments of these cryptosystems. It is more desirable that the
sender does not need to know the revocation list, and only the receiver needs to
check the revocation list of his credential to decrypt ciphertext. We further ex-
pand the study of scalable revocation methodology in the setting of IBBE, and
then present a concrete instantiation of revocable IBBE scheme with DKER,
which is motivated by a new revocable IBE scheme recently proposed in [38]. To
build our revocable IBBE scheme, we first propose an adaptive IBBE scheme de-
rived from [31]. Then we can construct a revocable IBBE scheme with a security
reduction to the aforementioned IBBE scheme. The proposed scheme is very ef-
ficient both in terms of computation costs and communication overheads, as the
ciphertext size is constant, independent of the number of recipients. Our scheme
can withstand decryption key exposure, which is proved its semi-adaptive secu-
rity under mild variants of the SXDH assumption. As a side contribution, we
also present an adaptive secure revocable IBE scheme with DKER, which can
be seen as a complementary of Watanabe et al.’s revocable IBE scheme [38].

Acknowledgment. Part of this work was done while Aijun Ge was visiting
Institute for Advanced Study, Tsinghua University. The authors would like to
thank Jianghong Wei and Jie Zhang for their helpful discussions on the Charm

framework. We also thank anonymous reviewers of PKC 2019 for their insightful
comments. The work is partially supported by the National Natural Science
Foundation of China (No.61502529 and No.61502276) and the National Key
Research and Development Program of China (No.2017YFA0303903).

References

1. Agrawal S., Chase M.: FAME: fast attribute-based message encryption. In Proc.
of the 24th ACM Conference on Computer and Communications Security (CCS
2017), New York, NY, USA, pp.665-682. ACM (2017)

2. Attrapadung N. and Imai H.: Attribute-based encryption supporting direc-
t/indirect revocation modes. In IMA International Conference on Cryptography
and Coding (IMCC 2009), LNCS 5921, pp.278-300. Springer, Heidelberg (2009)

3. Akinyele J.A., Garman C., Miers I., et al.: Charm: a framework for rapidly proto-
typing cryptosystems. Journal of Cryptographic Engineering, 3: 111-128, 2013

4. Boneh D., Boyen X.: Efficient selective-ID secure identity-based encryption without
random oracles. In Advances in Cryptology-EUROCRYPT 2004, LNCS 3027, pp.
223-238. Springer, Heidelberg (2004)

5. Boneh D., Franklin M.: Identity-based encryption from the Weil pairing. In Ad-
vances in Cryptology-CRYPTO 2001, LNCS 2139, pp. 213-229. Springer, Heidel-
berg (2001)

6. Boldyreva A., Goyal V., Kumar G.: Identity-based encryption with efficient revo-
cation. In Proc. of the 15th ACM Conference on Computer and Communications
Security (CCS 2008), New York, NY, USA, pp.417-426. ACM (2008)

28

7. Chang D., Chauhan A., Kumar S., Sanadhya S.: Revocable identity-based encryp-
tion from codes with rank metric. In Int. Conf. of Cryptographers’ Track at the
RSA (CT-RSA 2018), LNCS 10808, pp. 435-451. Springer, Heidelberg (2018)

8. Chen J., Lim H., Ling S., Su L., Wang H. Nguyen K.: Revocable identity-based en-
cryption from lattices. In Int. Conf. of Information Security and Privacy (ACISP
2012), LNCS 7372, pp.390-403. Springer, Heidelberg (2012)

9. Chatterjee S., Menezes A.: On cryptographic protocols employing asymmetric
pairings-the role of ϕ revisited. Discrete Applied Mathematics, 159(13): 1311-1322,
2011

10. Chen J., Wee H.: Semi-adaptive attribute-Based encryption and improved delega-
tion for boolean formula. In Int. Conf. of Security and Cryptography for Networks
(SCN 2014), LNCS 8642, pp.277-297. Springer, Heidelberg (2014)

11. Delerablée C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In Advances in Cryptology -ASIACRYPT 2007, LNCS 4833,
pp.200-215. Springer, Heidelberg (2007)

12. Emura K., Seo J.H., Youn T.: Semi-generic transformation of revocable hierarchical
identity-based encryption and its DBDH instantiation. IEICE Trans, 99(A(1)): 83-
91, 2016

13. Fiat A., Naor M.: Broadcast encryption. In Advances in Cryptology-CRYPTO
1993, LNCS 773, pp. 480-491. Springer, Heidelberg (1994)

14. Galbraith S., Paterson K., Smart N.: Pairings for cryptographers. Discrete Applied
Mathematics, 156(16): 3113-3121, 2008

15. Gentry C., Waters B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In Advances in Cryptology-EUROCRYPT 2009, LNCS 5479,
pp. 171-188. Springer, Heidelberg (2009)

16. Jutla C., Roy A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako
K. and Sarkar P. (Eds.) In Advances in Cryptology -ASIACRYPT 2013, LNCS
8269, pp.1-20. Springer, Heidelberg (2013)

17. Katsumata S., Matsuda T., Takayasu A.: Lattice-based revocable (hierarchical)
identity-based encryption with decryption key exposure resistance. Cryptology
ePrint Archive, Report 2018/420, 2018

18. Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, poly-
nomial equations and inner products. In Advances in Cryptology-EUROCRYPT
2008, LNCS 4965, pp. 146-162. Springer, Heidelberg (2008)

19. Kogan N., Shavitt Y., Wool Avishai.: A Practical revocation scheme for broad-
cast encryption using smart cards. ACM Transactions on Information and System
Security, 9(3): 325-351, 2006

20. Lee Kwangsu: Revocable hierarchical identity-based encryption with adaptive se-
curity. Cryptology ePrint Archive, Report 2016/749, 2016

21. Lee K., Lee D., Park J.: Efficient revocable identity-based encryption via subset
difference methods. Design Codes Cryptography 85: 39-76, 2017

22. Lai J., Mu Y., Guo F., et al.: Full privacy-preserving and revocable ID-based
broadcast encryption for data access control in smart city. Pers Ubiquit Comput,
21: 855-868, 2017.

23. Ling S., Nguyen K., Wang H., Zhang J.: Server-aided revocable predicate encryp-
tion: Formalization and lattice-based instantiation. CoRR, abs/1801.07844, 2018.

24. Lee K., Park S.: Revocable hierarchical identity-based encryption with shorter
private keys and update keys. Design Codes Cryptogrphy, doi: 10.1007/s10623-
017-0453-2, 2018

29

25. Libert B., Vergnaud D.: Adaptive-ID secure revocable identity-based encryption.
In Int. Conf. of Cryptographers’ Track at the RSA (CT-RSA 2009), LNCS 5473,
pp.1-15. Springer, Heidelberg (2009)

26. Miyaji A., Nakabayashi M., Takano S.: Characterization of elliptic curve traces
under FR-reduction. In Int. Conf. of Information Security and Cryptology (ICISC
2000), LNCS 2015, pp.90-108. Springer, Heidelberg (2000)

27. Nieto J., Manulis M., Sun D.: Fully private revocable predicate encryption. In Int.
Conf. of Information Security and Privacy (ACISP 2012), LNCS 7372, pp.350-
363. Springer, Heidelberg (2012)

28. Naor D., Naor M., Lotspiech J.: Revocation and tracing schemes for stateless
receivers. In Advances in Cryptology-CRYPTO 2001, LNCS 2139, pp. 41-62.
Springer, Heidelberg (2001)

29. Nguyen K., Wang H., Zhang J.: Server-aided revocable identity-based encryption
from lattices. In Int. Conf. on Cryptology and Network Security (CANS 2016),
LNCS 10052, pp. 107-123. Springer, Heidelberg (2016)

30. Qin B., Deng R., Li Y., Liu S.: Server-aided revocable identity-based encryption. In
Proc. the 20th European Symposium on Research in Computer Security (ESORICS
2015), LNCS 9326, pp.286-304. Springer, Heidelberg (2015)

31. Ramanna C. Somindu: More efficient construction for inner product encryp-
tion. In Int. Conf. of Applied Cryptography and Network Security. (ACNS
2016), LNCS, 9696, pp. 231-248. Springer, Heidelberg (2016) The full version,
http://eprint.iacr.org/2016/356

32. Susilo W., Chen R., Guo F., et al.: Recipient rovocable identity-based broadcast
encryption, or how to revoke some recipient in IBBE without knowledge of the
plaintext. In Proc. of the 11th ACM on Asia Conference on Computer and Com-
munications Security (AsiaCCS 2016), Xi’an, China, pp.201-210. ACM (2016)

33. Seo J. Hong and Emura Keita: Revocable identity-based encryption revisited: Se-
curity model and construction. In Proc. the 16th Int. Conf. on Public Key Cryp-
tography (PKC 2013), LNCS 7778, pp. 216-234. Springer, Heidelberg (2013)

34. Seo J. Hong and Emura Keita: Efficient delegation of key generation and revocation
functionalities in Identity-Based encryption. In Int. Conf. of Cryptographers’ Track
at the RSA (CT-RSA 2013), LNCS 7779, pp. 343-358. Springer, Heidelberg (2013)

35. Seo J. Hong and Emura Keita: Revocable hierarchical identity-based encryption:
History-free update, security against insiders, and short ciphertexts. In Int. Conf.
of Cryptographers’ Track at the RSA (CT-RSA 2015), LNCS 9048, pp. 106-123.
Springer, Heidelberg (2015)

36. Seo J. Hong and Emura Keita: Adaptive-id secure revocable hierarchical identity-
based encryption. In Int. Conf. on Information and Computer Security (IWSEC
2015), LNCS 9241, pp. 21-38. Springer, Heidelberg (2015)

37. Waters B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In Advances in Cryptology-CRYPTO 2009, LNCS 5677, pp.
619-636. Springer, Heidelberg (2009)

38. Watanabe Y., Emura K., Seo J.: New revocable IBE in prime order group-
s: adaptively secure, decryption key exposure resistant and with short pub-
lic parameters. In Int. Conf. of Cryptographers’ Track at the RSA (CT-RSA
2017), LNCS 10159, pp. 432-449. Springer, Heidelberg (2017) The full version,
http://eprint.iacr.org/2016/1094

39. Yang B., Yang K., Qin Y., Zhang Z., Feng D.: DAA-TZ: an efficient DAA scheme
for mobile devices using ARM trustzone. In Int. Conf. on Trust and Trustworthy
Computing (Trust 2015), LNCS 9229, pp.209-227. Springer, Heidelberg (2015)

30

A Proof of Lemma 3 in Section 3.2

Proof. Given a PPT adversaryA achieving a non-negligible difference ε in advan-
tage between Gameq and GameFinal, we will create a PPT algorithm C to break

the ADDH1 assumption. Let (g1,g
µ
1 , g

α2
1 ,gβα1 , g2, g

α
2 ,g

βα
2 , gβα2

2 ,g
1/β
2 ,Z = gµα2+η

1)
be the instance of ADDH1 problem in G that C has to solve, i.e., to decide
whether η = 0 or a random value in Z∗p. Note that in Gameq, all the user keys
returned to A are semi-functional and so is the challenge header and session key.
C will simulate either Gameq or GameFinal with A, depending on the value of η.

Setup: At the beginning, C chooses random exponents u1 =(u1,0, · · · , u1,m),

u2 =(u2,0,· · ·,u2,m),w1,w2
R←−Zp and b

R←−Z∗p, and sets the public parameters PP :

g1 := g1, g
b
1,U1 := gu1+bu2

1 ,W1 := gw1+bw2
1 , gT := e(g1, g

α
2),

g2 := g2, g
u1
2 , gu2

2 , gw1
2 , gw2

2 , gβα1 , gβα1

2 := gβα2 /(gβα2

2)b, gβα2

2 , g
1/β
2 .

Note that this implicitly sets α1 :=α−bα2, and the secret exponents (α1, α2) in
MSK are not available to C.

Key Extraction: When the adversary A requests a secret key extract query
for an identity ID ∈ Zp, C creates a semi-functional key. It does this by choosing

random exponents r, γ′, ktag1, · · · , ktagm
R←− Zp, which implicitly sets γ := γ′ +

bα2. The semi-functional key elements are computed as:

K1 =gα1
2 (gw1

2)rgγ2 =gα2 (gw1
2)rgγ

′

2 ,K2 = gα2
2 (gw2

2)r/gγb
−1

2 =(gw2
2)r/gγ

′b−1

2 ,K3 =gr2.
For i = 1, 2, ...,m:
K4,i = ((gw1

2)ktagi · gu1,i

2 /(g
u1,0

2)(ID)i)r, K5,i = ((gw2
2)ktagi · gu2,i

2 /(g
u2,0

2)(ID)i)r.
This is a properly distributed semi-functional key, which can be easily verified.

Challenge: Once the public parameters PP and the keys for all key extrac-
tion queries are given,A provides a challenge privileged set S∗={ID1,ID2, ...,IDn}.
C first computes the vector y = (y0, y1, · · · , ym) according to S∗ as the coeffi-
cient from PS∗ [Z] =

∏
IDj∈S∗ (Z − IDj). It then picks randomly s, ctag ∈ Zp,

and computes the challenge header Hdr = (C1, C2, C3, ctag) as follows:

C1 = gs1 · g
µ
1 , C2 = gsb1 , C3 = (W ctag

1 ·
∏n
i=0 (gui1)

yi)s · gµ(〈y,u1〉+ctag·w1)
1). In addi-

tion, the challenge session key K is set to be: K = gT
s · e(gµ1 , gα2)/e(Z, gb2).

One can verify that the challenge header Hdr = (C1, C2, C3, ctag) has proper
semi-functional forms. Furthermore, if Z = gµα2

1 (i.e., η = 0), then K is a
properly distributed semi-functional session key. In this case, C has properly
simulated Gameq. If η is a random value in Z∗p, which means Z = gµα2+η

1 is a
random element in G1, then K is uniformly distributed and is independent of
all other components. In this case, C has properly simulated GameFinal.

Guess: Eventually, the adversary A will output a guess β′ of β. The chal-
lenger C then outputs 0 to guess that Z = gµα2

1 if β′ = β; otherwise, it outputs
1 to indicate that Z = gµα2+η

1 is a random element of G1. Also, C simulates
Gameq if η = 0 and GameFinal if η ∈ RZ∗p. Therefore, C can use A’s output
to distinguish Z = gµα2

1 from random with the same advantage that A has in
distinguishing Gameq from GameFinal.

This completes the proof of Lemma 3. ut

31

	Identity-based Broadcast Encryption with Efficient Revocation
	Introduction
	Preliminaries
	Asymmetric Pairings and Hardness Assumptions
	KUnodes Algorithm
	Syntax of Revocable IBBE Scheme
	Security Models

	The Basic IBBE Scheme
	Construction
	Security Proof

	Construction of Revocable IBBE Scheme
	Security Analysis
	Experimental and Evaluation
	Conclusion
	Proof of Lemma 3 in Section 3.2

