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Abstract. A verifiable random function (VRF) is a pseudorandom func-
tion, where outputs can be publicly verified. That is, given an output
value together with a proof, one can check that the function was indeed
correctly evaluated on the corresponding input. At the same time, the
output of the function is computationally indistinguishable from random
for all non-queried inputs.
We present the first construction of a VRF which meets the follow-
ing properties at once: It supports an exponential-sized input space, it
achieves full adaptive security based on a non-interactive constant-size
assumption and its proofs consist of only a logarithmic number of group
elements for inputs of arbitrary polynomial length.
Our construction can be instantiated in symmetric bilinear groups with
security based on the decision linear assumption. We build on the work of
Hofheinz and Jager (TCC 2016), who were the first to construct a verifi-
able random function with security based on a non-interactive constant-
size assumption. Basically, their VRF is a matrix product in the expo-
nent, where each matrix is chosen according to one bit of the input. In
order to allow verification given a symmetric bilinear map, a proof con-
sists of all intermediary results. This entails a proof size of Ω(L) group
elements, where L is the bit-length of the input.
Our key technique, which we call hunting and gathering, allows us to
break this barrier by rearranging the function, which – combined with
the partitioning techniques of Bitansky (TCC 2017) – results in a proof
size of ` group elements for arbitrary ` ∈ ω(1).

1 Introduction

A pseudorandom function is, roughly speaking, a function that can be efficiently
evaluated if provided a key, but - given only black-box access - is computationally
indistinguishable from a truly random function. Since introduced by Goldreich,
Goldwasser and Micali [16] in 1986, pseudorandom functions have been proven
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useful in many applications. Nevertheless, their security guarantee is somewhat
one-sided, as by definition a receiver not knowing the key cannot be sure that
indeed he obtained the output value of the pseudorandom function.

To open doors to a wider range of applications, in 1999 Micali, Rabin and
Vadhan [28] introduced the concept of verifiable random functions. A verifiable
random function is a pseudorandom function, for which the key holder – in
addition to the image – provides a proof of correct evaluation. The security
requirement is unique provability, i.e. for each preimage there exists a valid proof
for at most one function value. Verifiable random functions are applicable in
many contexts, like [29, 30, 24, 26, 4, 6].

In order to achieve unique provability, the key holder has to publish a ver-
ification key, which can be viewed as a commitment to the function, such that
even a maliciously chosen verification key commits to at most one function.

At first glance, employing a pseudorandom function together with a zero-
knowledge proof seems promising. But, aiming for a non-interactive construction,
the following problem arises. As proven in [17], non-interactive zero knowledge
proofs require a common reference string. Letting a possibly malicious key holder
choose this common reference string compromises soundness.

Recent generic constructions [18, 7, 5] choose a similar approach and build
verifiable random functions based on non-interactive witness-indistinguishable
proofs, which by [19] exist without trusted set-up based on standard assump-
tions. All of them, though, lack efficient instantiations.

At the birth of verifiable random functions, [28] took a different path. Namely,
theirs and the following constructions build on functions which have an im-
plicit and an explicit representation. While the implicit representation serves as
the commitment to the function which can be published without compromising
pseudorandomness, the explicit representation allows efficient evaluation. For in-
stance, given a function with image in Zp, one can think of the function values
in the exponent of some suitable group as an implicit representation, from which
the function cannot be computed efficiently, but which commits the key holder
to exactly one function.

A number of constructions [27, 11, 12, 1] followed this line of work, but up
until the work of Hohenberger and Waters in 2010 [21] all of them come with
some limitation: Either they are based on an interactive assumption, or they
only allow polynomial-sized input space, or they do not achieve full adaptive
security. In the following we only consider verifiable random functions which
suffer from none of those limitations (so-called verifiable random functions with
all desired properties). While there are many constructions of VRFs with all
desired properties (see Figure 1), they all come at a cost: Either they have to
rely on a non-constant-size assumption (i.e. an assumption depending on the
security parameter and/or on some quantity of the adversary), or require large
proofs. Thus, the following question was left open:

Open question. Do verifiable random functions with all desired properties ex-
ist such that further
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Reference |vk | |π| Assumption Security loss
[HW10] [21] O (L) O (L) O (L ·Q) -DDHE L ·Q/ε
[BMR10] [9] O (L) O (L) O (L) -DDH L
[Jag15] [23] O (L) O (L) O (log(Q/ε)) -DDH Qγ/εγ+1

[HJ16] [20] O (L) O (L) DLIN L log λ ·Q2/µ/ε3

[Ros17] [33] O (L) O (L) DLIN L log λ ·Q2/µ/ε3

[Yam17] [35] ω(L log λ) ω(log λ) ω(L log λ) -DDH Qγ/εγ+1

[Kat17] [25] ω(
√
L log λ) ω(log λ) ω(log2 λ) -DDH Qγ/εγ+1

This work ω(L log λ) ω(log λ) DLIN |π| log λ ·Q2/µ/ε3

ω(L2+2η) ω(1) DLIN |π| log λ ·Q2+2/η/ε3

Fig. 1: Comparison with previous efficient constructions of VRFs with all desired
properties. The second and third column give an overview of the sizes of the
verification key and the proof in number of group elements, respectively. Through-
out, by λ we denote the security parameter, by L the input length (a canonical
choice is L = λ) and by 0 < η ≤ 1 an arbitrary constant (representing a trade-off
between size of the verification key and security loss). In the fourth column we
provide the underlying assumption. DDHE refers to the decisional Diffie-Hellman
exponent assumption (see [21]), and DDH and DLIN to the decisional Diffie-
Hellman and the decision linear assumption respectively. In the last column we
give an overview of the security loss (in O-notation). Here, ε ≥ 1/poly(λ) and
Q ≤ poly(λ) refer to the advantage and the number of evaluation queries of the
adversary, respectively. The constructions [23, 20, 33, 35, 25] and our first con-
struction require an error correcting code {0, 1}L → {0, 1}n with minimal distance
nµ. For the security loss of [23, 35, 25] we refer to [35], Table 2 (in the eprint ver-
sion) and [25], Table 1 (in the eprint version). There, γ is such that µ = 1−2−1/γ .
Note that γ can be chosen as close to 1 as desired by choosing µ < 1/2 and n large
enough (see [15], Appendix E.1). For [20, 33] and our first construction, the admis-
sible hash function is instantiated with [27], where µ is constant and n ∈ O (L).
Note that the security loss stems from using the artifical abort technique by [34].
For our second construction we use the admissible hash function of [7]. We only
give the most efficient instantiation of [35] and [25] regarding the proof size, as
this is the focus of our work. As the generic constructions [18, 7, 5] do not come
with efficient instantiations, they are omitted in the overview.

(A) the VRF security can be based on a standard constant-size assumption
AND

(B) the proof consists of o(L) group elements, where L is the bit-length of
the input?

While previously only either part on its own was tackled ((A) by Hofheinz and
Jager [20] and (B) by Yamada [35] and Katsumata [25]), our work answers this
question affirmatively. Further, to our knowledge our construction constitutes
the only verifiable random function with all desired properties that requires
only ` group elements in the proof, where ` ∈ ω(1) arbitrary. We achieve this at
the price of larger verification keys and a larger security loss in the reduction to
the underlying assumption.
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Additionally, we give an instantiation which achieves the same efficiency (re-
garding the size of the verification key and proofs) as the recent work of Yamada
[35], but based on a constant-size assumption.

We leave it as an open question to construct verifiable random functions
with all desired properties that have short proofs and a short verification key.
It is worth mentioning that, when allowing the input space to be polynomial-
sized, even constructions with constant key and proof size (in number of group
elements) exist [12].
Why constructing verifiable random functions is difficult. The main
source of difficulty in constructing adaptively secure verifiable random functions
is the requirement of unique provability. To see this, consider the reduction of
pseudorandomness of the VRF to the underlying assumption. While the reduc-
tion has to answer all evaluation queries x with the unique function value y
together with a corresponding proof, the reduction hopes to solve the underly-
ing problem with the function value y? corresponding to the challenge value x?.
This imposes the following challenges in addressing the stated open question.

(A) In order to explain why many previous approaches rely on non-constant-size
assumptions, we take [27] as a starting point. The core of the construction is
simply the Naor-Reingold pseudorandom function [31], which, given a secret
key (ai,j)i∈{1,...,L},j∈{0,1} of randomly chosen exponents and an input x ∈
{0, 1}L, evaluates to

g
∏L
i=1 ai,xi .

To reduce the security of the pseudorandom function to the decisional Diffie-
Hellman assumption, Naor and Reingold [31] employ a hybrid argument,
where they gradually randomize images given to the adversary. Using the
same proof technique in order to prove VRF security, the reduction would
have to provide proofs for random values. Recall that by unique provability
even for a verification key which is set up maliciously there exists at most
one function value for every preimage which has a validating proof. The re-
duction has thus no possibility to simulate proofs. As the result of employing
a different proof strategy, the security of the verifiable random function has
to be based on a non-constant-size computational assumption depending on
the input length L of the VRF. Namely, given oracle access to g

∏
i∈S′ zi for

every proper subset S′ ( S := {z1, . . . , zL}, it is assumed to be difficult to
compute g

∏
i∈S zi .

As non-constant-size assumptions become stronger with increasing input
length (or even worse depend on the number of adversarial queries [21]),
basing the VRF security on constant-size assumptions is desirable.
The only work overcoming the described difficulty and achieving security
based on a constant-size assumption so far is [20], who use a more complex
underlying function, allowing them to again employ a hybrid argument in the
proof of security. Their work will be the starting point of our construction.

(B) As the adversary is allowed to choose the evaluation and the challenge query
adaptively, the reduction has to partition the input space ahead of time, such
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that with noticeable probability it embeds the underlying problem in the
challenge query x?, but is at the same time able to answer all evaluation
queries x(1), . . . , x(Q).
A common strategy to achieve this is via admissible hash functions [27, 8,
10, 3, 14, 23, 20] for partitioning. A function (or encoding) {0, 1}L → Σn

(for some n ∈ N and alphabet Σ) is called admissible hash function, if there
exists an efficient sampling algorithm returning a word Y ∈ Σn and a subset
of indices I ⊆ {1, . . . , n}, such that for any choice of x(1), . . . , x(Q) and x? /∈
{x(1), . . . , x(Q)} with noticeable probability we have

x? ∈ Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi}

and
{x(1), . . . , x(Q)} ⊆ Z := {0, 1}L\Y.

Therefore, the reduction can embed the underlying problem into all elements
of Y, while being able to answer all evaluation queries in Z. The choice of the
encoding is crucial, as an adversary may try to minimize the probability of
successful partitioning by maliciously choosing the queries. The most efficient
instantiation [27, 14] achieve n = Θ(L) forΣ = {0, 1} by employing a suitable
error correcting code with sufficiently large minimal distance.
In most constructions employing admissible hash functions, the reduction
embeds Y in some way into the public parameters, leading to parameter
sizes of at least n · |Σ| ([8, 10, 9, 2, 23, 20]). In constructions of verifiable
random functions a larger verification key often affects the proof size. This
is due to the fact that the proof typically consists of intermediate results
in order to make the output value verifiable (e.g. by employing a bilinear
map). For this reason most previous constructions inherently require proofs
to consist of Ω(L) group elements.

Strategies to achieve short proofs. Recall that an admissible hash func-
tion AHF : {0, 1}L → Σn partitions a space into Y := {x ∈ {0, 1}L | ∀i ∈
I : AHF(x)i = Yi} and Z := {0, 1}L \ Y. Note that the relevant information in
Y (which has to be embedded into the public parameters in some way) only
consists of |I| bits (which is typically logarithmic in Q, where Q is the number
of evaluation queries). Yamada [35] achieves shorter proofs by encoding the rel-
evant information of Y into a bitstring consisting of only ω(logQ) components
and employing an admissible hash function based on the shorter bitstring. Kat-
sumata [25] follows a similar approach and can be viewed as a combination of
[35] and [23] to achieve security based on a weaker assumption.

While we build on the same observation, we follow a different strategy.
Namely, we remove the dependency of the proof size on n and |Σ| by rear-
ranging the underlying pseudorandom function. As a result, our proof size only
depends on the number of chosen indices |I|.

The instantiation of admissible hash functions by Lysyanskaya [27] (so-called
substring matching), which is also employed in [20], yields |I| ∈ O (logQ) (=
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O (log λ) for Q ∈ poly(λ)). This results in a proof size of ω(log λ) and a verifica-
tion key size of ω(λ log λ) (in number of group elements).

We observe that we can reduce the proof size even further to ω(1) group el-
ements, by using the admissible hash fuction of Bitansky [7] (so-called substring
matching over polynomial alphabet). This entails verification keys of ω(λ2+2η)
group elements (where 0 < η ≤ 1 is an arbitrary constant influencing the secu-
rity loss). The reason for the larger verification is that the underlying encoding
function has to satisfy stronger properties in order to achieve |I| ∈ ω(1) and
comes thus with larger parameters n and |Σ|.

Note that the efficiency gain in our approach (and similar in [35, 25]) crucially
relies on the restriction to adversaries that ask a polynomially bounded number
of evaluation queries Q. One could thus consider the construction of [20] with
input size L = ω(log λ) (where λ is the security parameter), thereby obtaining
a verifiable random function with proofs consisting of o(λ) group elements. We
want to emphasize that in this approach, proofs still consist of Ω(L) group
elements and are thus linear regarding the input size. We, on the other hand,
achieve proof size o(λ) in number of group elements independent of the input
size (assuming the length of the input to be polynomially bounded).

Restricting to polynomial size adversaries, one could also achieve proofs of
size o(L) (in number of group elements) by evaluating the VRF on H(x) for
a collision resistant hash function H : {0, 1}L → {0, 1}ω(log λ). This approach,
however, requires an exponential assumption, whereas we obtain short proofs
solely relying on the decision linear assumption.

1.1 Technical Overview.

In the following we want to give an overview on how we achieve proofs consisting
of ω(1) group elements. Roughly, our strategy is to rearrange the function from
[20]. Recall that the raw-VRF of [20] is a matrix product in the exponent, where
each factor depends on one bit of a suitable encoding of the input. Instead, we
will have each factor depend on all bits of the encoding, and only take a product
over |I| factors, where I is the index set stemming from partitioning via an
admissible hash function AHF. For |I| ∈ ω(1), we employ the instantiation of
admissible hash functions by Bitansky [7].

It is worth noting that instantiating [20] with the admissible hash function
of [7] would, on the contrary, yield larger proofs of size ω(L), as the technique
of Bitansky requires n ∈ ω(L) for the output dimension of the encoding, which
determines the proof size of [20].

We start by presenting the concept of verifiable vector hash functions (VVHF)
introduced in [20], which can be seen as a pre-step of a VRF. Next, we give an
overview of partitioning via admissible hash functions. This technique is em-
ployed by [20] and this work to construct an adaptively programmable VVHF,
which in turn yields an adaptively secure VRF (via a generic transformation of
[20]). As we build on the techniques of [20], we start with an overview of their
approach, before presenting our construction.
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Verifiable vector hash functions. Let G be a group of prime-order p with
generator g. For a vector v = (v1, v2, v3) ∈ Z3

p we employ the notation of [13]
and write gv to denote (gv1 , gv2 , gv3) ∈ G3 (and accordingly for matrices). A
VVHF takes an evaluation key ek and an input x and outputs a vector gv ∈ G3

and a proof π (which can be verified given a verification key vk), such that the
following holds:

– Unique provability: As for VRFs, there exists at most one image vector gv ∈
G3, for which a valid proof π exists (even for maliciously chosen verification
keys).

Instead of pseudorandomness, the security property we require from a VVHF
is adaptive programmability (AP). That is, given a basis {gb1 , gb2 , gb3} of G3,
there exists an alternative way of generating a verification key vk together with
a trapdoor td (in the following referred to as trapdoor key generation), which
allows evaluating the VVHF “in the given basis”, i.e. given a trapdoor td and an
input x, one can efficiently generate coefficients cx1 , cx2 , cx3 ∈ Z3

p together with a
proof π, such that π is a valid proof for the output gv := g

∑3
i=1 c

x
i bi . Further, we

require the following:

– Indistinguishability: The trapdoor verification keys are indistinguishable from
real verification keys.

– Well-distributed outputs: With noticeable probability (that is with probabil-
ity at least 1/poly(λ)), for any polynomially bounded number of input values
x(1), . . . , x(Q) and any designated input x? with x? /∈ {x(1), . . . , x(Q)}, we
have cx

(ν)

3 = 0 for all ν ∈ {1, . . . , Q} and cx?3 6= 0 (where cx3 is the third coeffi-
cient of the trapdoor evaluation on input x and trapdoor td). In other words,
with noticeable probability the image vectors of all input values except the
designated one lie in the 2-dimensional subspace of G3 generated by gb1 and
gb2 .

As shown in [20], this property together with the decision linear assumption in
G suffices to construct verifiable random functions. The idea is to embed a part
of the challenge of the decision linear assumption in gb3 .
Partitioning via admissible hash functions. In order to achieve well-
distributed outputs one has to partition the preimage space into a set Y and
a set Z := {0, 1}L\Y, such that for any polynomially bounded number of input
values x(1), . . . , x(Q) and any designated input x? with x? /∈ {x(1), . . . , x(Q)}, we
have x? ∈ Y and x(ν) ∈ Z for all ν ∈ {1, . . . , Q} with noticeable probability.
Then, one can set up the trapdoor key generation algorithm such that for all
x ∈ Z it holds cx3 = 0, and for all x ∈ Y it holds cx3 6= 0 (where cx3 is the third
coefficient of the trapdoor evaluation on input x).

Recall that admissible hash functions partition the space by employing a
suitable encoding AHF : {0, 1}L → Σn for some polynomial-sized alphabet Σ
and n ∈ N. To choose a partitioning, a subset of the indices I ⊆ {1, . . . , n} of
suitable size and a word Y ←R Σn are drawn at random. The partitioning is
chosen as

Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi}.
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j\k 0 1

1

2

3

4
...

n ≈ L

j\k 1 2 3 4 . . . σ ≥ n
1

2

3

4
...

n = L1+1/η

Fig. 2: A graphic representation of partitioning via substring matching and par-
titioning via substring matching over a polynomial alphabet Σ = {1, . . . , σ}.
In both cases we chose I = {1, 4} (marked in light gray) and further Y =
(0, 0, 1, 0, . . . , 1) ∈ {0, 1}n and Y ′ = (1, 3, 4, 3, . . . , 2) ∈ Σn (marked in gray and
black). A word x lies in the set Y if and only if AHF(x) agrees with Y on the
entries in black (and for Y ′ accordingly). Note that only the information in the
light gray rows is necessary for partitioning. Recall that L is the bit-length of the
input and 0 < η ≤ 1 an arbitrary constant.

For a graphic representation we refer to Figure 2. On the left-hand side the par-
tioning via substring matching of [27] is depicted, whereas on the right-hand side
we present the partioning via substring matching over a polynomial alphabet by
[7]. Note that for the probability of successful partitioning, the underlying code
and the index set size |I| are crucial. The instantiation [27] achieves noticeable
probability employing an error correcting code with minimal distance µn (for
some constant µ < 1) and |I| ∈ ω(log λ). Error correcting codes satisfying this
requirement exist with n = Ω(L) and Σ = {0, 1}.

To get by with |I| ∈ ω(1), [7] requires larger minimal distance of the un-
derlying code for the following reason. An adversary could fix x? and then
choose x(1), . . . , x(Q) such that AHF(x?) and AHF(x(ν)) are “close” (for each
ν ∈ {1, . . . , Q}). The smaller |I| is, the more likely it gets that one of the
AHF(x(ν)) agrees with AHF(x?) on all indices in I, and thus the more likely
it gets that partitioning is not successful. This requirement on the encoding re-
sults in n = L1+1/η and increased alphabet size of σ := |Σ| ≥ n. Here, 0 < η ≤ 1
is an arbitrary constant influencing the probability of successful partitioning.

The VVHF of Hofheinz and Jager [20]. The VVHF of [20] can be seen
as a multi-dimensional version of the Naor-Reingold pseudorandom function. In
order to achieve adaptive programmability, input values are first encoded using a
suitable admissible hash function. To set up the evaluation and verification key,
the key generation algorithm draws matrices (Mj,k)j∈{1,...,n},k∈Σ in Z3×3

p and a
vector u ∈ Z3

p at random. Note that this can be viewed as choosing a matrix for
every cell of the partitioning table (as depicted in Figure 2). The evaluation key
is

ek :=
(
(Mj,k)j∈{1,...,n},k∈Σ ,u

)
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and the corresponding verification key is defined as

vk :=
((
gMj,k

)
j∈{1,...,n},k∈Σ , g

u
)
.

On input of the evaluation key ek and a value x ∈ {0, 1}L, the evaluation
algorithm computes the output

g

(∏n
j=1 Mj,AHF(x)j

)>
·u
,

i.e. the representation of AHF(x) decides which matrices are used. The corre-
sponding proof π := (π1, . . . , πn−1) consists of all intermediate values

πι := g

(∏ι
j=1 Mj,AHF(x)j

)>
·u

for ι ∈ {1, . . . , n− 1} and has thus linear size. Given the verification key, a proof
can be verified employing a symmetric bilinear map.

For trapdoor key generation, the following property of a matrix product is
employed in [20]: Let U′, . . . ,U\ be 2-dimensional subspaces of Z3

p and for all
j ∈ {1, . . . , n}, k ∈ Σ let Mj,k be such that M>j,k · Uj−1 = Uj .1 Then:

i.) If there exists a j? ∈ {1, . . . , n} such that Mj?,AHF(x)j? is of rank 2, then
(
∏n
j=1 Mj,AHF(x)j )

> maps Z3
p (and thus in particular Z3

p \ U0) to Un.
ii.) If for all j ∈ {1, . . . , n} the matrix Mj,AHF(x)j is of rank 3, then the product

(
∏n
j=1 Mj,AHF(x)j )

> maps Z3
p \ U0 to Z3

p \ Un.

Let I ⊆ {1, . . . , n} and Y ∈ Σn constitute a partitioning of {0, 1}L with
Y := {x ∈ {0, 1}L | ∀i ∈ I : AHF(x)i = Yi} and Z = {0, 1}L\Y. Recall that to
achieve well-distributed outputs, the goal is to set up trapdoor key generation
such that x ∈ Z ⇔ cx3 = 0.

In [20] this is achieved as follows. Given a basis {gb1 , gb2 , gb3} of G3, the
trapdoor key generation algorithm chooses vector spaces U0, . . . ,Un−1 ⊆ Z3

p and
a vector u←R Z3

p\U0 at random. Further, it defines Un as the subspace generated
by b1 and b2, and chooses Mj,k at random (subject to M>j,k ·Uj−1 = Uj) of rank
2, whenever j ∈ I and k 6= Yj (and of full-rank otherwise). In other words, it
chooses all matrices corresponding to light gray cells in Figure 2 of rank 2, and
all matrices corresponding to white, gray or black cells of rank 3. This implies
that at least one matrix of rank 2 is part of the evaluation if and only if x ∈ Z
(as in this case at least for one light gray line a matrix corresponding to the
non-black cell is hit). And, by the choice of u, Un together with i.), we have
cx3 = 0 whenever at least one of the matrices in the product is of rank 2.

Note that, as gb1 , gb2 and thus Un are only known in the exponent, the
trapdoor key generation algorithm can only compute gMn,k in the exponent (for

1For matrix M ∈ Z3
p and subspaces U ,V ⊆ Z3

p, by M> · U = V we denote the
property that for all u ∈ U we have M>u ∈ V and for each v ∈ V there exists a u with
M>u = v.

9



all k ∈ Σ). This does not hinder evaluation, as all matrices Mj,k for j < n, k ∈ Σ
are known in Z3×3

p .
Note that the strategy of [20] requires the product to be taken over all indices

of AHF(x). As the proof has to comprise all intermediate steps of the product
in order to be verifiable with a symmetric pairing, the proof size is inherently
linear in n and thus in L. We now explain how to overcome this barrier.
Towards our construction. Observe that hypothetically in order to achieve
well-distributed outputs it would suffice to multiply all matrices with j ∈ I (in
other words to skip all white rows in Figure 2), thereby allowing much shorter
proofs. The problem is, of course, that evaluation has to be independent of I.

We resolve this issue by setting up the underlying function in a different way.
First of all, in order to be independent of I, the function evaluation has to be
dependent on all indices of AHF(x) (and not only the ones in a fixed index set
I). To this end, we first pretend |I| = 1. The idea is to replace the product by a
sum, which can be evaluated directly given the verification key without requiring
a pairing. More precisely, the prototype of our VVHF is of the form

g(
∑n
j=1 Mj,AHF(x)j

)>u.

The key in our proof of adaptive programmability are two observations concern-
ing the sum of matrices. Namely, let U0, U1 be 2-dimensional subspaces of Z3

p

and for all j, k let Mj,k be such that M>j,k · U0 = U1. Then:

iii.) If Mj,AHF(x)j is of rank 2 for all j, (
∑n
j=1 Mj,AHF(x)j )

> maps Z3
p (and thus

in particular Z3
p \ U0) to U1.

iv.) If there exists exactly one j? ∈ {1, . . . , n} such that Mj?,AHF(x)j? is of full
rank (and the rest of the matrices are of rank at most 2), then the sum
(
∑n
j=1 Mj,AHF(x)j )

> maps Z3
p \U0 to Z3

p \U1. (This is due to the fact that for
any z ∈ Z3

p\U0 it holds (
∑n
j=1,j 6=j? Mj,AHF(x)j )

>·z ∈ U1 andMj?,AHF(x)j? ·z ∈
Z3
p \ U1.)

Now, given a basis {gb1 , gb2 , gb3} of G3, the trapdoor key generation algo-
rithm chooses a random 2 dimensional vector space U0 ⊆ Z3

p, defines U1 as the
vector space generated by b1 and b2. Further, the algorithm chooses a vector
u ∈ Z3

p \ U0 at random, and chooses Mj,k of rank 3 if j ∈ I and k = Yj , and
of rank 2 otherwise. This corresponds to choosing the matrix corresponding to
the single black cell in the partitioning table in Figure 2 of rank 3, and all other
matrices (corresponding to gray, light gray and white cells) of rank 2. We have

x ∈ Z ⇒ ∀j ∈ {1, . . . , n} : Mj,AHF(x)j is of rank 2
iii.)⇒

n∑
j=1

M>j,AHF(x)j · u ∈ U1,

x ∈ Y ⇒Mj?,AHF(x)j? is of rank 3 for j? ∈ I iv.)⇒
n∑
j=1

M>j,AHF(x)j · u ∈ Z3
p\U1.

Our construction of a VVHF with short proofs. For |I| > 1, the idea
is to repeat this strategy for every i ∈ I and multiply the results. Note that in
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order to have evaluation completely oblivious to I (which may vary in size), we
employ an upper bound ` on the size of I. (Recall that for the instantiation of
Bitansky [7], we can choose any ` ∈ ω(1).)

We can now present our final construction. For every i ∈ {1, . . . , `} we choose
a fresh set of matrices (Mi,j,k)j∈{1,...,n},k∈Σ , each uniformly at random from
Z3×3
p and further a vector u←R Z3

p. Our evaluation key is of the form

ek :=
(
(Mi,j,k)i∈{1,...,`},j∈{1,...,n},k∈Σ ,u

)
and the verification key is defined as

vk :=
((
gMi,j,k

)
i∈{1,...,`},j∈{1,...,n},k∈Σ , g

u
)
.

To evaluate our VVHF on input x, we compute

g

(∏`
i=1

∑n
j=1 Mi,j,AHF(x)j

)>
u

and publish the proof π := (π1, . . . , π`−1) consisting of the intermediate steps in
computing the product, that is

πι := g

(∏ι
i=1

∑n
j=1 Mi,j,AHF(x)j

)>
u

for all ι ∈ {1, . . . , `− 1}.
Trapdoor key generation proceeds as follows. For i ∈ {1, . . . , |I|}, let ji refer

to the i-th index in I. On input of a basis {gb1 , gb2 , gb3} of G3, we choose vector
spaces U0, . . . ,U`−1 ⊆ Z3

p of dimension 2 and define U` to be the vector space
generated by b1,b2. Further, we choose u ∈ Z3

p \U0 and matrices Mi,j,k subject
to Mi,j,k · Ui−1 = Ui as follows:

– For all i ∈ {1, . . . , |I|}, we choose Mi,ji,Yji
of rank 3.

– For all i ∈ {|I|+ 1, . . . , `} and all k ∈ Σ, we choose Mi,1,k of rank 3. (These
matrices constitute dummy matrices in order to make evaluation oblivious
to |I|.)

– For all other indices i, j, k we choose Mi,j,k of rank 2.

To go back to Figure 2, this can be viewed as setting up ` copies of the parti-
tioning table, where for i ∈ {1, . . . , |I|} we choose only the matrix corresponding
to the black cell in row ji (i.e. in the i-th light gray row) of rank 3 and all other
matrices of rank 2. For i ∈ {|I|+1, . . . , `}, we choose all matrices corresponding
to the first row of rank 3 (and all other matrices of rank 2). During evalua-
tion, for each i ∈ {1, . . . , `}, we sum up all matrices corresponding to the cells
(j,AHF(x)j) for j ∈ {1, . . . , n}. Whenever x ∈ Y, we hit exactly one matrix of
rank 3 for all i ∈ {1, . . . , `}, as for i ≤ |I| we hit the matrix corresponding to
(ji, Yji) and for i > |I| we always hit one matrix in the first row. Therefore, by
iv.) and ii.) the output will be an element of Z3

p\U`. For all x ∈ Z, on the other
hand, there exists at least one i ∈ {1, . . . , |I|} for which the matrix of rank 3 is
not part of the sum. Thus, by iii.) and i.) the output will be an element of U`.

11



Note that similar to [20] the trapdoor key generation algorithm can only
compute gM`,j,k in the exponent for all j ∈ {1, . . . , n}, k ∈ Σ, which is sufficient
as all other matrices are known in Z3×3

p .
Similar to [20], indistinguishability of verification keys generated by the trap-

door key generation from real verification keys can be proven via a hybrid ar-
gument, employing the decision linear assumption (or more precisely, the 3-rank
assumption), which states that it is computationally indistinguishable whether
a matrix was drawn uniformly at random from {gM ∈ G3×3 |M has rank 3} or
from {gM ∈ G3×3 |M has rank 2}.

We call our approach hunting and gathering, as our strategy is to hunt out
all values AHF(x) disagreeing with Y on at least one index in I. We do so by
setting up ` sets of matrices and gathering the matrices corresponding to the
characters of AHF(x) for each of these sets. If AHF(x) disagrees with Y on the
i-th index of I, then this will show up in the sum of matrices corresponding to
the i-th set.

2 Preliminaries

We will use the following notation throughout this paper. By λ ∈ N we denote the
security parameter. By L := L(λ) ∈ N we denote the input length, a canonical
choice is L = λ. Further, by the constant d ≥ 3 we denote the parameter of
our assumption. We implicitly assume all other parameters to depend on λ. For
an arbitrary set S, by x ←R S we denote the process of sampling an element
x from S uniformly at random. Throughout, p ∈ N will be prime. We interpret
vectors v ∈ Zdp as column-vectors, i.e. v ∈ Zd×1p . Further, by vj we denote the
j-th entry of v for j ∈ {1, . . . , d}. We say that a function is negligible in λ if
its inverse vanishes asymptotically faster than any polynomial in λ. We say that
A is probabilistic polynomial time (PPT), if A is a probabilistic algorithm with
running time polynomial in λ. We use y ← A(x) to denote that y is assigned
the output of A running on input x.

In order to formally treat uniqueness of proofs, we take the notion of certified
bilinear group generators from [20]. Note that in the following all numbered
references refer to the eprint version [22] of [20].

Definition 1 (Certified bilinear group generator [22, Def. 2.1/2.2]). A
bilinear group generator is a PPT algorithm BG.Gen that on input 1λ outputs
G = (p,G,GT , ◦, ◦T , e, ϕ, ϕT )← BG.Gen(1λ) such that the following are satisfied

– p is a 2λ-bit prime
– G and GT are subsets of {0, 1}λ, defined by algorithmic descriptions of maps
ϕ : Zp → G and ϕT : Zp → GT

– ◦ and ◦T are algorithmic descriptions of efficiently computable maps ρ : G×
G→ G and ρT : GT ×GT → GT , such that the following hold
i. (G, ◦) and (GT , ◦T ) form algebraic groups
ii. ϕ is a group isomorphism from (Zp,+) to (G, ◦)
iii. ϕT is a group isomorphism from (Zp,+) to (GT , ◦T )
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– e is the description of an efficiently computable non-degenerate bilinear map
e : G×G→ GT , that is
i. e(ϕ(1), ϕ(1)) 6= ϕT (0)
ii. for all a ∈ Zp : e(ϕ(a), ϕ(1)) = e(ϕ(1), ϕ(a)) = ϕT (a)

In the following we will only include ϕ(1) in the description of G. Note that
this suffices, as ϕ(1) uniquely determines ϕ and ϕT .

We say a group generator is certified, if there exists a deterministic polyno-
mial time algorithm BG.Vfy = (BG.Vfy1,BG.Vfy2) with the following properties

Parameter validation. Given a string G, the algorithm BG.Vfy1(G) outputs 1
if and only if G has the form G = (p,G,GT , ◦, ◦T , e, ϕ(1))← BG.Gen(1λ) and
all requirements from above are satisfied.

Recognition and unique representation of elements in G. Further, we re-
quire that each element in G has unique representation, which can be effi-
ciently recognized. That is, on input of two strings Π and s, BG.Vfy2(Π, s)
outputs 1 if and only if BG.Vfy1(Π) = 1 and it holds that s = ϕ(x) for some
x ∈ Zp.

Let G = (p,G,GT , ◦, ◦T , e, ϕ(1)) ← BG.Gen(1λ) be a bilinear group. We use
the representation of group elements introduced in [13]. Namely, for a ∈ Zp,
define [a] := ϕ(a) ∈ G as the implicit representation of a in G. More generally,
for any n,m ∈ N and any matrix A = (aij) ∈ Zn×mp we define [A] as the implicit
representation of A in G:

[A] :=

ϕ(a11) ... ϕ(a1m)
...

...
ϕ(an1) ... ϕ(anm)

 ∈ Gn×m

Note that from [a] ∈ G it is hard to compute the value a if the Discrete
Logarithm assumption holds in G. Obviously, given [a], [b] ∈ G and a scalar
x ∈ Zp, one can efficiently compute [ax] ∈ G and [a+ b] ∈ G.

We give the (d − 1)-linear assumption in a similar form as provided in [20].
This is equivalent to the standard formulation in [13].

Definition 2 ((d− 1)-linear assumption [22, Assumption 5.3]). Let G ←
BG.Gen(1λ) be the description of a bilinear group. The (d−1)-linear assumption
over G states that for all PPT adversaries A the advantage

Adv
(d−1)−lin
G,A :=

∣∣Pr[A(1λ,G, [c], [d], [d−1∑
i=1

di/ci]) | c,d←R Zd−1p ]

− Pr[A(1λ,G, [c], [d], [r]) | c,d←R Zd−1p , r ←R Zp]
∣∣

is negligible in λ.
For d = 2, this corresponds to the decisional Diffie-Hellman assumption

(DDH).
For d = 3, this corresponds to the decision linear assumption (DLIN).
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Note that given a bilinear group with symmetric pairing, the decisional Diffie-
Hellman assumption does not hold. For the most efficient instantiation, we thus
choose d = 3 for this work.

The following assumption can be viewed as a relaxation of the (d− 1)-linear
assumption.

Definition 3 (d-rank assumption [22, Assumption 4.1]). Again, let G ←
BG.Gen(1λ) be the description of a bilinear group. The d-rank assumption over
G states that for all PPT adversaries A the advantage

Advd−rankG,A :=
∣∣Pr[A(1λ,G, [M]) |M←R Zd×dp of rank d− 1]

− Pr[A(1λ,G, [M]) |M←R Zd×dp of rank d]
∣∣

is negligible in λ.

By e : Gd×d×Gd → GdT we denote the natural componentwise extension of e
to Gd×d ×Gd, that is let M = (mi,j)i,j ∈ Zd×dp be a matrix and x = (xi)i ∈ Zdp
be a vector, then

e : Gd×d ×Gd → GdT , ([M], [x]) 7→

e([m1,1], [x1]) ◦T · · · ◦T e([m1,d], [xd])
...

e([md,1], [x1]) ◦T · · · ◦T e([md,d], [xd])

 .

2.1 Verifiable vector hash functions and verifiable random functions

Basically, verifiable vector hash functions (VVHF) are a pre-stage of verifiable
random functions, where the image is a vector space. Further, instead of pseudo-
randomness of the output, VVHFs are required to be adaptively programmable.
An adaptively programmable VVHF has a trapdoor key generation algorithm
which is indistinguishable from standard key generation and further meets well-
distributed outputs, which allows transforming it to a verifiable random function
via the generic transformation [20] whenever the decision linear assumption holds
in the underlying group. In the following we will recall the definition of adap-
tively programmable VVHFs from [20], recall the definition of a verifiable ran-
dom function (VRF) and present the generic transformation from an adaptively
programmable VVHF to a VRF (without proof).

Definition 4 (Verifiable vector hash function (VVHF) [22, Def. 3.1]).
Let BG.Gen be a bilinear group generator and let d ∈ N. A verifiable vector hash
function (VVHF) for BG.Gen with domain {0, 1}L and range Gd is a tuple of
PPT algorithms VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) with the following
properties.

– VVHF.Gen(G) for G ← BG.Gen, outputs a verification key vk and an evalua-
tion key ek .

– VVHF.Eval(ek , x) for an evaluation key ek and x ∈ {0, 1}L, outputs a func-
tion value [v] ∈ Gd and a corresponding proof of correctness π.
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– VVHF.Vfy(vk , [v], π, x) is a deterministic algorithm that outputs a bit b ∈
{0, 1}.

Further, we require the following to hold.

Correctness. We say that VVHF is correct, if for all λ, all G in the image of
BG.Gen(1λ), all (vk , ek) in the image of VVHF.Gen(G), all x ∈ {0, 1}L and
all ([v], π) in the image of VVHF.Eval(ek , x) we have

VVHF.Vfy(vk , [v], π, x) = 1.

Unique provability. We say that a verifiable vector hash function VVHF sat-
isfies unique provability, if for all possible vk (not necessarily created by
VVHF.Gen), all x ∈ {0, 1}L, all [v0], [v1] ∈ Gd and all possible proofs π0, π1
we have

VVHF.Vfy(vk , [v0], π0, x) = VVHF.Vfy(vk , [v1], π1, x) = 1 =⇒ [v0] = [v1].

In other words, for any x ∈ {0, 1}L there exists a valid proof for at most one
function value.

Note that the following definition slightly differs from the notion of adap-
tive programmability in [20]. Namely, we additionally provide the algorithm
VVHF.TrapGen with the parameter Q in the experiment for well-distributed out-
puts. Note that employing admissible hash functions to achieve full-adaptive
security, in [20] VVHF.TrapGen already implicitly depends on Q to achieve well-
distributed outputs. This does not affect the generic transformation from a ver-
ifiable vector hash function to a verifiable random function, as for this transfor-
mation the existence of a suitable tuple of trapdoor algorithms (VVHF.TrapGen,
VVHF.TrapEval) suffices (without requiring explicit knowledge of Q).

Definition 5 (Adaptive programmability [22, Def. 3.3]). We say that
a verifiable vector hash function (VVHF.Gen,VVHF.Eval,VVHF.Vfy) is adap-
tively programmable (AP), if an additional tuple of algorithms (VVHF.TrapGen,
VVHF.TrapEval) with the following properties exist.

– VVHF.TrapGen(G, Q, [B]) for a bilinear group G ←R BG.Gen(1λ), a parameter
Q which is polynomially bounded in λ and a matrix [B] ∈ Gd×d, outputs a
verification key vk and a trapdoor td .

– VVHF.TrapEval(td , x) for a trapdoor td and x ∈ {0, 1}L, outputs a vector
c ∈ Zdp and a proof π.

Further, we require the following.

Correctness. We say that (VVHF.TrapGen,VVHF.TrapEval) satisfies correct-
ness respective to VVHF.Vfy, if for all λ ∈ N, for all bilinear groups G in
the image of BG.Gen(1λ), for all Q that are polynomially bounded in λ,
for all [B] ∈ Gd×d, for all x ∈ {0, 1}L for all (vk , td) in the image of
VVHF.TrapGen(G, Q, [B]), for all (c, π) in the image of VVHF.TrapEval(td , x)
and for all [v] := [B] · c it holds

VVHF.Vfy(vk , [v], π, x) = 1.
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Expvhf−ind
VVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) :

G ← BG.Gen(1λ)
(vk0, ek)← VVHF.Gen(G)
B←R Zd×dp of rank d
(vk1, td)← VVHF.TrapGen(G, Q, [B])
b←R {0, 1}
b′ ← AOb(·),Ocheck(·)(vkb)
if b = b′ return 1
else return 0

O0(x) :
([v], π)← VVHF.Eval(vk , x)
return ([v], π)

O1(x) :
(c, π)← VVHF.TrapEval(td , x)
[v] := [B] · c
return ([v], π)

Ocheck(x) :
(c, π)← VVHF.TrapEval(td , x)
if cd 6= 0 return 1
else return 0

Fig. 3: VVHF Indistinguishability experiment. Note that Ocheck always uses td and
VVHF.TrapEval, independently of bit b.

Indistiguishability. We define an indistinguishability experiment in Figure 3.
We say that (VVHF.TrapGen,VVHF.TrapEval) satisfies indistinguishability, if
for all Q polynomial in λ and all PPT adversaries A we have that

Advvhf−indVVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ)

:=

∣∣∣∣Pr[Expvhf−indVVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) = 1]− 1

2

∣∣∣∣
is negligible in λ. In other words, we require that verification keys generated
by VVHF.TrapGen are indistinguishable from verification keys generated by
VVHF.Gen.

Well-distributed outputs. Let Q be polynomial in λ and let x(1), . . . , x(Q),
x? ∈ {0, 1}L arbitrary with x? /∈ {x(1), . . . , x(Q)}. Let G ← BG.Gen(1λ),
B←R Zd×dp of rank d and (vk , td)← VVHF.TrapGen(G, Q, [B]). Further, for
all ν ∈ {1, . . . , Q} let (c(ν), π) ←R VVHF.TrapEval(td , x(ν)) and (c?, π) ←R

VVHF.TrapEval(td , x?). Let Prwell−distr(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x
(ν)}ν , x?) be the

probability that c(ν)d = 0 for all ν ∈ {1, . . . , Q} and c?d 6= 0 (where the probabil-
ity is taken over the random coins of BG.Gen,VVHF.TrapGen,VVHF.TrapEval
and the random choice of B).
We say that (VVHF.TrapGen,VVHF.TrapEval) satisfies well-distributed out-
puts, if for all Q polynomial in λ and all x(1), . . . , x(Q), x? ∈ {0, 1}L with
x? /∈ {x(1), . . . , x(Q)} we have

Prwell−distr(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x
(ν)}ν , x?) ≥

1

poly(λ)
.

.

Definition 6 (Verifiable random functions [27], Notation [22, Def. 5.1]).
Let VRF := (VRF.Gen,VRF.Eval,VRF.Vfy) be a tuple of polynomial-time algo-
rithms of the following form.
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ExpvrfVRF,A=(A1,A2)
(λ) :

(vk , sk)← VRF.Gen(1λ)

(x?, state)← AOeval(·)
1 (vk)

(y0, π)← VRF.Eval(sk , x?)
y1 ←R S
b←R {0, 1}
b′ ← AOeval(·)

2 (state, yb)
if b = b′ return 1
else return 0

Oeval(x) :
if x = x? return ⊥
(y, π)← VRF.Eval(vk , x)
return (y, π)

Fig. 4: The VRF security experiment.

– VRF.Gen(1λ) outputs a secret key sk and a verification key vk .
– VRF.Eval(sk , x) for a secret key sk and an input x ∈ {0, 1}L, outputs a func-

tion value y ∈ S (where S is a finite set) and a proof π.
– VRF.Vfy(vk , x, y, π) is a deterministic algorithm that for a verification key

vk , an input x ∈ {0, 1}L, an output y ∈ S and a proof π, outputs a bit
b ∈ {0, 1}.

We say VRF is a verifiable random function, if the following properties hold.

Correctness. For all λ ∈ N, for all (vk , sk) in the image of VVHF.Gen(1λ), for
all x ∈ {0, 1}L and for all (y, π) in the image of VVHF.Eval(sk , x) it holds

VRF.Vfy(vk , x, y, π) = 1.

Unique provability. We say that a verifiable random function VRF satisfies
unique provability, if for all possible vk (not necessarily created by VRF.Gen),
all x ∈ {0, 1}L, all y0, y1 ∈ S and all possible proofs π0, π1 we have

VRF.Vfy(vk , x, y0, π0) = VRF.Vfy(vk , x, y1, π1) = 1 =⇒ y0 = y1.

In other words, for any x ∈ {0, 1}L there exists a valid proof for at most one
function value.

Pseudorandomness. We define a VRF security experiment in Figure 4. We
say that a verifiable random function VRF is pseudorandom, if for all PPT
adversaries A = (A1,A2) we have that

AdvvrfVRF,A(λ) :=

∣∣∣∣Pr[ExpvrfVRF,A(λ) = 1]− 1

2

∣∣∣∣
is negligible in λ. In other words, we require that the output of VRF.Eval is
indistinguishable from random values in S.

Given a verifiable vector hash function with adaptive programmability, one
can obtain a verifiable random function via the generic construction of [20]. As
we will employ this generic transformation, we want to recall it in the following.
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Let BG.Gen be a certified bilinear group generator according to Definition 1.
Let VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) be a vector hash function ac-
cording to Definition 4. Let VRF := (VRF.Gen,VRF.Eval,VRF.Vfy) be defined as
follows.

– VRF.Gen(1λ) runs G ← BG.Gen(1λ) and (ek , vk ′) ← VVHF.Gen(G). Further,
it chooses a random vector w ←R (Z?p)d, defines sk := (G, ek ,w) and vk :=

(G, vk ′, [w]) and outputs (vk , sk).
– VRF.Eval(sk , x) for sk = (G, ek ,w) and x ∈ {0, 1}L first runs

([v], π′)← VVHF.Eval(ek , x).

Then, VRF.Eval computes the function value y and an additional proof [z] ∈
Gd as

y :=

d∏
i=1

[
vi
wi

]
and [z] :=

[(
v1
w1
,
v2
w2
, . . . ,

vd
wd

)>]
,

where,
∏

corresponds to the ◦ operation over G. Finally, VRF.Eval sets π :=
([v], π′, [z]) and outputs (y, π).

– VRF.Vfy(vk , x, y, π) outputs 1 if and only if all of the following properties are
satisfied:
• The verification key vk has the form vk = (G, vk ′, [w]) such that [w] ∈ Zdp
and the bilinear group parameters and the group elements contained in vk
are valid, which can be checked by running BG.Vfy1 and BG.Vfy2.
• The input x is an element of {0, 1}L.
• The proof π has the form π = ([v], π′, [z]) with VVHF.Vfy(vk ′, [v], π′, x) = 1
and both vectors [v] and [z] contain only validly-encoded group elements,
which can be checked by running BG.Vfy2.
• It holds that [zi] = [vi/wi] for all i ∈ {1, . . . , d} and y = [

∑d
i=1 vi/wi]. This

can be checked by testing

e([zi], [wi])
?
= e([vi], [1]) ∀i ∈ {1, . . . , d} and y

?
=

k∏
i=1

[zi].

By the following theorem this construction yields a verifiable random function.
For a proof we refer to [20].

Theorem 1 ([22, Theorem 5.2/5.4]). If the (d− 1)-linear assumption holds
relative to BG.Gen and if the tuple VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy)
is an adaptively programmable hash function, then VRF := (VRF.Gen,VRF.Eval,
VRF.Vfy) is a verifiable vector hash function satisfying all requirements of Defi-
nition 6.

2.2 Partitioning Based on Admissible Hash Functions

In order to achieve verifiable random functions with adaptive security, we have
to partition the input space into Y and Z such that with noticeable probability
all evaluation queries are in Z while the challenge query is in Y.
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One commonly used method for partitioning are admissible hash functions,
a concept first formalized in [8]. As [14] we allow the output space to consist of
vectors over a alphabet Σ of polynomial size.

Definition 7 (Admissible hash functions, [8, 14]). Let n be polynomial in
λ and Σ an alphabet of size σ := |Σ| polynomial in λ. Let

AHF : {0, 1}L → Σn,

Y ∈ Σn and I ⊆ {1, . . . , n} define the partitioning

Y :=
{
x ∈ {0, 1}L | AHF(x)j = Yj for all j ∈ I

}
and Z := {0, 1}L \ Y.

We say that AHF is Q-admissible, if there exists a PPT algorithm AHF.Part
that on input (1λ, Q) returns a value Y ∈ Σn and a set of indices I ⊆ {1, . . . , n},
such that for any x(1), . . . , x(Q), x? ∈ {0, 1}L with x? /∈ {x(1), . . . , x(Q)} we have

PrpartAHF,AHF.Part,λ,Q({x
(ν)}ν , x?) :=Pr[x? ∈ Y ∧ x(ν) ∈ Z ∀ν ∈ {1, . . . , Q}]

≥1/poly(λ),

where the probability is taken over the random coins of AHF.Part. We say that
AHF is an admissible hash function (AHF) if AHF is Q-admissible for all Q that
are polynomially bounded in λ.

For our construction we will employ two instantiations of admissible hash
functions. The first is the so-called substring matching by [27]. In [7] this parti-
tioning method is generalized to polynomial output alphabets. This allows us to
shrink the proof size even to ω(1) group elements.

Note that a common problem arising using partitioning techniques is that the
abort probability of the security experiment might depend on the sequence of
queries of the adversary. While in [7] this issue is resolved by requiring so-called
balanced partitioning as proposed in [23], in [20] the artificial abort technique
from [34] is employed going from verifiable vector hash functions to verifiable
random functions. As we apply the transformation of [20] in a black-box way,
for our purposes the concept of admissible hash functions is sufficient.
Substring matching. In the following we give the instantiation of admissible
hash function from Lysyanskaya [27]. To this aim let Enc : {0, 1}L → {0, 1}n be
an error correcting code with minimal distance µn for a constant µ (i.e. any
two codewords differ in at least µn positions). Note that there exist efficient
instantiations of Enc with n ∈ O (L). For a proof of the following lemma we
refer to [14], Theorem 2.

Lemma 1 ([27, 14, 7]). Let AHF : {0, 1}L → {0, 1}n be an error correcting
code with minimal distance µn for a constant µ. Then there exists an algorithm
AHF.Part such that AHF is an admissible hash function. In particular, for any
x(1), . . . , x(Q), x? ∈ {0, 1}L we have

PrpartAHF,AHF.Part,λ,Q({x
(ν)}ν , x?) ≥ (2Q)−1/(µ log e)/2
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Further, the size of the set I returned by AHF.Part(1λ, Q) is logarithmic in λ for
any Q which is polynomially bounded in λ.

Substring matching over polynomial alphabets The original instantiation
by Bitansky [7] requires n ∈ Ω(L2) and an error correcting code with minimum
distance n − L + 1. To achieve a smaller verification key, we observe that it is
actually sufficient to choose a code with n ∈ Ω(L1+η) for some constant η > 0
with minimum distance at least n−L+1. A suitable instantiation for both is the
following code from [32]. We only give the encoding function, as it is sufficient
for our purposes.

Remark 1 (Reed-Solomon-Code). Let σ ≥ n such that σ is a prime-power and
let Σ := Fσ be the finite field consisting of σ elements. Let u1, . . . , un ∈ Fσ be
n pairwise different elements and for x ∈ {0, 1}L let px ∈ Fσ[X] be defined via
px[X] :=

∑L−1
i=0 xiX

i. Then

Enc : {0, 1}L → Σn, x 7→ (px(u1), . . . , px(un))

defines a code. Further, for x 6= y ∈ {0, 1}L the polynomial px − py 6= 0 has
degree at most L− 1. The code has thus minimal distance n−L+1 as required.

As the following lemma slightly deviates from the original lemma in [7], we
provide a proof.

Lemma 2 ([7] Section 4.1.1 (in the eprint version)). Let 0 < η ≤ 1 be
a constant and let n, σ ∈ O

(
L1+η

)
such that AHF : {0, 1}L → Σn is an error

correcting code with minimal distance n−L+1 and alphabet size |Σ| = σ. Then,
there exists an algorithm AHF.Part such that AHF is an admissible hash function
such that for any x(1), . . . , x(Q), x? ∈ {0, 1}L we have

PrpartAHF,AHF.Part,λ,Q({x
(ν)}ν , x?) ≥ (2Q)−1−1/η−O(1/ log λ)/2

Further, the size of the set I returned by AHF.Part(1λ, Q) is constant for any Q
which is polynomially bounded in λ.

Proof. We define AHF.Part as the algorithm that on input (1λ, Q) chooses a
random value Y ←R Σn, sets c := log(2Q)/(η log λ), and returns Y together
with random subset I ⊆ {1, . . . , n} of size c.

Let i1, . . . , iι ∈ {1, . . . , n}. Then by i[ι] we denote the set {i1, . . . , iι}. First,
assume S := {x(1), . . . , x(Q)} and x? to be fixed. Then, for any x(ν) ∈ S, we have

Pr
I⊂{1,...,n},|I|=c

[
AHF(x(ν))

∣∣
I
= AHF(x?)

∣∣
I

]
=

c∏
j=1

Pr
ij /∈i[j−1]

[
AHF(x(ν))ij = AHF(x?)ij

∣∣∣AHF(x(ν))∣∣
i[j−1]

= AHF(x?)
∣∣
i[j−1]

]
≤

c∏
j=1

(
L− j
n

)
≤

c∏
j=1

1

Lη
= L−cη,
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where the first inequality follows from the fact that two codewords of AHF have
at most L−1 bits in common and the second inequality from n = L1+η. Further,
for any fixed x?, I, we have

Pr
Y←Σn

[AHF(x?)
∣∣
I
= Y

∣∣
I
] = σ−c.

Via a union bound we obtain

PrpartAHF,AHF.Part,λ,Q({x
(ν)}ν , x?) ≥ σ−c · (1−Q · L−cη)

≥ (2Q)−1−1/η−logC/(η log λ)/2,

where C is a constant with σ ≤ C · n1+η.
Further, we have |I| = c ∈ O (1) as η constant and log(2Q) ∈ O (log λ) for

any Q which is polynomially bounded in λ.

3 Verifiable random function with short proofs

In this section we present our construction of an adaptively programmable verifi-
able vector hash function, which can be seen as a rearrangement of the VVHF of
[20]. Via our technique of hunting and gathering we achieve significantly shorter
proofs. Applying the generic transformation of [20] (see Theorem 1) finally yields
an adaptively secure verifiable random function. For the resulting sizes of verifi-
cation key and proofs for different instantiations of the admissible hash function,
we refer to Remark 2 subsequent to our construction.

Definition 8. Let AHF : {0, 1}L → Σn together with AHF.Part be an admissible
hash function and ` be an upper bound on the set I ⊆ {1, . . . , n} output by
AHF.Part(1λ, Q) (for Q polynomial in λ). Let BG.Gen be a certified bilinear group
generator and let G ←R BG.Gen(1λ). We define a verifiable vector hash function
VVHF := (VVHF.Gen,VVHF.Eval,VVHF.Vfy) as follows.

– VVHF.Gen is a probabilistic algorithm that on input of group parameters G
samples matrices Mi,j,k ←R Zd×dp for all i ∈ {1, . . . , `}, j ∈ {1, . . . , n} and
k ∈ Σ uniformly at random. Further the algorithm samples a vector u ←R

Zdp\{0} and outputs the evaluation key

ek :=
(
(Mi,j,k)i∈{1,...,`},j∈{1,...,n},k∈Σ ,u

)
and the verification key

vk :=
(
[Mi,j,k]i∈{1,...,`},j∈{1,...,n},k∈Σ , [u]

)
.

– VVHF.Eval is an algorithm that on input of an evaluation key ek and a preim-
age x ∈ {0, 1}L first computes the admissible hash value X := AHF(x) ∈ Σn

of x and further, for each ι ∈ {1, . . . , `}, the vector

vι :=

 ι∏
i=1

n∑
j=1

Mi,j,Xj

> u. (1)
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Finally, VVHF.Eval outputs the image

[v] := [v`]

and the proof
π := [v1, . . . ,v`−1] .

– VVHF.Vfy is an algorithm that on input of a verification key vk , a preimage
x with image AHF(x) = X = (X1, . . . , Xn) ∈ Σn, an image [v] = [v`] and a
proof π = [v1, . . . ,v`−1] checks whether for all ι ∈ {1, . . . , `} and [v0] := [u]
it holds

e([1d], [vι]) = e(

n∑
j=1

[
Mι,j,Xj

]>
, [vι−1]) (2)

and returns 1 if and only if this is the case.

Remark 2. Recall that we consider inputs of arbitrary polynomial length L. The
following numbers correspond to d = 3 (i.e. security based on the decision linear
assumption).

The admissible hash function by Lysyanskaya [27] (see Lemma 1) has pa-
rameters ` ∈ ω(logL), n ∈ O (L) and |Σ| = 2. Therefore, instantiating our
construction with this AHF and applying the generic transformation of [20]
yields a verifiable random function with proofs of size 3(`+ 1) ∈ ω(log λ) and a
verification key of size 18`n+ 6 ∈ ω(L log λ) (in number of group elements).

Alternatively, the admissible hash function by Bitansky [7] (see Lemma 2)
comes with parameters ` ∈ ω(1) and n, |Σ| ∈ O

(
L1+η

)
for an arbitrary constant

η > 0. Employing this instantiation (together with the generic transformation of
[20]) thus yields a verifiable random function with proofs consisting of 3(`+1) ∈
ω(1) group elements and a verification key comprising 18`n+6 ∈ ω(L2+2η) group
elements.

Note that the additional 3 ·2 group elements in the proofs and the additional
3 group elements in the verification key stem from the generic transformation
(see Theorem 1).

Lemma 3 (Correctness and unique provability). The tuple VVHF given
in Definition 8 is a verifiable vector hash function.

Proof. Correctness. Let ek and vk as in Definition 8. Let x ∈ {0, 1}L and
X := AHF(x). Let [v] = [v`] be an image and π = [v1, . . . ,v`−1] be a
corresponding proof computed by the algorithm VVHF.Eval on input ek , x.
Let [v0] := [u]. For all ι ∈ {1, . . . , `} we have

vι =

 ι∏
i=1

n∑
j=1

Mi,j,Xj

> u =

n∑
j=1

M>ι,j,Xj ·

ι−1∏
i=1

n∑
j=1

Mi,j,Xj

> u

︸ ︷︷ ︸
=vι−1

by (1), and thus (2) follows.
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Unique provability. For each ι ∈ {1, . . . , `} there exists exactly one vι sat-
isfying (2) respective to the verification key and v0, . . . ,vι−1. As the group
described by G satisfies recognition and unique representation of group ele-
ments, unique provability follows.

Lemma 4 (Adaptive Programmability). If the d-rank assumption holds rel-
ative to BG.Gen, then the verifiable vector hash function VVHF = (VVHF.Gen,
VVHF.Eval,VVHF.Vfy) given in Definition 8 satisfies adaptive programmabil-
ity. More precisely, there exist a tuple of trapdoor algorithms (VVHF.TrapGen,
VVHF.TrapEval), such that the following hold.

Correctness. (VVHF.TrapGen,VVHF.TrapEval) satisfies correctness respective
to VVHF.Vfy.

Indistinguishability. For any Q polynomially bounded in λ and any PPT ad-
versaries A with running time tA, there exists a PPT adversary B with run-
ning time tB ≈ tA such that

Advvhf−indVVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) ≤ ` · Adv
d−rank
G,B (λ) +O

(
`nσ

p

)
.

Well-distributed outputs. For any polynomial Q in λ and for any x(1), . . . ,
x(Q), x? ∈ {0, 1}L with x? /∈ {x(1), . . . , x(Q)} it holds

Prwell−distr(VVHF.TrapGen,VVHF.TrapEval),λ,Q({x
(ν)}ν , x?) = PrpartAHF,AHF.Part,λ,Q({x

(ν)}ν , x?)

≥ 1

poly(λ)
.

Proof. We define the following tuple of algorithms:

– VVHF.TrapGen is a probabilistic algorithm that on input of the group pa-
rameters G, a parameter Q (which is required to be polynomially bounded
in λ) and a matrix [B] ∈ Zd×dp proceeds as follows.
First, VVHF.TrapGen samples for each i ∈ {0, . . . , ` − 1} a subspace Ui of
dimension d− 1 independently and uniformly at random. U` is defined to be
the subspace spanned by the first d− 1 unit vectors. Further, the algorithm
chooses u←R Zdp\U0.
Next, VVHF.TrapGen runs AHF.Part to obtain (Y, I)← AHF.Part(1λ, Q) and
samples Ti,j,k ∈ Zd×dp for each i ∈ {1, . . . , `}, j ∈ {1, . . . , n}, k ∈ Σ as follows.
• Let ji be the i-th value in I. Then, for each i ∈ {1, . . . , |I|}, the algorithm
samples a matrix Ti,ji,Yji

∈ Zd×dp uniformly of rank d subject to

T>i,ji,Yji
· Ui−1 = Ui.

• Further, for each i ∈ {|I| + 1, . . . , `} and all k ∈ Σ, again the algorithm
samples a matrix Ti,1,k ∈ Zd×dp uniformly of rank d subject to

T>i,1,k · Ui−1 = Ui.
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• For the remaining i ∈ {1, . . . , `}, j ∈ {1, . . . , n} and k ∈ Σ the algorithm
samples Ti,j,k ∈ Zd×dp uniformly of rank d− 1 subject to

T>i,j,k · Zdp = Ui.

Finally, the algorithm sets

[Mi,j,k] :=

{
[Ti,j,k] if i ∈ {1, . . . , `− 1}
Ti,j,k · [B]> if i = `

for all i ∈ {1, . . . , `}, j ∈ {1, . . . , n} and k ∈ Σ and outputs the trapdoor

td :=
(
(Ti,j,k)i∈{1,...,`},j∈{1,...,n},k∈Σ ,u, [B]

)
and the verification key

vk :=
(
[Mi,j,k]i∈{1,...,`},j∈{1,...,n},k∈Σ , [u]

)
.

– VVHF.TrapEval is a probabilistic algorithm that on input of a trapdoor td
and a preimage x ∈ {0, 1}L first computes the admissible hash value X :=
AHF(x) ∈ Σn of x and further, for each ι ∈ {1, . . . , `}, the vector

vι :=

 ι∏
i=1

n∑
j=1

Ti,j,Xj

> u. (3)

Finally, VVHF.TrapEval outputs the vector

c := v`

and the proof
π := [v1, . . . ,v`−1] .

In the following we prove that the tuple (VVHF.TrapGen,VVHF.TrapEval) meets
the required properties.

Correctness. Let (td , vk) be the output of VVHF.TrapGen on input (G, Q, [B]).
Let x ∈ {0, 1}L be an input value and let X := AHF(x) its encoding. Let
c = v` and π = [v1, . . . ,v`−1] be provided by VVHF.TrapEval on input [B].
Then, for ι ∈ {1, . . . , `− 1} equation (3) yields

vι =

 ι∏
i=1

n∑
j=1

Ti,j,Xj

> u =

 ι∏
i=1

n∑
j=1

Mi,j,Xj

> u

and for ι = ` we have

B · c = B ·

∏̀
i=1

n∑
j=1

Ti,j,Xj

> u =

n∑
j=1

B ·T>`,j,Xj︸ ︷︷ ︸
=M>`,j,Xj

·

`−1∏
i=1

n∑
j=1

Ti,j,Xj︸ ︷︷ ︸
=Mi,j,Xj


>

u.

Thus, correctness follows from the correctness of VVHF.Eval.
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Indistinguishability. The proof strategy follows the one of Lemma 4.6 in [22]
closely. For κ ∈ {1, . . . , `} we define the following algorithm VVHF.TrapGen(κ).
– First, the algorithm VVHF.TrapGen(κ) samples (d − 1)-dimensional sub-
spaces U0, . . . ,Uκ ⊆ Zdp and a vector u←R Zdp \ U0 uniformly at random.

– Second, the algorithm calls AHF.Part on input (1λ, Q) to obtain Y and I.
– For all i ≤ κ, the algorithm chooses Ti,j,k according to VVHF.TrapGen and
sets Mi,j,k := Ti,j,k for all j ∈ {1, . . . , n}, k ∈ Σ.

– For all i > κ, the algorithm chooses Mi,j,k ←R Zd×dp for all j ∈ {1, . . . , n},
k ∈ Σ.

We define the following series of games. We consider the indistinguishability
experiment of Definition 4. In game G0 the verification key is generated by
the VVHF.Gen algorithm and in game G2 the verification key is generated by
the VVHF.TrapGen algorithm. We prove the indistinguishability ofG0 andG2

by a series of games. We define gameG1.κ to be the game where VVHF.Gen is
replaced by VVHF.TrapGen(κ), respectively. By εκ we denote the probability
that an adversaryA outputs 1 inGi, that is εκ := Pr[A outputs 1]. It remains
to show that for every PPT adversary A, |ε0 − ε2| is negligible.
Transition G0  G1.0: In game G1.0 the vector u is chosen uniformly at
random from Zdp\U0 for a random subspace U0 instead of uniformly random
from Zdp \ {0}. As the view of A is independent of U0 we obtain ε1 = ε0.

Transition G1.κ−1  G1.κ: Given an adversary A, we construct an adver-
sary B on the d-rank problem as follows. Let [A] be the input to B. Then
B sets up the verification key as follows
– First, B samples (d − 1)-dimensional subspaces U0, . . . ,Uκ−1 ⊆ Zdp and
a vector u←R Zdp \ U0 uniformly at random.

– Next, the algorithm calls AHF.Part on input (1λ, Q) to obtain Y and I.
– For all i ≤ κ − 1, j ∈ {1, . . . , n}, k ∈ Σ, B chooses Ti,j,k according to
VVHF.TrapGen and sets Mi,j,k := Ti,j,k.

– For i = κ, j ∈ {1, . . . , n}, k ∈ Σ, the adversary proceeds as follows.
Whenever VVHF.TrapGen would choose a matrix Tκ,j,k of rank d −
1, B chooses a fresh Rj,k ←R Zd×dp and sets [Mκ,j,k] := [Tκ,j,k] :=

Rj,k · [A]>. Whenever VVHF.TrapGen would choose a matrix Tκ,j,k of
rank d, B chooses a fresh basis {cj,k1 , . . . , cj,kd−1} of Uκ−1 (this is effi-
ciently computable as B chooses Uκ−1 itself) and further d − 1 vectors
[dj,k1 ], . . . , [dj,kd−1] in the image of [A]. Further, B chooses cj,kd ,dj,kd ←R

Zdp, such thatCj,k :=
(
cj,k1 | · · · |c

j,k
d

)
is invertible. Finally, B sets [Dj,k] :=[

dj,k1 | · · · |d
j,k
d

]
and [Mκ,j,k] := [Tκ,j,k] := ([Dj,k] ·C−1j,k)>.

– For all i > κ, B chooses Mi,j,k ←R Zd×dp for all j ∈ {1, . . . , n}, k ∈ Σ.
Now, B forwards the verification key to A. To answer evaluation queries,
for ι ≥ κ the adversary B can compute [vι] as

[vι] =

κ+1∏
i=ι

n∑
j=1

M>i,j,AHF(x)j [Mκ,j,AHF(x)j ]
>

1∏
i=κ−1

n∑
j=1

M>i,j,AHF(x)j

u.
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(Note that the factors are multiplied in reverse order, as we moved the
transpose into the product in the above equation.)
It remains to prove that if A has rank d− 1, then B simulates game Gκ−1
and Gκ otherwise. We first consider the case that A has rank d − 1. Let
Uκ := [A] · Zdp be the d − 1-dimensional image of [A]. Then the following
holds
– For all j ∈ {1, . . . , n}, k ∈ Σ the matrix Rj,k · [A]> is of rank d − 1
with ([A] · R>j,k) · Zdp = [A] · Zdp = Uκ. Further, note that for every
j, k, Tκ,j,k := Rj,k · [A]> is distributed independently and uniformly at
random conditioned on Tκ,j,k · Zdp = Uκ.

– For all j ∈ {1, . . . , n}, k ∈ Σ the vectors [dj,k1 ], . . . , [dj,kd−1] form a basis
of Uκ and further Dj,k is full rank with overwhelming probability2. In
this case ([Dj,k] ·C−1j,k)> is full rank with

([Dj,k] ·C−1j,k) · Uκ−1 = [Dj,k] · (C−1j,k · Uκ−1)︸ ︷︷ ︸
={z∈Zdp|zd=0}

= Uκ.

Again, note that for every j, k, Tκ,j,k := ([Dj,k] · C−1j,k)> is distributed
independently and uniformly at random conditioned on Tκ,j,k · Uκ−1 =
Uκ.

We now assume that A is full rank. Due to the invertibility of A, for all
j ∈ {1, . . . , n}, k ∈ Σ the matrix Rj,k · [A]> is distributed uniformly at
random over Gd×d. As further [Dj,k] is distributed uniformly at random
over Gd×d, the same holds for ([Dj,k] ·C−1j,k)>.
Finally, on input b from A, B outputs “rank d− 1” if b = 0 and “rank d”
otherwise. Altogether, we obtain

|εi.κ − εi.κ−1| ≤ Advd−rankG,B (λ) +O(nσ/p).

Transition G1.`  G2: In gameG2 the subspace U` is the subspace spanned
by the first d − 1 unit vectors (instead of chosen uniformly at random).
Further, M`,j,k is defined to equal T`,j,k · [B]>. Recall that B ←R Zd×dp

is chosen uniformly at random from all invertible matrices. Now, in both
games G1.` and game G2, M>`,j,k maps U`−1 to a uniform d − 1 dimen-
sional subspace (namely, in gameG2 to the space spanned by the first d−1
column vectors of B). We have thus

ε2 = ε1.`.

Finally, we obtain

Advvhf−indVVHF,(VVHF.TrapGen,VVHF.TrapEval),A,Q(λ) = |ε2 − ε0|

= |ε1.` − ε1.0|

2More precisely, with probability at least 1− (d− 1)/p− 1/p = 1− d/p.
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≤
∑̀
κ=1

|ε1.κ − ε1.κ−1|

≤ ` · Advd−rankG,B (λ) +O(`nσ/p).

Well-distributed outputs. Let x(1), . . . , x(Q), x? ∈ {0, 1}L be arbitrary with
x /∈ {x(1), . . . , x(Q)}. Recall that by Definition 7 choosing Y and I partitions
the preimage space into sets

Y :=
{
x ∈ {0, 1}L | AHF(x)j = Yj for all j ∈ I

}
and Z := {0, 1}L \ Y.

We hope that we have x? ∈ Y and x(ν) ∈ Z for all ν ∈ {1, . . . , Q}. As AHF
is an admissible hash function, this is the case at least with probability

PrpartAHF,AHF.Part,λ,Q({x
(i)}i, x?) ≥

1

poly(λ)
.

Let cx the output vector of VVHF.TrapEval on input x ∈ {0, 1}L. To prove
well-distributed outputs by previous considerations it suffices to show

cxd = 0⇔ x ∈ Z.

Note that by construction of the subspace U` we have cxd = 0⇔ cx ∈ U`. For
all x ∈ {0, 1}L, ι ∈ {1, . . . , `} let

vxι :=

 ι∏
i=1

n∑
j=1

Ti,j,AHF(x)j

> u. (4)

Recall that u ∈ Zdp\U0 and that for allTi,j,k we haveT>i,j,k·Uι−1 = Uι.Therefore,
it holds vxι ∈ Uι if

vxι−1 ∈ Uι−1 OR
n∑
j=1

T>ι,j,AHF(x)j · (Z
d
p\Uι−1) ⊆ Uι.

In order to prove the claim it thus suffices to show
i.) x ∈ Z ⇒ ∃ι ∈ {1, . . . , `} :

∑n
j=1 T

>
ι,j,AHF(x)j

· (Zdp\Uι−1) ⊆ Uι and
ii.) x ∈ Y ⇒ ∀ι ∈ {1, . . . , `} :

∑n
j=1 T

>
ι,j,AHF(x)j

· (Zdp\Uι−1) ⊆ Zdp\Uι.
Let jι be the ι-th index in I. For all x ∈ Z there exist a ι ∈ {1, . . . , |I|} with
AHF(x)jι 6= Yjι . By construction for this ι we have T>ι,j,AHF(x)j ·Z

d
p = Uι for all

j ∈ {1, . . . , n}. This implies in particular
∑n
j=1 T

>
ι,j,AHF(x)j

· (Zdp\Uι−1) ⊆ Uι
as required. We thus have x ∈ Z =⇒ cxd = 0.
For all x ∈ Y and for all ι ∈ {1, . . . , |I|} it holds AHF(x)jι = Yjι . By con-
struction we have T>ι,jι,Yjι · (Z

d
p\Uι−1) = Zdp\Uι. For all ι ∈ {1, . . . , |I|},

uι−1 ∈ Zdp\Uι−1 we thus have

n∑
j=1

T>ι,j,AHF(x)j · uι−1 = T>ι,jι,AHF(x)jι · uι−1︸ ︷︷ ︸
∈Zdp\Uι

+
∑
j 6=jι

T>ι,j,AHF(x)j · uι−1︸ ︷︷ ︸
∈Uι

∈ Zdp\Uι.
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Further, for all ι > |I| we have Tι,j,k uniform of rank d (subject to T>ι,j,k ·
Uι−1 = Uι) if and only if j = 1. For all ι > |I|, uι−1 ∈ Zdp\Uι−1 it thus holds

n∑
j=1

T>ι,j,AHF(x)j · uι−1 = T>ι,1,AHF(x)1 · uι−1︸ ︷︷ ︸
∈Zdp\Uι

+

n∑
j=2

T>ι,j,AHF(x)j · uι−1︸ ︷︷ ︸
∈Uι

∈ Zdp\Uι.

Altogether, we obtain x ∈ Y =⇒ cxd 6= 0.
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