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Abstract

We revisit the concept of non-malleable secret sharing (Goyal and Kumar, STOC 2018)
in the computational setting. In particular, under the assumption of one-to-one one-way
functions, we exhibit a computationally private, threshold secret sharing scheme satisfying
all of the following properties.

• Continuous non-malleability: No computationally-bounded adversary tampering
independently with all the shares can produce mauled shares that reconstruct to a
value related to the original secret. This holds even in case the adversary can tamper
continuously, for an unbounded polynomial number of times, with the same target
secret sharing, where the next sequence of tampering functions, as well as the subset
of shares used for reconstruction, can be chosen adaptively based on the outcome of
previous reconstructions.

• Resilience to noisy leakage: Non-malleability holds even if the adversary can ad-
ditionally leak information independently from all the shares. There is no bound on
the length of leaked information, as long as the overall leakage does not decrease the
min-entropy of each share by too much.

• Improved rate: The information rate of our final scheme, defined as the ratio between
the size of the message and the maximal size of a share, asymptotically approaches 1
when the message length goes to infinity.

Previous constructions achieved information-theoretic security, sometimes even for arbitrary
access structures, at the price of at least one of the following limitations: (i) Non-malleability
only holds against one-time tampering attacks; (ii) Non-malleability holds against a bounded
number of tampering attacks, but both the choice of the tampering functions and of the sets
used for reconstruction is non-adaptive; (iii) Information rate asymptotically approaching
zero; (iv) No security guarantee in the presence of leakage.

Keywords: Secret sharing, non-malleability, leakage resilience, computational security.



Contents

1 Introduction 1
1.1 Non-Malleable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tamper-Resilient Threshold Signatures . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Further Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Highlights 4
2.1 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 First Step: Achieving Continuous Non-Malleability (Poor Rate) . . . . . . . . . . 5
2.3 Second Step: Amplifying the Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Preliminaries 10
3.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Standard Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Threshold Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Non-Malleable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Continuously Non-Malleable Secret Sharing 15
4.1 Non-Malleability under Adaptive Concurrent Reconstruction . . . . . . . . . . . 15
4.2 Shared-Value Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Necessity of Self-Destruct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 A Scheme with Poor Rate 19
5.1 Main Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Instantiating the Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Boosting the Rate 31
6.1 Information Rate of Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 A Rate-Optimizing Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Threshold Signatures under Adaptive Memory Corruptions 37
7.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 The Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Conclusions and Open Problems 42



1 Introduction

In a secret sharing (SS) scheme, a trusted dealer divides a secret message m into shares that
are distributed to n parties, in such a way that any authorized subset of parties can efficiently
determine the secret, whereas unauthorized subsets of parties have (statistically) no informa-
tion about the message. In this paper, we focus on threshold secret sharing (TSS), where the
unauthorized subsets are those with at most τ − 1 players, for a parameter τ ≤ n.

The above type of SS is also known as τ -out-of-n TSS, and was originally introduced by
Shamir [Sha79] and Blakey [Bla79]. SS has found many applications to cryptography, rang-
ing from data storage [Has] and threshold cryptography [DF91], to secure message trans-
mission [DDWY93], multi-party computation [GMW87, CCD88, BGW88], and private cir-
cuits [ISW03, FRR+10, AIS18].

An important parameter of an SS scheme is its information rate, defined as the ratio between
the size of the message and the maximal size of a share. It is well-known that the best possible
information rate for TSS satisfying statistical privacy is 1, meaning that the size of each share
must at least be equal to that of the message being shared [Bei11].

1.1 Non-Malleable Secret Sharing

Classical SS offers no guarantee in the presence of a tampering adversary modifying (possibly
all!) the shares. Motivated by this shortcoming, Goyal and Kumar [GK18a] introduced one-
time non-malleable secret sharing (NMSS), which intuitively guarantees that even if all of the
shares are tampered once, the reconstructed message is either equal to the original shared value
or independent of it. The only limitation is that the adversary is restricted to change the shares
independently, a model sometimes known under the name of individual tampering. As usual, in
order to reconstruct the secret, only % ≤ n shares are required, and typically the reconstruction
threshold % equals the privacy threshold τ .

Recently, the topic of NMSS has received a lot of attention. We summarize the state of the
art below, and in Tab. 1.

• In their original paper, Goyal and Kumar [GK18a] gave a construction of NMSS with

Reference Access Structure Non-Malleability Leakage Resilience Rate Assumption Notes

[GK18a]
Threshold (τ ≥ 2) 1-time 7 Θ

(
1

n log µ

)
— IT

Threshold (τ ≥ 2) 1-time 7 Θ
(
µ−9

)
— JT

[GK18b]
Arbitrary (monotone) 1-time 7 Θ

(
1

n log µ

)
— IT

Threshold (τ = n) 1-time 7 Θ(µ−6) — JT

[BS18]
Threshold (τ ≥ 4) p-time 7 Θ

(
1

p3·τ ·log2 n

)
— IT, NAT

Arbitrary (4-monotone) p-time 7 Θ
(

1
p3·τmax·log2 n

)
— IT, NAT

[ADN+18] Arbitrary (3-monotone) p-time 7 Θ
(

1
n log µ

)
– IT, NAT, NACR

[SV18] Arbitrary (4-monotone) 1-time 7 Θ(1) – IT

[KMS18] Arbitrary (monotone) 1-time `-Bounded Θ
(

1
`n logn logµ

)
– IT

This paper Threshold (τ ≤ %− 1) poly-time Noisy Ω
(

µ
µ+n2λ8

)
1-to-1 OWFs IT, ACR

Table 1: Comparison of state-of-the-art NMSS schemes. The value n denotes the number of parties,
µ denotes the size of the message, ` denotes the leakage parameter, λ denotes the security parameter,
and τ (resp. %) is the privacy (resp. reconstruction) threshold in case of TSS, where % = τ unless stated
otherwise. In case of general access structures, τmax is the maximum size of a minimal authorized subset.
IT stands for “individual tampering”, JT for “joint tampering”, NAT for “non-adaptive tampering”,
NACR for “non-adaptive concurrent reconstruction”, and ACR for “adaptive concurrent reconstruction”.
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1-time non-malleability against individual tampering. The rate of this construction is
Θ( 1

n log µ), where µ is the size of the message. In the same paper, the authors also propose
a more complex construction that satisfies 1-time non-malleability in a stronger model
where the adversary is allowed to jointly tamper subsets of up to τ − 1 shares.
In [GK18b], the same authors construct NMSS satisfying 1-time non-malleability against
individual and joint tampering, and further supporting arbitrary monotone access struc-
tures. The rate of these constructions asymptotically approaches zero when the length of
the message goes to infinity.
• Badrinarayanan and Srinivasan [BS18] construct NMSS with improved rate. In particular,

they put forward a stronger security model called p-time non-malleability, in which the
adversary can tamper with the same target secret sharing s = (s1, . . . , sn) for p ≥ 1 times,
by non-adaptively specifying sequences of tampering functions

(f
(1)
1 , . . . , f (1)

n ), . . . , (f
(p)
1 , . . . , f (p)

n ) (1)

yielding mauled shares s̃(q) = (s̃
(q)
1 , . . . , s̃

(q)
n ), for each q ∈ [p]. Non-malleability here means

that for every reconstruction set T with size at least τ , fixed before tampering takes place,

the secrets reconstructed out of s̃
(1)
T , . . . , s̃

(p)
T are independent of the original message.

The main result of [BS18] are NMSS schemes with p-time non-malleability, both for thresh-
old access structures (with % = τ ≥ 4), and for arbitrary 4-monotone access structures,

with rates, respectively, Θ
(

1
p3·τ ·log2 n

)
and Θ

(
1

p3·τmax·log2 n

)
(where τmax is the maximum

size of a minimal authorized subset). Importantly, the maximal value of p is a pri-
ori fixed and, in fact, the shares’ size can depend on it. Moreover, they proved that,
in the information-theoretic setting, it is impossible to construct NMSS achieving non-
malleability against an unbounded polynomial number of tampering attempts.
• Aggarwal et al. [ADN+18] consider a strengthening of p-time non-malleability, in which

the adversary tampers non-adaptively p times, as in Eq. (1), but additionally specifies
p different sets T1, . . . , Tp for the reconstruction of each mauled shares s̃(1), . . . , s̃(p). In

other words, the requirement is now that s̃
(1)
T1 , . . . , s̃

(p)
Tp are independent of the original

message. They dub their model p-time non-malleability under non-adaptive concurrent
reconstruction, since the sets T1, . . . , Tp are specified in a non-adaptive fashion.
The main result of [ADN+18] is a construction of NMSS with rate Θ( 1

n log µ), satisfying
p-time non-malleability under non-adaptive concurrent reconstruction.
• Srinivasan and Vasudevan [SV18] construct the first NMSS for 4-monotone access struc-

tures, and satisfying 1-time non-malleability with rate Θ(1).
• Finally, Kumar, Meka, and Sahai [KMS18] construct NMSS with 1-time non-malleability,

but where the adversary is additionally allowed to adaptively leak information on the
shares independently, i.e. they considered for the first time leakage-resilient NMSS (LR-
NMSS). Note that here, the choice of the tampering functions can adaptively depend on
the leakage. The rate of this scheme asymptotically approaches zero.

1.2 Our Contributions

All the above mentioned works construct NMSS, with different characteristics, in the information-
theoretic setting, where both the privacy and the non-malleability of the scheme holds even
against unbounded adversaries. A natural question is whether one can improve the state of
the art in the computational setting, where the adversary for privacy and non-malleability is
computationally bounded. Note that this is particularly appealing, in view of the fact that
fully-fledged continuous non-malleability is impossible to achieve in the information-theoretic
setting [BS18]. Hence, the following question is open:
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Can we construct NMSS where a computationally-bounded adversary can tamper
adaptively, with the same target shares, for an unbounded polynomial number of

times, and under adaptive concurrent reconstruction?

In this work, we answer the above question affirmatively for the case of threshold access
structures and individual tampering, assuming 1-to-1 one-way functions (OWFs). Our final
scheme has rate asymptotically approaching 1, and furthermore satisfies leakage resilience.

Theorem 1 (Main Theorem, Informal). Let τ, %, n ∈ N be such that τ, % ≤ n and τ ≤ % − 1.
Assuming 1-to-1 OWFs, there exists noisy-leakage-resilient, continuously non-malleable τ -out-
of-n secret sharing (LR-CNMSS) under adaptive concurrent reconstruction (where at least %
parties are needed to reconstruct the secret), with information rate (asymptotically) one.

We observe that leakage resilience holds in the so-called noisy-leakage model, where the
actual amount of information that can be leaked independently from each share is unbounded,
as long as the uncertainty of each share does not decrease by too much. Also, notice that
there is a minimal gap between the reconstruction threshold % and the privacy threshold τ (i.e.,
τ ≤ % − 1). Interestingly, as we explain in §4.2, CNMSS cannot exist unconditionally for the
optimal parameters τ = %, and thus our work leaves open the question of constructing TSS
where both privacy and continuous non-malleability hold statistically, as long as τ < %.

A final remark is that the definition of continuous non-malleability uses a special self-destruct
feature, in which after the first invalid mauled secret sharing is found (i.e., a collection of shares

s̃
(q)
Tq whose reconstruction equals an error symbol ⊥), the answer to all future tampering queries

is by default set to be ⊥. As we show in §4.3, such a feature is necessary, in the sense that
without it no CNMSS exists (even without considering leakage and concurrent reconstruction).

1.3 Tamper-Resilient Threshold Signatures

As an application, we consider a generalization of the classical transformation from standard
security to tamper-proof security via non-malleable codes [DPW10], in the setting of threshold
cryptography. For concreteness, we focus on threshold signatures, which allow to secret share
a signing key among n servers, in such a way that any subset of at least % servers can interact
in order to produce the signature of a message. The standard security guarantee here is that
an adversary corrupting up to τ − 1 servers cannot forge a valid signature, even after observing
several transcripts of the signing protocol with the honest servers.

Given any CNMSS, we show how to compile a non-interactive threshold signature into an
interactive (2-round) threshold signature that additionally is secure in the presence of continuous
tampering attacks. More precisely, we imagine an external forger corrupting the memory of
(possibly all!) the servers independently (say via a malware installed on each of the servers),
and observing several signatures produced using arbitrarily modified secret-key shares.

A similar application was recently considered in [ADN+18]. The main advantage of our
model is that the attacker is allowed to tamper continuously with the memory of the servers,
and further can adaptively choose the subset of servers participating in each invocation of the
signature protocol; on the negative side, our adversary is not allowed to fully corrupt any of the
servers, whereas in the model of [ADN+18] the forger, after tampering once, obtains the secret-
key shares of τ−1 servers. In our perspective, this difference stems from the fact that [ADN+18]
makes a non-black-box usage of the underlying NMSS, which allows to exploit a slightly stronger
form of non-malleability which, although not formalized by the authors, seems to be met by their
specific construction. (I.e., non-malleability still holds even if the attacker learns a subset of
the original shares, after tampering is over; such a property is sometimes known as augmented
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non-malleability in the non-malleable codes literature [AAG+16, CFV19].) In contrast, our
compiler only makes black-box calls to the underlying primitives.

1.4 Further Related Works

Robust secret sharing. In robust SS (see, e.g. [RB89, CSV93, RB07, BPRW16]), a mono-
lithic adversary can (non-adaptively) corrupt up to τ players, and thus jointly tamper their
shares. Robustness guarantees that given all the % = n shares, the reconstructed message is
identical to the original shared value.

While robustness is a strong form of non-malleability, it is clearly impossible when more
than n/2 shares are corrupted (even in the computational setting).

Non-malleable codes. The concept of NMSS is intimately related to the notion of non-
malleable codes (NMCs) [DPW10]. Intuitively, a NMC allows to encode a message in such a
way that tampering with the resulting codeword via a function f ∈ F , where F is a set of
allowed tampering functions that is a parameter in the definition, yields a modified codeword
that either decodes to the original message or to an unrelated value. Several constructions
of NMCs exist in the literature, for different families F ; one of the most popular choices is
to think of the tampering function as a sequence of n functions f = (f1, . . . , fn), where each
function fi modifies a different chunk of the codeword arbitrarily, yet independently. This is
often known as the n-split-state model [DPW10, LL12, DKO13, CG14b, CG14a, ADL14, CZ14,
ADKO15b, ADKO15a, CGL16, CKR16, Li17, KOS17, ADN+17], the most general case being
the case n = 2.

As shown by Aggarwal et al. [ADKO15b], every NMC in the 2-split-state model is a 2-out-
of-2 NMSS in disguise. Similarly, it is easy to see that any (leakage-resilient) continuously NMC
(LR-CNMC) in the 2-split-state model [FMNV14, FNSV18, OPVV18, CFV19] is a 2-out-of-2
LR-CNMSS as per our definition.

Leakage-resilient codes. When no tampering is considered, our definition of LR-CNMSS
collapses to that of leakage-resilient secret sharing, as originally introduced by Dav̀ı, Dziem-
bowski, and Venturi, for the case n = τ = % = 2 [DDV10]. This topic recently received renewed
attention, see, in particular, [ADN+18, SV18, KMS18].

1.5 Organization

In §2, we present the main technical ideas behind the proof of Theorem 1. Then, in §4, after
recalling a few necessary notions in §3, we describe our model for continuously non-malleable
secret sharing against individual tampering and under adaptive concurrent reconstruction.

In §5 we describe and analyze a construction of LR-CNMSS with rate 0 from 1-to-1 OWFs,
whereas in §6 we show how to generically transform any LR-CNMSS with rate 0 into a LR-
CNMSS with rate 1, under the same assumption. The application of CNMSS to threshold
signatures can be found in §7.

Finally, in §8, we conclude the paper with some remarks and directions for future research.

2 Technical Highlights

Intuitively, the proof of Thm. 1 proceeds in two steps. In the first step, we show how to obtain
LR-CNMSS with information rate asymptotically approaching 0, assuming 1-to-1 OWFs. In
the second step, we show how to boost the asymptotic rate generically, from 0 to 1, under the
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same assumption. Below, we explain these two steps with some details, after presenting our
security model informally.

2.1 Security Model

Let Σ be an n-party TSS, with reconstruction threshold % (i.e., given at least % shares we
can efficiently reconstruct the message) and privacy threshold τ (i.e., τ − 1 shares reveal no
information on the message to the eyes of a computationally-bounded adversary). In order to
define continuous non-malleability for TSS, we consider an efficient adversary interacting with
a target secret sharing s = (s1, . . . , sn) of some message m ∈M, via the following queries.

• Tampering: The attacker can specify a sequence of efficiently-computable functions

(f
(q)
1 , . . . , f

(q)
n ), yielding mauled shares

s̃(q) = (s̃
(q)
1 , . . . , s̃(q)

n ) = (f
(q)
1 (s1), . . . , f (q)

n (sn)),

along with a set Tq ⊆ [n], with size %̃ ≥ %. The answer to such a query is the message

m̃(q) which is reconstructed using the shares s̃
(q)
Tq . The above queries can be chosen in a

fully-adaptive fashion for all q ∈ [p], where p is an arbitrary polynomial in the security
parameter; however, after the first tampering query generating an invalid message ⊥
during reconstruction, the system switches to a “self-destruct mode” in which the answer
to future tampering queries is automatically set to ⊥.
• Leakage: The attacker can specify an efficiently-computable function g, and an index
i ∈ [n], upon which it obtains g(si). These queries can be chosen in a fully-adaptive
fashion, as long as the uncertainty of each share conditioned on the leakage (measured via
conditional average min-entropy [DORS08]) is reduced at most by a value ` ∈ N that is a
parameter of the scheme.

The formal definition of leakage-resilient continuous non-malleability essentially says that for
each pair of messages m0,m1 ∈ M, the adversary’s view in the above experiment is com-
putationally indistinguishable in the two cases where m = m0 and m = m1. Note that when
n = τ = % = 2, and further when ` is an upper bound on the total amount of leakage, our defini-
tion collapses to the standard notion of a LR-CNMC in the split-state model [LL12, ADKO15b].

One might observe that our definition is game based, whereas all previous definitions of non-
malleable secret sharing are simulation based. While it would be possible to give a simulation-
based definition for LR-CNMSS, it is not hard to show that the two formulations are equivalent,
as long as the length of the shared value is super-logarithmic in the security parameter. The
same equivalence, in fact, holds true for the case of LR-CNMCs [DPW10, OPVV18].

We also remark that the limitations of computational security and self-destruct are some-
what inherent. First, as shown by [BS18], no TSS scheme with % = τ , and satisfying statistical
privacy, can achieve information-theoretic continuous non-malleability w.r.t. an arbitrary poly-
nomial number of tampering queries; as we explain in §4.2, however, the latter might still be
possible with a non-zero gap τ < %. Second, as we formally prove in §4.3, it is also impos-
sible to achieve continuous non-malleability without a self-destruct capability. The latter is
reminiscent of similar impossibility results in the settings of tamper-resilient cryptography and
non-malleable codes [GLM+04, FMNV14]. Note that both these impossibility results hold even
without considering leakage and concurrent reconstruction.

2.2 First Step: Achieving Continuous Non-Malleability (Poor Rate)

A scheme with low privacy. Consider the following simple idea, inspired by [GK18a], how
to construct a 2-out-of-n CNMSS by leveraging any CNMC in the split-state model (i.e., any
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2-out-of-2 CNMSS). To share a message m ∈ M, we enumerate over all the possible pairs of
distinct indices smaller than n, and for each such pair we compute a 2-out-of-2 CNMSS of the
message. In other words, for each subset H = {h1, h2} ∈

(
[n]
2

)
, we consider a non-malleable

split-state encoding sH := (sH,h1 , sH,h2) of the message m, which we assign to the indices h1

and h2. The final share s∗i for party i ∈ [n] is then defined to be the collection of all the shares
sH,i, where H is such that i ∈ H. Reconstruction is defined in the natural way, i.e. given an
authorized set H′ = {h′1, h′2}, we simply ignore all the shares but sH′ , and use (sH′,h′1 , sH′,h′2) to
reconstruct the message.

Intuitively, the above scheme is secure because the
(
n
2

)
shares of the message m are indepen-

dently sampled, and furthermore the reconstruction for an authorized set H is independent of
all the shares but one. In particular, the 2-threshold privacy property follows easily by privacy
of the underlying CNMC. As for continuous non-malleability, consider a sequence of hybrid
experiments, one hybrid for each subset H in

(
[n]
2

)
in lexicographic order: In each hybrid step,

we change the distribution of the target secret sharing s∗ = (s∗1, . . . , s
∗
n) by letting (sH,h1 , sH,h2)

be a 2-out-of-2 CNMSS of m0 for all sets in
(

[n]
2

)
up to H, whereas we use m1 to define the

remaining shares.
For the proof, we can build a reduction to the continuous non-malleability of the underlying

split-state encoding. In particular, the simulation of a generic tampering query of the form
(T , (f1, . . . , fn)), proceeds as follows:

• If T and H do not share any index, then they cannot possibly interfere with each other.
In particular, the reduction knows all the shares for the positions in T , and therefore it
can simulate the answer without even querying the underlying tampering oracle for the
split-state CNMC.
• If T and H share (at least) an index, then we can use the target tampering oracle to

compute the mauled shares corresponding to T using the tampering oracle corresponding
to H. However, there is a catch. Let, e.g., be T = {t1, t2} and H = {h1, h2}, and suppose
t2 = h1. To compute the tampered share s̃T ,t2 , we need to know the value sH,h1 , which
is only accessible through the tampering oracle; as a consequence, the reduction would
only be able to obtain the reconstructed message corresponding to (s̃T ,t2 , s̃T ,t1), which
is possibly different from the reconstructed message corresponding to (s̃T ,t1 , s̃T ,t2). We
bypass this problem by assuming that the underlying split-state CNMC has symmetric
decoding, namely the decoding output is invariant w.r.t. the order of the two shares. As
we explain later, this property is satisfied by known schemes.

Amplifying the privacy. Intuitively, the transformation above is based on the fact that
by composing a secret sharing for an access structure A with a secret sharing for an access
structure A′, we obtain a new secret sharing for access structure A ∪ A′. Unfortunately, we
cannot generalize this idea to go from %-out-of-% to %-out-of-n secret sharing for any % ≤ n, as
for efficiency we need

(
n
%

)
≈ n% to be polynomial in n.

The key idea behind our main construction of CNMSS is to compose together
(
n
2

)
secret

sharing schemes with different access structures, such that their union gives the desired %-
threshold access structure. Specifically, consider the following construction of a %-out-of-n TSS
based on a split-state CNMC, on an authenticated secret-key encryption (AE) scheme, and on
an auxiliary (%− 3)-out-of-(n− 2) TSS.

For a fixed pair of indices H = {h1, h2} ∈
(

[n]
2

)
, pick a uniformly random key κH for the

AE scheme, compute a split-state encoding of κH, and call the resulting shares (sH,h1 , sH,h2);
hence, encrypt the message m under the key κH obtaining a ciphertext cH, and secret share cH
using the auxiliary TSS, yielding shares (sH,h3 , . . . , sH,hn) where {h3, . . . , hn} = [n] \H. Notice
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that this scheme has access structure AH = {S ⊂ [n] : |S| ≥ %,H ⊂ S}. By repeating the
above procedure for each set H ∈

(
[n]
2

)
, we obtain that the final share s∗i for party i ∈ [n] is the

collection of all the shares sH,i, so that
⋃
H∈([n]2 )AH yields the %-threshold access structure, as

desired. Moreover, the size of each share is still polynomial in the number of parties.
The proof of threshold privacy is rather straightforward, at least if we set the privacy

threshold for the final scheme to be τ ≤ %− 2. However, in the computational setting, we can
even show privacy τ ≤ % − 1. The key idea is that either the adversary has enough shares to
reconstruct the underlying ciphertext (but in this case it does not have access to the secret key,
and therefore it learns nothing by semantic security of the encryption scheme), or, the adversary
knows at most % − 3 shares of the ciphertext (which by perfect privacy of the auxiliary TSS
reveal nothing about the ciphertext).

Proving continuous non-malleability. The intuition for non-malleability of the secret shar-
ing scheme with access structure AH is that by tampering the shares corresponding to indices
h1, h2, the adversary either obtains the original key or a completely unrelated value: In the
former case, by the authenticity of the AE scheme, the adversary cannot produce a new cipher-
text that decrypts correctly; in the latter case, by the semantic security of the AE scheme, the
adversary cannot produce a ciphertext that decrypts to a related message (under the unrelated
key generated via tampering).

Next, we analyze how continuous non-malleability is preserved when we compose together
the different secret sharing schemes with access structure AH (for H ∈

(
[n]
2

)
). In contrast to the

simple composition for the 2-out-of-n CNMSS construction hinted above, in the new composed
scheme the share of party i consists of both the shares of a split-state encoding of a key, and
the shares of a ciphertext under an auxiliary standard TSS. Hence, in a tampering query, the
adversary could swap these two kinds of shares, with the consequence that the reconstruction
procedure of the underlying (%− 3)-out-of-(n− 2) TSS would depend on one of the two shares
of the split-state CNMC. To resolve this problem we rely on two different ideas: First, we
additionally assume that the split-state CNMC is resilient to noisy leakage; second, we make
sure that the reconstruction procedure of the auxiliary TSS does not leak information about
single shares.

The second idea is the most important one. In fact, by simply assuming leakage resilience
we could at most tolerate an a priori bounded number of tampering queries. The reason for this
is that, even if each reconstruction leaks just a single bit of a share sH,i under the split-state
CNMC, after |sH,i| consecutive tampering queries this share could be leaked without provoking
a self-destruct. The latter is better understood by looking at Shamir’s TSS, where to share
m ∈M we pick a random polynomial of degree % that evaluates to m at point 0, and distribute
to the i-th party the share si obtained by evaluating the polynomial at point i ∈ [n]. The
reconstruction algorithm, given any set of % shares si, interpolates the corresponding points,
thus obtaining a polynomial that is evaluated on the origin. It is easy to see that such a
reconstruction procedure, under tampering attacks, potentially leaks a lot of information about
the single points (without the risk of self-destruct). In particular, the reconstruction algorithm
is a linear function of the shares, and thus perturbing one point by a multiplicative factor, allows
to recover the value of a share in full via a single tampering query.

We now show how to avoid the above leakage. Fix some index i ∈ [n] for the i-th share.
Given an authorized set of size %, we let our reconstruction procedure select two different
subsets1 of size % − 3, such that one subset includes the index i, whereas the second subset

1In retrospect, this is the reason why we set the reconstruction/privacy threshold of the underlying TSS to
%−3 (i.e., 2 shares for decoding the non-malleable encoding and %−3+1 = %−2 shares to run the reconstruction
procedure of the TSS twice).
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excludes it. Thus, we run the standard reconstruction procedure twice, one for each subset, and
we accept the reconstructed message if and only if the two runs yield the same value, otherwise
we return an error message (which triggers a self-destruct). The main observation is that the
second run of the reconstruction algorithm is independent of sH,i, and thus, conditioned on the
returned message not being ⊥, the output of the reconstruction is independent of sH,i. On the
other hand, when the returned message is equal to ⊥, the output of the reconstruction could
indeed leak information about the share with index i, but notice that this situation triggers a
self-destruct, and thus such leakage happens only once.

More in details, for the proof we perform a hybrid argument over all setsH = {h1, h2} ∈
(

[n]
2

)
,

where at each step we change the shared value of the secret sharing relative to the access
structure AH. To show that each pair of adjacent hybrids are computationally indistinguishable,
we consider a reduction to the continuous non-malleability of the underlying split-state CNMC.
Denote by (sH,h1 , sH,h2) the target codeword. Note that the reduction can sample all the
randomness necessary to create the shares s∗1, . . . , s

∗
n, except for the shares s∗h1 , s

∗
h2

for which the
values sH,h1 , sH,h2 are missing and will be defined through the target tampering oracle. Now,
suppose the adversary sends a tampering query (T = {t1, . . . , t%}, (f1, . . . , fn)), and suppose
that t1 = h1 and t3 = h2.2 While the reduction cannot simulate the tampered shares s̃∗h1 and
s̃∗h2 locally, it can use the tampering oracle to obtain the decoding relative to the split-state
codeword (s̃T ,t1 , s̃T ,t2); in fact, s̃T ,t2 can be computed by the reduction itself—as it knows the
share s∗t2 in full—and hard-wired into the description of the right tampering function, whereas
the value s̃T ,t1 can be perfectly emulated inside the tampering oracle by hard-wiring into the
left tampering function all the information known about s∗h1 .

In order to complete the simulation, the reduction still needs to run twice the reconstruction
process of the underlying TSS, given the tampered shares s̃T ,t3 , . . . , s̃T ,t% . Note that since the
values s̃T ,t4 , . . . , s̃T ,t% can be computed locally, the reduction can perform one reconstruction
(yielding a first reconstructed ciphertext c1). However, in order to run the second reconstruction,
it needs the value s̃T ,t3 which is not directly available, as it might depend on sH,t3 = sH,h2 .
The idea is then to get the second ciphertext c2 via a leakage query. We claim that, as long as
c1 = c2, such leakage does not decrease the min-entropy of sH,h2 ; roughly speaking, the reason
is that c2 = c1 can be also computed as a function of s̃H,t4 , . . . , s̃H,t% , which are known by the
reduction and independent of sH,t3 .

Notice that the double-reconstruction trick—i.e., running the reconstruction procedure twice,
in the above example one with t3 and one without—is sufficient to prove that the reconstruc-
tion does not leak information about one specific share. However, we need to ensure that no
information about any of the shares is leaked. One simple idea would be to lift the previous
argument by repeating the reconstruction for all subsets of size % − 3. Nicely, in the case of,
e.g. Shamir’s TSS this is not necessary. In fact, we can have a more efficient reconstruction
procedure that only checks two subsets. This is because if two different subsets of size %−3 yield
polynomials with identical evaluation in the origin, then they must encode the same polynomial,
and since these two subsets cover an entire authorized set, then we are ensured that using any
other subset would yield the same reconstructed message.

Instantiating the construction. All that remains is to construct a split-state CNMC with
the special symmetric decoding feature, and for which the non-malleability property still holds
even in the presence of noisy (independent) leakage from the left and right shares.

We do this by revisiting the recent construction of Ostrovsky et al. [OPVV18], which gives
a split-state CNMC assuming non-interactive, perfectly binding commitments (which in turn

2Clearly, the reduction needs to handle many other cases; however, this particular case is enough to illustrate
our technique.
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can be based on 1-to-1 OWFs). In their scheme, a split-state encoding of a message m is a
pair of values (L,R) = ((com, L′), (com, R′)), where com is a non-interactive commitment to
the message m using randomness δ, and (L′, R′) is a split-state encoding of the string m||δ
obtained by running an auxiliary code satisfying leakage-resilient one-time non-malleability, in
the information-theoretic setting and in the bounded-leakage model. The decoding algorithm
first checks that the left and right share contain the same commitment. If not, it returns ⊥.
Else, it decodes (L′, R′) obtaining a string m′ = m||δ, and returns m if and only if δ is a valid
opening of com w.r.t. m.

Our first observation is that the above code satisfies symmetric decoding, as long as the
inner encoding (L′, R′) does. Additionally, we extend the security proof of [OPVV18] to show
that if the auxiliary split-state code is secure in the noisy-leakage model, so is the final encoding.
As a side result, and thanks to the power of noisy leakage, we even obtain a simpler proof.

The missing piece of the puzzle is then to exhibit a split-state code satisfying leakage-
resilient one-time non-malleability, in the information-theoretic setting and in the noisy-leakage
model, and with symmetric decoding. Luckily, it turns out that the coding scheme by Aggarwal
et al. [ADKO15b], based on the inner-product extractor [CG88], already satisfies all these
requirements. We refer the interested reader to §5.3 for the details.

2.3 Second Step: Amplifying the Rate

Next, we describe another generic transformation yielding LR-CNMSS with information rate
asymptotically approaching 1, starting from a LR-CNMSS with asymptotic rate 0, and an AE
scheme. Such transformations, in the setting of non-malleable codes, are sometimes known as
rate compilers [AGM+15, AAG+16, CFV19].

Our rate compiler generalizes a construction by Agrawal et al. [AAG+16] in the setting
of split-state NMCs, which has been very recently analyzed also in the case of continuous
tampering [CFV19]. In order to secret share the message m ∈ M, we first sample a uniformly
random key κ for the AE scheme, and then we encrypt the message m under this key, yielding a
ciphertext c. Hence, we secret share the key κ using the underlying rate-0 secret sharing scheme,
yielding n shares (κ1, . . . , κn). Finally, we set the share of party i ∈ [n] to be si = (κi, c). The
reconstruction procedure, given % shares, first checks that all shares contain the same ciphertext
c. If not, an error is triggered. Else, the secret key is reconstructed from the shares and used
to decrypt the unique ciphertext c.

Note that the length of the secret key is independent of the size of the message, and thus the
above construction achieves information rate asymptotically approaching 1. As for security, it
is not hard to show that the compiled scheme inherits the threshold privacy property from the
underlying rate-0 secret sharing. Here, we additionally need to rely on the semantic security of
the AE scheme to argue that the ciphertext c reveals nothing about the message.

Proving continuous non-malleability. Turning to continuous non-malleability, the main
step of the proof is a game hop in which the values (κ1, . . . , κn) result from a secret shar-
ing of an unrelated key κ′ 6= κ. In order to establish the indistinguishability between this
modified experiment and the original experiment, we consider a reduction to the continuous
non-malleability of the underlying LR-CNMSS. Such a reduction can interact with a target
secret sharing (κ1, . . . , κn) that is either a secret sharing of κ or of κ′. The main obstacle, here,
comes from the simulation of tampering queries. In fact, although the reduction can perfectly
emulate the distribution of the individual shares si = (κi, c) inside the tampering oracle, as the
ciphertext c can be sampled locally, the difficulty is that to emulate the output of the recon-
struction w.r.t. a given subset T = {t1, . . . , t%̃} we need to: (i) ensure that all of the mauled
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shares s̃tj = (κ̃tj , c̃tj ) actually contain the same ciphertext, i.e. c̃t1 = . . . = c̃t%̃ = c̃, and (ii) use
the mauled secret key κ̃ received by the reduction in response to a tampering query in order to
obtain the decryption of the unique ciphertext c̃ (if such a ciphertext exists).

We overcome both of the above obstacles by exploiting the fact that the starting CNMSS is
resilient to noisy leakage. This is crucial in our setting, since the size of the ciphertext might
very well exceed the maximal length of a share of the secret key. Hence, generalizing a trick
from [FNSV18, CFV19], we proceed to check equality of all the ciphertexts in a block-wise
fashion, by leaking blocks of λ bits from each share, where λ is the security parameter. This
leakage routine continues until eventually we obtain the entire ciphertext c̃, unless some of the
blocks leaked from each share differ, in which case we answer the tampering query by ⊥ and
trigger a self-destruct.

It remains to show that the above methodology does not result in too much leakage. Intu-
itively, this holds because up to the point where the leaked blocks of the ciphertexts are all the
same, the leakage on each share can be thought of as a function of the other shares, so that
this leakage does not decrease the min-entropy of each share more than conditioning on the
other shares, which is fine since in known constructions the mutual information between the
shares is very low. On the other hand, when a self-destruct is triggered, we reveal only λ bits of
information; by a standard argument, this causes a min-entropy drop of roughly λ bits, which
again is tolerated by the underlying scheme.

3 Preliminaries

3.1 Basic Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number of elements
in X . When x is chosen randomly in X , we write x←$ X . When A is a randomized algorithm,
we write y←$ A(x) to denote a run of A on input x (and implicit random coins r) and output
y; the value y is a random variable, and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number of steps (in the
size of the input).

Negligible functions. We denote with λ ∈ N the security parameter. A function p is a
polynomial, denoted p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant c > 0. A function
ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if it vanishes faster
than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).
We often write ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible.

Unless stated otherwise, throughout the paper, we implicitly assume that the security pa-
rameter is given as input (in unary) to all algorithms.

Random variables. For a random variable X, we write P [X = x] for the probability that X
takes on a particular value x ∈ X (with X being the set where X is defined). The statistical
distance between two random variables X and X′ defined over the same set X is defined as
SD (X; X′) = 1

2

∑
x∈X |P [X = x]− P [X′ = x] |.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they
are identically distributed, X ≈s Y to denote that they are statistically close, i.e. SD (Xλ; X′λ) ∈
negl(λ), and X ≈c Y to denote that they are computationally indistinguishable, i.e., for all
PPT distinguishers D:

|P [D(Xλ) = 1]− P [D(Yλ) = 1]| ∈ negl(λ).
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We extend the notion of computational indistinguishability to the case of interactive ex-
periments (a.k.a. games) featuring an adversary A. In particular, let GA(λ) be the random
variable corresponding to the output of A at the end of the experiment, where wlog. we may
assume A outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write
{GA(λ, 0)}λ∈N ≈c {GA(λ, 1)}λ∈N as a shorthand for

|P [GA(λ, 0) = 1]− P [GA(λ, 0) = 1]| ∈ negl(λ).

The above naturally generalizes to statistical distance (in case of unbounded adversaries).

Average min-entropy. The min-entropy of a random variable X with domain X is H∞(X) :=
− log maxx∈X P [X = x], and intuitively it measures the best chance to predict X (by a com-
putationally unbounded algorithm). For conditional distributions, unpredictability is measured
by the conditional average min-entropy H̃∞(X|Y) := − logEy

[
2−H∞(X|Y=y)

]
[DORS08]. The

lemma below is sometimes known as the “chain rule” for conditional average min-entropy.

Lemma 1 ([DORS08], Lemma 2.2). Let X,Y,Z be random variables. If Y has at most
2` possible values, then H̃∞(X|Y,Z) ≥ H̃∞(X,Y|Z) − ` ≥ H̃∞(X|Z) − `. In particular,
H̃∞(X|Y) ≥ H̃∞(X,Y)− ` ≥ H̃∞(X)− `.

3.2 Standard Cryptographic Primitives

3.2.1 Threshold Secret Sharing

An n-party secret sharing scheme Σ consists of a pair of polynomial-time algorithms (Share,
Rec) specified as follows: (i) The randomized sharing algorithm Share takes as input a message
m ∈ M, and outputs n shares s1, . . . , sn where each si ∈ Si; (ii) The deterministic algorithm
Rec takes as input a certain number of candidate shares and outputs a value inM∪{⊥}. Given
s = (s1, . . . , sn) and a subset I ⊆ [n], we often write sI to denote the shares (si)i∈I .

Definition 1 (Threshold secret sharing). Let n, τ, % ∈ N, with τ ≤ % ≤ n. We say that
Σ = (Share,Rec) is an (n, τ, %)-threshold secret sharing scheme ((n, τ, %)-TSS for short) over
message space M and share space S = S1 × · · · × Sn if it is an n-party secret sharing with the
following properties.

(i) %-Threshold Reconstruction: For all messages m ∈ M, and for all subsets I ⊆ [n]
such that |I| ≥ %, we have that Rec((Share(m))I) = m, with overwhelming probability
over the randomness of the sharing algorithm.

(ii) τ-Threshold Privacy: For all pairs of messages m0,m1 ∈ M, and for all unqualified
subsets U ⊆ [n] such that |U| < τ , we have that

{(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

If the ensembles {(Share(1λ,m0))U}λ∈N and {(Share(1λ,m1))U}λ∈N are statistically close
(resp. identically distributed), we speak of statistical (resp. perfect) τ -threshold privacy.

Typical TSS schemes achieve the optimal parameters % = τ . However, having a small
gap between the privacy and reconstruction threshold makes sense too, and looking ahead our
constructions will have minimal gap %− τ ≥ 1.
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Gsem
Π,A(λ, b):

κ←$K
(m0,m1, α)←$ A0(1λ)
c←$ AEnc(κ,mb)
Return A1(c, α)

Gauth
Π,A (λ):

κ←$K
(m,α)←$ A0(1λ)
c←$ AEnc(κ,m)
c′←$ A1(c, α)
Return 1 iff:

(i) c′ 6= c; and
(ii) ADec(κ, c′) 6= ⊥

Figure 1: Experiments defining security of authenticated encryption.

Special reconstruction. We will need TSS schemes meeting an additional reconstruction
property, called special reconstruction. This means that for any subset I ⊂ [n] of size at least
%+ 1, and for any m ∈M which is secret shared as in (s1, . . . , sn)←$ Share(m), if there are two
subsets I1, I2 ⊂ I of size % such that

Rec((si)i∈I1) = Rec((si)i∈I2),

then the above equation holds for all subsets I1, I2 ⊂ I of size %.

3.2.2 Authenticated Encryption

A (secret-key) authenticated encryption (AE) scheme is a tuple of polynomial-time algorithms
Π = (KGen,AEnc,ADec) specified as follows: (i) The randomized algorithm KGen takes as input
the security parameter λ ∈ N, and outputs a uniform key κ←$K; (ii) The randomized algorithm
AEnc takes as input a key κ ∈ K and a message m ∈ M, and outputs a ciphertext c ∈ C; (iii)
The deterministic algorithm ADec takes as input a key κ ∈ K and a ciphertext c ∈ {0, 1}∗,
and outputs a value m ∈ M∪ {⊥}, where ⊥ denotes an invalid ciphertext. We call K, M, C,
respectively, the key, message, and ciphertext space of Π.3

We say that Π meets correctness if for all κ ∈ K, and all messages m ∈ M, we have that
P [ADec(κ,AEnc(κ,m)) = m] = 1 (where the probability is taken over the randomness of AEnc).
As for security, we will need AE schemes that satisfy two properties (see below for formal
definitions). The first property, usually known as semantic security, says that it is hard to
distinguish the encryption of any two (adversarially chosen) messages. The second property,
usually called authenticity, says that, without knowing the secret key, it is hard to produce a
valid ciphertext (i.e., a ciphertext that does not decrypt to ⊥).

Definition 2 (Security of AE). Let Π = (KGen,AEnc,ADec) be an AE scheme. We say that Π
is secure if the following holds for the games defined in Fig. 1.

∀ PPT A :
{
Gsem

Π,A(λ, 0)
}
λ∈N ≈c

{
Gsem

Π,A(λ, 1)
}
λ∈N ,

P
[
Gauth

Π,A (λ) = 1
]
∈ negl(λ).

Note that since both authenticity and semantic security are one-time guarantees, in principle,
information-theoretic constructions with such properties are possible when |K| ≥ |M|. However,
we are interested in constructions where |M| � |K|, for which the existence of one-way functions
is necessary.

3These sets typically depend on the security parameter, but we drop this dependency to simplify notation.
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3.3 Non-Malleable Codes

A split-state code Γ = (Enc,Dec) consists of a pair of polynomial-time algorithms specified as
follows: (i) The randomized encoding algorithm Enc takes as input a message m ∈ M and
returns a split-state codeword (L,R) ∈ L×R; (ii) The (deterministic) decoding algorithm Dec
takes as input a codeword (L,R) ∈ ({0, 1}∗)2 and outputs a value inM∪{⊥}, where ⊥ denotes
an invalid codeword. A codeword (L,R) such that Dec(L,R) 6= ⊥ is called a valid codeword;
we call M the message space, and L,R the left and right codeword space.

We say that Γ satisfies correctness if, for all m ∈ M, we have that Dec(Enc(m)) = m with
overwhelming probability over the randomness of the encoding.

Noisy leakage. We will leverage codes where non-malleability (as defined below) is satisfied
even in the presence of adversaries that can obtain independent leakage on the two shares of a
target encoding (L,R).

Following a long tradition in leakage-resilient cryptography [DHLW10, NS12, FNV17], we
model the leakage as an arbitrary function of its input. The only restriction is that the overall
leakage on L does not decrease the min-entropy of L more than a fixed amount ` ∈ N (that is a
parameter of the scheme). Of course, an analogous condition must be satisfied for the leakage
on the right side R. We formalize this restriction via a notion of admissibility, as defined below.

Definition 3 (Admissible adversaries for split-state codes). Let Γ = (Enc,Dec) be a split-state
code. We say that a PPT adversary A is `-admissible if it outputs a sequences of leakage queries

(chosen adaptively) (g
(q)
left, g

(q)
right)q∈[p], with p(λ) ∈ poly(λ), such that for all messages m ∈M:

H̃∞
(
L|R, g(1)

left(L), · · · , g(p)
left(L)

)
≥ H̃∞(L|R)− `

H̃∞
(
R|L, g(1)

right(R), · · · , g(p)
right(R)

)
≥ H̃∞(R|L)− `,

where (L,R) is the joint random variable corresponding to Enc(1λ,m).

Note that we measure the min-entropy drop due to the leakage w.r.t. the conditional average
min-entropy of L|R and R|L. We find this meaningful as it allows to capture automatically
the correlation between L and R. Alternatively, we could define admissibility by conditioning
only on the leakage (without further considering the other share in the equations above); we
observe, however, that these two notions of admissibility are equivalent up to a small loss in
the leakage parameter. This is due to the fact that, in known instantiations [ADKO15b, Li17],
the mutual information between L and R is small, a property sometimes known as conditional
independence [OPVV18, FNSV18, CFV19].

Continuous non-malleability. Intuitively, a split-state code is non-malleable [DPW10, LL12]
if no adversary tampering independently (yet arbitrarily) with the two sides of a given target
encoding (L,R) of some value m, can generate a modified codeword (L̃, R̃) that decodes to a
value related to m. Continuous non-malleability [FMNV14] is a strengthening of this guarantee,
where the attacker is allowed to tamper continuously, and adaptively, with (L,R), until a decod-
ing error occurs, after which the system “self-destructs” and stops answering tampering queries.
Such a self-destruct capability, that in practice might be implemented via a public write-once
flag, is well known to be necessary for achieving continuous non-malleability, as otherwise simple
attacks are possible [GLM+04].

We formalize continuous non-malleability for split-state non-malleable codes using a game-
based definition. Simulation-based definitions also exist, but the two formulations are known
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CNMCΓ,A(λ,m0,m1, b):

(L,R)←$ Enc(mb)
stop← false

Return AOnmc((L,R),·,·),Oleak((L,R),·,·)(1λ)
Oleak((L,R), side, g):

If side = left

Return g(L)
If side = right

Return g(R)

Oracle Onmc((L,R), fleft, fright):

If stop = true

Return ⊥
Else

(L̃, R̃) = (fleft(L), fright(R))

m̃ = Dec(L̃, R̃)
If m̃ ∈ {m0,m1}

Return
If m̃ = ⊥

Return ⊥, and stop← true

Else
Return m̃

Figure 2: Experiment defining continuously non-malleable codes in the split-state model. The
tampering oracle Onmc is implicitly parameterized by the flag stop.

to be equivalent as long as the messages to be encoded have super-logarithmic length in the
security parameter [DPW10, OPVV18]. In order to model (split-state) tampering attacks, we
use a stateless leakage oracle Oleak and a stateful oracle Onmc that are initialized with a target
encoding (L,R) of either of two messages m0,m1 ∈M. The goal of the attacker is to distinguish
which message was encoded, while performing both leakage and tampering attacks: The leakage
oracle allows the adversary to obtain information from L and R, while the tampering oracle
allows the adversary to tamper with L and R independently. In case the decoded message
corresponding to a modified codeword (L̃, R̃) is equal to one of the original messages m0,m1,
the oracle returns a special symbol , as otherwise it would be trivial to distinguish which
message was encoded by querying the oracle with, e.g., the identity function.

Definition 4 (Split-state continuously non-malleable codes). Let Γ = (Enc,Dec) be a split-
state code. We say that Γ is an `-noisy leakage-resilient split-state continuously non-malleable
code (`-LR-CNMC for short) if for all m0,m1 ∈M and for all PPT `-admissible adversaries A
as per Def. 3, we have that

{CNMCΓ,A(λ,m0,m1, 0)}λ∈N ≈c {CNMCΓ,A(λ,m0,m1, 1)}λ∈N , (2)

where, for b ∈ {0, 1}, experiment CNMCΓ,A(λ,m0,m1, b) is depicted in Fig. 2.

Message uniqueness. An important property that must be satisfied by any split-state con-
tinuously non-malleable code is that of message uniqueness (MU) [FMNV14, OPVV18]. Infor-
mally, this means that if we fix the left side L of an encoding, there are no4 two right sides
R1, R2, such that both (L,R1) and (L,R2) are valid codewords that decode to different messages
m1 6= m2. (An analogous guarantee must hold if we fix the right side.)

A simple observation, due to [OPVV18], is that both the left side L and the right side R of
a split-state non-malleable encoding constitute a perfectly binding commitment to the message.

Lemma 2 ([OPVV18]). Let Γ be a split-state code satisfying MU. Then, for any string L ∈
{0, 1}∗ (resp. R ∈ {0, 1}∗), there exists at most a single value m ∈ M such that Dec(L,R) =
m 6= ⊥ for some R ∈ {0, 1}∗ (resp. for some L ∈ {0, 1}∗).

4Observe that “perfect” MU, as opposed to “computational” MU is wlog. in the plain model.
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Additional properties. For our main construction, we will need CNMCs satisfying two
additional properties as defined below. The first property, called symmetric decoding, says that
for all possible inputs L,R, decoding (L,R) yields the same as decoding (R,L). Note that
this implies some (very weak) form of resilience against tampering via permutations, in that
any split-state continuously non-malleable code with symmetric decoding is still secure w.r.t.
attackers that first tamper the two states (L,R) independently, and later swap L and R.

Definition 5 (Symmetric decoding). We say that a split-state code Γ = (Enc,Dec) has sym-
metric decoding if for all L,R ∈ ({0, 1}∗)2, we have that Dec(L,R) = Dec(R,L).

The second property, called codewords uniformity, requires that, for any message, the en-
coder outputs codewords that are uniform over the set of all possible encodings of the message.

Definition 6 (Codewords uniformity). We say that a split-state code Γ = (Enc,Dec) has
codewords uniformity if for all m ∈ M, we have that Enc(1λ,m) is distributed uniformly over
the set of all possible pairs (L,R) such that Dec(L,R) = m.

4 Continuously Non-Malleable Secret Sharing

4.1 Non-Malleability under Adaptive Concurrent Reconstruction

We now give the definition of leakage-resilient continuously non-malleable secret sharing (LR-
CNMSS) under adaptive concurrent reconstruction. We focus on the case of threshold secret
sharing, where the adversary is allowed to tamper (possibly all!) the shares arbitrarily, but
independently. Non-malleability intuitively guarantees that the reconstructed message, where
the indices T (with |T | = %̃ ≥ %) used for reconstruction are also chosen by the adversary, is
independent of the original message.

Importantly, in our model, the adversary is allowed to tamper continuously, and adaptively,
with the same target secret sharing; the set used for reconstruction in each tampering attempt
is also adversarial, and moreover can be chosen adaptively based on the outcome of previous
queries. This feature, known as concurrent reconstruction, was already considered in previous
work [ADN+18], although in a non-adaptive setting. There are only two limitations: (i) The
adversary is computationally bounded; (ii) After the first tampering query yielding a mauled
secret sharing that reconstructs to ⊥, the answer to all future tampering queries will be ⊥ by
default. The second limitation is sometimes known as “self-destruct feature” in the literature of
non-malleable codes [FMNV14]. Both of these limitations are somewhat necessary (see below).

In order to make our model even stronger, we further allow the adversary to leak information
independently from all the shares. The only restriction here is that the leakage does not decrease
the amount of uncertainty contained in each of the shares by too much. This leads to the notion
of admissible adversary, which is similar in spirit to the notion of admissible adversaries for codes
(cf. §3.3), as defined below.

Definition 7 (Admissible adversaries for secret sharing). Let Σ = (Share,Rec) be an n-party
secret sharing scheme. We say that a PPT adversary A is `-admissible if it outputs a sequence

of leakage queries (chosen adaptively) (i, g
(q)
i )i∈[n],q∈[p], with p(λ) ∈ poly(λ), such that for all

i ∈ [n], and for all m ∈M:

H̃∞
(
Si|(Sj)j 6=i, g

(1)
i (Si), · · · , g(p)

i (Si)
)
≥ H̃∞(Si|(Sj)j 6=i)− `,

where (S1, . . . ,Sn) is the random variable corresponding to Share(1λ,m).
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CNMSSΣ,A(λ,m0,m1, b):

s := (s1, . . . , sn)←$ Share(mb)
stop← false

Return AOnmss(s,·,·),Oleak(s,·,·)(1λ)

Oracle Oleak(s, i ∈ [n], g):

Return g(si)

Oracle Onmss(s, T , (f1, . . . , fn)):

If stop = true

Return ⊥
Else
T := {t1, . . . , t%̃}
s̃ := (s̃1, . . . , s̃n) = (f1(s1), . . . , fn(sn))
m̃ = Rec(s̃t1 , . . . , s̃t%̃)
If m̃ ∈ {m0,m1}

Return
If m̃ = ⊥ return ⊥, and stop← true

Else return m̃

Figure 3: Experiment defining leakage-resilient continuously non-malleable secret sharing
against individual tampering, under adaptive concurrent reconstruction. Note that the ora-
cle Onmss is implicitly parameterized by the flag stop.

Definition 8 (Continuously non-malleable threshold secret sharing). Let n, τ, %, ` ∈ N. Let Σ =
(Share,Rec) be an n-party secret sharing over message spaceM and share space S = S1×· · ·×Sn.
We say that Σ is an `-noisy leakage-resilient continuously non-malleable (n, τ, %)-threshold secret
sharing scheme under adaptive concurrent reconstruction ((n, τ, %, `)-LR-CNMSS for short) if it
is an (n, τ, %)-TSS as per Def. 1, and additionally for all pairs of messages m0,m1 ∈M, and all
PPT `-admissible adversaries A as per Def. 7, we have:

{CNMSSΣ,A(λ,m0,m1, 0)}λ∈N ≈c {CNMSSΣ,A(λ,m0,m1, 1)}λ∈N ,

where, for b ∈ {0, 1}, experiment CNMSSΣ,A(λ,m0,m1, b) is depicted in Fig. 3.

Remark 1 (On game-based security). Note that Def. 8 is game based in spirit. This is in
contrast with all previous definitions of non-malleable secret sharing, which instead are simu-
lation based. While, one could also formulate a simulation-based definition for LR-CNMSS, it
is not hard to show that the two formulations are equivalent as long as the shared value has
super-logarithmic length in the security parameter. A similar equivalence holds for the case of
(continuously) non-malleable codes [DPW10, OPVV18].

Remark 2 (On the relation with CNMCs). When ` = 0, n = 2, and τ = % = 2, one obtains
the definition of split-state CNMCs as a special case. In fact, similar to [ADKO15b], one can
show that any split-state CNMC satisfies 2-threshold privacy.

In the following subsections, we show that both limitations of computational security and
self-destruct are somewhat inherent in our model (even when no leakage is allowed, i.e. ` = 0).
This is immediate for the case n = 2 = τ = % = 2, as the same limitations hold for the
case of split-state CNMCs [FMNV14]. The theorems below5 generalize the impossibility results
of [FMNV14] for certain values of n, τ, %.

4.2 Shared-Value Uniqueness

Consider the following natural generalization of the MU property for continuously non-malleable
codes (cf. §3.3) to the case of TSS schemes.6

5We stress that the attacks described in the proof of Thm. 2 and Thm. 3 do not require to change the
reconstruction set T among different queries, and thus even hold without considering concurrent reconstruction.

6As for MU, “perfect” SVU, rather than “computational” SVU, is wlog. in the plain model.
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Definition 9 (Shared-value uniqueness). Let Σ = (Share,Rec) be an n-party TSS with recon-
struction threshold % ≤ n. We say that Σ satisfies shared-value uniqueness (SVU) if for all
subsets I = {i1, . . . , i%} ⊆ [n], there exists j∗ ∈ [%] such that for all shares si1 , . . . , sij∗−1

, sij∗+1
,

. . . , si% , and for all sij∗ , s
′
ij∗

, we have that either

m = Rec(si1 , . . . , sij∗ , . . . , si%) = Rec(si1 , . . . , s
′
ij∗
, . . . , si%) = m′, (3)

where m,m′ ∈M, or at least one of m,m′ equals ⊥.

Intuitively, the above property says that for every possible choice of an authorized set I,
there exists at least one index ij∗ ∈ I, such that if we fix arbitrarily all the shares but the one in
position ij∗ , the reconstruction process can possibly output a single outcome within the space
of all valid messages. The theorem below says that SVU is necessary for achieving continuous
non-malleability (without leakage) for threshold secret sharing, in the computational setting.

Theorem 2. For any n, τ, % ∈ N, with τ ≤ % ≤ n, every (n, τ, %, 0)-LR-CNMSS must also
satisfy SVU.

Proof. By contradiction, assume that there is a set I = {i1, . . . , i%} for which SVU does not
hold. This means that for all j∗ ∈ [%], there are strings si1 , . . . , sij∗−1

, sij∗+1
, . . . , si% and sij∗ , s

′
ij∗

,

such that Eq. (3) does not hold, i.e.

⊥ 6= m = Rec(si1 , . . . , sij∗ , . . . , si%) 6= Rec(si1 , . . . , s
′
ij∗
, . . . , si%) = m′ 6= ⊥,

for some m,m′ ∈ M. Let now (s∗1, . . . , s
∗
n) be a target secret sharing in the experiment of

Fig. 5, and denote by σi = log |Si| the size of the i-th share. For each j∗ ∈ [%], consider
the following sequence of (efficiently computable) tampering functions with hard-wired values
si1 , . . . , sij∗−1

, sij∗+1
, . . . , si% , sij∗ , s

′
ij∗

, and parameterized by a value k ∈ [σij∗ ]:

fij (s
∗
ij ) =


sij if j 6= j∗

sij∗ if j = j∗ and s∗ij∗ [k] = 0

s′ij∗ if j = j∗ and s∗ij∗ [k] = 1.

Consider a tampering query (T = I, (f1, . . . , fn)), where fi equals the identity function for each
i ∈ [n] \ T (and is defined as above otherwise). We note that the answer to such a tampering
query either equals m (if s∗ij∗ [k] = 0) or m′ (if s∗ij∗ [k] = 1), and thus it allows to learn the value

s∗ij∗ [k] without the risk of self-destruct.

Repeating the above query for each k ∈ [σij∗ ], and for each j∗ ∈ [%], reveals all the shares
(s∗i1 , . . . , s

∗
i%

), which in turn clearly allows to break continuous non-malleability (as long as the

messages m0,m1 are different from all the messages m,m′ that contradict SVU).

Notice that in the information-theoretic setting, when the privacy threshold τ equals the
reconstruction threshold %, and when considering the authorized set I = [%], statistical privacy
implies that for each i∗ ∈ [%] there always exist shares (s1, . . . , si∗−1, si∗ , si∗+1, . . . , s%) and
(s1, . . . , si∗−1, s

′
i∗ , si∗+1, . . . , s%) that violate SVU. Hence, CNMSS with the optimal parameters

τ = % is impossible in the information-theoretic setting, a fact recently established in [BS18].

Corollary 1 ([BS18]). For any n, τ, % ∈ N, with τ = % ≤ n, there is no (n, τ, %, 0)-LR-CNMSS
in the information-theoretic setting.
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τ
=
%

τ

%

Figure 4: Possible parameters %, τ of CNMSS.
Values on the red line require computational as-
sumptions.

Mind the gap. What if there is a small gap
between the reconstruction threshold % and the
privacy threshold τ (e.g., τ ≤ % − 1)? In this
case, the above impossibility result does not
apply. For concreteness, let Σ be an (n, % −
1, %)-TSS and consider the reconstruction set
I = [%]. By perfect privacy, since any collec-
tion of % − 2 shares reveals no information on
the shared value, for every sequence of shares
s1, . . . , s%−2, and for every message m̂ ∈ M,
there exist at least two shares ŝ%−1, ŝ% such
that running the reconstruction algorithm upon
(s1, . . . , s%−2, ŝ%−1, ŝ%) yields m̂ as output. How-
ever, there is no guarantee that a pair of shares
(ŝ′%−1, ŝ

′
%) yielding another message m̂′ 6= m̂,

and such that, e.g., ŝ′%−1 = ŝ%−1, actually exists.
This circumvents the attack described above.

Put differently, whenever τ = % − 1, given any collection of % − 1 shares, we can consider
two cases (cf. also Fig. 4):

• There are at least two possible valid outcomes for the reconstruction procedure. In this
case, a computationally unbounded attacker can still find a sequence of shares violating
SVU, and thus continuous non-malleability requires computational assumptions.
• The shared value is information-theoretically determined, i.e. there exists an inefficient

algorithm which can reconstruct the message. In this case, SVU is not violated, and thus
it is plausible that TSS with perfect privacy and statistical continuous non-malleability
exists.

4.3 Necessity of Self-Destruct

Finally, we show that continuous non-malleability as per Def. 8 is impossible without assuming
self-destruct. This fact is reminiscent of a similar impossibility result for continuously non-
malleable codes [FMNV14], and tamper-resilient cryptography [GLM+04].

Theorem 3. For any n, τ, % ∈ N, with τ ≤ % ≤ n, there is no (n, τ, %, 0)-LR-CNMSS without
assuming the self-destruct capability.

Proof. Fix an arbitrary (n, τ, %)-TSS Σ. For simplicity we assume that Σ has perfect correctness,
and that the shares are all of the same size log |Si| = σ. A generalization is immediate. Consider
the following attacker, attempting to break Def. 8 w.r.t. messages m0 = 01 · · · 1 and m1 = 1 · · · 1:

1. Initialize ŝ1, . . . , ŝ% to the empty string.
2. For each i ∈ [%] and k ∈ [σ], query the tampering oracle Onmss with authorized set T = [%],

and with a sequence of tampering functions

(ŝ1, . . . , ŝi−1︸ ︷︷ ︸
#i−1

, seti,k, id, . . . , id︸ ︷︷ ︸
#%−i

), (4)

where id is the identity function and seti,k is the function that takes as input the i-th
share and sets the bit in position k to zero. Hence:

(a) If the answer from the oracle is , let ŝi[k] = 0.
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(b) Else, in case the answer from the oracle is a value in M∪ {⊥}, let ŝi[k] = 1.

3. Run Rec(ŝ1, . . . , ŝ%), and if the result is mb′ return b′, and otherwise abort.

Let (s1, . . . , sn) be the target secret sharing in the experiment CNMSSΣ,A(λ,m0,m1, b) (stripped
of the self-destruct capability), and denote by Abort the event that A aborts in step 3. For
each i ∈ [%], and k ∈ [σ], let m̂i,k be the message reconstructed inside the Onmss oracle cor-
responding to the tampering query of Eq. (4). Note that, by perfect correctness of the secret
sharing scheme, whenever the tampering function seti,k causes the execution of step 2b, we must
conclude that it flipped the k-th bit of the i-th share, so that A correctly sets ŝi[k] = 1. On
the other hand, whenever the attacker sets ŝi[k] = 0, only three cases are possible: Either (i)
si[k] = 0, or (ii) si[k] = 1 and m̂i,k = mb, or (iii) si[k] = 1 and m̂i,k = m1−b.

We claim that for all values of b ∈ {0, 1}, and for each tampering query of Eq. (4), case
(iii) only happens with negligible probability. To see this, fix b = 0. Then case (iii) means
that by setting to 0 the k-th bit of the i-th share of a secret sharing of m0 = 01 · · · 1 yields
with non-negligible probability a mauled secret sharing whose reconstruction (w.r.t. authorized
set T = [%]) is a related value m1 = 1 · · · 1. However, the latter violates even one-time non-
malleability of Σ w.r.t. messages m′0 = m0 and, say, m′1 = 0 · · · 0.

Thus, by a union bound, we conclude that P [Abort] ∈ negl(λ). Additionally, conditioning
on Abort not happening, we have that the bit b′ returned by A always (i.e., with probability
one) equals the bit b in experiment CNMSSΣ,A(λ,m0,m1, b). Hence, A has overwhelming
distinguishing advantage, concluding the proof.

5 A Scheme with Poor Rate

5.1 Main Construction

Before describing our scheme, we introduce some useful notation. The shares will be of the form
s∗i = (sH,i)H∈([n]2 ) (see Fig. 5), where i ∈ [n]. Given a set A ⊆ [n], we identify with Â the first

two indices (according to the natural order) of A.
Our threshold secret sharing Σ∗ = (Share∗,Rec∗), which is formally depicted in Fig. 5, is

based upon the following ingredients:

• An authenticated secret-key encryption (AE) scheme Π = (AEnc,ADec) (cf. §3.2.2), with
message space M, ciphertext space C, and key space K = {0, 1}λ.
• An (n − 2)-party secret sharing scheme Σ = (Share,Rec), with reconstruction threshold

equal to %− 3, message space C, and share space Sn−2 (cf. §3.2.1).
• A split-state encoding Γ = (Enc,Dec), with message space K and codeword space L ×R

(cf. §3.3).

5.2 Security Analysis

Theorem 4. Let n, %, `, `∗ ∈ N be such that n ≥ % > 2. Assuming that Π is a secure AE
scheme, that Σ is a (n− 2, %− 3, %− 3)-TSS with perfect threshold privacy and with the special
reconstruction property, and that Γ is an `-LR-CNMC with symmetric decoding and with code-
words uniformity, the secret sharing scheme Σ∗ of Fig. 3 is an (n, %− 1, %, `∗)-LR-CNMSS, as
long as ` = `∗ + 2γ +O(log λ) where γ = log |C| is the size of a ciphertext under Π.

Proof. We need to prove that Σ∗ satisfies both threshold privacy and continuous non-malleability.
Both proofs proceed with a hybrid argument enumerating over all sets in

(
[n]
2

)
. We assume a

fixed order between these sets, namely, let N =
(
n
2

)
and let H1,H2, . . . ,HN be such an order.
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Basic Construction of LR-CNMSS

Let Π = (AEnc,ADec), Σ = (Share,Rec), and Γ = (Enc,Dec) be as described in the text.
Consider the following construction of an n-party secret sharing Σ∗ = (Share∗,Rec∗) with re-
construction threshold % ≤ n, and message space M∗ =M.

Sharing function Share∗(m): The secret sharing of a message m ∈M∗ is a collection of shares
s∗ = (s∗1, . . . , s

∗
n), where s∗i = (sH,i)H∈([n]2 ) and for any H = {h1, h2} ∈

(
[n]
2

)
the share sH,i

is computed following the steps below:

1. Let H̄ = [n] \ H = {h3, . . . , hn};
2. Sample κH←$K and run cH←$ AEnc(κH,m);
3. Compute (sH,h1 , sH,h2)←$ Enc(κH) and (sH,h3 , . . . , sH,hn)←$ Share(cH).

Reconstruction function Rec∗(s∗I) : Let I = {i1, . . . , i%}. Wlog. we assume that the set I is
ordered and that is made of exactly % indices. (If not, we can just order it and use only
the first % indices.)

1. Let Î = {i1, i2}, and parse s∗I = (s∗i1 , . . . , s
∗
i%

), where for each j ∈ [%] we have
s∗ij = (sH,ij )H∈([n]2 );

2. Compute κ = Dec(sÎ,i1 , sÎ,i2), and for sets A1 = {i3, . . . , i%−1} and A2 = {i4, . . . , i%}
let c1 = Rec((sÎ,a)a∈A1) and c2 = Rec((sÎ,a)a∈A2);

3. If c1 6= c2 output ⊥, else let c = c1 = c2 and return m = ADec(κ, c).

Figure 5: A construction of leakage-resilient continuously non-malleable secret sharing for
threshold access structures, in the computational setting.

Threshold privacy. τ∗ ≤ % − 1 The goal is to show that for all messages m0,m1 ∈ M∗,
and for all unauthorized subset U = {u1, . . . , uτ∗−1}, with τ∗ ≤ % − 1, the two ensembles
{(Share∗(1λ,m0))U}λ∈N and {(Share∗(1λ,m1))U}λ∈N are computationally indistinguishable. Fix
m0,m1 ∈M, and U . Consider the following sequence of hybrid experiments.

Hybrid H0(λ, b): Distributed identically to Share∗(1λ,mb))U .
Hybrid H′j(λ, b): Identical to Hj−1(λ, b), but if Hj 6⊂ U then (sHj ,h1 , sHj ,h2)←$ Enc(0λ).
Hybrid Hj(λ, b): Identical to H′j(λ, b), but cHj ←$ AEnc(κHj , m̂) for a fixed m̂ ∈M\{m0,m1}.

Lemma 3. ∀j ∈ [N ], ∀b ∈ {0, 1}: {H′j(λ, b)}λ∈N ≈c {Hj−1(λ, b)}λ∈N.

Proof. Fix j ∈ [N ] and b ∈ {0, 1}. We reduce to the 2-threshold privacy of Γ (cf. Remark 2). In
particular, if the intersection Hj ∩ U has size ≥ 1, then by threshold privacy of the underlying
CNMC the hybrids Hj−1 and H′j are computationally indistinguishable. On the other hand, if
the size of the intersection is 0, then the hybrids are equivalently distributed.

Lemma 4. ∀j ∈ [N ], ∀b ∈ {0, 1}: {H′j(λ, b)}λ∈N ≈c {Hj(λ, b)}λ∈N.

Proof. Fix j ∈ [N ] and b ∈ {0, 1}. We either reduce to the perfect privacy of Σ, or to the
semantic security of Π. In particular, we consider two cases:

• If Hj ⊂ U , then for any randomness r, key κHj , and ciphertexts c0
Hj , c

1
Hj such that

cbHj = AEnc(κHj ,mb; r), the distributions (Share(c0
Hj ))U\Hj and (Share(c1

Hj ))U\Hj are

equivalently distributed, as |U \ Hj | < (ρ− 1)− 2 = ρ− 3.
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• Else, if Hj 6⊂ U , we have that the secret key κHj , which is used to compute the ciphertext
cHj , is not included in the adversary’s view (given the change introduced in H′j), and
therefore by semantic security the adversary cannot distinguish an encryption of mb from
one of m̂. The reduction is straightforward, and therefore omitted.

It is clear that the ensembles {HN (λ, 0)}λ∈N and {HN (λ, 1)}λ∈N are identically distributed,
which concludes the proof of threshold privacy.

Continuous non-malleability. We need to show that for all messages m0,m1 ∈M, and for
all PPT `∗-admissible adversaries A, the following holds for the experiment defined in Fig. 3:

{CNMSSΣ∗,A(λ,m0,m1, 0)}λ∈N ≈c {CNMSSΣ∗,A(λ,m0,m1, 1)}λ∈N.

Fix m0,m1 ∈M. Consider the hybrids defined below.

Hybrid H0(λ, b): Identical to the experiment CNMSSΣ∗,A(λ,m0,m1, b), except that we ad-
ditionally sample a dummy random message. Specifically, the experiment proceeds as
follows (the difference with the original game are underlined in red).

1. Sample m̂←$M;

2. For each H ∈
(

[n]
2

)
, let H = {h1, h2} and H̄ = {h3, . . . , hn}. Hence:

(a) Sample κH←$K;
(b) Compute cH←$ AEnc(κH,m);
(c) Compute (sH,h1 , sH,h2)←$ Enc(κH)
(d) Compute (sH,h3 , . . . , sH,hn)←$ Share(cH).

3. Set s∗i = (sH,i)H∈([n]2 ) for all i ∈ [n].

4. Upon input a leakage query (i, g) from A, return g(s∗i ).
5. Upon input a tampering query (T , (f1, . . . , fn)) from A, where wlog. we assume that
T = {t1, . . . , t%} is ordered,7 answer as follows:

(a) For all j ∈ [%], compute ftj (s
∗
tj ) = s̃∗tj = (s̃H,tj )H∈([n]2 );

(b) Compute κ̃ = Dec(s̃T̂ ,t1 , s̃T̂ ,t2);
(c) For the subsets A1 = {t3, . . . , t%−1} and A2 = {t4, . . . , t%}, compute c̃1 =

Rec((s̃T̂ ,a)a∈A1) and c̃2 = Rec((s̃T̂ ,a)a∈A2);
(d) If c̃1 6= c̃2, then return ⊥ and self-destruct;
(e) Else, let c̃ be the (unique) reconstructed ciphertext and m̃ = ADec(κ̃, c̃);
(f) If m̃ = ⊥, then return ⊥ and self-destruct; else if m̃ ∈ {m0,m1, m̂} return ,

and otherwise return m̃.

Hybrid Hj(λ, b): Identical to Hj−1(λ, b), except that the distribution of the target secret shar-
ing corresponding to the hybrid set Hj = {h1, h2} is modified as follows:

• In step 2a, additionally sample κ̂Hj ←$K;
• In step 2b, let cHj ←$ AEnc(κHj , m̂);
• In step 2c, let (sHj ,h1 , sHj ,h2)←$ Enc(κ̂Hj );
• In step 5e, additionally check if κ̃ = κ̂Hj but c̃ 6= cHj : in case that happens, return
⊥ and self-destruct, else if κ̃ = κ̂Hj and c̃ = cHj set m̃ = .

7Assuming that the size of each reconstruction set T is exactly equal to % is wlog. due to the fact that the
reconstruction algorithm in Fig. 5 only uses the first % shares.
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In order to prove the indistinguishability between Hj and Hj−1 we also introduce the following
intermediate hybrids.

Hybrid Hj,1(λ, b): Identical to Hj−1(λ, b), but where only step 2a and step 2c are modified.
Hybrid Hj,2(λ, b): Identical to Hj,1(λ, b), but where step 5e is modified.
Hybrid Hj,3(λ, b): Identical to Hj,2(λ, b) but where step 2b is modified.

Lemma 5. ∀j ∈ [N ], ∀b ∈ {0, 1}: {Hj−1(λ, b)}λ∈N ≈c {Hj,1(λ, b)}λ∈N.

Proof. By contradiction, assume that there exist some j ∈ [N ], a value b ∈ {0, 1}, and an
`∗-admissible PPT adversary A able to distinguish the interactive experiments Hj−1(λ, 0) and
Hj,1(λ, b) with non-negligible probability. We construct an `-admissible PPT adversary B, for
` as in the statement of the theorem, attacking the code Γ in the experiment of Def. 4 w.r.t.
messages κHj , κ̂Hj ←$K. The reduction B makes use of different types of leakage and tampering
queries, which we summarize in Fig. 6.

Adversary B (playing the game of Fig. 2):

1. For each set H ∈
(

[n]
2

)
\ Hj , run step 2 as described in Hj−1(λ, b).

2. For the hybrid set Hj = {h1, h2}, run step 1, 2a, 2b, and 2d, as described in
Hj−1(λ, b). (While step 2c is not executed.)

3. Note that by executing the above steps, the reduction knows all the shares s∗i
except for s∗h1 and s∗h2 , for which the values sHj ,h1 , sHj ,h2 are missing, and will
be defined through the leakage and tampering oracles. We write ŝ∗h1 and ŝ∗h2
for the partial information known about the shares s∗h1 and s∗h2 .

4. Upon input a leakage query from A, of the form (i, g), answer as follows:

• If i 6∈ Hj , return g(s∗i ), where the value s∗i is known by the reduction;
• Else, if i ∈ Hj = {h1, h2}, forward to the leakage oracle either (left, g′), in

case i = h1, or (right, g′), in case i = h2, where the function g′ hard-wires
the value ŝ∗i , and outputs g(s∗i ).

5. Upon input a tampering query from A, of the form (T , (f1, . . . , fn)) for T =
{t1, . . . , t%}, compute locally s̃t = (s̃H,t)H∈([n]2 ) = ft(s

∗
t ) for each t ∈ T \ Hj ,

and then answer as follows.

(a) Case Hj ⊂ T and |Hj ∩ {t1, t2}| = 1:

i. Forward the query below to the tampering oracle:

(fleft, fright) =


(f t1move, f

t2
set) if t1 = h1

(f t1set, f
t2
move) if t2 = h2

(f t2set, f
t1
move) if t1 = h2

(f t2move, f
t1
set) if t2 = h1.

(5)

ii. Let κ̃ ∈ {0, 1}λ ∪ {⊥, } be the answer from the oracle. If κ̃ = ⊥,
output ⊥ and self-destruct. Else, if κ̃ = , then set κ̃ = κT̂ .

iii. Let Ã1 = {t3, . . . , t%} \ Hj ; compute locally c̃1 = Rec((s̃T̂ ,a)a∈Ã1
).

iv. Let Ã2 ⊂ {t3, . . . , t%} be such that |Ã2| = % − 4, and Hj ∩ Ã2 6= ∅;
compute c̃2 using the leakage oracle. Specifically, if h1 ∈ Ã2 then send

the leakage query (left, gÃ2,h1
rec ), whereas if h2 ∈ Ã2 then send the

leakage query (right, gÃ2,h2
rec ).

v. If c̃1 6= c̃2, then return ⊥ and self-destruct; else set m̃ = ADec(κ̃, c̃1).
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(b) Case T ∩ Hj 6= ∅ and Hj ∩ {t1, t2} = ∅:
i. Compute κ̃ = Dec(s̃T̂ ,t1 , s̃T̂ ,t2);

ii. In case |T ∩Hj | = 1, then let Ã1 = {t3, . . . , t%} \Hj , compute (locally)
c̃1 = Rec((s̃T̂ ,t)t∈Ã1

), and let Ã2 ⊂ T be such that |Ã2| = % − 4 and

either h1 ∈ Ã2 or h2 ∈ Ã2.

- If h1 ∈ Ã2, send the leakage query (left, gÃ2,h1
rec );

- Else, send the leakage query (right, gÃ2,h2
rec ).

In both cases, let c̃2 be the answer obtained from the leakage oracle
iii. In case |T ∩ Hj | = 2, then let Ã = {t3, . . . , t%} \ Hj , and define Ã1 =
Ã ∪ {h1} and Ã2 = Ã ∪ {h2}.
- Send the leakage query (left, gÃ1,h1

rec );

- Send the leakage query (right, gÃ2,h2
rec ).

Denote by c̃1 and c̃2 the corresponding answers obtained from the leak-
age oracle.

iv. If c̃1 6= c̃2, then return ⊥ and self-destruct. Else, set m̃ = ADec(κ̃, c̃1).

(c) Case Hj = {t1, t2}:
i. Send the tampering query (fh1move, f

h2
move), and denote by κ̃ the corre-

sponding output. If κ̃ = ⊥, output ⊥ and self-destruct. Else, if κ̃ = ,
then set κ̃ = κT̂ .

ii. Attempt to compute the unique ciphertext c̃ as described in the original
reconstruction algorithm, using the tampered shares s̃t3 , . . . , s̃t% .

iii. If the ciphertext is not unique, output ⊥ and self-destruct. Else, set
m̃ = ADec(κ̃, c̃1).

(d) Case T ∩ Hj = ∅:
i. This is the simplest case, as the entire reconstruction procedure can

be run locally using the shares s̃t1 , . . . , s̃t% , which are known to the
reduction.

ii. If an error is generated while running the reconstruction algorithm,
output ⊥ and self-destruct, else let m̃ be the reconstructed message.

(e) Whenever m̃ = ⊥, return⊥ and self-destruct. Otherwise, if m̃ ∈ {m0,m1, m̂}
output , and else output m̃.

6. Return whatever A outputs.

Next, we show that the reduction B perfectly simulates the view of A in the hybrid experi-
ment. Namely,

{CNMSSΣ,B(λ, κHj , κ̂Hj , 0)}λ∈N ≡ {Hj−1(λ, b)}λ∈N
{CNMSSΣ,B(λ, κHj , κ̂Hj , 1)}λ∈N ≡ {Hj,1(λ, b)}λ∈N,

where κHj , κ̂Hj ←$K.
First, note that the reduction perfectly emulates the distribution of the target secret sharing

s∗ = (s∗1, . . . , s
∗
n). This is because all the shares s∗i with i ∈ [n] \ Hj are computed locally by

the reduction, whereas the missing shares s∗h1 and s∗h2 are accessible through the leakage and
tampering oracles given the values ŝ∗h1 and ŝ∗h2 , which are known by the reduction. In particular,
if the target encoding (L,R) = (sHj ,h1 , sHj ,h2) is an encoding of κHj (resp. κ̂Hj ), then s∗ as
emulated by the reduction is distributed exactly as in Hj−1(λ, b) (resp. Hj,1(λ, b)). The latter
implies that the answer to leakage queries, as described in step 4, is distributed correctly.
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Tampering functions:

• For X ∈ {L,R}, let f tmove(X) be the function that sets sHj ,t = X, computes s̃∗t =
(s̃H,t)H∈([n]2 ) = ft(s

∗
t ), and returns s̃T̂ ,t.

• For X ∈ {L,R}, let f tset(X) be the function that ignores the input and returns s̃T̂ ,t;

Leakage Functions:

• For X ∈ {L,R}, let gA,trec (X) be the function that sets sHj ,t = X, computes s̃∗t = ft(s
∗
t ),

and outputs Rec((s̃T̂ ,a)a∈A\{t}, s̃T̂ ,t).

Figure 6: Tampering and leakage functions used by the reduction B in the proof of Thm. 4.
We implicitly assume that each function has additionally hard-coded the shares s̃∗t3 , . . . , s̃

∗
t% ; the

tampering function f tset is well defined when t 6∈ {h1, h2}.

It remains to analyze how B treats A’s tampering queries. Given a generic tampering query
(T , (f1, . . . , fn)), we consider 4 cases as described in the reduction.

(a) Case Hj ⊂ T and |Hj ∩ {t1, t2}| = 1. The reduction B reconstructs the ciphertexts c̃1 and

c̃2 using the sets Ã1 and Ã2, which might be different from the sets A1 and A2 used in
the hybrids. However, whenever c̃1 = c̃2, by the special reconstruction property of Σ, we
can conclude that for any subset of {t3, . . . , t%} with cardinality % − 3 the reconstructed
ciphertexts would be the same, and thus the ciphertexts obtained by the reduction are
the same as obtained in the hybrids.
Conversely, if c̃1 6= c̃2, then also the reconstruction with the sets A1 and A2 must yield
different ciphertexts. Therefore, whenever the hybrid returns ⊥ to A due to a failure of
the check performed in step 5d, the reduction B outputs ⊥ too.
Next, we claim that the the output of B’s tampering oracle is distributed exactly as
Dec(s̃T̂ ,t1 , s̃T̂ ,t2) as computed in the hybrid, yielding a perfect simulation of the tampered
key κ̃. The latter can be seen by considering the same cases as done by the reduction in
Eq. (5).

• The first and second case can be analyzed together. Here, we have tk = hk for some
k ∈ {1, 2}. While in this case the reduction cannot compute s∗tk locally, as it does
not know the value sHj ,tk , the values s̃T ,t3−k can be computed locally, since the index

3− k ∈ {1, 2} is not in the set Hj . Moreover, the tampering function f
t3−k
set sets one

part of the tampered codeword to such a value.
Furthermore, the tampering function f tkmove computes the value s̃T ,tk . Therefore, by
sending the tampering query (f t1move, f

t2
set), in case t1 = h1, and (f t1set, f

t2
move), in case

t2 = h2, the tampering oracle returns exactly the same as Dec(s̃T̂ ,t1 , s̃T̂ ,t2).
• The third and fourth case can also be analyzed together. Here, we have tk = h3−k for

some k ∈ {1, 2}. This case is slightly more complex because the share sT ,tk contains
the left part (resp. the right part) of the target codeword relative to the set T , and
the right part (resp. the left part) of the target codeword relative to the set H. In
particular, when t1 = h2, the reduction sends the tampering query (f t2set, f

t1
move), which

yields the same as
Dec(s̃T̂ ,t2 , s̃T̂ ,t1) = Dec(s̃T̂ ,t1 , s̃T̂ ,t2),

thanks to the fact that the code Γ satisfies symmetric decoding. An identical argu-
ment holds for the case t2 = h1.
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Note that the above analysis implies that whenever the hybrid experiment returns ⊥ due
to an invalid decoding of (s̃T̂ ,t1 , s̃T̂ ,t2), the reduction B returns ⊥ too, and the same also
happens whenever the unique reconstructed ciphertext c̃ decrypts to ⊥ (so that we covered
all cases in which the reduction returns ⊥ to A).

(b) Case T ∩ Hj 6= ∅ and Hj ∩ {t1, t2} = ∅. The proof is similar to the previous case. The
difference is that here the reduction can compute the tampered key κ̃ locally, as the
indices t1, t2 do not belong to Hj . Moreover, the ciphertexts c̃1 and c̃2 are reconstructed
via leakage queries, although using subsets Ã1 and Ã2 which are different from the sets
A1 and A2 used in the hybrid. However, by the special reconstruction property of Σ, this
makes no difference, and thus also the distribution of c̃ is perfectly emulated.

(c) Case Hj = {t1, t2}. In this case, the tampered ciphertext c̃ is computed exactly as in

the hybrid experiment. Moreover, the tampering query (f t1move, f
t2
move) yields exactly the

decoding of (s̃T̂ ,t1 , s̃T̂ ,t2), and thus B’s simulation is perfect.
(d) Case Hj ∩ T = ∅. This is the simplest case. In fact, here, A’s tampering query does not

depend on sHj ,h1 , sHj ,h2 , and thus the answer to such a query can be computed by the
reduction locally (yielding a perfect simulation).

In order to conclude the proof, we now show that the reduction B is (`∗ + 2γ + O(log λ))-
admissible. Let ΛB = (ΛB

1 , . . . ,Λ
B
n) and ΛA = (ΛA

1 , . . . ,Λ
A
n) be the concatenation of all answers

to leakage oracle queries received by B and A, respectively (where ΛB
i ,Λ

A
i represent the leakage

from the i-th share). Recall that B makes leakage queries for simulating both A’s leakage and
tampering queries; moreover, for each tampering query, the reduction considers 4 different cases.
Wlog., we will assume that A’s tampering queries either always fall in case (a) (i.e., Hj ⊂ T
and |Hj ∩ {t1, t2}| = 1), or in case (b) (i.e., T ∩Hj 6= ∅ and Hj ∩ {t1, t2} = ∅). The reason why
this can be done is that in the other two cases no extra leakage is required in order to simulate
A’s tampering query.

Our goal is to show that the following equations hold:

H̃∞(L|R,ΛB) ≥ H̃∞(L|R)− (`∗ +O(log λ) + 2γ) (6)

H̃∞(R|L,ΛB) ≥ H̃∞(R|L)− (`∗ +O(log λ) + 2γ),

where (L,R) is the random variable corresponding to the target codeword in the experiment
with Γ. Since the proof of the two equations is analogous, in what follows we only focus on
showing Eq. (6). Denote by q∗ ∈ [p], where p(λ) ∈ poly(λ), the index corresponding to the
tampering query, if any, in which the reduction triggers a self-destruct. Note that the latter

happens only when either: (i) c̃
(q∗)
1 6= c̃

(q∗)
2 ; or (ii) the tampering oracle returns ⊥; or (iii)

ADec(κ̃(q∗), c̃(q∗)) = ⊥. Since the query where a self-destruct happens depends on the target
encoding, the index of the special self-destruct query is actually a random variable, which we de-
note by q∗. We also write Λ(q∗) for the random variable corresponding to the leakage required to
simulate the last tampering query before self-destruct. Finally, let Ŝ = ((S∗i )i∈[n]\Hj , Ŝ

∗
h1
, Ŝ∗h2),

where Ŝ∗h = (SH,h)H∈([n]2 )\Hj
, be the random variable corresponding to the shares sampled by

the reduction at the beginning of the simulation (recall that these values are sampled inde-
pendently from L), and K̃ = (K̃(1), . . . , K̃(q∗−1)) be the random variable corresponding to the
collection of mauled keys (one for each tampering query before self-destruct). Since conditioning
can only decrease the average min-entropy, we can write:

H̃∞(L|R,ΛB) ≥ H̃∞(L|R,ΛB, Ŝ, K̃). (7)

We now specify more explicitly what the leakage ΛB is. Let Q1 (resp. Q2) be the set of
indices q < q∗ such that q ∈ Q1 (resp. q ∈ Q2) if and only if the q-th tampering query is of
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type (a) (resp. of type (b)). With more granularity, we can further partition the set Q2 into
two sets Q2,1 and Q2,2, corresponding to the indices q < q∗ such that q ∈ Q2,1 and q ∈ Q2,2 if
and only if the q-th tampering query is of type (b)ii. (i.e., |T ∩ Hj | = 1) or of type (b)iii. (i.e.,
|T ∩ Hj | = 2), respectively. Hence, the random variable ΛB can be parsed as:

ΛB ≡
(

(C̃
(q)
2 )q∈Q1 , (C̃

(q)
1 , C̃

(q)
2 )q∈Q2,1 , (C̃

(q)
2 )q∈Q2,2 ,Λ

(q∗),ΛA
)
,

where C̃
(q)
1 , C̃

(q)
2 are the random variables corresponding to the mauled ciphertexts obtained

from the leakage oracle during the q-th tampering query. By plugging the expression for ΛB

into Eq. (7), we obtain:

H̃∞(L|R,ΛB) ≥ H̃∞(L|R, (C̃(q)
1 , C̃

(q)
2 )q∈Q1∪Q2,1∪Q2,2 ,Λ

(q∗),ΛA, Ŝ, K̃) (8)

≥ H̃∞(L|R, (C̃(q)
1 )q∈Q1 , (C̃

(q)
1 )q∈Q2,1 , (C̃

(q)
2 )q∈Q2,2 ,Λ

(q∗),ΛA, Ŝ, K̃) (9)

≥ H̃∞(L|R,Λ(q∗),ΛA, Ŝ, K̃) (10)

≥ H̃∞(L|R,Λ(q∗),ΛA) (11)

≥ H̃∞(L|R,ΛA)−O(log λ)− 2γ. (12)

In the above derivation, Eq. (8) follows again by the fact that conditioning can only decrease
the average min-entropy. Eq. (9) and Eq. (10), instead, contain the crux of our argument. Here,

we exploit the fact that for all tampering queries q < q∗ the random variables C̃
(q)
1 and C̃

(q)
2

are the same, and further (C̃
(q)
1 )q∈Q1 (resp. (C̃

(q)
1 )q∈Q2,1 and (C̃

(q)
2 )q∈Q2,2) are a deterministic

function of Ŝ, K̃. Eq. (11) holds because Ŝ is sampled independently of L, whereas by Lemma 2
K̃ is uniquely determined given R. Eq. (12) holds because of the chain rule for conditional
average min-entropy, as in order to describe Λ(q∗) we need O(log λ) bits to represent the index

q∗ ≤ p(λ) ∈ poly(λ), plus 2γ bits to represent the two ciphertexts c̃
(q∗)
1 and c̃

(q∗)
2 (where now

potentially c̃
(q∗)
1 6= c̃

(q∗)
2 ).

Finally, we prove that H̃∞(L|R,ΛA) ≥ H̃∞(L|R)−`∗, which combined with Eq. (12) implies
that B is `-admissible, thus concluding the proof of the theorem. Here, we use the fact that
adversary A is `∗-admissible. Recall that the latter implies that:

H̃∞(S∗h1 |(S
∗
h)h6=h1 ,Λ

A) = H̃∞(L, Ŝ∗h1 |R, (S
∗
h)h∈[n]\Hj , Ŝ

∗
h2 ,Λ

A) (13)

≥ H̃∞(L, Ŝ∗h1 |R, (S
∗
h)h∈[n]\Hj , Ŝ

∗
h2)− `∗, (14)

where Eq. (13) follows by definition of S∗h1 and S∗h2 , and Eq. (14) follows by definition of

admissibility. Intuitively, since A leaks at most `∗ bits of information from (L, Ŝ∗h1), then A
must leak at most ` bits of information about L. More formally, Eq. (14) implies:

H̃∞(L, Ŝ∗h1 |R,Λ
A) ≥ H̃∞(L, Ŝ∗h1 |R)− `∗, (15)

which holds true since the values (S∗h)h∈[n]\Hj , Ŝ
∗
h2

are sampled independently of L and R.

Hence, let Ŝ∗ be the set of all possible assignments for Ŝ∗h1 :

H̃∞(L|R,ΛA) = H̃∞(L|Ŝ∗h1 ,R,Λ
A) (16)

≥ H̃∞(L, Ŝ∗h1 |R,Λ
A)− log |S∗| (17)

≥ H̃∞(L, Ŝ∗h1 |R)− `∗ − log |Ŝ∗| (18)

≥ H̃∞(L|R) + log |Ŝ∗| − `∗ − log |Ŝ∗|, (19)
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where Eq. (16) and Eq. (19) hold by independence of L and Ŝ∗h1 together with the fact that Ŝ∗h1 is

uniformly distributed over Ŝ∗ (by perfect secrecy of Σ and codewords uniformity of Γ), Eq. (17)
follows by the chain rule for conditional average min-entropy (cf. Lemma 1), and Eq. (18) holds
by Eq. (15). This finishes the proof.

Lemma 6. ∀j ∈ [N ], ∀b ∈ {0, 1}: {Hj,1(λ, b)}λ∈N ≈ {Hj,2(λ, b)}λ∈N.

Proof. The only difference between the two hybrids is that, in step 5e, Hj,2(λ, b) additionally
checks whether κ̃ = κ̂Hj but c̃ 6= cHj , and if that is the case it then returns ⊥ to A (with
consequent self-destruct). Else, if κ̃ = κ̂Hj and c̃ = cHj , the hybrids sets m̃ = .

The proof of indistinguishability is down to the authenticity property of the AE scheme Π.
In particular, by Shoup’s lemma [Sho04], we can bound the computational distance between the
two hybrids by the probability of the event that κ̃ = κ̂Hj and c̃ 6= cHj , but ADec(κHj , c̃) 6= ⊥.

Notice that the above event is identical to the winning condition of an adversary B in game
Gauth

Π,B (λ). The reduction is obvious, and therefore omitted.

Lemma 7. ∀j ∈ [N ], ∀b ∈ {0, 1}: {Hj,2(λ, b)}λ∈N ≈c {Hj,3(λ, b)}λ∈N.

Proof. The only difference between the two hybrids is that in Hj,3(λ, b) the ciphertext cHj is
computed as AEnc(κHj , m̂) instead of AEnc(κHj ,mb) as in Hj,2(λ, b).

The proof of indistinguishability is down to semantic security of the AE scheme Π. In
particular, given the change introduced in Hj,1(λ, b), we notice that the key κHj is not part of
the view of the adversary A. Furthermore, due to the change introduced in Hj,2(λ, b), we never
run decryption with the original key κHj . Given these observations the reduction is obvious,
and therefore omitted.

Note that {Hj,3(λ, b)}λ∈N is identically distributed to {Hj(λ, b)}λ∈N. Moreover, the view
of the adversary in HN (λ, b) is independent of the bit b, i.e. {HN (λ, 0)}λ∈N ≡ {HN (λ, 1)}λ∈N.
Thus, the theorem statement follows by combining the above lemmas.

5.3 Instantiating the Construction

We now show how to instantiate Thm. 4, under the assumption of 1-to-1 OWFs. It is well-
known that authenticated encryption can be constructed in a black-box way from any OWF,
whereas we can use the classical Shamir’s construction [Sha79] for the underlying TSS scheme.
The latter is easily seen to meet the special reconstruction property.

Thus, in what follows, we focus on the interesting part which is the instantiation of the split-
state continuously non-malleable code. We start by recalling the construction of [OPVV18],
which is based on the following building blocks.

• Perfectly binding commitments: Let Com be a non-interactive commitment taking
as input a message m ∈ M and returning a commitment com = Com(m; δ) ∈ C, where
δ ∈ D; the pair (m, δ) is called the opening. Intuitively, Com is perfectly binding if any
commitment com can be opened in a single way; additionally, we say that Com is compu-
tationally hiding if for all messages m0,m1 ∈ M it is hard to distinguish whether com is
a commitment to m0 or to m1. Such commitments, for single-bit messages, can be based
on any 1-to-1 OWF φ, by letting com = (φ(δ1), δ2, 〈δ1, δ2〉 ⊕m), where δ1, δ2←$ {0, 1}λ
and 〈·, ·〉 denotes the inner product in F2.8

8To extend the domain to messages of arbitrary polynomial length, one just commits to each bit of the message
individually.

27



Let Com be a non-interactive commitment scheme with message space M, randomness space
D, and commitment space C. Let Γ′ = (Enc′,Dec′) be a split-state code with message space
M′ =M×D. Define the following split-state code, with message space M.

Encoding: Upon input a value m ∈ M, sample random coins δ←$D and compute
com = Com(m; δ) and (L′, R′)←$ Enc′(m||δ). Return the codeword (L,R) := ((com,
L′), (com, R′)).

Decoding: Upon input a pair (L,R), parse (L,R) := ((com0, L
′), (com1, R

′)). Hence, proceed
as follows:
(a) If com0 6= com1, return ⊥; else, let com = com0 = com1.
(b) Run m′ = Dec′(L′, R′); if m′ = ⊥ return ⊥.
(c) Parse m′ := m||δ; if com = Com(m; δ) return m, else return ⊥.

Figure 7: The non-malleable code from [OPVV18].

• Split-state one-time statistically NMC: Let Γ′ = (Enc′,Dec′) be a split-state code
over message space M′ = M× D. We need that Γ′ satisfies one-time statistical non-
malleability under noisy leakage, i.e. it must satisfy Definition 4 w.r.t. all `-admissible
computationally unbounded adversaries limited to ask a single tampering query.

To encode a message m ∈ M, Ostrovsky et al. [OPVV18] first commit to m, obtaining
com = Com(m; δ), and then compute a non-malleable encoding (L′, R′) of the value m||δ. Their
construction is formally described in Fig. 7. Below, we extend their analysis by showing that
the final construction inherits the noisy-leakage resilience of the underlying code Γ′; we also
make the observation that the original security analysis can be simplified when the code Γ′ is
noisy-leakage resilient.

Theorem 5. Assume that Com is a non-interactive perfectly binding and computationally hiding
commitment, and that Γ′ is a split-state `′-noisy leakage-resilient and one-time statistically
non-malleable code. Then, the code Γ described in Fig. 7 is an `-LR-CNMC, as long as `′ =
`+ γ + O(log λ) where γ = log |C| is the size of a commitment. Moreover, if Γ′ has symmetric
decoding and codewords uniformity, so does Γ.

Proof sketch. The fact that the decoding is symmetric follows by inspection of the description
of the decoding process in Fig. 7. Codewords uniformity follows because Γ has codewords
uniformity, and furthermore in the instantiation of perfectly binding commitments from 1-to-1
OWFs the value com is distributed uniformly over the set of all possible commitments to the
message. The proof of non-malleability follows closely that of [OPVV18, Theorem 3], hence
below we only emphasize the differences between the two proofs and assume the reader is
familiar with the security proof in [OPVV18].

Fix m0,m1 ∈ M, and let T(λ, b) ≡ CNMCΓ,A(λ,m0,m1, b). As in the original proof, we
consider a mental experiment H(λ, b), where we replace (L′, R′) with an encoding of a random
and independent value m′←$M′; when answering tampering queries, the experiment returns

in case the mauled message m̃ happens to be equal to m′. The two lemmas below conclude
the proof.

Lemma 8. ∀b ∈ {0, 1} : {T(λ, b)}λ∈N ≈s {H(λ, b)}λ∈N.

Proof. The proof is by induction over the number of tampering queries p ∈ poly(λ) asked by
adversary A. The induction basis is identical as in the proof of [OPVV18, Lemma 2]; the only
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difference is that we additionally need to consider the fact that A can ask noisy-leakage queries.
Below, we explain how to do this directly for the more complicated case of the inductive step.

As for the inductive step, assume that the statement of the lemma holds w.r.t. all adversaries
that ask up to q ∈ [p − 1] tampering queries; we show that this implies the statement for all
adversaries asking up to q + 1 tampering queries, via a reduction to the one-time statistical
non-malleability of the underlying code Γ′. The main difference between our reduction and
the one in [OPVV18] is that, instead of performing the simulation of tampering queries via

optimistic answers, we directly leak the modified commitments ˜com
(j)
left, ˜com

(j)
right corresponding

to the first q tampering queries (f
(j)
left, f

(j)
right) asked by the adversary; this is done up to the first

query, if any, such that ˜com
(j)
left 6= ˜com

(j)
right, upon which a self-destruct is triggered. Thus, we

show that such strategy still yields an `′-admissible reduction.
Fix b = 0 (the proof for the other case being identical). Let (L′, R′) be the target encoding

in the tampering experiment relative to (Enc′,Dec′). Here, (L′, R′) is either an encoding of
m′0 = m0||δ or an encoding of a random value m′1 = m′. Adversary A′, on input (m′0,m

′
1),

proceeds as follows:

1. Parse m′0 = m0||δ and compute com := Com(m0; δ). Run A(1λ).
2. For each leakage query (left, gleft) (resp. (right, gright)) asked by A, define the leakage

function hleft (resp. hright) that hard-wires (a description of) gleft, com (resp. gright, com),
and returns the same as gleft(com, L′) (resp. gright(com, R′)). Forward (left, hleft) (resp.
(right, hright)) to the target leakage oracle.

3. For each j ∈ [q], upon input the j-th tampering query (f
(j)
left, f

(j)
right), where f

(j)
left, f

(j)
right are

polynomial-time computable, proceed as follows.

(a) Define the leakage function ĥ
(j)
left (resp. ĥ

(j)
right) that hard-wires (a description of)

f
(j)
left (resp. f

(j)
right), and returns the commitment ˜com

(j)
left (resp. ˜com

(j)
right) such that

f
(j)
left(com, L′) = ( ˜com

(j)
left, L̃

′) (resp. f
(j)
right(com, R′) = ( ˜com

(j)
right, R̃

′)).

(b) Forward (left, ĥ
(j)
left) and (right, ĥ

(j)
right) to the target leakage oracle, obtaining values

˜com
(j)
left and ˜com

(j)
right.

(c) If ˜com
(j)
left 6= ˜com

(j)
right, set m̃(j) = ⊥ and self-destruct. Else, let ˜com(j) = ˜com

(j)
left =

˜com
(j)
right and find by brute force the corresponding opening m̃(j) (i.e., ˜com(j) =

Com(m̃(j); δ̃(j)) for some δ̃(j) ∈ D).
(d) If m̃(j) ∈ {m0,m1,m

′}, return to A, and otherwise return m̃(j) to A.

4. Upon input the last tampering query (f
(q+1)
left , f

(q+1)
right ), where f

(q+1)
left , f

(q+1)
right are polynomial-

time computable, proceed as follows.

(a) Define the same functions ĥ
(q+1)
left and ĝ

(q+1)
right considered in step 3a, and forward them

to the target leakage oracle, obtaining values ˜com
(q+1)
left and ˜com

(q+1)
right .

(b) Define the polynomial-time computable tampering function f ′left (resp. f ′right) that

hard-wires (a description of) com and f
(q+1)
left (resp. f

(q+1)
right ), and, upon input L′ (resp.

R′), returns the value L̃′ (resp. R̃′) specified by f
(q+1)
left (com, L′) = ( ˜com

(q+1)
left , L̃′) (resp.

f
(q+1)
right (com, R′) = ( ˜com

(q+1)
right , R̃

′)).

(c) Forward (f ′left, f
′
right) to the target tampering oracle, obtaining a value m̃(q+1) ∈

M∪ {⊥, }.
(d) If ˜com

(q+1)
left 6= ˜com

(q+1)
right , or the value m̃(q+1) is not a valid opening, return ⊥ to A;

else, return m̃(q+1).
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5. Check that the simulation up to the first q queries did not cause any inconsistency, due
to the fact that the outcome of one of the tampering queries should have been ⊥ because
(L̃′, R̃′) was not a valid encoding. As shown in [OPVV18], the latter can be done at the
price of one additional bit of leakage, and we can do exactly the same here, with the
adaptation that such a leakage query now also hard-wires the answers to leakage queries
as computed in step 2. More in details:

(a) The reduction keeps a list of all codewords that are possible encodings of the messages
m′0,m

′
1; let L̂(1) and R̂(1) be the initial sets. During the simulation these sets are

updated to L̂(j+1) ⊆ L̂(j) and R̂(j+1) ⊆ R̂(j), by removing all codewords that are not
compatible with the answer to the j-th tampering query.

(b) Without loss of generality, assume that the output of A is equal to 0 whenever A
believes that the target codeword is distributed as in the real experiment.

(c) Define the leakage query hcheck that hard-wires a description of A, the values (com,

m0,m1), a description of the final tampering query (f
(q+1)
left , f

(q+1)
right ), the answer to

previous tampering queries (m̃(1), . . . , m̃(q)), the answer to all leakage queries Λ, and
the set R̂(q+1). The output of the function is a bit b̃ such that b̃ = 1 if and only if
A(m̃(1), . . . , m̃(q), m̃∗,Λ) = 0 more often when Dec((com, L′), (com, R̂′)) = m0, where

R̂′1 ∈ R̂(q+1) and m̃∗ = Dec(f
(q+1)
left (com, L′), f

(q+1)
right (com, R̂′)). (Unless the decoding

yields any of m0,m1,m
′, in which case m̃∗ = .)

(d) Forward (left, hcheck) to the target leakage oracle, obtaining a bit b̃.

6. Upon receiving a bit b′ from A, in case b̃ = 1 output b′, and else return a random guess.

Attacker A′ runs in exponential time. Moreover, an analysis identical to that of [OPVV18,
Lemma 3] shows that the distinguishing advantage of A′ is negligibly close to that of A. In order
to conclude the proof, it remains to show that A′ is `′-admissible, for `′ as in the statement of
the theorem.

Note that adversary A′ makes leakage queries at steps 2, 3b, 4a, and 5c, but the leakage
queries of step 5c is executed only once, and for a total of at most 1 bit of leakage. Let q∗ ∈ N
be the index of the tampering query, if any, where the commitments retrieved in step 3b happen
to be different, and set q∗ = q+1 in case that never happens; note that q∗ is a random variable,
denoted by q∗. Clearly, the leakage queries of step 3b are executed exactly min{q∗, q} times.
Denote by Λleft (resp. Λright) the random variable corresponding to the leakage performed by
the reduction on the left (resp. right) side of the target encoding (L′,R′). We can write:

H̃∞(L′|R′,Λleft) ≥ H̃∞(L′|R′, ĥ(1)
left(L), . . . , ĥ

(q∗)
left (L′), ĥ

(q+1)
left (L′))− `− 1 (20)

= H̃∞(L′|R′, ĥ(1)
right(R

′), . . . , ĥ
(q∗−1)
right (R′), ĥ

(q∗)
left (L′), ĥ

(q+1)
left (L′))− `−1 (21)

≥ H̃∞(L′|R′, ĥ(q∗)
left (L′), ĥ

(q+1)
left (L′))− `− 1−O(log λ) (22)

≥ H̃∞(L′|R′)− `− γ − 1−O(log λ). (23)

In the above derivation, Eq. (20) follows by definition of Λleft, and because the adversary A is
`-admissible and furthermore the leakage performed in step 5c consists of at most 1 bit; Eq. (21)
follows by the fact that, for each q < q∗, the commitments leaked in step 4a on the left and on

the right are identical; Eq. (22) follows by interpreting the tuple (ĥ
(1)
right(R

′), . . . , ĥ
(q∗−1)
right (R′)) as

a function of (R′,q∗), and by further noting that q∗ ≤ p(λ) ∈ poly(λ); Eq. (23) follows because

either q∗ = q + 1, and then the min-entropy drop due to the leakage ĥ
(q∗)
left (L′), ĥ

(q+1)
left (L′) is

bounded by the size γ of a commitment, or q∗ < q + 1, in which case the adversary A′ self-

destructs and only the value ĥ
(q∗)
left (L′) is leaked (causing a drop of at most γ in the min-entropy

bound). The lemma follows.
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Lemma 9. {H(λ, 0)}λ∈N ≈c {H(λ, 1)}λ∈N.

Proof. This proof is identical to [OPVV18, Lemma 5]. The only difference is that, once again,
we additionally need to take care of simulating the answers to A’s leakage queries. However,
this is easy because the reduction to the hiding property of the commitment scheme knows a
perfectly distributed target codeword for A.

It remains to instantiate Thm. 5 by exhibiting a split-state code that is noisy-leakage resilient
and one-time statistically non-malleable. We do this by using the construction of Aggarwal
et al. [ADKO15b], which we briefly recall below. Let F be a finite field. The encoder first
encodes the underlying message m′ ∈ M′ using an auxiliary split-state one-time statistically
non-malleable (but not leakage resilient) code Γ′′ = (Enc′′,Dec′′), obtaining (L′′, R′′) ∈ [N ]×[N ],
where [N ] is a sparse subset of F with size N � |F|. Hence, each share L′′, R′′ is processed
using a slight variant of the inner-product extractor, i.e. L′′ (resp. R′′) is encoded via two
additional shares (L′′1, R

′′
1) ∈ F2t (resp. (L′′2, R

′′
2) ∈ F2t) such that ψ(〈L′′1, R′′1〉) = L′′ (resp.

ψ(〈L′′2, R′′2〉) = R′′), where ψ : F → [N ] is an arbitrary bijection. The final encoding is then
defined to be (L′, R′) = ((L′′1, L

′′
2), (R′′1 , R

′′
2)) ∈ F2t × F2t. It is easy to see that Γ′ has codewords

uniformity; moreover, as long as Γ′′ has symmetric decoding, Γ′ has symmetric decoding too.
By plugging in the above construction the split-state non-malleable code of [ADL18], which

has logN ∈ O(k7), and choosing statistical error ε := 2−k
2
, we obtain a split-state noisy-

leakage-resilient one-time statistically non-malleable code with leakage parameter `′ ≈ k14/12
(cf. [ADKO15b, Corollary 4.2]). Moreover, since the code of [ADL18] has symmetric decoding,
so does the code we obtain. It is important to note that the definition of leakage-resilient non-
malleability considered in [ADKO15b] is simulation based, and not indistinguishability based
as our Def. 4. However, as argued already in [OPVV18], the former implies the latter.

Finally, we observe that the security of the code in [ADKO15b] was analyzed in the bounded
leakage model. However, it is not too hard to see that their analysis can be extended to the
case of noisy leakage. This is because all their proof requires is that the conditional average
min-entropy of the left side L′ and the right side R′ of the codeword conditioned on the leakage
is high enough (with overwhelming probability), and the latter holds true not only when the
length of the leakage is `′-bounded, but more generally as long as the adversary is `′-admissible.
Given the above condition, the rest of the proof follows by considering the same partitioning
strategy as in [ADKO15b, Lemma 6.1].

6 Boosting the Rate

6.1 Information Rate of Secret Sharing

An important measure of the efficiency of a secret sharing scheme is its information rate, defined
as the ratio between the size of the message and the maximum size of a share as function of the
size of the message and the number of shares.9

Definition 10 (Rate of secret sharing). Let Σ = (Share,Rec) be an n-party secret sharing over
message space M and share space S = S1 × · · · × Sn. We define the information rate of Σ to
be the ratio

˚rffl(µ, n, λ) := min
i∈[n]

µ

σi(µ, n, λ)

9One can also define a more general notion of information rate for secret sharing schemes [BSGV96], which
depends on the entropy of the distribution M of the input message. The above definition is obtained as a special
case, by considering the uniform distribution.
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Rate-Optimizing Compiler for LR-CNMSS

Let Σ′ = (Share′,Rec′) be an n-party TSS over message spaceM′ := K and share space S ′n. Let
Π = (AEnc,ADec) be an authenticated secret-key encryption scheme with key space K, message
spaceM, and ciphertext space C. Consider the following construction of a derived n-party TSS
over message space M and share space S := (S ′ × C)n.

Sharing function Share(m): Sample κ←$K, and compute c←$ AEnc(κ,m). Let (κ1, . . . ,
κn)←$ Share′(κ). Output s = (s1, . . . , sn), where si := (κi, c) for all i ∈ [n].

Reconstruction function Rec(sI): Parse sI = (si1 , . . . , si%), where sij = (κij , cij ) for all
j ∈ [%]. Let κ = Rec′(κi1 , . . . , κi%); if κ = ⊥, return ⊥. Else, if ci1 = . . . = ci% := c, output
ADec(κ, c), and otherwise output ⊥.

Figure 8: Boosting the rate of any leakage-resilient continuously non-malleable secret sharing
(in the computational setting).

where µ = log |M| and σi(µ, n, λ) = log |Si| denote, respectively, the bit-length of the message
and of the i-th share under Σ. Moreover, we say that Σ has asymptotic rate 0 (resp. 1) if
infλ∈N limµ→∞ ˚rffl(µ, n, λ) is 0 (resp. 1).

Note that the length of a share under the TSS scheme of §5, when instantiated using the
split-state CNMC from §5.3, is O(n2 ·max{λ8, µ+ λ}). Hence, we have obtained:

Corollary 2. Let λ ∈ N be the security parameter. Under the assumption of 1-to-1 OWFs,
there exists a noisy-leakage-resilient continuously non-malleable n-party threshold secret sharing

for µ-bit messages, with rate Ω
(

µ
n2·(λ8+µ)

)
.

6.2 A Rate-Optimizing Compiler

In this section, we show how to optimize the rate of any LR-CNMSS, under computational
assumptions. We will achieve this through a so-called rate compiler, i.e. a black-box trans-
formation that takes any LR-CNMSS with asymptotic rate 0 and returns a LR-CNMSS with
asymptotic rate 1.

Our compiler is formally described in Fig. 8, and is inspired by a beautiful idea of Aggarwal
et al. [AAG+16], who considered a similar question for the case of (one-time) non-malleable
codes against split-state tampering; recently, their approach was also analyzed in the case of
continuous tampering [CFV19]. Intuitively, the construction works as follows. The sharing
function samples a uniformly random key κ for a symmetric encryption scheme, and secret
shares κ using the underlying rate-0 threshold secret sharing, obtaining shares κ1, . . . , κn. Next,
the input message m is encrypted under the key κ, yielding a ciphertext c, and the final share
of each player is defined to be si = (κi, c). Importantly, the reconstruction function, before
obtaining the key κ and decrypting the ciphertext c, checks that the ciphertext contained in
every given share is the same.

Note that when the initial secret sharing scheme is a 2-out-of-2 TSS, i.e. Σ′ is actually a
split-state LR-CNMC, we obtain as a special case one of the rate compilers analyzed in [CFV19].
A notable advantage of our result, however, is that we can instantiate the construction in the
plain model (whereas Coretti et al. assume a CRS).

6.3 Security Analysis

We establish the following result:
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Theorem 6. Let n, τ, % ∈ N, with τ ≤ % ≤ n. Assuming that Σ′ is an (n, τ, %, `′)-LR-CNMSS,
and that Π is a secure AE scheme, the secret sharing scheme Σ of Fig. 8 is an (n, τ, %, `)-LR-
CNMSS as long as `′ = `+ λ+O(log λ).

Before proving the above theorem, we compute the rate of the scheme of Fig. 8. Note that
since the key size is independent of the message size, the length of a share is µ+poly(n, λ), thus
yielding a rate of µ

µ+poly(n,λ) . This asymptotically approaches 1 when the message size goes to
infinity.

Corollary 3. Under the assumption of 1-to-1 OWFs, there exists a noisy-leakage-resilient
continuously non-malleable threshold secret sharing with asymptotic information rate 1.

Proof of Theorem 6. We proceed to show each of the required properties.

Threshold reconstruction. Since Σ′ satisfies %-threshold reconstruction, we get that with
overwhelming probability the reconstruction function Rec yields the same key κ sampled during
sharing. Hence, the correctness of the AE scheme ensures that ADec(κ, c) yields the original
message, with overwhelming probability. Thus, Σ satisfies %-threshold reconstruction as well.

Threshold privacy. We need to show that for all m0,m1 ∈ M, and for each unauthorized
subset U ⊂ [n] with |U| ≤ τ−1, the two ensembles {Share(1λ,m0)U}λ∈N and {Share(1λ,m1)U}λ∈N
are computationally close. Fixm0,m1 ∈M, and U . We transition to a mental experiment where
the shares (κ1, . . . , κn) are computed using an independent random key κ′←$K. A straightfor-
ward reduction to the τ -threshold privacy of Σ shows that, for all b ∈ {0, 1}, the distribution
{Share(1λ,mb)U}λ∈N in the original experiment is computationally close to that of the modified
experiment.

Now, a straightforward reduction to the semantic security of the SKE scheme shows that, in
the above defined mental experiment, and for all m0,m1 ∈M, we have {Share(1λ,m0)U}λ∈N ≈c
{Share(1λ,m1)U}λ∈N. This concludes the proof of τ -threshold privacy.

Continuous non-malleability. Fix m0,m1 ∈M, and consider the following hybrids.

Hybrid H0(λ, b): Distributed identically to CNMSSΣ,A(λ,m0,m1, b).
Hybrid H1(λ, b): Identical to the previous experiment, except that the sharing function now

samples an independent key κ′←$K and runs (κ1, . . . , κn)←$ Share′(κ′). The reconstruc-
tion function proceeds identically to Rec, except that if the key κ′ is reconstructed cor-
rectly, the original key κ is used to decrypt the (unique) ciphertext c.

Hybrid H2(λ, b): Identical to the previous experiment, except that the reconstruction function
always outputs ⊥ in case the reconstructed key is equal to the key κ′ sampled by the
sharing function, but the (unique) ciphertext contained in the given shares is different
from the ciphertext c computed during sharing.

Lemma 10. ∀b ∈ {0, 1}: {H0(λ, b)}λ∈N ≈c {H1(λ, b)}λ∈N.

Proof. The proof is down to the continuous non-malleability of the underlying secret sharing
scheme Σ′. For simplicity, fix b = 0 (the proof for b = 1 is identical). By contradiction, assume
that there exists a PPT adversary A, and a polynomial p0,1(λ) ∈ poly(λ), such that for infinitely
many values λ ∈ N we have:

|P [H0(λ, 0) = 1]− P [H1(λ, 0) = 1]| ≥ 1

p0,1(λ)
.
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Note that the probability in the above equation is taken over the randomness of the sharing
function Share, over the coins for A, and over the choice of the keys κ, κ′ ∈ K. By a standard
averaging argument, this means that there exist at least two values κ, κ′ such that the above
equation holds even when we fix these particular values of κ, κ′. We construct a PPT adversary
A′ that violates continuous non-malleability of Σ′ w.r.t. the pair of messages (κ, κ′). In what
follows, denote by s′ := (κ1, . . . , κn) the target secret sharing in the experiment with A′ (i.e.,
s′ is either a secret sharing of κ or of κ′ under Σ′); wlog. we also assume that the bit-size of a
ciphertext is made of η ∈ N blocks of size λ ∈ N.

Adversary A (playing the game of Fig. 3):

1. Run A(1λ), and sample c←$ AEnc(κ,m0).
2. Upon input a leakage query (i, g) from A answer as follows:

(a) Define the leakage function g′(·) := g(·, c).
(b) Submit (i, g′) to the target Oleak(s

′, ·, ·) oracle, and feed the answer from
the oracle back to A.

3. Upon input a tampering query (T , (f1, . . . , fn)) from A answer as follows:

(a) Parse T = {t1, . . . , t%̃}, where n ≥ %̃ ≥ %.
(b) For i ∈ [n] and k ∈ [η], define the leakage function h′i,k(κi) that hard-wires

a description of c, fi, runs (κ̃i, c̃i) = fi(κi, c), and then outputs the k-th
block of c̃i.

(c) Consider the following sequence of leakage queries:

(t1, h
′
t1,1), . . . , (t%̃, h

′
t%̃,1

), . . . , (t1, h
′
t1,η), . . . , (t%̃, h

′
t%̃,η

).

Start asking the above queries to the target Oleak(s
′, ·, ·) oracle from left to

right, but the first time it happens that the answer to

(tj , h
′
tj ,k

) and (tj′ , h
′
tj′ ,k

)

differ, for values k ∈ [η] and j, j′ ∈ [%̃] such that j 6= j′, output ⊥ and self-
destruct. Else, go to the next step with a uniquely determined ciphertext
c̃ which is obtained wlog. by concatenating the η blocks corresponding to
the leakage queries (t1, h

′
t1,1

), . . . , (t1, h
′
t1,η).

(d) Forward to the target Onmss(s
′, ·, ·) oracle the tampering query (T , (f ′1, . . . ,

f ′n)), where for each i ∈ [n] we set f ′i(·) = f ′i(·, c), obtaining an answer
κ̃. Hence, if κ̃ = ⊥, output ⊥ and self-destruct. Else, if κ̃ = , let
m̃ = ADec(κ, c̃), whereas if κ̃ 6= , let m̃ = ADec(κ̃, c̃). Finally, if m̃ = ⊥,
output ⊥ and self-destruct; else, return m̃.

4. Output whatever A outputs.

For the analysis, first note that A′ clearly runs in polynomial time. Furthermore, we claim
that the view of A is perfectly simulated, meaning that if the target s′ is a secret sharing of
κ, then the reduction yields a distribution which is identical to that of experiment H0(λ, 0),
whereas if the target s′ is a secret sharing of κ′, then the reduction yields a distribution which
is identical to that of experiment H1(λ, 0). We support this claim below:

• (Target secret sharing.) Note that the distribution of c←$ AEnc(κ,m0) is identical in
both experiments H0(λ, 0) and H1(λ, 0). Since every leakage and tampering query hard-
wires the ciphertext c, this implies that the reduction perfectly emulates the distribution
of the target secret sharing s = (κi, c)i∈[n] inside the leakage and tampering oracles.
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• (Answer to leakage queries.) By the above argument, the simulation of leakage queries
is perfect.
• (Answer to tampering queries.) Let (T , (f1, . . . , fn)) be a generic tampering query,

where T = {t1, . . . , t%̃}, and denote by s̃i = (κ̃i, c̃i) the i-th tampered share. By the
above argument, the distribution of each s̃i is perfectly simulated inside the tampering
oracle. Hence, the reduction checks via leakage queries if c̃t1 = · · · = c̃t%̃ ; if this is not
the case it answer’s A tampering query with ⊥ and self-destructs. Otherwise, it obtains
a perfectly distributed reconstructed key κ̃ = Rec′(κ̃t1 , . . . , κ̃t%̃) which is used to complete
the simulation of Rec(s̃t1 , . . . , s̃t%̃) for A as done in both experiments H0(λ, 0) and H1(λ, 0).

It remains to show that if A is ` admissible, then A′ is `′-admissible for `′ as in the statement
of the theorem. To do that, let S′1, . . . ,S

′
n be the random variable corresponding to the target

secret sharing in the experiment with A′, and denote by Λ1
i the random variable corresponding

to the overall leakage performed by the reduction on each share S′i in step 2b. Similarly, let

(Tq, (f (q)
1 , . . . , f

(q)
n )) be the q-th tampering query, where T = {tj}j∈[%̃]. We denote by Λ2

q,tj ,k

the random variable corresponding to the leakage obtained from each function h′tj ,k used by the

reduction to answer the q-th tampering query in step 3c. Additionally, denote by q∗ ∈ [p] and
k∗ ∈ [η] the special indices (if any exist) for which Λ2

q∗,tj ,k∗
6= Λ2

q∗,tj′ ,k
∗ for some j 6= j′; note

that the actual value of q∗, k∗ depends on the random coins used to sample the target secret
sharing, and on the randomness of the adversary, thus q∗, k∗ are actually random variables
which we denote by q∗,k∗. Finally, we also write Λ2

i for the random variable corresponding to
the cumulative leakage performed by the reduction on the share S′i, in order to answer all the
tampering queries asked by A.

Now, for each i ∈ [n], we can write:

H̃∞(S′i|(S)j 6=i,Λ
1
i ,Λ

2
i ) ≥ H̃∞(S′i|(S′j)j 6=i,Λ2

i )− ` (24)

≥ H̃∞((S′j)j 6=i,q
∗,k∗)− `− λ (25)

≥ H̃∞((S′j)j 6=i)− `− λ−O(log λ), (26)

where Eq. (24) follows by the fact that A is `-admissible, and Eq. (26) follows because the
bit-length of both q∗ and k∗ is polynomial in the security parameter. To see that also Eq. (25)
holds true, let Tq be the target set corresponding to the q-th tampering query, for any q < q∗.
There are two cases: either i 6∈ Tq, or i ∈ Tq. In both cases, all the leakages Λ2

q,tj ,k
can be

computed as a deterministic function of the other shares (Sj)j 6=i. This is trivially the case when
i 6∈ Tq, whereas when i ∈ Tq it follows by the fact that this is not the self-destruct round, which
in particular means that the leakages from each share are identical. The same argument applies
to the special query q∗, with target set Tq∗ = T ∗, for all leakage queries h′k,tj with index k < k∗,

while for the special index k∗, in case i ∈ T ∗, it could happen that Λ2
q∗,i,k∗ is different from all

other leakages, which accounts for at most λ bits of loss in the average min-entropy.
The above arguments imply that A′ perfectly emulates the view of A, and additionally A′

is `′-admissible. Thus, A′ has a non-negligible distinguishing advantage, which concludes the
proof of the lemma.

Lemma 11. ∀b ∈ {0, 1}: {H1(λ, b)}λ∈N ≈c {H2(λ, b)}λ∈N.

Proof. The proof is down to the authenticity of the underlying AE scheme Π. For simplicity,
fix b = 0 (the proof for b = 1 is identical). Denote by Forgeq the event that the q-th tampering
query asked by A is such that the tampered reconstructed key κ̃ is equal to κ′, whereas all mauled
ciphertexts are equal to a single ciphertext c̃ that is different from the original ciphertext c of
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the target secret sharing, and moreover this ciphertext is a valid ciphertext w.r.t. key κ (i.e.,
ADec(κ, c̃) 6= ⊥). Let Forge = Forge1 ∨ · · · ∨ Forgeq. It is easy to see that conditioned on

Forge the distribution of H1(λ, 0) and H2(λ, 0) are identical. Thus, by Shoup’s lemma [Sho04],

|P [H1(λ, 0) = 1]− P [H2(λ, 0) = 1]| ≤ P [Forge] .

We will show that Forge only happens with negligible probability, which implies the statement.
By contradiction, assume that there exists a PPT adversary A, and a polynomial p1,2(λ) ∈

poly(λ), such that for infinitely many values λ ∈ N we have that A provokes event Forge in a
run of H2(λ, 0). Denote by p ∈ poly(λ) the number of tampering queries performed by A. We
build a reduction B (using A) which attempts at winning the game Gauth

Π,B (λ) of Def. 2.

Adversary B (playing the left game of Fig. 1):

1. Run A(1λ). Sample κ′←$K, and (κ1, . . . , κn)←$ Share′(κ′). Pick a random
index q∗←$ [p].

2. Forward m0 to the challenger, obtaining a ciphertext c (i.e., an encryption of
m0 under some unknown key κ ∈ K). Set si = (κi, c) for all i ∈ [n].

3. Upon input a leakage query (i, g) from A, answer with g(si).
4. Upon input a tampering query (T , (f1, . . . , fn)) from A, let T = (t1, . . . , t%̃).

For each j ∈ [%̃], compute the tampered share s̃tj = ftj (stj ) = (κ̃tj , c̃tj ). Hence:

(a) Let κ̃ = Rec(κ̃t1 , . . . , κ̃t%̃); if κ̃ = ⊥, output ⊥ and self-destruct.
(b) Check that c̃t1 = · · · = c̃t%̃ ; if that is not the case, output ⊥ and self-

destruct. Else, let c̃ = c̃t1 .
(c) In case κ̃ 6= κ′ return ADec(κ̃, c̃) to A. Else, if κ̃ = κ′, further check

whether c̃ = c: If it does, return to A, and otherwise return ⊥, unless
this is the q∗-th tampering query, in which case forward c̃ to the challenger
and terminate the execution with A.

For the analysis, first note that B runs in polynomial time. Moreover, the secret sharing
s = (si)i∈[n] emulated by the reduction is distributed exactly as in both experiments H1(λ, 0)
and H2(λ, 0). As a consequence, B’s simulation of A’s leakage and tampering queries is perfect.
Thus, A will provoke event Forge with probability 1/p1,2(λ). Assuming that B guesses correctly
the index q∗ corresponding to the first tampering query in which event Forge is provoked, we
obtain that the reduction, in step 4c, forwards to the challenger of game Gauth

Π,B (λ) a ciphertext
c̃ 6= c such that ADec(κ, c̃) 6= ⊥. We conclude that B breaks the authenticity game with
non-negligible probability 1/p(λ) · 1/p1,2(λ), a contradiction.

Lemma 12. {H2(λ, 0)}λ∈N ≈c {H2(λ, 1)}λ∈N.

Proof. The proof is down to the semantic security of the underlying AE scheme Π. By contra-
diction, assume that there exists a PPT adversary A, and a polynomial p2(λ) ∈ poly(λ), such
that for infinitely many values λ ∈ N we have:

|P [H2(λ, 0) = 1]− P [H2(λ, 1) = 1]| ≥ 1

p2(λ)
.

We build a reduction B (using A) which attempts at winning the game Gsem
Π,B(λ) of Def. 2.

Adversary B (playing the right game of Fig. 1):

1. Run A(1λ). Sample κ′←$K, and (κ1, . . . , κn)←$ Share′(κ′).
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2. Forward (m0,m1) to the challenger, obtaining a ciphertext c (i.e., either an
encryption of m0 or an encryption of m1, under some unknown key κ ∈ K).
Set si = (κi, c) for all i ∈ [n].

3. Upon input a leakage query (i, g) from A, answer with g(si).
4. Upon input a tampering query (T , (f1, . . . , fn)) from A, let T = (t1, . . . , t%̃).

For each j ∈ [%̃], compute the tampered share s̃tj = ftj (stj ) = (κ̃tj , c̃tj ). Hence:

(a) Let κ̃ = Rec(κ̃t1 , . . . , κ̃t%̃); if κ̃ = ⊥, output ⊥ and self-destruct.
(b) Check that c̃t1 = · · · = c̃t%̃ ; if that is not the case, output ⊥ and self-

destruct. Else, let c̃ = c̃t1 = · · · = c̃t%̃ .
(c) In case κ̃ 6= κ′ return ADec(κ̃, c̃) to A. Else, if κ̃ = κ′, further check whether

c̃ = c: If it does, return to A, and otherwise output ⊥ and self-destruct.

For the analysis, first note that B runs in polynomial time. Moreover, depending on the target
ciphertext c being either an encryption of m0 or an encryption of m1, the secret sharing s =
(si)i∈[n] emulated by the reduction is distributed exactly as in either experiment H2(λ, 0) or in
experiment H2(λ, 1). As a consequence, B’s simulation of A’s leakage and tampering queries is
perfect; in particular, the latter statement follows by the fact that in experiment H2(λ, b) we
never need the original secret key κ in order to answer a tampering query from A. We conclude
that B breaks the semantic security game with non-negligible probability, a contradiction.

The proof of the theorem follows by combining the above lemmas.

7 Threshold Signatures under Adaptive Memory Corruptions

7.1 Syntax

An n-party threshold signature is a tuple Π = (KGen,Ξ,Vrfy) specified as follows. (i) The PPT
algorithm KGen takes as input the security parameter, and outputs a verification key vk ∈ VK,
and n secret keys sk1, . . . , skn ∈ SK; (ii) Ξ = (P1, . . . ,Pn) specifies a set of protocols which can
be run by a subset I of n interactive PPT Turing machines P1, . . . ,Pn, where each Pi takes as

input a message m ∈M and secret key sk i, and where we denote by (σ, ξ)
Ξ←−$ 〈Pi(sk i,m)〉i∈I a

run of Ξ by the parties (Pi)i∈I , yielding a signature σ and transcript ξ. (iii) The deterministic
polynomial-time algorithm Vrfy takes as input the verification key vk , and a pair (m,σ), and
returns a bit.

For a parameter % ≤ n, we say that an n-party threshold signature is %-correct if for all
λ ∈ N, all (vk , sk1, . . . , skn) output by KGen(1λ), all messages m ∈ M, and all subsets I such
that |I| ≥ %, the following holds:

P
[
Vrfy(vk , (m,σ)) = 1 : (σ, ξ)

Ξ←−$ 〈Pi(sk i,m)〉i∈I
]

= 1.

We also consider non-interactive threshold signature schemes. Such schemes are fully speci-
fied by a tuple of polynomial-time algorithms (KGen,TSign,Combine,Vrfy), such that KGen,Vrfy
are as in the interactive case, whereas the protocol Ξ, run by a subset I of the parties, has the
following simple structure:

• For each i ∈ I, party Pi computes locally σi←$ TSign(sk i,m) and broadcasts the resulting
signature share σi;
• For each i ∈ I, party Pi locally computes σ←$ Combine(vk , (σi)i∈I); most notably, algo-

rithm Combine only uses public information.
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Ghbc
Π,A,U (λ): Gnm-tsig

Π,A (λ):

(vk , sk1, . . . , skn)←$ KGen(1λ)

U := ∅; stop← false

(m∗, σ∗)←$ AOsign( ~sk ,·,~id,·)(vk , (sku)u∈U )

(m∗, σ∗)←$ AOsign( ~sk ,·,·,·)(vk)

Return 1 iff:
(a) m∗ 6∈ Q,
(b) Vrfy(vk , (m∗, σ∗)) = 1

Oracle Osign( ~sk , T , (f1, . . . , fn),m):

If stop = true

Return ⊥
Else

(s̃k1, . . . , s̃kn) = (f1(sk1), . . . , fn(skn))

(ξ, σ)
Ξ←−$ 〈Pt(s̃k t,m)〉t∈T

Q := Q∪ {m}
If σ = ⊥ set stop← true

Return (ξU∩T , σ)

Figure 9: Experiments defining privacy and continuous non-malleability for threshold signa-
tures. The vector ~id contains the identity function (repeated n times).

7.2 Security Model

We assume authenticated and private channels between each pair of parties. The standard
security notion for threshold signatures deals with an adversary A statically corrupting a subset
U of the players, with size below the reconstruction threshold of the scheme. The guarantee is
that the attacker should not be able to forge a valid signature on a fresh message, even after
seeing a polynomial number of executions of the signature protocol on several messages and
involving different subsets of the players; note that, for each such subset I, the attacker learns
the transcript of the signature protocol relative to the players in U ∩ I. Below, we formalize
this guarantee in the honest-but-curious case.

Definition 11 (Privacy for threshold signatures). Let Π = (KGen,Ξ,Vrfy) be an n-party thresh-
old signature scheme. We say that Π is τ -private against honest-but-curious adversaries if for
all PPT attackers A, and all subsets U ⊂ [n] such that |U| < τ :

P
[
Ghbc

Π,A,U (λ) = 1
]
∈ negl(λ).

where the game Ghbc
Π,A,U (λ) is described in Fig. 9.

Non-malleability. Next, we consider an adversary able to corrupt the memory of each party
independently. The security guarantee is still that of existential unforgeability, except that
the attacker can now see a polynomial number of executions of the signature protocol under
related secret-key shares, where both the modified shares and the subset of parties used for
each signature computation, can be chosen adaptively. However, since in this case no player
is actually corrupted and the protocol’s messages are sent via private channels, for each run of
the signature protocol the attacker only learns the signature (but not the transcript).

Definition 12 (Tamper-resilient threshold signatures). Let Π = (KGen,Ξ,Vrfy) be an n-party
threshold signature scheme. We say that Π is secure under continuous memory tampering if for
all PPT adversaries A:

P
[
Gnm-tsig

Π,A (λ) = 1
]
∈ negl(λ),

where the game Gnm-tsig
Π,A (λ) is described in Fig. 9.
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7.3 The Compiler

Given an n-party threshold signature Π = (KGen,Ξ,Vrfy), and an n-party TSS Σ = (Share,Rec),
consider the following modified n-party threshold signature Π∗ = (KGen∗,Ξ∗,Vrfy∗).

• Key generation KGen∗(1λ): Upon input the security parameter, run (vk , sk1, . . . , skn)←$

KGen(1λ), compute (sk i,1, . . . , sk i,n)←$ Share(sk i) for each i ∈ [n], set sk∗i = (sk i′,i)i′∈[n],
and output (vk , sk∗1, . . . , sk∗n).
• Signature protocol Ξ∗ = (P∗1, . . . ,P

∗
n): For any subset I ⊂ [n], and any messagem ∈M,

the protocol 〈P∗i (sk∗i ,m)〉i∈I proceeds as follows:

– Party P∗i parses sk∗i = (sk i′,i)i′∈[n] and sends sk i′,i to the i′-th party, for every i′ ∈
I \ {i}.

– Party P∗i waits to receive the messages sk i,i′′ for every i′′ ∈ I \ {i}, and afterwards it
computes sk i = Rec((sk i,i′′)i′′∈I).

– The players run (ξ, σ)
Ξ←−$ 〈Pi(sk i,m)〉i∈I .

• Verification algorithm Vrfy∗: Return the same as Vrfy(vk , (m,σ)).

Intuitively, in the above protocol we first create a verification key vk and secret-key shares
(sk1, . . . , skn) under Π; hence, each value sk i is further divided into n shares (sk i,1, . . . , sk i,n)
via the secret sharing Σ. The final secret-key share sk∗i for the i-th party consists of the shares
(sk1,i, . . . , skn,i), i.e. the collection of all the i-th shares under Σ. In order to sign a message,
each player first sends to each other player the corresponding share. This way, party Pi can
reconstruct sk i, and the involved players can then run the original signature protocol Ξ.

Theorem 7. For any n, %, τ ∈ N such that n ≥ % ≥ τ , assuming that Π is non-interactive,
%-correct, and τ -private against honest-but-curious adversaries, and that Σ is an (n, τ, %, 0)-LR-
CNMSS, then the above defined threshold signature Π∗ is %-correct, τ -private against honest-
but-curious adversaries, and secure under continuous memory tampering.

Proof. The fact that Π∗ satisfies %-correctness follows immediately by the correctness property
of Σ, and by %-correctness of Π.

Privacy. In order to show that Π∗ satisfies τ -privacy against honest-but-curious adversaries,
fix any unauthorized subset U ⊂ [n], with |U| ≤ τ − 1. Then, consider the following sequence
of hybrids.

Hybrid Hj(λ): Let Ū = [n] \ U . For the first j values (sku)u∈Ū , compute (sku,1, . . . , sku,n) as
Share(sk ′u), for random and independent sk ′u←$ SK. Note that the answer to signature
queries is still computed as in the original experiment, namely using the secret-key shares
(sk i)i∈I , where I is the reconstruction subset specified by the adversary.

Clearly, {H0(λ)}λ∈N ≡ {Ghbc
Π∗,A,U (λ)}λ∈N. The two lemmas below conclude the proof of privacy.

Lemma 13. ∀j ∈ [n− τ + 1]: {Hj(λ)}λ∈N ≈c {Hj−1(λ)}λ∈N.

Proof. By contradiction, assume that there is an index j ∈ [0, n− τ + 1], and a PPT adversary
A telling apart Hj(λ) and Hj−1(λ) with non-negligible probability. Let U = {u1, . . . , uτ−1} and
Ū = {uτ , . . . , un}. We construct a PPT attacker B that violates τ -threshold privacy of Σ w.r.t.
subset U .

Adversary B (attacking privacy of Σ):
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1. Pick (vk , sk1, . . . , skn)←$ KGen(1λ) and sk ′uτ+j−1
←$ SK, and return m∗0 =

skuτ+j−1 , m∗1 = sk ′uτ+j−1
to the challenger, receiving back the shares (skuτ+j−1,u)u∈U .

2. For all other indices i ∈ [n] \ {τ + j− 1}, let sk∗i be as defined in Hj−1(λ), then
run A upon input vk and (sk∗u)u∈U .

3. Upon input a signature query with subset I from A, answer as follows:

(a) Run (σ, ξ)
Ξ←−$ 〈Pi(sk i,m)〉i∈I .

(b) Let ξ∗i = ξi||sk i,i′′ for all i ∈ [n] and i′′ ∈ I \ {i}.
(c) Return (σ, (ξ∗i )i∈U∩I).

4. Whenever A outputs a forgery (m∗, σ∗), return the same as Vrfy(vk , (m∗, σ∗)).
5. Output whatever A outputs.

Note that attacker B perfectly simulates the transcript of an execution of the signature protocol
for Π∗; this is because the signature σ is computed honestly (using the real secret-key shares),
whereas the partial transcript ξ∗i is obtained by appending the corresponding part ξi in a run
of the signature protocol for Π to the values the values sk i,i′′ received by the i-th player. It
follows that in case the challenge (skuτ+j−1,u)u∈U is a secret sharing of m∗0 the reduction perfectly
emulates the view as in Hj−1(λ), whereas in case the challenge is a secret sharing of m∗1 the
reduction perfectly emulates the view as in Hj(λ). The statement follows.

Lemma 14. ∀ PPT A: P [Hn−τ+1(λ) = 1] ∈ negl(λ).

Proof. The proof is down to τ -privacy of the underlying non-interactive threshold signature
Π.10 The main idea is that the reduction knows all the shares (sku)u∈U directly, whereas it
can use random and independent values (sk ′u)u∈Ū in order to obtain shares (sk∗i )i∈[n] that are
distributed exactly like in Hn−τ+1(λ).

This knowledge allows to perfectly simulate signature queries as in the reduction from the
previous lemma, i.e. we can use the target signature oracle to obtain the value σ and the partial
transcripts (ξi)i∈U∩I , and append (sk i,i′′)i′′∈I\{i} to the latter in order to emulate (ξ∗i )i∈U∩I .
The formal reduction is obvious, and therefore omitted.

Continuous memory tampering. Finally, we prove that Π∗ is secure against continuous
memory tampering. To this end consider the following hybrid experiments.

Hybrid Hj(λ): For the first j values (sk i)i∈[n], compute (sk i,1, . . . , sk i,n) as Share(sk ′i), for ran-
dom and independent sk ′i←$ SK. Note that for each signature query (T , (f1, . . . , fn),m),
whenever the reconstructed secret-key share s̃k i equals sk ′i, for some i ∈ [j], the signature
σ on message m is computed using the original secret-key share sk i.

Observe that {H0(λ)}λ∈N ≡ {Gnm-tsig
Π∗,A (λ)}λ∈N. The two lemmas below conclude the proof.

Lemma 15. ∀j ∈ [n]: {Hj(λ)}λ∈N ≈c {Hj−1(λ)}λ∈N.

Proof. By contradiction, assume that there exists an index j ∈ [0, n], and a PPT adversary A
telling apart Hj(λ) and Hj−1(λ) with non-negligible probability. We construct an attacker B
that violates continuous non-malleability of Σ.

Adversary B (playing the game in Fig. 3):

1. Pick (vk , sk1, . . . , skn)←$ KGen(1λ) and sk ′j ←$ SK, and return m0 = sk j ,
m1 = sk ′j to the challenger.

10Strictly speaking, for this particular step of the proof we do not need to assume that Π is non-interactive.
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2. For all other indices i ∈ [n] \ {j}, let sk∗i be as defined in Hj−1(λ), then run
A(vk).

3. Upon input a signature query (T , (f1, . . . , fn),m) from A, answer as follows:

(a) For each i, i′′ ∈ [n], consider the tampering function f ′i,i′′ that hard-wires

(sk i′,i)i′∈[n]\{j}, runs (s̃k1,i, . . . , s̃kn,i) = fi(sk1,i, . . . , sk1,n), and outputs the

tampered secret-key share s̃k i′′,i.
(b) For each t ∈ T , forward (T , (f ′1,t, . . . , f ′n,t)) to the target tampering oracle,

obtaining back values (s̃k t)t∈T ∈ SK ∪ { ,⊥}.
(c) If there exists t ∈ T such that s̃k t = ⊥, output ⊥ and self-destruct. Else,

for each t ∈ T let s̃k
′
t = sk t in case s̃k t = , and s̃k

′
t = s̃k t otherwise.

(d) Run (σ, ξ)
Ξ←−$ 〈Pt(s̃k

′
t,m)〉t∈T , and forward σ to A.

4. Whenever A outputs a forgery (m∗, σ∗), return the same as Vrfy(vk , (m∗, σ∗)).
5. Output whatever A outputs.

Note that attacker B knows all the shares sk i,i′′ , as defined in Hj−1(λ), except for (sk j,1, . . . , sk j,n)
which are available through the tampering oracle. We claim that the simulation of A’s signature
queries is perfect. This is because for each query (T , (f1, . . . , fn),m) from A, the reduction ob-
tains a perfectly distributed copy of s̃k t = Rec((s̃k t,t′′)t′′∈T ) for each index t ∈ T , and given such
values it can perfectly simulate the computation of a signature as defined in either Hj−1(λ) or
Hj(λ) (depending on the distribution of B’s target oracle). It follows that B retains the same
distinguishing advantage as that of A, concluding the proof.

Lemma 16. ∀ PPT A: P [Hn(λ) = 1] ∈ negl(λ).

Proof. By contradiction, assume that there exists a PPT adversary A winning game Hn(λ) with
non-negligible probability. We build a PPT attacker B that breaks the privacy property of Π
w.r.t. the unqualified subset U = ∅. A description of B follows.

Adversary B (playing the un-boxed game in Fig. 9):

1. For all i ∈ [n], sample sk ′i←$ SK, compute (sk i,1, . . . , sk i,n)←$ Share(sk i), and
set sk∗i = (sk i′,i)i′∈[n].

2. Run the adversary A(vk), and upon input each oracle query (T , (f1, . . . , fn),m)
from A, answer as follows:

(a) For each t ∈ T , let s̃k
∗
t = ft(sk∗t ) and s̃k t = Rec((sk t,t′′)t′′∈T ).

(b) If there exists an index t ∈ T such that s̃k t = ⊥, output ⊥ and self-destruct
(namely, answer ⊥ to all future queries of A);

(c) Else, query the target signature oracle upon input (T ,m), receiving back
a signature σ;

(d) For each t ∈ T , if s̃k t = sk t set σ′t := σt, else set σ′t←$ TSign(s̃k t,m);
(e) Output Combine(vk , (σ′t)t∈T ).

3. Whenever A outputs (m∗, σ∗), return the same pair as forgery.

Note that the reduction perfectly emulates the distribution of the shares (sk∗i )i∈[n] as in the
hybrid experiment. Furthermore, it is not hard to show that the answer to signature queries
has also the right distribution. This is because, for each signature query with reconstruction
subset T , the reduction computes perfectly distributed tampered secret-key shares (s̃k t)t∈T and:

• If some of the mauled shares is ⊥, it outputs ⊥ and self-destructs as in the hybrid game.

41



• Else, if all the mauled shares are valid, it defines σ′t to be either a signature share of
the message computed with the tampered key s̃k t, or a signature share of the message
computed with the original key sk t, which can be obtained from the target signature oracle.
Note that the latter is indeed possible because we assumed that Π is non-interactive.

It follows that B retains the same advantage as that of A, thus finishing the proof.

8 Conclusions and Open Problems

We have initiated the study of non-malleable, threshold secret sharing withstanding a powerful
adversary that can obtain both noisy leakage from each of the shares independently, and an
arbitrary polynomial number of reconstructed messages corresponding to shares which can be
arbitrarily related to the original ones (as long as the shares are modified independently). Impor-
tantly, in our model, both the tampering functions (mauling the original target secret sharing)
and the reconstruction subsets (specifying which shares contribute to the reconstructed mes-
sage) can be chosen adaptively by the attacker. Our main result establishes the existence of
such schemes in the computational setting, under the minimal assumption of 1-to-1 OWFs, and
with information rate asymptotically approaching 1 (as the message length goes to infinity).

Our work leaves several interesting open problems. We mention some of them below.

• Mind the gap: As we show, continuous non-malleability is impossible to achieve in the
information-theoretic setting whenever the reconstruction threshold % (i.e., the minimal
number of shares required to reconstruct the message) is equal to the privacy threshold
τ (i.e., any collection of τ − 1 shares computationally hides the message). Our schemes,
however, have a minimal gap % − τ ≥ 1. It remains open to construct CNMSS for the
optimal parameters % = τ , possibly with information-theoretic security (even without
considering leakage and adaptive concurrent reconstruction).
• Optimal rate: It is well known that, in the computational setting, there exist robust

threshold secret sharing schemes with optimal information rate n [Kra93] (i.e., the size
of each share is µ/n where µ is the message size). It remains open whether continuously
non-malleable threshold secret sharing schemes with such rate exist, and under which
assumptions.
• Arbitrary access structures: Can we construct continuously non-malleable secret shar-

ing beyond the threshold access structure, e.g. where the sets of authorized players can
be represented by an arbitrary polynomial-size monotone span program, as in [GK18b]?
• Joint tampering: Can we construct continuously non-malleable secret sharing where

the non-malleability property holds even if joint tampering with the shares is allowed, as
in [GK18a, GK18b]?
• Applications: Finally, it would be interesting to explore other applications of contin-

uously non-malleable secret sharing besides tamper resistance, e.g. in the spirit of non-
malleable cryptography, as in [GJK15, CMTV15, GPR16, CDTV16, GK18a].
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