
The complete cost of cofactor h = 1

Peter Schwabe and Amber Sprenkels

Radboud University, Digital Security Group,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
peter@cryptojedi.org, amber@electricdusk.com

Abstract. This paper presents optimized software for constant-time
variable-base scalar multiplication on prime-order Weierstraß curves us-
ing the complete addition and doubling formulas presented by Renes,
Costello, and Batina in 2016. Our software targets three different mi-
croarchitectures: Intel Sandy Bridge, Intel Haswell, and ARM Cortex-
M4. We use a 255-bit elliptic curve over F2255−19 that was proposed by
Barreto in 2017. The reason for choosing this curve in our software is
that it allows most meaningful comparison of our results with optimized
software for Curve25519. The goal of this comparison is to get an under-
standing of the cost of using cofactor-one curves with complete formulas
when compared to widely used Montgomery (or twisted Edwards) curves
that inherently have a non-trivial cofactor.

Keywords: Elliptic Curve Cryptography · SIMD · Curve25519 · scalar
multiplication · prime-field arithmetic · cofactor security

1 Introduction

Since its invention in 1985, independently by Koblitz [34] and Miller [38], elliptic-
curve cryptography (ECC) has widely been accepted as the state of the art in
asymmetric cryptography. This success story is mainly due to the fact that
attacks have not substantially improved: with a choice of elliptic curve that was
in the 80s already considered conservative, the best attack for solving the elliptic-
curve discrete-logarithm problem is still the generic Pollard-rho algorithm (with
minor speedups, for example by exploiting the efficiently computable negation
map in elliptic-curve groups [14]).

One of the main developments since the first generation of elliptic-curve
cryptography has been in the choice of curves. Until 2006, the widely accepted
choice of elliptic curve was a prime-order Weierstraß curve. In 2006, Bernstein
proposed the Montgomery curve “Curve25519”1 as an alternative offering multi-
ple security and performance features. Most importantly—at least in the context
of this paper—it featured highly efficient complete formulas, which enable fast
arithmetic without any checks for special cases. These complete formulas are

1 In the 2006 paper, Curve25519 referred to the ECDH key-exchange protocol; Bern-
stein later recommended to use X25519 for the protocol and Curve25519 for the
underlying curve [7].

2 Peter Schwabe and Amber Sprenkels

somewhat limited, because they only cover differential addition. This is not a
problem for the X25519 elliptic-curve Diffie-Hellman key exchange presented
in [6], but it makes implementation of more advanced protocols (like signature
schemes) somewhat inconvenient.

This issue was addressed through a sequence of three papers. In [23], Edwards
introduced a new description of elliptic curves; in [13], Bernstein and Lange
presented very efficient complete formulas for group arithmetic on these curves
(and introduced the name “Edwards curves”); and in [8], Bernstein, Birkner,
Joye, Lange, and Peters generalized the concept to twisted Edwards curves and
showed that this class of elliptic curves is birationally equivalent to Montgomery
curves. The twisted Edwards form of Curve25519 was subsequently used in [9,10]
for the construction of the Ed25519 digital-signature scheme.

The simplicity and efficiency of X25519 key exchange and Ed25519 signatures
resulted in quick adoption in a variety of applications, such as SSH, the Signal
protocol, and the Tor anonymity project. Both schemes are also used in TLS 1.3.

Complete addition or prime order. Unfortunately, the advantages of Mont-
gomery and twisted Edwards curves—most notably the very efficient complete
addition formulas—have to be weighed against a disadvantage: the group of
points cannot have prime order as it always has a cofactor of a multiple of 4.
Consequently, a somewhat simplified view on choosing curves for cryptographic
applications is that we have to choose between either efficient complete formu-
las through Montgomery or (twisted) Edwards curves, or prime-order groups
through Weierstraß curves.

The design of X25519 and Ed25519 carefully takes the non-trivial cofactor
into account. However in more involved protocols, a non-trivial cofactor may
complicate the protocol’s design, potentially leading to security issues. In the
last years, we saw at least two examples of protocols deployed in real-world
applications that had catastrophic vulnerabilities because they did not carefully
handle the cofactor.

The first example was a vulnerability in the Monero cryptocurrency, that
allowed for arbitrary double spending [36]. Monero requires that “key images”—
which bind transactions to their sender’s public key—should be non-malleable,
i.e. for a transaction to be valid, its public key must be unique. Unfortunately,
due to the cofactor, an attacker could construct different key images that were
bound to the same public key, therefore allowing arbitrary double-spending. This
issue was mitigated by checking the order of the key image, which involves a full
scalar multiplication, ironically diminishing the performance that Curve25519
was meant to provide.

The second example was recently discovered by Cremers and Jackson, who
found more vulnerabilities in protocols caused by the non-trivial cofactor [22].
These vulnerabilities allowed attackers to bypass the authentication properties
of the Secure Scuttlebutt Gossip protocol and Tendermint’s secure handshake.

Why not both? In 2015, Hamburg presented the “Decaf” technique [28], which
removes the cofactor of twisted Edwards curves through a clever encoding. He
later refined the technique to “Ristretto” (see [1]), which is now proposed in

The complete cost of cofactor h = 1 3

the crypto forum research group (CFRG) of IETF for standardization [46]. The
Decaf and Ristretto encodings come at some computational cost and also added
complexity of the implementation, but it eliminates the burden of handling the
cofactor in protocol design.

However, there is another, much more obvious, approach to complete addi-
tion in prime-order elliptic-curve groups. It is long known that complete addition
formulas also exist for Weierstraß curves [18], but those formulas were long re-
garded as too inefficient to offer an acceptable tradeoff. The situation changed
in 2016, when Renes, Costello, and Batina revisited the approach from [18]
and presented much more efficient complete addition formulas for Weierstraß
curves [42]. Unfortunately, these formulas are still considerably less efficient than
the incomplete addition formulas that possibly require handling of special cases.
The performance gap is even larger compared to the complete addition formulas
for twisted Edwards curves, and the complete differential additional used in the
scalar-multiplication ladder on Montgomery curves.

Contributions of this paper. If we assume the usage of complete addition
formulas for both—twisted Edwards or Montgomery curves on one hand and
Weierstraß curves on the other hand—the choice of curve becomes a tradeoff be-
tween performance and protocol simplicity. To fully understand this tradeoff, we
need to know how large exactly the performance penalty is for using Weierstraß
curves with the complete addition formulas from [42]. The standard approach
to understand performance differences is to compare the speed of optimized
implementations, ideally on different target architectures. Almost surprisingly
however, there are no such optimized implementations of elliptic-curve scalar
multiplication using complete formulas on Weierstraß curves. In this paper we
present such implementations and answer the question about the actual cost of
complete cofactor-1 ECC arithmetic using the formulas from [42].

More specifically, we present highly optimized software targeting three differ-
ent microarchitectures for variable-basepoint scalar multiplication on a 255-bit
Weierstraß curve over the field F2255−19, the same field underlying Curve25519.
Choosing a curve over the same field eliminates possible effects that are not due
to the choice of curve shape and corresponding addition formulas, but due to
differences in speed of the field arithmetic.

The three microarchitectures we are targeting are Intel’s 64-bit Haswell gen-
eration of processors featuring AVX2 vector instructions; the earlier Intel Ivy
Bridge processors that feature AVX vector instructions, but not yet the AVX2
integer-vector instruction set; and the ARM Cortex M4 family of 32-bit em-
bedded microcontrollers. All our implementations follow the “constant-time”
approach of avoiding secret branch conditions and secretly indexed memory ac-
cess.

We compare our results to scalar multiplication from highly optimized X25519
software on the same microarchitectures. Perhaps surprisingly the performance
penalty heavily depends on the microarchitecture; it ranges between a factor of
only 1.47 on Intel Haswell and a factor of 2.87 on ARM Cortex M4.

4 Peter Schwabe and Amber Sprenkels

Disclaimer. This paper revisits the discussion of the performance of Curve-
25519 (and Curve448) relative to the old Weierstraß curves. We see a certain
risk that the results in this paper may be misinterpreted one way or another, so
we would like to clarify our intentions, and how we see the results of this paper:

– The motivation for this work has been that we saw a potentially interesting
missing data point in the context of choosing elliptic curves for cryptographic
applications.

– We do not think that any elliptic-curve standardization discussion should
be re-opened. No result in this paper suggests that this would be useful and
we believe that the choice of Curve25519 and Curve448 by IETF was a very
sensible one. All effort that the community can invest in standardization
is better placed in, for example, efforts to choose sensible post-quantum
primitives.

– We see a rather common misconception of Weierstraß curves not having
any (practical) complete addition formulas. For example, the book “Serious
Cryptography” by Aumasson describes the ANSSI and Brainpool curves
(both prime-order Weierstraß curves) as “two families of curves that don’t
support complete addition formulas [...]” [2, page 231]. In similar spirit,
Bernstein and Lange on their “SafeCurves” website [12], dismiss Weierstraß
curves entirely as a viable option for cryptographic applications based on
the ground that complete addition is so much less efficient than incomplete
addition formulas (and even less efficient than complete addition on twisted
Edwards curves). In our opinion, a sensibly chosen Weierstraß curve using
the complete addition formulas from [42] or [45] may well be the safer choice
for protocols and applications that can live with the performance penalty.

– While we think that it is always preferable to use complete addition formu-
las for implementing Weierstraß-curve arithmetic, we would like to articulate
that by no means we recommend the use of the Renes-Costello-Batina for-
mulas above the use of Curve25519 with Ristretto for new protocols. Indeed,
we support the proposal brought into CRFG by de Valence, Grigg, Tanker-
sley, Valsorda, and Lovecruft [46] for the standardization of the Ristretto
encoding.

Related work. The most relevant related work for this paper can be grouped
in two categories: papers presenting optimized implementations of Curve25519
and papers investigating performance of complete group addition on Weierstraß
curves.

In the first category, the directly related papers present results for optimized
scalar multiplication on Curve25519 targeting the same microarchitectures that
we target in this paper. To the best of our knowledge, the current speed record
for X25510 on Intel Sandy Bridge and Ivy Bridge processors is held by the
“Sandy2x” software by Chou [19]. The speed record for the Intel Haswell mi-
croarchitecture is held by the software by Oliveira, López, Hışıl, Faz-Hernández,
Rodŕıguez-Henŕıquez presented in [40]. This paper also presents even higher
speeds for the Intel Skylake microarchitecture; that software makes use of the

The complete cost of cofactor h = 1 5

MULX and ADCX/ADOX instructions that are not available on Haswell. Finally, the
speed record for scalar multiplication on Curve25519 on Cortex-M4 is held by
software presented by Haase and Labrique in [27]. We provide a comparison of
our results with the results from those papers in Section 4.

In the second category we are aware of only three results: In [42], Renes
Costello, and Batina provide benchmarks of scalar multiplication on various
NIST-P curves [32] in OpenSSL [41] using their complete formulas and compare
them with the “standard” incomplete formulas used by default in OpenSSL.
This comparison shows a performance penalty of a factor of about 1.4. However,
the figures in [42, Table 2] strongly suggest that the comparison did not use the
optimized implementation of scalar multiplication on the NIST curves that would
need to be enabled with the configure option enable-ec_nistp_64_gcc_128

when building OpenSSL. In [37], Costa Massolino, Renes, and Batina present an
FPGA implementation of scalar multiplication on arbitrary Weierstraß curves
over prime-order fields using the complete formulas from [42]. They claim that
their results are “competitive with current literature”, but also state that “it
is not straightforward to do a well-founded comparison among works in the
literature”. This is because hardware implementations have a much larger design
space, not only with tradeoffs between area and speed, but also flexibility with
regards to the supported elliptic curves (e.g., through different curve shapes or
support for specialized or generic field arithmetic). Finally, in [45] Susella and
Montrasio estimate performance of different scalar-multiplication approaches.
They report estimates in terms of multiplications per scalar bit, assuming that
multiplication costs as much as squaring and multiplication by (small) constants,
and that addition costs 10% of a multiplication. In this metric the ladder from
[45] is very slightly cheaper at 19.1 than scalar multiplication using the formulas
from [42] at 19.33. However, if we understand correctly, the estimates for [42] are
computed without taking into account signed fixed-window scalar multiplication.
In this metric, the Montgomery ladder used in X25519 software would come at
a cost of 10.8.

Notation. We use abbreviations M to refer to the cost of a finite-field multi-
plication, use S to refer to the cost of a squaring, a to refer to the cost of an
addition, and mc to refer to the cost of multiplication by a constant c.

Availability of software. We place all software related to this paper into the
public domain (to the maximum extent possible, using the Creative Commons
CC0 waiver). The code packages are published through the public repository at
https://github.com/dsprenkels/curve13318-all.

Organization of this paper. In Section 2 we give a brief review of the math-
ematical background on elliptic curves and in particular motivate our choice of
curve, which we call Curve13318. In Section 3 we provide details of our implemen-
tations of constant-time variable-basepoint scalar multiplication on Curve13318
for Intel Sandy Bridge, Intel Haswell, and ARM Cortex M4. Section 4 presents
the performance results and compares to state-of-the-art implementations of

https://github.com/dsprenkels/curve13318-all

6 Peter Schwabe and Amber Sprenkels

scalar multiplication on Curve25519. We conclude the paper and give an overview
of possible future work in Section 5.

2 Preliminaries

2.1 Weierstraß, Montgomery, and twisted Edwards curves

The typical way to introduce elliptic curves over a field F with large characteristic
is through the short Weierstraß equation

EW : y2 = x3 + ax+ b,

where a, b ∈ F. As long as the discriminant δ = −16(4a3 + 27b2) is nonzero,
this equation describes an elliptic curve and any elliptic curve over a field F
with characteristic not equal to two or three can be described through such an
equation. For cryptography we typically choose a field of large prime order p;
the relevant group in the cryptographic setup is the group of Fp-rational points
E(Fp). Whenever we talk about “the order of an elliptic curve” in this paper
we mean the order of this group. The typical way to use Weierstraß curves
in cryptography is to pick curve parameter a = −3 for somewhat more effi-
cient arithmetic and to represent a point P = (x, y) in Jacobian coordinates
(X : Y : Z) with (x, y) = (X/Z2, Y/Z3). Point addition is using the formulas
from [13] (improving on [20]) and uses 11M + 5S + 9a. Most efficient doubling
uses formulas from [4] that use 3M+5S+8a. Alternatively, one can use a ladder
with differential additions, for example using the approach from [33] that costs
6M+ 6S+ 20.5a per ladder step.

Using a ladder for scalar multiplication is also what Montgomery proposed
in [39] for a different class of elliptic curves, so-called Montgomery curves. These
are described through an equation of the form

EM : by2 = x3 + ax2 + x,

again with a, b ∈ F. The “ladder step” consisting of one differential addition
and one doubling costs 5M+4S+8a. The formulas were shown to be complete
by Bernstein in the Curve25519 paper [6]. One peculiarity of the formulas is
that they only involve the x-coordinate of a point. For Diffie-Hellman protocols
this has the advantage of free point compression and decompression, but for
signatures this involves extra effort to recover the y-coordinate.

The most efficient complete formulas for full addition (and doubling) are on
twisted Edwards curves [8], i.e., curves with equation

EtE : x2 + y2 = 1 + dx2y2.

For the special case of a = −1, the formulas from [29] need only 8M + 8a
for addition and 4M + 4S + 6a for doubling. If −1 is a square in Fp then the
formulas are complete. Every twisted Edwards curves is birationally equivalent to
a Montgomery curve [8, Thm. 3.2] and in the case of Curve25519 both shapes are
used in protocols: the Montgomery shape and corresponding ladder for X25519
key exchange and the twisted Edwards shape for Ed25519 signatures.

The complete cost of cofactor h = 1 7

2.2 Curve13318

The goal of this paper is to investigate the performance of complete addition
and doubling on a Weierstraß curve and compare it to the performance of
Curve25519. Many aspects contribute to the performance of elliptic-curve arith-
metic and as we are mainly interested in the impact of formulas implementing
the group law, we decided to choose a curve that is as similar to Curve25519 as
possible, except that it is in Weierstraß form and has prime order. This means
that in particular, we want a curve that

– is defined over the field Fp with p = 2255 − 19;
– is twist secure (for a definition, see [6] or [12]);
– has parameter a = −3 to support common speedups of the group law; and
– has small parameter b.

A curve with precisely these properties was proposed in May 2017 by Barreto
on Twitter [3]. Specifically, he proposed the curve with equation

E : y2 = x3 − 3x+ 13318,

defined over F2255−19. In a follow-up tweet Barreto clarified that the selection
criteria for this curve were “all old SafeCurves properties (with recent improve-
ments) plus prime order”. Barreto did not name this curve; we will in the follow-
ing refer to it as Curve13318. This name at the same time points to the curve
parameter b and its intended similarities to Curve25519. The order of the group
of Fp-rational points on Curve13318 is

N = ℓ = 2255 + 325610659388873400306201440571661405155.

2.3 The Renes-Costello-Batina formulas

In 2016, Renes, Costello, and Batina published a set of formulas for doubling and
addition on short Weierstraß curves [42], based on previous work by Bosma and
Lenstra [18]. The formulas are complete for all elliptic curves defined over a field
with characteristic not equal to 2 or 3. Together with the formulas published by
Susella and Montrasio in 2017 [45], the Renes-Costello-Batina formulas are the
only set of addition formulas for prime-order Weierstraß curves that is proven
to be complete.

Because we implement variable-basepoint scalar multiplication on a curve
with a = −3, we will use the algorithms for addition and doubling from [42,
Section 3.2]. The relevant complete formulas for (projective) point addition are

X3 = (X1Y2 +X2Y1) (Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2))

− 3(Y1Z2 + Y2Z1) (b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2) ,

Y3 = 3(3X1X2 − 3Z1Z2) (b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2)

+ (Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2)) (Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2)) ,

Z3 = (Y1Z2 + Y2Z1) (Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2))

+ (X1Y2 +X2Y1)(3X1X2 − 3Z1Z2).

8 Peter Schwabe and Amber Sprenkels

In [42], the formula for addition is implemented through 43 distinct opera-
tions, specifically 12M+2mb+29a. The algorithm used to compute the addition
(Add) is listed in Algorithm 1.

Algorithm 1 Renes-Costello-Batina formula for a = −3. Used for exception-free
addition on Curve13318.

procedure Add((X1 : Y1 : Z1), (X2 : Y2 : Z2))

v1 ← X1 ·X2

v2 ← Y1 · Y2

v3 ← Z1 · Z2

v4 ← X1 + Y1

v5 ← X2 + Y2

v6 ← v4 · v5
v8 ← v6 − v7
v9 ← Y1 + Z1

v10 ← Y2 + Z2

v11 ← v9 · v10
v13 ← v11 − v12
v14 ← X1 + Z1

v15 ← X2 + Z2

v16 ← v14 · v15

v17 ← v1 + v3
v18 ← v16 − v17
v19 ← b · v3
v20 ← v19 − v18
v21 ← v20 + v20
v22 ← v20 + v21
v23 ← v2 − v22
v24 ← v2 + v22
v25 ← b · v18
v26 ← v3 + v3
v27 ← v26 + v3
v28 ← v25 − v27
v29 ← v28 − v1
v30 ← v29 + v29

v31 ← v30 + v29
v33 ← v1 + v1
v33 ← v32 + v1
v34 ← v33 − v27
v35 ← v13 · v31
v36 ← v31 · v34
v37 ← v23 · v24
v38 ← v36 + v37
v39 ← v8 · v24
v40 ← v39 − v35
v41 ← v13 · v23
v42 ← v8 · v33
v43 ← v41 + v42

X3 ← v40
Y3 ← v38
Z3 ← v43

return (X3 : Y3 : Z3)

Correspondingly, the complete formulas for doubling are

X3 = 2XY (Y 2 + 3(2XZ − bZ2))− 6XZ(2bXZ −X2 − 3Z2),

Y3 = (Y 2 − 3(2XZ − bZ2))(Y 2 + 3(2XZ − bZ2))

+ 3(3X2 − 3Z2)(2bXZ −X2 − 3Z2),

Z3 = 8Y 3Z.

The cost of the doubling formulas is 8M+ 3S+ 2mb + 21a. The algorithm for
doubling (Double) is listed in Algorithm 2.

We can reduce the cost of the doubling algorithm by erasing (some of) the
multiplications v1, v4, v6, v28, using the rule that 2αβ = (α + β)2 − α2 − β2.
By applying this rule, we trade 1M + 1a for 1S + 3a. As we will describe in
Section 3, this trick is beneficial only on the Haswell platform,

3 Implementation

In order to get a comprehensive benchmark for the performance of complete
arithmetic on Curve13318, we optimized variable-basepoint scalar multiplication

The complete cost of cofactor h = 1 9

Algorithm 2 Renes-Costello-Batina formula for a = −3. Used for exception-free
doubling on Curve13318.

procedure Double((X : Y : Z))

v1 ← X ·X
v2 ← Y · Y
v3 ← Z · Z
v4 ← X · Y
v5 ← v4 + v4
v6 ← X · Z
v7 ← v6 + v6
v8 ← b · v3
v9 ← v8 − v7
v10 ← v9 + v9
v11 ← v10 − v9
v12 ← v2 − v11

v13 ← v2 + v11
v14 ← v12 · v13
v15 ← v5 · v12
v16 ← v3 + v3
v17 ← v3 + v16
v18 ← b · v7
v19 ← v18 − v17
v20 ← v1 − v19
v21 ← v20 + v20
v22 ← v20 + v21
v23 ← v1 + v1
v24 ← v23 + v1

v25 ← v24 − v17
v26 ← v22 · v25
v27 ← v14 + v26
v28 ← Y · Z
v29 ← v28 + v28
v30 ← v22 · v29
v31 ← v15 − v30
v32 ← v2 · v34
v33 ← v32 + v32
v34 ← v33 + v33

X3 ← v31
Y3 ← v27
Z3 ← v34

return (X3 : Y3 : Z3)

on the Intel Sandy Bridge and Haswell microarchitectures, as well as the ARM
Cortex M4 processor.

The high-level structure of the scalar multiplication is shared among all three
implementations. First—before operating on the key k—we validate the input
point P , by checking whether P satisfies y2P = x3

P−3xP+13318. Because we have
not defined any encoding for the neutral element O, this check will implicitly
validate that P ̸= O.

For the scalar-multiplication core, we use a left-to-right signed-window double-
and-add algorithm, with w = 5. This algorithm is listed in Algorithm 3. The
subroutine RecodeSignedWindow5 computes a vector of coefficients k′ =
(k′0, . . . , k

′
50), such that k = k′0 + 32k′1 + . . . ,+2250k′50 and k′i ∈ {−16, . . . , 15}.

The table lookup is implemented in a traditional scanning fashion: selecting
the required value using a bitwise AND operation. Where we use an unsigned
representation, we compute the conditional negation of Y by negating Y and
selecting the correct result using bitwise operations. When using floating points,
we use a single XOR operation to conditionally flip the sign bit. These operations
are—as well as the rest of the code—implemented in constant-time.

At the end of the double-and-add algorithm, we end up with a representation
of R = [k]P in projective coordinates. We compute the affine representation
of xR and yR by computing the inverse of ZR. Like most implementations of
Curve25519 scalar multiplication, we use Fermat’s little theorem and raise ZR

to the power 2255 − 21 to obtain Z−1
R . We chose not to exploit the optimization

described in [16], because previous implementations have not had the oppor-

10 Peter Schwabe and Amber Sprenkels

Algorithm 3 Signed double-and-add describe the used functions

1: function DoubleAndAdd(k, P)
2: T← (O, P, . . . , [16]P) ▷ Precompute ([2]P, . . . , [16]P)
3: k′ ← RecodeSignedWindow5(k)
4: R← O
5: for i from 50 down to 0 do
6: R← [32]R ▷ 5 point doublings
7: Q← T|k′

i|
▷ Constant-time lookup from T

8: Q← (−1)k
′
iQ ▷ Constant-time conditional negation

9: R← R+Q ▷ Point addition

10: return R ▷ R = (XR : YR : ZR)

tunity to implement this technique; exploiting this invention would give us an
unfair advantage.

In the following subsections we describe the architecture-specific optimiza-
tions of field arithmetic required to implement the Renes-Costello-Batina for-
mulas and in particular our vectorization strategy on Intel processors.

3.1 Sandy Bridge

The first implementation we present is based on the Sandy Bridge microar-
chitecture. Sandy Bridge is Intel’s first microarchitecture featuring Advanced
Vector Extensions (AVX). In addition to 2×-parallel 64-bit integer arithmetic,
AVX supports 4×-parallel double-precision floating-point arithmetic. Because
the multiplications and squarings in the Renes-Costello-Batina formulas can be
conveniently grouped in batches of 4, we will be using the 4×-parallel floating-
point arithmetic on 256-bit ymm vector registers.

Representation of prime-field elements. Using doubles with 53-bit man-
tissa, we can emulate integer registers of 53 bits. To guarantee that no rounding
errors occur in the underlying floating-point arithmetic, we use carry chains2

to reduce the amount of bits in each register before performing operations
that might overflow. Building on this approach, [6] recommends—but does not
implement—radix-221.25 redundant representation, based on the arithmetic de-
scribed in [5].

We use precisely this representation and represent a field element f through
12 signed double-precision floating-point values f0, . . . , f11. For every fi, its base
bi is defined by bi = 2⌈21.25i⌉. Doubles already store their base in the exponent,
which is large enough for our purposes. Therefore, we do not have to consider the
base when evaluating f ’s value. Indeed, the value is computed by just computing
the sum of the limbs:

f =

11∑
i=0

fi

2 Also called “coefficient reduction”.

The complete cost of cofactor h = 1 11

Coefficient reduction. The Intel architecture supports no native modulo oper-
ation on floating points. Instead we extract a limb fi’s top bits by subsequently
adding and subtracting a large constant ci = 3 · 251bi+1, forcing the processor to
discard the lower mantissa bits.

In code, each carry step needs 5 instructions to perform this routine. In
Listing 1, the 4×-vectorized carry step from f0 to f1 is shown. To reduce f12
back to f0, we multiply by 19 · 2−255, which is implemented using a regular
vmulpd ymmX, [rel .reduceconstant] instruction.

Listing 1 Single carry step for radix 221.25 from limb f0 to limb f1.

1 ; Inputs:

2 ; - ymm0: f0
3 ; - [rel .precisionloss0]: times 4 dq 0x3p73 (c0 = 3 · 251 · 222)
4 ; Outputs:

5 ; - ymm0: f0
6 ; - ymm1: f1
7 vmovapd ymm14, yword [rel .precisionloss0] ; load c0
8 vaddpd ymm15, ymm0, ymm14 ; z′ ← round(f0 + c0)
9 vsubpd ymm15, ymm15, ymm14 ; t← round(z′ − c0)

10 vaddpd ymm1, ymm1, ymm15 ; f1 ← round(f1 + t)
11 vsubpd ymm0, ymm0, ymm15 ; f0 ← round(f0 − t)

All micro-operations (µops) corresponding to the arithmetic instructions in
Listing 1 execute on port 1 of Sandy Bridge’s back end. Furthermore, every
v{add,sub}pd instruction has a latency of 3 cycles (cc). Consequently, the la-
tency of one carry step is the sum of the latencies of instructions 2 – 4, i.e. the
latency is 3 + 3 + 3 = 9cc. Still, the reciprocal throughput is only 4cc.

In a sequential carry chain the back end is stalled most of the time due to
data hazards. We expect a single carry chain to use 9 · 14 = 126cc or 31.5cc
per lane. Even in a twice interleaved carry chain, the latency is still 63cc, while
the reciprocal throughput is still only 56cc. In other words, the twice interleaved
case still suffers from data hazards.

To overcome this, we implement a triple interleaved carry chain, as displayed
in Figure 1. In this case, the latency is reduced to 45cc, while the reciprocal
throughput is 60cc. Conversely the bottleneck is not the latency, but the re-
ciprocal throughput of the carry chain, of which the lower bound is 15cc per
lane.

12 Peter Schwabe and Amber Sprenkels

f0 →f1 → f2 → f3 →f4 →f5,

f4 →f5 → f6 → f7 →f8 →f9,

f8 →f9 →f10 →f11 →f0 →f1

Fig. 1: Triple interleaved 12-limb carry chain.

Multiplication. For radix-221.25, we use basic 4× parallel Karatsuba multi-
plication [31], using inspiration from [30]. An inconvenience introduced by im-
plementing Karatsuba using floating points, is that the shift-by-128-bit oper-
ations cannot be optimized out. Instead, we have to explicitly multiply some
limbs by 2±128. This costs 23 extra multiplication ops (implemented using 12
vmulpds, and 11 vandpds). Still, the Karatsuba implementation, which contains
131 vmulpd instructions, was measured to be 8% faster than the schoolbook
method (which contains 155 vmulpd instructions).

Vectorization strategy. We group the multiplications from both algorithms
in three batches each, which have been chosen such that the complexity of the
operations in-between the multiplications minimized. The resulting algorithms
are given in Algorithms 4 and 5.

In particular, we cannot optimize the squaring operations in Double using
the 2αβ = (α+ β)2 − α2 − β2 rule, because α+ β has too little headroom to be
squared without doing an additional carry chain.

Because we cannot perform shift operations on floating-point values, and
because the reciprocal throughput of vmulpd and v{add,sub}pd are both 1cc,
we replace all chained additions by multiplications. This substitutes 8a for 4m
in Add, and 10a for 5m in Double.

Last, we found that shuffling the ymm registers turns out to be relatively weak
and expensive. That is because Sandy Bridge has no arbitrary shuffle instruction
(like the vpermq instruction in AVX2). To shuffle every value in a ymm register
into the correct lane, we would need at least two µops on port 5. Then it is
cheaper to put all the values in the first lane, and accept that most of the
additions and subtractions are not batched.

3.2 Haswell

The more recent Haswell microarchitecture from Intel supports Advanced Vec-
tor Extensions 2 (AVX2). Haswell’s AVX2 is more powerful than its predeces-
sor. First, because AVX2 allows for 4× parallel 64-bit integer arithmetic; and
second, because addition and subtraction operations—using the vp{add,sub}q
instructions—have a reciprocal throughput of only 0.5cc. Together with the other
instructions in AVX2, Haswell lends itself for efficient 4× parallel 64-bit integer
arithmetic.

The complete cost of cofactor h = 1 13

Algorithm 4 Algorithm for point addition for Curve13318 as implemented on
the Sandy Bridge microarchitecture. A rule () denotes a “dead” value, i.e.
one that has no meaning and is unused. Red executes a coefficient-reduction
chain.

procedure Add(X1, Y1, Z1, X2, Y2, Z2)
v14 ← X1 + Z1 v4 ← X1 + Y1 v4 ← X1 + Y1 v9 ← Y1 + Z1

v15 ← X2 + Z2 v5 ← X2 + Y2 v5 ← X2 + Y2 v10 ← Y2 + Z2

v16 ← v14 · v15 v1 ← X1 ·X2 v2 ← Y1 · Y2 v3 ← Z1 · Z2

v16 ← Red(v16) v1 ← Red(v1) v2 ← Red(v2) v3 ← Red(v3)
v7 ← v2 + v1 v12 ← v2 + v3
v17 ← v1 + v3
v18 ← v16 − v17
v19 ← b · v3
v20 ← v19 − v18
v25 ← b · v18
v27 ← 3 · v3
v28 ← v25 − v27
v29 ← v28 − v1 vv1−v3 ← v1 − v3
v22 ← 3 · v20 v31 ← 3 · v29 v34 ← 3 · vv1−v3

v22 ← Red(v22) v31 ← Red(v31) v34 ← Red(v34)
v23 ← v2 − v22
v24 ← v2 + v22
v37 ← v23 · v24 v36 ← v31 · v34 v6 ← v4 · v5 v11 ← v9 · v10
v37 ← Red(v37) v36 ← Red(v36) v6 ← Red(v6) v11 ← Red(v11)
v37 ← v37 − 0 v36 ← v36 − 0 v8 ← v6 − v7 v13 ← v11 − v12
v38 ← v36 + v37
v39 ← v24 · v8 v42 ← v33 · v8 v41 ← v23 · v13 v35 ← v31 · v13
v39 ← Red(v39) v42 ← Red(v42) v41 ← Red(v41) v35 ← Red(v35)
v43 ← v41 + v42
v40 ← v39 − v35

X3 ← v40
Y3 ← v38
Z3 ← v43

Representation of prime-field elements. We use the radix-225.5 redundant
representation, which was introduced in [15]. The representation stores an integer
f into 10 unsigned3 64-bit limbs, with each base bi = 2⌈25.5i⌉. Then the value of

3 When we use signed limbs, we need—for the coefficient reduction—an instruc-
tion that shifts packed quadwords to the right while shifting in sign bits. Such
an arithmetic shift operation—which would be called vpsraq—has never been im-
plemented for the Haswell microarchitecture. Indeed, the first occurrence of the
vpsraq-instruction was in AVX-512, in the Knight’s Landing and Skylake-X mi-
croarchitectures.

14 Peter Schwabe and Amber Sprenkels

Algorithm 5 Algorithm for point doubling for Curve13318 as implemented on
the Sandy Bridge microarchitecture. A rule () denotes a “dead” value, i.e.
one that has no meaning and is unused. Red executes a coefficient-reduction
chain.

procedure Double(X, Y , Z)
Y ← Y + 0 v2X ← X +X
v1 ← X ·X v6 ← X · Z v3 ← Z · Z v28 ← Y · Z
v1 ← Red(v1) v6 ← Red(v6) v3 ← Red(v3) v28 ← Red(v28)
v24 ← 3 · v1 v18 ← 2b · v6 v′8 ← − b

2
· v3 v17 ← 3 · v3

v25 ← v24 − v17 v19 ← v18 − v17
v20 ← v1 − v19
v22 ← −3 · v20
v9 ← v′8 + v6
v11 ← −6 · v9 v34 ← 8 · v28
v11 ← Red(v11) v34 ← Red(v34) v22 ← Red(v22) v25 ← Red(v25)
v29 ← v28 + v28
v30 ← v22 · v29 v26 ← v22 · v25 v2 ← Y · Y v5 ← v2X · Y
v30 ← Red(v30) v26 ← Red(v26) v2 ← Red(v2) v5 ← Red(v5)
v12 ← v2 − v11
v13 ← v2 + v11
v32 ← v2 · v34 v15 ← v5 · v12 v14 ← v12 · v13
v32 ← Red(v32) v15 ← Red(v15) v14 ← Red(v14)
v31 ← v15 − v30
v27 ← v14 + v26

X3 ← v31
Y3 ← v27
Z3 ← v34

f is given by

f =

9∑
i=0

bifi.

Coefficient reduction. For coefficient reduction in radix 225.5, we use the carry
chain described by Sandy2x [19], adapted to AVX2. It is shown in Listing 2.

One carry step uses only 3 µops, each of which can execute on a separate port.
Consequently, the reciprocal throughput of a single carry step is 1cc, while the
latency of a carry step is 2cc. Therefore, it is optimal to implement the coefficient
reduction using a twice interleaved carry chain, as visualized in Figure 2.

The complete cost of cofactor h = 1 15

Listing 2 Single carry step for radix 225.5.

1 ; Inputs:

2 ; - ymm0: f0
3 ; - [rel .MASK26]: times 4 dq 0x3FFFFFF

4 ; Outputs:

5 ; - ymm0: f0
6 ; - ymm1: f1
7 vpsrlq ymm15, ymm0, 26 ; t← ⌊2−26f0⌋
8 vpaddq ymm1, ymm1, ymm15 ; f1 ← f1 + t
9 vpand ymm0, ymm0, yword [rel .MASK26] ; f0 ← f0 mod 226

f0 → f1 → f2 → f3 → f4 → f5 → f6,

f5 → f6 → f7 → f8 → f9 → f0 → f1

Fig. 2: Twice interleaved 10-limb carry chain.

Multiplication and squaring. For the multiplication of numbers in radix 225.5,
we adapt the multiplication routine from Sandy2x for AVX2. The multiplication
routine uses the schoolbook method of multiplication. It contains 109 vpmuludq

instructions. Of these 109 instructions, 9 vpmuludqs are used to precompute
19 · {g1, g2, . . . , g9} ≡ 2255 · {g1, g2, . . . , g9}, where g is the second input operand.
These values will be used for the limbs in the result that wrap around the field
modulus, as is described in the Sandy2x paper ([19]).

In addition to the multiplication routine, we implement an optimized routine
for squaring operations, based on the multiplication routine, that we will use in
the next section.

Furthermore, we looked at the possibility of using Karatsuba multiplication,
instead of using the schoolbook method. In this endeavor, we chose the Karat-
suba base B = 2153, i.e. we split the inputs into one part of 6 limbs, and one
part of 4 limbs. We execute the Karatsuba algorithm to obtain a 19-limb value
hu, which is the uncarried result. To carry the high limbs from hu onto the
lower limbs, we multiply the high limbs by 19 using 3 vpaddqs and 1 vpsllq per
limb; then we accumulate the results onto the lower limbs, yielding our carried
product h.

In the Karatsuba routine, the port pressure is better divided, with 97 µops on
port 0 and 149 µops on ports 1 and 5, relative to the schoolbook method, with 109
µops on port 0 and 90 on ports 1 and 5. However, the Karatsuba multiplication
routine performs considerably worse than the Schoolbook method. Presumably,
the CPU’s front end cannot keep up with the added bulk of instructions.

16 Peter Schwabe and Amber Sprenkels

Why not mulx? In [40], Oliveira et al. make use of the Bit Manipulation Instruc-
tion Set 2 (BMI2) extension in Haswell. BMI2 introduces the instruction mulx,
which allows for unsigned multiply with arbitrary destination registers (instead
of always storing the result in rdx:rax). Using this with a packed radix-264

representation, field multiplication and squaring can be sped up quite a lot.
However, experiments showed that the penalty introduced by more expensive
additions/subtractions beat the performance gain achieved by using mulx.

Vectorization strategy. Similar as in the implementation for Sandy Bridge,
we batched all multiplications in the Add algorithm into three different batches.
The complete vectorization strategy is given in Algorithms 6 and 7.

In the implementation of Double, we applied the squaring trick described
in Section 2.3, and rewrite v7 = 2XZ = (X + Z)2 − X2 − Z2. After replacing
the multiplication v6 by a squaring, we can replace the first of the three multi-
plication batches in Double with a batched squaring operation, that computes
the values {(X + Z)2, v1, v2, v3}.

We realize that in both algorithms we can reduce the amount of shuffle
operations needed, by unpacking the values from their SIMD registers after the
first batched operations, and using the general-purpose instructions for many
cheap operations, i.e. additions, subtractions, triplings4, and multiplies with b.
This way, we eagerly compute the core of the algorithm, leaving only two batched
multiplications and a few additions. After repacking the values into the ymm-bank,
we execute the remainder of the algorithm, including the two other multiplication
batches.

3.3 ARM Cortex M4

Field arithmetic. For the ARM Cortex M4, we reused the finite field arithmetic
from Haase and Labrique [27]. For field elements, they use a packed representa-
tion in radix 232. We refer to their paper for the details of the field arithmetic,
which can be summarized as cleverly exploiting the magnificent powers of the
umlal and umaal instructions.

One function we added was fe25519_mul_u32_asm, used for multiplication
with small constants. It was based on Fujii’s code [25, Listing 3.2], which was in
turn based on [43].

Application of formulas. On top of the field arithmetic, we implemented
the Add and Double algorithms using function calls to the underlying field
operations. Because—compared to multiplications—field additions are relatively

4 Using lea r64, [2*r64 + r64] instructions.

The complete cost of cofactor h = 1 17

Algorithm 6 Algorithm for point addition for Curve13318 as implemented on
the Haswell microarchitecture. A rule () denotes a “dead” value, i.e. one
that has no meaning and is unused. Red executes a coefficient-reduction chain.
The additions/subtractions with large constants (232p, 4p and 237p) are to ensure
that all the values are in the positive domain after subtraction.

procedure Add(X1, Y1, Z1, X2, Y2, Z2)
Y1 ← Red(Y1) Y2 ← Red(Y2) Y1 ← Red(Y1) Y2 ← Red(Y2)
v14 ← X1 + Z1 v4 ← X1 + Y1 v4 ← X1 + Y1 v9 ← Y1 + Z1

v15 ← X2 + Z2 v5 ← X2 + Y2 v5 ← X2 + Y2 v10 ← Y2 + Z2

v16 ← v14 · v15 v1 ← X1 · Y2 v2 ← Y1 · Z2 v3 ← Z1 · Z2

v16 ← Red(v16) v1 ← Red(v1) v2 ← Red(v2) v3 ← Red(v3)
v17 ← v1 + v3
v7 ← v1 + v2
v12 ← v2 + v3
v18 ← v16 − v17
v19 ← b · v3
v25 ← b · v18
v20 ← v18 − v19
v22 ← 3 · v20
v24 ← v22 + v2
v23 ← v2 − v22
v27 ← 3 · v3
vv25−v1 ← v25 − v1
v29 ← vv25−v1 −v27
v31 ← 3 · v29
v33 ← 3 · v1
v34 ← v33 − v27
v34 ← v34 + 232p v24 ← v24 + 232p v31 ← v31 + 232p v23 ← v23 + 232p
v34 ← Red(v34) v24 ← Red(v24) v31 ← Red(v31) v23 ← Red(v23)
v36 ← v34 · v31 v37 ← v24 · v23 v6 ← v4 · v5 v11 ← v9 · v10
v36 ← Red(v36) v37 ← Red(v37) v6 ← Red(v6) v11 ← Red(v11)
v38 ← v36 + v37

v7 ← v7 − 4p v12 ← v12 − 4p
v8 ← v6 − v7 v13 ← v11 − v12

v42 ← v8 · v34 v39 ← v8 · v24 v35 ← v13 · v31 v41 ← v13 · v23
v39 ← v39 + 237p
v40 ← v39 − v35

v43 ← v42 + v41
v43 ← Red(v43) v40 ← Red(v40)

X3 ← v40
Y3 ← v38
Z3 ← v43

expensive, there is no benefit in using the 2αβ = (α + β)2 − α2 − β2 trick.
However, multiply-with-small-constant operations are relatively cheap, so we

18 Peter Schwabe and Amber Sprenkels

Algorithm 7 Algorithm for point doubling for Curve13318 as implemented on
the Haswell microarchitecture. A rule () denotes a “dead” value, i.e. one
that has no meaning and is unused. Red executes a coefficient-reduction chain.
The additions/subtractions with large constants (232p, 4p and 237p) are to ensure
that all the values are in the positive domain after subtraction.

procedure Double(X, Y , Z)
vX+Z ← X + Z vX+Z ← X + Z vX+Z ← X + Z vX+Z ← X + Z
v2Y ← Y + Y v2Y ← Y + Y v2Y ← Y + Y v2Y ← Y + Y
v(X+Z)2 ← v2X+Z v1 ← X2 v2 ← Y 2 v3 ← Z2

v(X+Z)2 ← Red(v(X+Z)2) v1 ← Red(v1) v2 ← Red(v2) v3 ← Red(v3)
vZ2+2XZ ← v(X+Z)2 − v1
v7 ← vZ2+2XZ − v3
v18 ← b · v7
v8 ← b · v3
v17 ← 3 · v3
v19 ← v18 − v17
v9 ← v8 − v7
v24 ← 3 · v1
v11 ← 3 · v9
v20 ← v19 − v1
v22 ← 3 · v20
v12 ← v2 − v11
v13 ← v2 + v11
v25 ← v24 − v17
v4v2 ← 4 · v2
v22 ← v22 + 232p v12 ← v12 + 232p v25 ← v25 + 232p v13 ← v13 + 232p
v22 ← Red(v22) v12 ← Red(v12) v25 ← Red(v25) v13 ← Red(v13)
v26 ← v22 · v25 v14 ← v12 · v13 v28 ← v2Y · Z v4 ← v2Y ·X
v26 ← Red(v26) v14 ← Red(v14) v28 ← Red(v28) v4 ← Red(v4)
v27 ← v26 + v14
v30 ← v28 · v22 v15 ← v4 · v12 v34 ← v4v2 · v28
v30 ← v30 − 237p
v31 ← v15 − v30
v31 ← Red(v31) v34 ← Red(v34)

X3 ← v31
Y3 ← v27
Z3 ← v34

replaced any chained additions (like the vb ← va+va; then va ← vb+va pattern)
by multiplications (i.e. va ← 3va). No other modifications were introduced. Even
the order of the operations has been kept to the original.

The complete cost of cofactor h = 1 19

4 Performance results

The complete scalar multiplication algorithm was tested and benchmarked on
Intel Core i7-2600 (Sandy Bridge), Intel Core i5-3210 (Ivy Bridge), Intel Core
i7-4770 (Haswell), and the ARM STM32F407 (Cortex-M4). On the Intel pro-
cessors, all measurements were done with Turbo Boost disabled, all Hyper-
Threading cores shut down, and with the CPU clocked at the maximum nominal
frequency. The STM32F407 device was run with its default settings, as listed in
the datasheet [44] (i.e. clocked from the 16MHz internal RC-oscillator). We list
the benchmarking results in Table 1. As expected, none of our implementations
exceed the performance of Curve25519.

Table 1: Measured cycle counts of the variable-basepoint scalar-multiplication
routines on the Sandy Bridge (SB), Ivy Bridge (IB), Haswell (H) and Cortex
M4 (M4) architectures.

Implementation SB IB H M4

Chou16 [19] 159 128a 156 995a 155 823b –

Faz-Hernández-Lopez15 [24] – – ≈ 156 500c –

OLHF18 [40] – – 138 963a –

Fujii-Aranha19 [26] – – – 907 240a

Haase-Labrique19 [27] – – – 625 358a

Curve13318 (this work) 389 546b 382 966b 204 643b 1 797 451b

Ed25519 verify 221 988d 206 080d 184 052d –

slowdown 2.45× 2.44× 1.47× 2.87×
a As reported in the respective publication.
b From own measurements.
c As reported in [24]. This publication expressed their benchmarks in kcc. As such,
this value has been padded with zeros.

d Cycle counts reported on Bernstein and Lange’s eBACS website [11]; included
for the sake of completeness. The SB, IB and H measurements were selected from
the tables for the h6sandy, manny613 and genji202 machines respectively. At the
moment of writing, it is unclear to the authors which implementations were used
to construct these cycle counts.

It can immediately be seen that the slowdown factor is dependent on the
platform. In particular, the Haswell implementation of scalar multiplication on
Curve13318 performs, also relatively speaking, much better than the others. The
source of this is seems to be that Algorithms 1 and 2 lend themselves for very
efficient 4-way parallelization, which is not supported by Curve25519’s ladder
algorithm. Through AVX2, 4-way parallelization is very powerful on Haswell,
whereas on the other platforms it is not, at least not to the same extent. This
makes it possible to write a Haswell implementation that is significantly faster
than the others.

20 Peter Schwabe and Amber Sprenkels

The cost of completeness.

Another question we might be able to answer is if the factor-1.4 penalty
claimed in [42]—for complete formulas vs. incomplete formulas—is realistic also
for optimized implementations.

In [17], Bos, Costello, Longa, and Naehrig present performance results for
scalar multiplication on a prime-order Weierstraß curve over F2256−189 using
parameter a = −3. The curve is very similar to Curve13318 and the implemen-
tation uses non-complete formulas for addition and doubling. The authors re-
port 278 000 cycles for variable-base scalar multiplication on Intel Sandy Bridge.
The software in [17] is seriously optimized, and claimed to run in constant
time, so these 278 000 cycles are reasonably comparable to our 389 546 cycles
with complete formulas. In other words, this comparison affirms the factor-1.4
performance-penalty claim from [42].

5 Future work and conclusion

Future work. Of course it might be possible to improve on our results for
optimized arithmetic using the Renes-Costello-Batina formulas, but we would
be surprised to see such improvements change the big picture and conclusion we
draw in this paper. What would be interesting to explore is carefully optimized
software for the complete ladder formulas presented in [45]. Our intuition is
that in practice they will end up slightly slower than the signed fixed-window
scalar multiplication using Renes-Costello-Batina formulas we employed here,
but settling this question clearly needs more implementation effort.

Conclusion. The analysis in this paper shows that using prime-order Weier-
straß curves with complete addition formulas is between ≈ 1.5 times and ≈ 2.9
times slower than using state-of-the-art Montgomery curve arithmetic. In an
area where even a 10% improvement in performance is often considered impor-
tant and worth publication in major venues, this is a pretty heavy price to pay;
at least for some applications that are bottlenecked by ECC performance.

However, for applications that primarily aim at simplicity and safety against
subgroup attacks, the performance penalty might be acceptable. This point of
view is supported, for example, also by the fact that the attempt to standard-
ize the high-performance “FourQ” curve [21] in CFRG [35] was only very short
lived. The discussion around this proposal acknowledged that FourQ offers con-
siderably faster arithmetic than Curve25519, but questioned that there are any
applications that really need that performance5.

In our opinion, for the design of new protocols, the most efficient, simple,
and safe choice of elliptic curve remains Curve25519 in twisted Edwards form
with the Ristretto encoding to remove the non-trivial cofactor.

5 For the full discussion, see https://mailarchive.ietf.org/arch/msg/cfrg/

sCqu86nFiAw_9beBXVqBM_zES_k.

https://mailarchive.ietf.org/arch/msg/cfrg/sCqu86nFiAw_9beBXVqBM_zES_k.
https://mailarchive.ietf.org/arch/msg/cfrg/sCqu86nFiAw_9beBXVqBM_zES_k.

The complete cost of cofactor h = 1 21

References

1. Arcieri, T., de Valence, H., Lovecruft, I.: The Ristretto Group, https://

ristretto.group/ristretto.html (accessed 2019-07-31) 2

2. Aumasson, J.P.: Serious Cryptography: A Practical Introduction to Modern En-
cryption. No Starch Press (2017) 4

3. Barreto, P.S.L.M.: Tweet (2017), https://twitter.com/pbarreto/status/

869103226276134912 7

4. Bernstein, D.J.: A software implementation of NIST P-224. Talk at the Workshop
on Elliptic Curve Cryptography – ECC 2001 (2001), http://cr.yp.to/talks.
html#2001.10.29 6

5. Bernstein, D.J.: Floating-point arithmetic and message authentication (2004),
http://cr.yp.to/papers.html#hash127 10

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography – PKC 2006.
LNCS, vol. 3958, pp. 207–228. Springer (2006), http://cr.yp.to/papers.html#
curve25519 2, 6, 7, 10

7. Bernstein, D.J.: 25519 naming. Posting to the CFRG mailing list (2014), https:
//www.ietf.org/mail-archive/web/cfrg/current/msg04996.html 1

8. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) Progress in Cryptology – AFRICACRYPT 2008.
LNCS, vol. 5023, pp. 389–405. Springer (2008), http://cr.yp.to/papers.html#
twisted 2, 6

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer (2011),
see also full version [10] 2, 21

10. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012),
http://cryptojedi.org/papers/#ed25519, see also short version [9] 2, 21

11. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems, https://bench.cr.yp.to/results-sign.html (accessed 2019-10-03) 19

12. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography, https://safecurves.cr.yp.to (accessed 2019-07-31) 4, 7

13. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) Advances in Cryptology – ASIACRYPT 2007. LNCS, vol. 4833,
pp. 29–50. Springer (2007), https://cr.yp.to/papers.html#newelliptic 2, 6

14. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map
in the Pollard rho method. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) Public Key Cryptography – PKC 2011. LNCS, vol. 6571, pp. 128–146.
Springer (2011), http://cryptojedi.org/papers/#negation 1

15. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2012. LNCS, vol. 7428,
pp. 320–339. Springer (2012), http://cryptojedi.org/papers/#neoncrypto 13

16. Bernstein, D.J., Yang, B.Y.: Fast constant-time gcd computation and modular
inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 340–398 (2019), https://tches.iacr.org/index.php/TCHES/article/
view/8298 9

https://ristretto.group/ristretto.html
https://ristretto.group/ristretto.html
https://twitter.com/pbarreto/status/869103226276134912
https://twitter.com/pbarreto/status/869103226276134912
http://cr.yp.to/talks.html#2001.10.29
http://cr.yp.to/talks.html#2001.10.29
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
http://cr.yp.to/papers.html#twisted
http://cr.yp.to/papers.html#twisted
http://cryptojedi.org/papers/#ed25519
https://bench.cr.yp.to/results-sign.html
https://safecurves.cr.yp.to
https://cr.yp.to/papers.html#newelliptic
http://cryptojedi.org/papers/#negation
http://cryptojedi.org/papers/#neoncrypto
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://tches.iacr.org/index.php/TCHES/article/view/8298

22 Peter Schwabe and Amber Sprenkels

17. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for
cryptography: an efficiency and security analysis. Journal of Cryptographic En-
gineering 6(4), 259–286 (2016), https://www.microsoft.com/en-us/research/

wp-content/uploads/2016/02/selecting.pdf 20

18. Bosma, W., Lenstra, H.W.: Complete systems of two addition laws for el-
liptic curves. Journal of Number Theory 53(2), 229–240 (1995), http://www.

sciencedirect.com/science/article/pii/S0022314X85710888 3, 7

19. Chou, T.: Sandy2x: New Curve25519 speed records. In: Dunkelman, O., Keliher,
L. (eds.) Selected Areas in Cryptography – SAC 2015. LNCS, vol. 9566, pp. 145–
160. Springer (2016), https://www.win.tue.nl/~tchou/papers/sandy2x.pdf 4,
14, 15, 19

20. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Kazuo Ohta, D.P. (ed.) Advances in Cryptology – ASIACRYPT
’98. LNCS, vol. 1514, pp. 51–65. Springer (1998) 6

21. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the Mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology
– ASIACRYPT 2015. LNCS, vol. 9452, pp. 214–235. Springer (2015), https://
eprint.iacr.org/2015/565.pdf 20

22. Cremers, C., Jackson, D.: Prime, order please! Revisiting small subgroup and in-
valid curve attacks on protocols using Diffie-Hellman. Cryptology ePrint Archive,
Report 2019/526 (2019), https://eprint.iacr.org/2019/526 2

23. Edwards, H.M.: A normal form for elliptic curves. Bulletin (New Se-
ries) of the American Mathematical Society 44(3), 393–422 (2007),
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/

S0273-0979-07-01153-6.pdf 2

24. Faz-Hernández, A., López, J.: Fast implementation of Curve25519 using AVX2.
In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) Progress in Cryptology – LATIN-
CRYPT 2015. LNCS, vol. 9230, pp. 329–345. Springer (2015) 19

25. Fujii, H.: Efficient Curve25519 Implementation for ARMMicrocontrollers. Master’s
thesis, Universidade Estadual de Campinas (2018), http://taurus.unicamp.br/
bitstream/REPOSIP/332957/1/Fujii_Hayato_M.pdf 16

26. Fujii, H., Aranha, D.F.: Curve25519 for the Cortex-M4 and Beyond. In: Lange, T.,
Dunkelman, O. (eds.) Progress in Cryptology – LATINCRYPT 2017. LNCS, vol.
11368, pp. 109–127. Springer (2019), http://www.cs.haifa.ac.il/~orrd/LC17/
paper39.pdf 19

27. Haase, B., Labrique, B.: AuCPace: Efficient verifier-based PAKE protocol tai-
lored for the IIoT. IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 1–48 (2019), https://tches.iacr.org/index.php/TCHES/article/
view/7384 5, 16, 19

28. Hamburg, M.: Decaf: Eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. LNCS,
vol. 9215, pp. 705–723. Springer (2015), https://www.shiftleft.org/papers/

decaf/ 2

29. Hisil, H., Wong, K.K.H., Carter, G., , Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) Advances in Cryptology – ASIACRYPT 2008. LNCS,
vol. 5350, pp. 326–343. Springer (2008), http://eprint.iacr.org/2008/522/ 6

30. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited. Jour-
nal of Cryptographic Engineering 5(3), 201–214 (2015), http://cryptojedi.org/
papers/#avrmul 12

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/selecting.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/selecting.pdf
http://www.sciencedirect.com/science/article/pii/S0022314X85710888
http://www.sciencedirect.com/science/article/pii/S0022314X85710888
https://www.win.tue.nl/~tchou/papers/sandy2x.pdf
https://eprint.iacr.org/2015/565.pdf
https://eprint.iacr.org/2015/565.pdf
https://eprint.iacr.org/2019/526
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/S0273-0979-07-01153-6.pdf
https://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/S0273-0979-07-01153-6.pdf
http://taurus.unicamp.br/bitstream/REPOSIP/332957/1/Fujii_Hayato_M.pdf
http://taurus.unicamp.br/bitstream/REPOSIP/332957/1/Fujii_Hayato_M.pdf
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://www.shiftleft.org/papers/decaf/
https://www.shiftleft.org/papers/decaf/
http://eprint.iacr.org/2008/522/
http://cryptojedi.org/papers/#avrmul
http://cryptojedi.org/papers/#avrmul

The complete cost of cofactor h = 1 23

31. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. So-
viet Physics Doklady 7, 595–596 (1963), translated from Doklady Akademii Nauk
SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. 12

32. Kerry, C.F., Director, C.R.: FIPS PUB 186-4 federal information processing stan-
dards publication digital signature standard (DSS) (2013), http://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 5

33. Kim, K.H., Choe, J., Kim, S.Y., Kim, N., Hong, S.: Speeding up elliptic curve
scalar multiplication without precomputation. Cryptology ePrint Archive, Report
2017/669 (2017), https://eprint.iacr.org/2017/669.pdf 6

34. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation
48, 209–209 (1987), https://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf 1
35. Ladd, W., Longa, P., Barnes, R.: Curve4Q. IETF CFRG Internet Draft (2017),

https://tools.ietf.org/html/draft-ladd-cfrg-4q-00 (accessed 2019-08-18)
20

36. luigi1111, “fluffypony” Spagni, R.: Disclosure of a major bug in CryptoNote based
currencies. Post on the Monero website (2017), https://www.getmonero.org/

2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.

html (accessed 2019-07-31) 2
37. Massolino, P.M.C., Renes, J., Batina, L.: Implementing complete formulas on

Weierstrass curves in hardware. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
Security, Privacy, and Applied Cryptography Engineering. LNCS, vol. 10076, pp.
89–108. Springer (2016), https://eprint.iacr.org/2016/1133.pdf 5

38. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
Advances in Cryptology — CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer
(1986) 1

39. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of fac-
torization. Mathematics of Computation 48(177), 243–264 (1987), http:

//www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

S0025-5718-1987-0866113-7.pdf 6
40. Oliveira, T., López, J., Hışıl, H., Faz-Hernández, A., Rodŕıguez-Henŕıquez, F.: How

to (Pre-)Compute a Ladder. In: Adams, C., Camenisch, J. (eds.) Selected Areas
in Cryptography – SAC 2017. LNCS, vol. 10719, pp. 172–191. Springer (2018),
https://eprint.iacr.org/2017/264.pdf 4, 16, 19

41. OpenSSL: Cryptography and SSL/TLS toolkit, http://www.openssl.org/ (ac-
cessed 2019-08-18) 5

42. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime or-
der elliptic curves. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptol-
ogy – Eurocrypt 2016. LNCS, vol. 9230, pp. 403–428. Springer (2016), http:

//eprint.iacr.org/2015/1060 3, 4, 5, 7, 8, 20
43. Santis, F.D., Sigl, G.: Towards side-channel protected X25519 on ARM Cortex-M4

processors. In: SPEED-B – Software performance enhancement for encryption and
decryption, and benchmarking (2016), https://ccccspeed.win.tue.nl/papers/
SPEED-B_Final.pdf 16

44. STMicroelelectronics: RM0090 reference manual (2019), https://www.

st.com/content/ccc/resource/technical/document/reference_manual/

3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:

content/translations/en.DM00031020.pdf 19
45. Susella, R., Montrasio, S.: A compact and exception-free ladder for all short Weier-

strass elliptic curves. In: Lemke-Rust, K., Tunstall, M. (eds.) Smart Card Research

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://eprint.iacr.org/2017/669.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://tools.ietf.org/html/draft-ladd-cfrg-4q-00
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://eprint.iacr.org/2016/1133.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://eprint.iacr.org/2017/264.pdf
http://www.openssl.org/
http://eprint.iacr.org/2015/1060
http://eprint.iacr.org/2015/1060
https://ccccspeed.win.tue.nl/papers/SPEED-B_Final.pdf
https://ccccspeed.win.tue.nl/papers/SPEED-B_Final.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf

24 Peter Schwabe and Amber Sprenkels

and Advanced Applications. LNCS, vol. 10146, pp. 156–173. Springer (2017) 4, 5,
7, 20

46. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I.: The
ristretto255 group. IETF CFRG Internet Draft (2019), https://tools.ietf.org/
html/draft-hdevalence-cfrg-ristretto-01 (accessed 2019-07-31) 3, 4

https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01
https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-01

	The complete cost of cofactor h=1

