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Abstract

The existence of secure indistinguishability obfuscators (iO) has far-reaching implications,
significantly expanding the scope of problems amenable to cryptographic study. A recent line
of work [Ananth, Jain, and Sahai, 2018; Aggrawal, 2018; Lin and Matt, 2018; Jain, Lin, Matt,
and Sahai, 2019] has developed a new theory for building iO from simpler building blocks, and
represents the state of the art in constructing iO from succinct and instance-independent as-
sumptions. This line of work has culminated in a construction of iO from four assumptions,
consisting of two standard assumptions, namely sub-exponentially secure LWE and SXDH over
bilinear groups, and two other pseudorandomness assumptions: The first assumes weak pseu-
dorandomness properties of generators computable by constant-degree polynomials over the
integers, as well as an LWE leakage assumption, introduced by [Jain, Lin, Matt, and Sahai,
2019]. The second assumes the existence of Boolean PRGs with constant block locality [Gol-
dreich 2000, Lin and Tessaro 2017]. In this work, we make the following contributions:

• We completely remove the need to assume a constant-block local PRG. This yields a
construction of iO based on three assumptions of LWE, SXDH and a constant degree
perturbation resilient generator [Jain, Lin, Matt, and Sahai, 2019]

• Our construction is arguably simpler and more direct than previous constructions. We
construct the notion of special homomorphic encoding (SHE) for all P/Poly from LWE,
by adapting techniques from Predicate Encryption [Gorbunov, Vaikunthanathan and Wee,
2015]. Prior to our work, SHE was only known for the class NC1, from Ring LWE [Agrawal
and Rosen, 2017]. Our new SHE allows our construction of iO to avoid an intermediate step
of bootstrapping via randomized encodings. Indeed, we construct a functional encryption
scheme whose ciphertext grows sublinearly only in the output length of the circuits as
opposed to its size. This is first such scheme that does not rely on multilinear maps.

• Finally, we investigate a main technical concept facilitating the line of work on iO; namely
the notion of partially hiding functional encryption introduced by [Ananth, Jain, and Sahai
2018]. The partially hiding functional encryption used in these iO constructions allows an
encryptor to encrypt vectors of the form x,y, z ∈ Zn

p and allows any decrptor with a key
for function f to learn 〈f(x),y ⊗ z〉. The encryption is allowed to reveal x while keeping
y, z hidden. Furthermore, the size of the cipher-text should grow linearly in n.

We significantly improve the starte of the art for partially hiding functional encryption:
Assuming SXDH over bilinear maps, we construct a partially hiding FE scheme where
the function f is allowed to be any polynomial sized arithmetic branching program. Prior
to our work, the best partially hiding FE only supported the class of constant degree
polynomials over Zp [Jain, Lin, Matt, and Sahai 2019].
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1 Introduction

Program obfuscation intuitively seeks to transform a program into an “unintelligible form” while
maintaining functionality. In particular, starting with the works of [25, 48], the notion of indistin-
guishability obfuscation (iO) [16, 29] has turned out to have far-reaching applications, significantly
expanding the scope of problems to which cryptography can be applied (see, e.g., [23, 28, 32, 48,
35, 18, 24, 26, 31]). As such, securely constructing iO is one of the most pressing open problems
in cryptography.

A recent line of work [5, 2, 33] has developed a new theory for building iO from simpler building
blocks, and represents the state of the art in constructing iO from succinct, efficiently falsifiable
and instance-independent assumptions. This line of work has culminated [33] in a construction of
iO from four assumptions, consisting of the standard assumptions of sub-exponentially secure LWE
and SXDH over bilinear groups, and the existence of two different types of pseudorandomness gen-
erators: The first is an arithmetic generator that provides only weak pseudorandomness properties
but has low degree, and the second is a Boolean PRG with constant block locality.

This paper aims to further develop this line of work by improving key technical tools, with
the aim of minimizing the kinds of new assumptions that are needed to achieve iO. The main
consequences of our work are the following:

• We completely eliminate the need for assuming the existence of any kind of locality-limited
PRGs.

• We give a construction of a functional encryption scheme (FE) that is arguably simpler and
more direct in hindsight. We directly construct functional encryption FE for P/Poly without
going via expensive bootstrapping steps employed in previous works. Such an approach yields
much more efficient ciphertexts.

• Finally, we build tools that in our opinion would promote basing iO from qualitatively better
assumptions.

We explain each of these aspects below: This first point is important conceptually because locality
– the idea that each output bit of the PRG should only depend on some limited subset of the
input bits – goes against our basic intuitions about how pseudorandom generators “should” work.
In contrast, the types of arithmetic generators that we use have no locality limitations. We now
elaborate further on the newer kinds of pseudorandomness generators proposed in the work of [33],
and how our work improves the state of the art.

Smudging (Arithmetic) Noise Generators. We consider generators G that expand a seed sd ∈ Znp
(where the modulus p is exponentially large in n) into a polynomially longer output r ∈ Zn1.01

p such
that i) r has small polynomial magnitude |r|∞ = poly(n), and ii) is able to partially smudge/hide
even smaller noises1. Such weak randomness generators are formalized in three ways as Perturbation
Resilient Generators by [6], Correlated Noise Generators2 by [2] and Pseudo Flawed-smudging
Generator by [39]. For them to be useful in iO constructions, G needs to have close to minimal
degree – “degree 2.5”. The seed sd of G is divided into two parts (sd1, sd2), with sd1 made public

1The fact that the output r is polynomially bounded means that it cannot completely smudge even binary noises.
2In the notion of correlated noise generators CNG the outputs completely hide the noises. However, this require-

ment is impossible to achieve unless the outputs are super-polynomially large. As a result, CNGs are not applicable
to our approach.
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and sd2 kept secret. G may have constant degree in the public seed sd1, but can only have degree
2 in the private seed sd2 – this is what we mean by “degree 2.5”. Current candidates proposed
in [33] are based on the hardness properties of constant-degree polynomials over the reals, as well
as, an LWE-related assumption (See Section 3.3 for more detail). We stress that these generators
impose no constraints on locality; every output component can depend on any number of input
components.
Block-Local PRGs are Boolean pseudo-random generators mapping n bits to n1.01 bits that have

the structure property that every output bit depends only on a constant number of blocks of seed
bits [27, 40]. There has been a line of works [27, 44, 46, 14, 40, 15] studying the security of candidate
(block-)local PRGs. It has been shown that PRGs with block locality 2 do not exist [15, 42]. On the
other hand, when the block-locality is a sufficiently large constant, Applebaum and Kachlon [13]
based on [11, 12, 9, 10] recently give a local construction whose pseudo-randomness is based on the
one-wayness of random local functions.

Comparing with the standard assumptions of LWE and SXDH, perturbation-resilient generators
and block-local PRGs are less studied and understood. In particular, the notion of perturbation-
resilient generators was only proposed quite recently. Furthermore, the two types of generators are
completely different, with different security guarantees, structural properties, and candidates, and
are not known to imply each other. Ideally, we would like to eliminate the use of both generators
to get the holy grail of basing iO on standard assumptions.

Our Contribution. In this work, we eliminate the need for local PRGs (while keeping perturbation-
resilient generators). We achieve this by developing improved constructions of two key tools –
namely Partially Hiding Functional Encryption and Special Homomorphic Encoding – used in re-
cent iO schemes [5, 33, 2]. Our new constructions enable us to build directly Functional Encryption
(FE) for all (bounded-depth) polynomial-sized circuits, instead of constant-degree polynomials as
in previous works [37, 38, 41, 8, 40, 6, 39, 33]. As a result, we no longer need to bootstrap from
FE for constant-degree polynomials to FE for P/Poly which uses local PRGs. In addition, we also
obtain a more efficient FE scheme for P/Poly. Such an approach also leads to much shorter cipher-
texts, where the length of the ciphertexts grow sublinearly in just the length of the output of the
circuits as opposed to their size. This is the first such scheme that does not rely on mulitilinear
maps. Below, we describe our results more formally.
Recall that functional encryption is an advanced form of encryption that allows one to generate
a partial decryption key fskf associated with a function f mapping length n inputs to length m
outputs, such that, when decrypting a ciphertext fct(x) encrypting x using this key, only the out-
put y = f(x) is revealed. Our functional encryption scheme for P/Poly enjoys strong asymptotic
efficiency properties, and is based on the following assumptions.

Theorem 1. Assume

1. Subexponentially secure LWE,

2. SXDH over bilinear groups, and

3. Existence of Perturbation-Resilient Generators.

There exists a functional encryption scheme for all polynomially-sized circuits, whose ciphertext
size is poly(λ, n, d)`1−εout , polynomial in the security parameter λ, input length n, and depth d of
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computation, and sublinear in the output length `out of the computation. As a corollary, there is a
sublinearly compact functional encryption scheme for all circuits of depth λ.

By combining this theorem with the FE-to-iO transformation of [7, 20, 17, 34], we immediately
obtain iO. In particular, we show:

Theorem 2. Assume

1. subexponentially secure LWE,

2. subexponentially secure SXDH over bilinear groups, and

3. the existence of subexponentially secure Perturbation-Resilient Generators.

There exists an iO for P/Poly.

Along the way, we study the notions of Partially Hiding Functional Encryption and Special
Homomorphic Encoding. Partially Hiding Functional Encryption (PHFE), similar to the notion of
partially hiding predicate encryption in [30], was introduced by [6] and further developed by [39, 33].
PHFE is a restricted form of functional encryption where a part of the message to be encrypted
is not hidden by the encryption. Somewhat more formally, we consider messages of the form
x,y, z ∈ Zn×3

p , where x is not hidden by the PHFE encryption algorithm. Furthermore, in our
work, we consider functions f of the form f(x,y, z) =

∑
i,j fi,j(x) · yi · zj where each fi,j is a

polynomial sized arithmetic branching program. A PHFE scheme allows the holder of a function
key for such a function f to only learn 〈f(x),y ⊗ z〉 when given an encryption of (x,y, z). We
show how to construct such an PHFE scheme assuming only SXDH over bilinear groups.

Theorem 3. Assume the SXDH assumption over bilinear groups. There is a PHFE scheme for
any polynomial sized arithmetic branching programs on the public input and degree 2 on the private
input.

This significantly generalizes the previous best PHFE construction under standard assumptions
due to [33], where each fi,j was restricted to be a constant-degree polynomial. This is the key
technical tool that enables instantiating iO from a wide variety of smudging noise generators. Our
results allow to instantiate iO from any smudging noise generator such as a ∆RG that admits an
NC1 computation in the public part and degree-2 computation in the private part of the seed.
Another related work is by Wee [49], where the author constructed a partially hiding predicate en-
cryption scheme for functions that compute an arithmetic branching program on public attributes,
followed by an inner product predicate on private attributes. This construction can be viewed as a
generalization of attribute based encryption and inner product predicate encryption, whereas our
construction generalizes attribute based encryption and functional encryption for degree 2 polyno-
mials. Another difference is that the two constructions use very different techniques.

Special Homomorphic Encoding (SHE) introduced by [4] and further developed by [2, 39] is
similar to homomorphic encryption, and has the following interface: The setup algorithm samples
public parameters pp; to encode a vector x, the encoding algorithm uses the public parameters pp
as well as a randomly sampled one-time secret hsk, producing encoding hct(x); to homomorphically
evaluate a function f , the evaluator operates on hct(x) and pp independently to obtain hctf and
ppf . The most important part is that decryption has the following special form:
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Work Assumptions |CT|
[5] LWE+SXDH+ 3-block local PRGs+ degree 3 ∆RG/ PFG s1−ε · poly(λ)

[2] Candidate Noisy Linear FE3+ Ring LWE s1−ε · poly(λ)

[2] (using [6]) 4 LWE+SXDH+2-block local PRGs + degree-2 CNG s1−ε · poly(λ)

[33] LWE+SXDH+ O(1)−block local PRGs+ O(1)−degree ∆RG s1−ε · poly(λ)

This work LWE+SXDH+ O(1)−degree ∆RG `1−εout · poly(λ)

Table 1: Summary of assumptions and efficiency features in related works to construct sublinear
Functional Encryption. Above ∆RG, PFG and CNG are smudging arithmetic noise generators
proposed in the works of [6, 39] and [2] respectively. Above in the size comparison, 1 > ε > 0 is an
arbitrary constant. For efficiency properties we consider size of ciphertexts for FE schemes for all
circuits of depth λ, size s and output length `out.

hctf − 〈ppf , hsk〉 = f(x)bp/2e+ ef , (1)

where |ef | ≤ poly(λ). Note that the computation 〈ppf , hsk〉 on the secret hsk is linear and depends
only on ppf . Therefore, hskf = 〈ppf , hsk〉 resembles a functional ecryption key, in the sense that
it is generated independent of hct(x) and reveals only the perturbed output f(x)bp/2e + ef . The
only drawback is that the noise ef is sensitive and cannot be revealed. This feature is leveraged in
previous FE constructions.

In this work, we construct SHE supporting homomorphic evaluation of all polynomial-sized
computations from just LWE. Previous constructions based on LWE can only handle constant
degree computations [4, 39], and the one based on RLWE handles NC1 computation [4].

Theorem 4. Assume the LWE assumption. There is a SHE scheme for P/Poly whose encoding
size is poly(λ, n, d), polynomial in the security parameter λ, message length n, and depth d of the
computation.

In Table 1, we compare assumptions and efficiency features of various constructions in this line
of work.

2 Technical Overview

We first give overviews of our new constructions of PHFE and SHE, and then explain their roles
in the iO construction.

2.1 Our (NC1,deg-2) PHFE

We construct 1-key PHFE with fully compact ciphertext of size linear in the input length n, for
functions F (x,y, z) of the following form, from the SXDH assumption on asymmetric bilinear maps.

3We call this a candidate because its security is assumed as-is and not proven based on any succinct or instance
independent assumption.

4This result requires [2] to rely on the FE hardness amplification theorem of [6].

5



F maps three vectors x,y, z ∈ Znp to a (potentially longer) output vector in Zmp (our construction
can handle any (polynomial) unbounded m), where each output element is computed by a function
f = Fk for k ∈ [m] as follows:

f(x,y, z) = 〈f0, f1(x)f2(x) . . . fd(x)fd+1(y ⊗ z)〉 , (2)

where f0, all f i(x), and fd+1(y ⊗ z) are matrices of dimension N ×N where N = poly(n), all
f i functions are linear, and all computation is over Zp. We observe in Section 6 that such functions
can indeed express computation such as L(g(x),y ⊗ z) with a g computable in Boolean NC1 and
a bilinear L.

Previous constructions of PHFE for constant degree public computation [6, 39, 33] follow a
common paradigm: To hide y||z, these schemes represent the computation as a sum of monomials
f(x,y, z) =

∑
I cIxI1 . . .xIdyId+1

zId+2
, where c = {cI}I is the the list of public coefficients, and

decryption computes the list of all monomials, hidden by a pseudorandom one-time-pad pd, in
the exponent of the target group, denoted as [Π] = [⊗i=[d]x ⊗ y ⊗ z + pd]. To reveal the output,
decryption also produces [π] = [< c,pd >], which ensures that the output [f(x,y, z)] can be
derived as follows (and then extracted via brute force discrete logarithm).

[f(x,y, z)] = [〈c, ⊗i=[d]x⊗ y ⊗ z〉] = 〈c, [Π]〉 − [π] (3)

The use of pseudorandom one-time-pad [Π] ensures that only [f(x,y, z)] is revealed. Unfor-
tunately, this approach cannot extend beyond constant-degree computations as the number of
monomials grows exponentially with the degree d.

To handle polynomial degree computations, we must follow the steps of the computation and
hide the intermediate states produced by each step. For the functions of interests, we view st0 =
fd+1(y ⊗ z) as the initial state and the i’th state is

∀ i ∈ [d], sti =

 d∏
j=d−i+1

f j(x)

 fd+1(y ⊗ z) (4)

The transition from state i to i + 1 simply involves multiplication by the matrix fd−i(x), sti+1 =
fd−i(x)sti. To hide y, z, we want decryption to produce every state [sti + pdi], hidden by a
pseudorandom one-time pad pdi. From the last [std + pdd] the output and only the output can
be obtained by also revealing [〈f0,pdd〉]. Next, we show how to enable computing [sti + pdi]
inductively, and develop our PHFE along the way.

In the base case of i = 0, we want to compute [fd+1(y ⊗ z) + pd0]. Note first that since pd0

has the same N × N dimension as fd+1, it cannot be hardcoded in the ciphertext of PHFE, as
otherwise the ciphertext would not be compact. We will set pd0 = ρr0, where ρ is a scalar and
sampled at encryption time, and r0 is of N × N dimension and sampled at key generation time.
When computed in the exponent [pd0] is pseudorandom, by the SXDH assumption, even when the
same r0 is reused across multiple ciphertexts with different ρ’s. Similarly, we set for every i ∈ [d],
pdi = ρ · ri.

We observe that [fd+1(y ⊗ z) + ρ · r0] can be computed using techniques developed in the
deg-2 FE construction of [38], using function hiding inner product encryption (IPE). IPE is FE
for computing the inner product function: It enables generating a set of secret keys {IPEsk(vi)}
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and a set of ciphertexts {IPEct(uj)}, from which the cross inner products {〈vi,uj〉} are revealed.
The function hiding security is stronger than standard indistinguishability based FE security in the
sense that it hides not only the vectors encrypted in the ciphertexts, but also vectors encoded in
the secret keys. For convenience of notation, below we denote by IPEskt(v) and IPEctt(u) to mean
IPE secret keys and ciphertexts generated using the same master secret key IPEmskt.

Using function hiding IPE, we enable computing [fd+1(y ⊗ z) + ρr0] as follows. Include in the
PHFE ciphertext n IPE ciphertexts and secret keys encoding respectively vectors (yj ||ρuj ||0) and
(zk||wk||0) for all i, j ∈ [n], where every uj , wk are random scalars sampled at Setup time and kept
secret in the master secret key. (The tailing zeros in the vectors do not affect the correctness but
are important for the security proof as they provide space for hardcoding intermediate computation
results; we omit details in this overview.) Decrypting these IPE ciphertexts and secret keyes reveals
[y⊗z+ ρu⊗w]. From here, to enable computing [fd+1(y⊗z) + ρr0], we just need to additionally
enable computing [ρr0−ρfd+1(u⊗w)]. The latter can be done by including in the PHFE ciphertext
a single IPE ciphertext IPEct2(ρ||0) and in the PHFE secret key a set of N = poly(n) IPE secret
keys {IPEsk2((r0

l −f
d+1
l (u⊗w))||0)}l, the l’th for computing the l’th element [ρr0

l −ρf
d+1
l (u×w)].

We summarize the idea below.

In pfmsk : u,w ← Znp , IPEmsk2

In pfsk(f) : ∀l ∈ [N ×N ] , IPEsk2((r0
l − fd+1

l (u⊗w))||0)

In pfct(x,y, z) : ∀j, k ∈ [n] , IPEct1(yj ||ρuj ||0), IPEsk1(zk||wk||0), IPEct2(ρ||0)

In pfDec(pfsk, pfct) :

[y ⊗ z + ρu⊗w] =
{
IPEDec

(
IPEsk1(zk||wk||0), IPEct1(yj ||ρuj ||0)

)}
j,k

[ρr0 − ρfd+1(u⊗w)] =
{
IPEDec(IPEsk2((r0

l − fd+1
l (u⊗w))||0), IPEct2(ρ||0))

}
l∈[N×N ]

fd+1 ([y ⊗ z + ρu⊗w]) + [ρr0 − ρfd+1(u⊗w)] = [ρr0 + fd+1(y ⊗ z)]

Note that in the last line, we can compute fd+1 over elements in the exponent thanks to the
linearality of fd+1 and the target group. Using proof techniques similar to those used in in [38, 33],
we can show that only [fd+1(y ⊗ z) + ρr0] is revealed.

In the induction case from i to i−1 suppose the PHFE scheme enables computing [sti+ρri],
and we want to compute [sti+1 + ρri+1]. Since transitioning from sti to sti+1 merely involves
multiplication by fd−i(x), knowing the public x one can already compute from the padded i’th
state [fd−i(x)sti+fd−i(x)ρri] = [sti+1+fd−i(x)ρri]. Hence, towards computing the padded i+1’th
state, we just need to additionally enable computing [Π] = [ρri+1−fd−i(x)ρri]. Due to the linearity
of fd−i, every element l ∈ [N ×N ] in the matrix Π is linear in ρ||ρx, and hence can be rewritten as
an inner product 〈vd−il , (ρ||ρx)〉 between ρ||ρx and a vector vd−il = vd−il (ri+1, ri, fd−i) determined

by the vectors ri+1, ri, and the function fd−i. Observe that vd−il is known at the key generation
time. Thus, to enable computing [Π], we include in the PHFE ciphertext a single IPE ciphertext
IPEct3(ρ||ρx||0), and in the PHFE secret key a set of N×N IPE secret keys IPEsk3(vd−il ||0), whose
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decryption produces [Π].

In pfmsk : IPEmsk3

In pfsk(f) : ∀l ∈ [N ×N ] , IPEsk3((vd−il )||0)

In pfct(x,y, z) : x IPEct3(ρ||ρx)

We emphasize that though each induction step j adds new IPE secret keys {IPEsk3((vd−jl )||0)}l to
the PHFE secret key, whose size thus scales linearly with the degree d of the public computation,
the ciphertext contains only a single IPEct3(ρ||ρx) for all induction steps. Therefore, adding the
content in the ciphertext for the base case, the overall ciphertext size is linear in the input vector
length n. This concludes the overview of our PHFE construction; see Section 6 for the formal
construction and security proof.

2.2 Our Special Homomorphic Encoding for P/Poly

We construct a SHE for P/Poly with the following simple interface: A setup algorithm samples a
public parameter pp← SHESetup(1λ) which is shared for all encodings; an encoding algorithm en-
codes an input hct(x)← SHEEnc(pp, hsk,x) using a secret key hsk. Importantly, the homomorphic
evaluation algorithm SHEEval has two subroutines, and admits a decryption equation as in (5) and
a polynomially-bounded decryption error (6).

SHEEval(pp, f, hct(x)) : hctf = SHEEvalCT(pp, f, hct(x)) ppf = SHEEvalPK(pp, f)

HDec(hctf , ppf , hsk) : hctf − 〈ppf , hsk〉 = f(x)bp/2e+ ef (mod p) (5)

|ef | = poly(λ) (6)

The most important feature of SHE is that the computation hskf = 〈ppf , hsk〉 on the secret key
hsk is linear and depends only on ppf . The produced hskf is almost like a functional decryption
key, in the sense that it only reveals the perturbed output f(x)bp/2e+ ef . However, the noise ef
is sensitive and must be hidden.

Previous works [4, 39] constructed SHE by modifying the homomorphic encryption schemes
of [22, 21] in order to satisfy the special decryption equation. These constructions are recursive
and quite complex, and the overhead due to recursion prevents them from supporting computations
beyond NC1. In this work, instead of starting from existing homomorphic encryption, we start with
predicate encryption. Our idea is given that the decryption equation of SHE has a structure that
resembles functional encryption, perhaps known predicate encryption schemes (which are functional
encryption schemes with one-sided security) can give us hints on how to construct SHE.

Indeed, inspired by the predicate encryption scheme of [30], we immediately obtain an encoding
scheme for P/Poly satisfying the special decryption equation (5), which however has exponentially
large decryption noises. We briefly describe the encoding below:

• The setup algorithm SHESetup(1λ) samples a collection of random LWE matricesAi ← Zn×mp ,
which are the public parameters pp = {Ai}.

• An encoding hct(x) contains LWE samples of form ci = sTAi + x̂iG+ ei, where s← χn is a
(one-time) LWE secret drawn from the noise distribution χ, G ∈ Zn×mp is the gadget matrix,
and ei ← χm is LWE noises. In addition, x̂i is the i’th bit of a homomorphic encryption
ciphertext of x.
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• The predicate encryption scheme of [30] provides a way to homomorphically evaluate f on
{ci,Ai} to obtain cf , and seperately on {Ai} to obtain Af , such that, the first coordinate
cf,1 of cf and the first column Af,1 of Af satisfy the special decryption equation.

cf,1 − sTAf,1 = f(x)bp/2e+ ef mod p

Next, we turn to reducing the norm of the decryption error, by applying the rounding (or
modulus switch) technique in the HE literature [21]. Namely, to reduce the error norm by a factor
of p/q for a q < p, we multiply cf,1 and Af,1 with q/p over the reals and then round to the nearest
integer component wise. The rounding results satisfy the following equation

bq
p
cf,1e − sT b

q

p
Af,1e = f(x)bq/2e+ bq

p
efe+ error mod p

where the rounding error error is bounded by |hsk|1 +O(1), which is polynomially bounded as the
secret is sampled from the LWE noise distribution instead of uniformly. This gives a SHE scheme
for P/Poly.

2.3 Putting Pieces Together

We now briefly explain the roles of PHFE and SHE in recent constructions of FE [6, 2, 39, 33]
(which then gives iO).

The FE constructions of [2, 39] use SHE to encode the input x, and to homomorphically
compute f to obtain an encoding hctf of the output y = f(x). To decrypt hctf , by the special
decryption equation of SHE, it seems sufficient to compute just hskf = 〈hsk, ppf 〉, which can be done
using FE for inner products [1, 3]. However, revealing hskf , as noted above, reveals the perturbed
output ybp/2e+ ef , where the noise ef is sensitive. To circumvent this, the constructions of [2, 39]
partially hides ef using larger smudging noises generated by a noise generator G. This boils down
to compute 〈hsk, ppf 〉+G(sd1, sd2). Since known candidate noise generators have constant degree
in the public seed sd1 and degree 2 in the private sd2, this can be computed by PHFE for constant
degree polynomials as in [33].

Following the blueprint of previous works, using our SHE for P/Poly, we obtain a FE scheme for
P/Poly. Our schemes handles P/Poly circuits directly, without relying on bootstrapping techniques
that first converts it into a NC0 computation using randomized encoding, and then use FE for
NC0 and local PRG to compute the randomized encoding. This allows us to eliminate the use of
local PRGs. Since our SHE builds on predicate encryption, it enjoys efficiency features of predicate
encryption. In particular, we obtain the first FE scheme without multilinear maps where the size of
the ciphertexts grow sublinearly in the output length of the functionality, rather than its size. Our
PHFE scheme for NC1 computation opens the door to using candidate noise generators with higher
complexity, ones with perhaps NC1 comptuation on the public seed and degree 2 on the private seed,
to build iO. Although at the moment, we do not have such candidates whose security is better
founded than the current constant degree candidates, we believe that the additional flexibility
offered by our PHFE scheme will be helpful in minimizing assumptions for iO beyond what we
already achieve in this work.

Reader’s Guide In Section 3, we recall definitions of functional encryption, partially hiding
funtional encryption and perturbation resilient generators. In Section 4, we define and construct
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the notion of a special homomorphic encoding scheme. In Section 5, we present our construction of
functional encryption for P/Poly. In Section 6, we construct a partially hiding functional encryption
scheme. Finally in Section 7, we stitch all the results to construct iO.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper. We denote the
security parameter by λ. For a distribution X we denote by x← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x ← X the process of sampling x
from the uniform distribution over X . For an integer n ∈ N we denote by [n] the set {1, .., n}. A
function negl : N→ R is negligible if for every constant c > 0 there exists an integer Nc such that
negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are (s, ε)− indistinguishable if for every probabilistic polynomial time adversary

A of size bounded by O(s) it holds that:

∣∣∣∣Prx←Xλ [A(1λ, x) = 1] − Pry←Yλ [A(1λ, y) = 1]

∣∣∣∣ ≤ ε for

every sufficiently large λ ∈ N. We drop the notation (s, ε) from (s, ε)-indistinguishable when s is
polynomial and ε is negligible.

For a field element a ∈ Zp represented in [−p/2, p/2], we say that −B < a < B for some positive
integer B if its representative in [−p/2, p/2] lies in [−B,B].

Notation. We denote vectors and matrices using boldfaced characters. For example, for any
domain D, any vector is represented using lower case bold characters such as v ∈ Dn×1 or v ∈ D1×n.
A matrix is represented as capital boldfaced characters, for example, A ∈ Dn×m. In either case,
we will address these elements as v[i, j] (with either i = 1 or j = 1 in case of vectors ) and A[i, j]
in case of matrices. Sometimes, whenever there is no conflicting circumstances, we will index these
elements as simply vi,j and Ai,j . In case we need to also index on the vectors and matrices (for
example when Ak is some matrix) we will stick to the previous notation (and denote the elements
as Ak[i, j]).

Definition 1 (Distinguishing Gap). For any adversary A and two distributions X = {Xλ}λ∈N and
Y = {Yλ}λ∈N, define A’s distinguishing gap in distinguishing these distributions to be |Prx←Xλ [A(1λ, x) =
1]− Pry←Yλ [A(1λ, y) = 1]|

3.1 Functional Encryption

In this section we define the notion of a secret key functional encryption scheme for a circuit class
C = {Cλ}λ∈[n]. Here Cλ is some family of polynomial sized circuits.

Syntax. A secret key functional encryption scheme (denoted by FE) for a message space χ =
{χλ}λ∈N and circuit class C = {Cλ}λ is a tuple of PPT algorithms with the following properties:

• Setup, Setup(1λ): On input security parameter λ, it outputs the master secret key MSK.

• Encryption, Enc(MSK, x): On input the encryption key MSK and a message x ∈ χλ, it
outputs a ciphertext CT.
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• Key Generation, KeyGen(MSK, C): On input the master secret key MSK and a circuit
C ∈ Cλ, it outputs a functional key skC .

• Decryption, Dec(skC ,CT): On input functional key skC and a ciphertext CT, it outputs
the result out.

We define correctness property below.

Correctness. Consider any function C ∈ Cλ and any plaintext x ∈ χλ. Consider the following
process:

• MSK← Setup(1λ)

• skC ← KeyGen(MSK, C).

• CT← Enc(MSK, x)

The following should hold over the coins of the algorithm:

Pr [Dec(skC ,CT) = C(x)] ≥ 1− negl(λ),

for some negligible function negl.

Sub-Linear Efficiency: We require that for any message x ∈ χλ the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

Let sC denote the maximum size of the circuit in Cλ. Then it should hold that the size CT is less
than s1−ε

C · poly(λ, |x|). Here, poly is some fixed polynomial, ε > 0 is some constant and |x| is the
length of the message x. This notion of sublinearity is useful to construct iO [19, 7].
A stronger notion of sublinearity is described below.

Output sublinearity: We require that for any message x ∈ χλ the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

Let d be the maximum depth circuit inside Cλ and `C be the maximum output length of circuits in
Cλ. Then it should hold that the size CT is less than `1−εC · poly(d, λ, |x|). Here, poly is some fixed
polynomial, ε > 0 is some constant and |x| is the length of the message x.

Remark: Once we fix d to be a fixed polynomial in λ, then size of a circuit gives a trivial
upper bound on its output length and thus, the notion of output sublinearity implies the notion of
sublinearity.

As in [6], we consider the notion of weak security as we can rely on amplification theorem
proved in [6] to construct fully secure functional encryption/ indistinguishability obfuscation. Now
we define the notion of (s, adv)− security. Here adv is a parameter denoting advantage of adversary
and s is the parameter denoting the size of the adversary.

11



3.1.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, C, θ): On input the master secret key MSK, func-
tion C ∈ Cλ and a value θ, it computes the semi-functional key skC,θ.

Semi-functional Encryption, sfEnc(MSK, 1λ): On input the master encryption key MSK, and
the length 1λ, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms. The propoerties
are:

• Indistinguishability of Semi-Functional Keys: This property says roughly that given
ciphertexts that are generated using honest algorithm, then honestly generated keys are indis-
tinguishable to semi-functional keys where the hardwired values θi are chosen by the adversary
(independently of the secret key).

• Indistinguishability of Semi-Functional Ciphertext: This property says roughly that
given the keys are generated using the semi-functional algorithm with hardwired values
θi = fi(M

∗), where M∗ is some challenge message and fi are queried functions, then hon-
est ciphertext encrypting M∗ are weakly indistinguishable to a semi-functionally generated
ciphertext even given other honestly generated ciphertexts.

Due to lack of space, formal details of these definitions can be found in Section A.

3.2 Partially Hiding Functional Encryption

Now we define the notion of a partially hiding functional encryption scheme PHFE considered in
the works of [6, 39].

Function class of interest: The function class F = {Fn,p}n∈N,p∈PRIMES is indexed by a positive
integer n and a prime p. Each function f ∈ Fn,p takes as input a vector of the form (x,y, z) ∈ F3·n

p

(without loss of generality x,y and z are assumed to be of equal length) and outputs f(x,y, z)
which is of the form L(g(x),y ⊗ z). Here, g is a polynomial sized arithmetic circuit, and L is a
degree two multilinear polynomial of the following kind. L(a, b) = Σi,jci,jai ·bj where each ci,j ∈ Zp.
Thus, as a polynomial, f has degree 1 in g(x) and y ⊗ z. The exact subclass of g and L will be
described when we present our construction.

Syntax. A PHFE scheme for function class F consists of the following polynomial time algorithms.

• Setup, Setup(1λ, 1n): On input security parameter λ and an input length n, it outputs the
master secret key MSK. It also output p, which denotes the field of computation. This is
implicitly known to the algorithms below.

• Encryption, Enc(MSK, (x,y, z)): On input the encryption key MSK and a message vector
(x,y, z) ∈ Z3·n

p , it outputs a ciphertext CT. CT implicitly contains x in the clear.
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• Key Generation, KeyGen(MSK, f): On input the master secret key MSK and a circuit
f ∈ Fn,p, it outputs a functional key skf .

• Decryption, Dec(skf , 1
B,CT): On input functional key skf , a polynomial bound B and a

ciphertext CT, it outputs the result out.

We define correctness property below.

Correctness. Consider any function f ∈ Fn,p and any plaintext M = (x,y, z) ∈ Z3·n
p and any

bound B. Consider the following process:

• MSK← Setup(1λ, 1n)

• skf ← KeyGen(MSK, f).

• CT← Enc(MSK,M). Set θ = f(M) if f(M) ∈ [−B,B], else set θ = ⊥.

The following should hold:

Pr
[
Dec(skf , 1

B,CT) = θ
]
≥ 1− negl(λ),

for some negligible function negl.

Linear Efficiency. We require that for any message (x,y, z) ∈ Z3·n
p the following happens:

• Let MSK← Setup(1λ, 1n).

• Compute CT← Enc(MSK,x,y, z).

The size of the ciphertext CT is less than n · poly(λ). Here poly is some polynomial independent of
n.

Now we describe the security notion for the scheme.

Semi-functional Security. We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master secret key MSK, func-
tion f and a value θ, it computes the semi-functional key sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1n): On input the master encryption key MSK, a
public attribute x and length of messages y, z, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary algorithms. We will
model the security definitions along the same lines as semi-functional FE.

Definition 2 (Indistinguishability of Semi-functional Ciphertexts). A PHFE scheme for a class of
functions F is said to satisfy indistinguishability of semi-functional ciphertexts property
if for any p.p.t adversary A, the probability that A succeeds in the following experiment is negl for
some negligible function.

Expt(1λ,b):
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1. Adversary on input 1λ specifies n.

2. Run Setup(1λ, 1n)→ MSK. Send p to the adversary.

3. A specifies the following:

• Challenge message M∗ = (x,y, z). Here each vector is in Znp .

• It can also specify additional messages {Mk = (xk,yk, zk)}k∈[q] Here each vector is in
Znp .

• It also specifies functions f1, . . . , fη ∈ Fn,p and hardwired values θ1, . . . , θη ∈ Zp.

4. The challenger checks if θk = fk(x,y, z) for every k ∈ [η]. If this check fails, the challenger
aborts the experiment.

5. The challenger computes the following

• Compute sk[fk, θk]← sfKG(MSK, fk, θk), for every k ∈ [η].

• If b = 0, compute CT∗ ← sfEnc(MSK,x, 1n). Else, compute CT∗ ← Enc(MSK,x,y, z).

• CTi ← Enc(MSK,Mi), for every i ∈ [q].

6. The challenger sends
(
{CTi}i∈[q],CT

∗, {sk[fk, θk]}k∈[η]

)
to A.

7. The adversary outputs a bit b′.

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it outputs b′ = b with
probability 1

2 + ε.

We now define indistinguishability of semi-functional keys property.

Definition 3 (Indistinguishability of Semi-functional Keys). A PHFE for a class of functions F
is said to satisfy indistinguishability of semi-functional keys property if for any p.p.t. ad-
versary A the probability that A succeeds in the following experiment is negl for some negligible
function.

Expt(1λ,b):

1. Adversary on input 1λ specifies n.

2. Run Setup(1λ, 1n)→ MSK. Send p to the adversary.

3. A specifies the following:

• It can specify messages Mj = {(xi,yi, zi)}j∈[q]. Here each vector is in Znp
• It specifies functions f1, . . . , fη ∈ Fn,p and hardwired values θ1, . . . , θη ∈ Zp.

4. Challenger computes the following :

• If b = 0, compute sk[fi]
∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise, compute

sk[fi]
∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].

• CTi ← Enc(MSK,Mj), for every j ∈ [q].
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5. Challenger then sends
(
{CTi}i∈[q], {sk[fi]

∗}i∈[η]

)
to A.

6. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

If a PHFE scheme satisfies both the above definitions, then it is said to satisfy semi-functional
security.

Definition 4 (Semi-functional Security). Consider a partially hiding FE scheme PHFE for a class
of functions F . We say that PHFE satisfies semi-functional security if it satisfies indistin-
guishability of semi-functional ciphertexts property (Definition 2) and indistinguishability of semi-
functional keys property (Definition 3).

Remark: The definition described above is for polynomial security. When we refer to subexpo-
nential security, we will require the above conditions to hold for all adversary of size bounded by
2λ

c
for some constant c > 0 with advantage at most 2−λ

c
.

3.3 Perturbation Resilient Generator

Now we describe the notion of a Perturbation Resilient Generator (∆RG for short), proposed by
[6]. A ∆RG consists of the following algorithms:

• Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a security parameter λ,
the length parameter 1n and a polynomial B = B(λ) and outputs a seed Seed ∈ {0, 1}∗ and
public parameters pp.

• Eval(pp,Seed)→ (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈ Z`. Here ` is
the stretch of ∆RG.

A ∆RG satisfies the following properties.

Efficiency: We require for Setup(1λ, 1n, B)→ (pp, Seed) and Eval(pp,Seed)→ (h1, ..., h`),

• |Seed| = n · poly(λ) for some polynomial poly independent of n. The size of Seed is linear in
n.

• For all i ∈ [`], |hi| < poly(λ, n). The norm of each output component hi in Z is bounded by
some polynomial in λ and n.

(s, adv)−Perturbation Resilience: We require that for every large enough security parameter
λ, for every polynomial B, there exists a large enough polynomial nB(λ) such that for any n > nB,
there exists an efficient sampler H such that for Setup(1λ, 1n, B)→ (pp, Seed) and Eval(pp,Seed)→
(h1, ..., h`), we have that for any distinguisher D of size s and any (a1, .., a`) ∈ [−B,B]`

|Pr[D(x
$←− D1) = 1]− Pr[D(x

$←− D2) = 1]| < adv

Here D1 and D2 are defined below:

• Distribution D1: Compute Setup(1λ, 1n, B)→ (pp, Seed) and H(pp, Seed)→ (h1, ..., h`). Out-
put (pp, h1, ..., h`).
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• Distribution D2: Compute Setup(1λ, 1n, B) → (pp, Seed) and Eval(pp,Seed) → (h1, .., h`).
Output (pp, h1 + a1, ..., h` + a`).

Now we describe the notion of Perturbation Resilient Generator implementable in a function
class F (F-∆RG for short.)

∆RG implementable in F . A ∆RG scheme implementable in function class F = {Fn}n∈N
(F-∆RG for short) is a perturbation resilient generator with additional properties. We describe
syntax again for a complete specification.

• Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a security parameter λ,
the length parameter 1n and a polynomial B = B(λ) and outputs a seed Seed and public
parameters pp. Here, Seed = (Seed.pub,Seed.priv(1),Seed.priv(2)) is a vector on Zp. Also,
pp = (Seed.pub(1), q1, .., q`). We require syntactically there exists two algorithms SetupSeed
and SetupPoly such that Setup can be decomposed follows:

1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.

2. SetupPoly(1λ, 1n, B)→ q1, ..., q`. The SetupPoly algorithm outputs q1, .., q`.

• Eval(pp, Seed) → (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈ Z`. Here for
i ∈ [`], hi = qi(Seed) and ` is the stretch of F-∆RG. Here each qi is in Fn.

The security and efficiency requirements are same as before.
Remark: Few remarks are in order,

1. To construct iO we need the stretch of F-∆RG to be equal to ` = n1+ε for some constant
ε > 0.

2. Looking ahead, we will use a F-∆RG for a function class F , that is also the function class for
a PHFE scheme.

We discuss assumptions and candidates required to build ∆RG sufficient for iO in Section B.

4 Special Homomorphic Encoding from GVW Predicate Encryp-
tion

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose integer linear combinations are
exactly Λ. Every integer lattice is generated as the Z-linear combination of linearly independent
vectors B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zd×m

p , we define the “p-ary” integer lattices:

Λ⊥p = {e ∈ Zm|Ae = 0 mod p}, Λu
p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥p .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.
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Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m is
defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [47], who showed that
solving it on average is as hard as (quantumly) solving several standard lattice problems in the
worst case.

Definition 5 (LWE). For an integer p = p(d) ≥ 2, and an error distribution χ = χ(d) over
Zp, the Learning With Errors problem LWEd,m,p,χ is to distinguish between the following pairs of
distributions (e.g. as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A←Zd×m
q , s←Zd

p, u←Zmp , and x← χm.

Gadget matrix. The gadget matrix described below is proposed in [43].

Definition 6. Let m = d · dlog pe, and define the gadget matrix G = g2 ⊗ Id ∈ Zd×m
p , where the

vector g2 = (1, 2, 4, ..., 2blog pc) ∈ Zdlog pe
p . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zd×m
p → {0, 1}m×m which expands each entry a ∈ Zp

of the input matrix into a column of size dlog pe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zd×m

p , it holds that G ·G−1(A) = A.

Next, we define the notion of a special homomorphic encoding (denoted by SHE)

4.1 Special Homomorphic Encoding

A special homomorphic encoding scheme for a class of circuits C = {Cn,λ}n,λ∈N consists of the
following algorithms. Here Cn,λ denote circuits with n bit inputs, depth λ and one output bit.

• Setup(1λ, 1n, p)→ PK. On input the security parameter and the number of input bits n and
a modulus p, it outputs the public key PK.

• Encode(PK, s,m) → CT. The encoding algorithm takes as input the message m ∈ {0, 1}n,
a randomly chosen secret s ∈ Zdim1×1

p from χdim1×1. Here χ is a polynomially bounded
distribution and dim1 = poly(λ) independent of n. It outputs an encoding CT. Here |CT| ≤
n · poly(λ, log p).

• EvalPK(PK, C) : This deterministic algorithm takes as input PK along with a circuit C ∈ Cn,λ
and outputs a vector bC ∈ Zdim1×1

p

• EvalCT(PK, C,CT) : The EvalCT algorithm takes as input an encoding CT, a circuit C ∈ Cn,λ,
the public key PK and outputs a field element CTC ∈ Zp. This has the following structure:

– First, CTC = 〈s, bC〉+ eC + C(m) ·Q.

– Here |eC | ≤ poly(λ, n)

– Q is a fixed number (depending on p) which is Θ(2λ
c
) for some constant c > 0 and it is

smaller than p

– bC ← Eval(PK, C)
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Security: Consider the following experiments for b ∈ {0, 1} and let A be any polynomial time
adversary.

Exptb(1
λ, 1n, p) :

• Adversary outputs m0,m1 ∈ {0, 1}n.

• Run Setup(1λ, 1n, p)→ PK.

• Sample a secret s← χdim1 . Compute CT← Encode(PK, s,mb).

• Adversary on input PK,CT outputs b′ ∈ {0, 1}

Then, we require for any large enough security parameter λ, modulus p = θ(2λ
c
) for any large

enough constant c > 0, and any n = n(λ)

|Pr[Expt0(1λ, 1n, p) = 1]− Pr[Expt1(1λ, 1n, p) = 1]| < negl(λ)

We say that the scheme is subexponentially secure if it holds for subexponential sized adversary.
We now show how to construct such a SHE scheme assuming LWE.

4.2 Construction from GVW Predicate Encryption

Predicate Encryption. Now we recall the definition of predicate encryption scheme. A pred-
icate encryption is a functional encryption scheme as described in Section 3. There are following
differences.

• Encryptor encrypts messages of the form (attr,m).

• C consists of polynomially sized circuits CP , where P is a predicate. CP on input (attr,m)
outputs m if P (attr) = 1 and 0 otherwise.

• Security definition allows adversary to ask for any number of functional keys corresponding
to predicates P1, ..., Pη as long as Pi(attr0) = Pi(attr1) = 0 where (attr0,m0) and (attr1,m1)
are the challenge messages. In such a setting the adversary needs to distinguish between
encryption of (attr0,m0) from encryption of (attr1,m1).

For a complete definition refer [30]. For our construction, we require some special properties from
the predicate encryption scheme, such as efficiency, circuit homomorphism etc. All these properties
are satisfied by the construction of [30], and we recall them next.

Properties of GVW Predicate Encryption Scheme. Let n = poly(λ) for any polynomial
poly. For concreteness, let Pn,λ denote polynomially sized circuits with n bit inputs and one bit
output. The depth of these circuits are bounded by λ. Considering Pn,λ as the class of predicates,
we describe the properties below. We now describe various algorithms and associated properties of
the GVW predicate encryption scheme. We denote the scheme by PE.
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Setup. The setup algorithm takes as input security parameter λ and n and outputs a public key
PK. Namely, Setup(1λ, 1n)→ (PK, SK)

• As a part of PK is the modulus p1. Length of p1 is O(poly1(λ)). It also outputs a dimensions
dim1 = poly2(λ) and dim2 = poly3(λ). These are the dimensions of various matrices used in
the scheme.

• PK consists of uniform matrices B1, ....,B`,A,D where ` = n · poly(λ) for some polynomial
poly. Each matrix is in Zdim1× dim2

p1 . This is also the space of the gadget matrix G.

Encryption. The encryption algorithm takes as input public key PK, attribute attr ∈ {0, 1}n
and a message m ∈ {0, 1} and does the following. Enc(PK, attr,m)→ (CT1,CT2), Now we describe
in more detail.

• The encryption algorithm first samples a secret vector s from χdim1×1. Here χ is LWE error
distribution used by the scheme. Then, it encodes attr to output âttr ∈ Z`p1 .

• Now CT1 is constructed as follows.

– Compute bi = sT (Bi + âttriG) + Ei for i ∈ [`]. Here Ei ∈ χ1×dim2 .

– Output CT1 = (b1, . . . , b`, âttr)

• Now CT2 is constructed as follows.

– Compute a = sTA + E. Here E ∈ χ1×dim2 .

– Compute d = sTD + E′ +mbp1/2c[1, 0, ..., 0]. Here E′ ∈ χ1×dim2 .

– Output CT2 = (a,d).

• By Enc1 we denote the algorithm that takes as input PK and secret s, attribute attr and
outputs CT1.

• Without loss of security we can assume s[1, 1] = 1 (first component of vector s). This ensures
that v = sTG satisfies v[1, 1] = 1.

• In our construction, we will use Enc1 algorithm instead of the encryption algorithm, thereby
not computing CT2 at all. This does not hamper security as we are just giving less information.

Evaluation. There are two algorithms: EvalPK and EvalCT. First we describe the EvalPK()
algorithm. Formally, EvalPK(C,B1, ...,B`) → BC . On input B1, . . . ,B` ∈ Zdim1× dim2

p1 and C ∈
Pn,λ outputs BC ∈ Zdim1× dim2

p1 .

EvalCT takes as input âttr, b1, . . . , b` and C ∈ Pn,λ. Formally, EvalCT(PK, C, âttr, b1, . . . , b`)→ b̂C .

b̂C has the following structure:

b̂C = sT (BC + (C(attr)bp1/2c+ e)G) + EC

Here ‖EC‖∞/p1 < 2−λ
c

and ‖e‖/p1 < 2−λ
c

for some constant c > 0. In fact |e| < poly(λ, n) for
some polynomial.

19



Rounding-Evaluation. We now describe a procedure of rounding evaluation, which can be done
publicly. We denote this by RoundEval. RoundEval takes as input PK,CT1 = (âttr, b1, . . . , b`), a
circuit C, another modulus p < p1.
More formally, RoundEval(PK, C,CT1, p) does the following:

1. First run EvalCT(PK, C,CT1)→ b̂C .

2. Now compute b̂′C = dp/p1 · b̂Cc. Namely multiply b̂C with p/p1 over the reals and then take

the nearest integer, component wise. b̂′C is now a vector over Zp.

3. Output b′C = b̂′C [1, 1], the first element of vector b̂′C .

Now we observe something about b′C . First observe b̂C [1, 1] has the following structure b̂C [1, 1] =
sT ·BC,1+(C(attr)bp1/2c+e)·v[1, 1])+EC [1, 1]. HereBC,1 is the first column of BC and v = sT ·G.

Since s[1, 1] = 1, v[1, 1] = 1. Thus, b̂C [1, 1] = sTBC,1 + C(attr)bp1/2c+ e+ EC [1, 1].
Let χ be a polynomially bounded distribution (bounded by polyχ(λ)), then, we observe the follow-
ing about b′C relying on the theorems proven in [21] (see lemma 1 of the paper).

Theorem 5. Assuming:

• b̂C [1, 1] = sTBC,1 + C(attr)bp1/2c+ e+ EC [1, 1]

• χ is a polynomially bounded distribution, bounded by, polyχ(λ).

Then b′C = sT ·B′C,1 + C(attr)bp1/2c′ + e′ + E′C [1, 1] + error. Here B′C,1 is the rounded version of
BC,1, e′ is a rounded version of e, bp1/2c′ is rounded version of bp1/2c and E′C [1, 1] is rounded
version of EC [1, 1]. error is rounding error satisfying |error| < dim1 ·polyχ(λ) + 3

Parameters. For our construction in Section 5, we need following setting of parameters. Let the
class of circuits be Pn,λ.

• p > 2λ
c

for some constant c > 0.

• Error distribution χ (also the distribution for sampling secrets) is bounded by a polynomial
polyχ(λ).

• p is set so that |e′|+ |E′C [1, 1]| < poly(λ, n).

• We set Bound∆ = max{|e′|+ |E′C [1, 1]|+ |error|}

• p1 is chosen so that Q = dp1/2c′ is Θ(2λ
c
) for some constant c > 0.

As shown in [30], these parameters can be instantiated using LWE with subexponential approxi-
mation factors.
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Constructing SHE : With this, the construction of SHE becomes almost immediate.

• Setup(1λ, 1n, p) : This algorithm runs PE.Setup(1λ, 1n) → p1,B1, ...,B`,A,D. Output PK =
(p, p1,B1, ...,B`)

• Encode(PK, s,m): Run PE.Enc1(PK, s,m)→ CT. Output CT.

• EvalPK(PK, C). Run PE.EvalCT(PK, C)]→ BC . Output bC = B′C,1. That is the first column
of BC which is rounded to p.

• EvalCT(PK, C,CT)→ CTC . Run PE.RoundEval(PK, C,CT, p)→ CTC . Output CTC .

Security and structure properties are immediate from the properties of the PE scheme.

5 Construction: Functional Encryption

In this section we present our construction for a sublinear functional encryption scheme.

Function Class of Interest: The function class for which we will build is CFE,n,λ,ε. This class
contains all boolean circuits with depth bounded by λ, number of inputs equal to n, and number
of outputs bounded by n1+ε for some ε > 0. The size of each circuit in the family is bounded by
an arbitrary polynomial in n, λ. Looking ahead, in our construction ε is a function of the stretch
of the perturbation resilient generator used in the scheme.

Ingredients: Following are the ingredients for our scheme.

• A special homomorphic encryption scheme SHE, which can be build using [30] predicate
encryption scheme. The class of circuits for this scheme is Cn,λ. Let the modulus used by
the scheme be p = O(2λ

c
) for some constant c > 0 independent of n. Let χ be the error

distribution.

• Partially Hiding Functional Encryption PHFE for a function class F = Fn. Recalling the
definition in Section 3.2, each f ∈ F is of the following form: f(x,y, z) = L(g(x),y⊗z). We
require g to at least contain arbitrary degree one polynomials over Zp and L to be the inner
product functionality. The decryption procedure of PHFE is two staged. First stage is Dec0,
which computes gf(x,y,z) where g is some canonical group generator of order p. The second
stage Dec1 takes as input some bound BoundPHFE and by brute force checks if the exponent
is in range [−BoundPHFE,BoundPHFE]. If that is the case it outputs the exponent otherwise it
outputs ⊥.

• Perturbation resilient generators implementable in F . We call them F-∆RG. If the stretch
of F-∆RG is m = n1+ε′ , ε can be set as any constant less than ε′.

• We set two bounds. First bound is Bound∆. This bound is input to F-∆RG algorithms and
can be instantiated as described in Section 4.2. Second bound, BoundPHFE, is given as input
to PHFE decryption algorithm. This is instantiated as the sum of maximum norm of the
F-∆RG values and Bound∆. Both these bounds are guaranteed to be polynomials in λ and
n.
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Construction.
Setup(1λ, 1n) : The setup algorithm does the following:

1. Run PHFE.Setup(1λ, 1n
′
) → PHFE.MSK. Here n′ = n · poly(λ) for some polynomial poly

specified later. This polynomial is independent of n and will be specified later. Let p be the
modulus of PHFE scheme.

2. Run SHE.Setup(1λ, 1n, p)→ SHE.PK.

3. Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1. This is only used in the semifunctional
algorithms.

4. Compute SHE.Encode(SHE.PK, s∗, 0n) → SHE.CT∗. This is also only used in the semifunc-
tional algorithms. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed∗. This is also used in the
semifunctional algorithms.

5. Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

Enc(MSK,m ∈ {0, 1}n) : The Encryption algorithm takes as input MSK = (PHFE.MSK, SHE.PK,
s∗,SHE.CT∗,Seed∗) and message m ∈ {0, 1}n and does the following.

1. Sample a secret s← χdim1×1. Set s[1, 1] = 1.

2. Compute SHE.Encode(SHE.PK, s,m)→ SHE.CT.

3. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed. Parse Seed = (Seed.pub, Seed.priv(1), Seed.priv(2)).

4. Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

5. PHFE.Enc(MSK, (x,y, z)) → PHFE.CT. n′ is set accordingly. n′ is set as the maximum of
length of x,y and z. Note that this is bounded by n · poly(λ) for a fixed polynomial in λ due
to the properties of F-∆RG and SHE.

6. Output (CT1 = SHE.CT,CT2 = PHFE.CT)

KeyGen(MSK, C) : The keygen algorithm takes as input MSK = (PHFE.MSK,SHE.PK, s∗, SHE.CT∗, Seed∗)
and a circuit C ∈ Cn,λ,ε.

1. Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

2. For each i ∈ [η], compute SHE.EvalPK(PK, Ci)→ bCi .

3. Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ).

4. Let Gi be the following arithmetic circuit. On input, vectors (x,y, z) where x = (Seed.pub, 1),
y = (Seed.priv(1), s) and z = (Seed.priv(2), 1), Gi outputs sT · bCi − qi(Seed). Note that the
computations are done over Zp and thus Gi ∈ Fn′ .

5. For each i ∈ [η], compute PHFE.skGi ← PHFE.KeyGen(PHFE.MSK, Gi).

6. Output skC = (PHFE.skG1 , . . . ,PHFE.skGη)
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Dec(skC ,CT) : Parse CT = (SHE.CT,PHFE.CT) and skC = (PHFE.skG1 , ...,PHFE.skGη). Now

proceed as follows. Recall that C = (C1, . . . , Cη) where Ci outputs ith bit of C.

1. Compute SHE.EvalCT(SHE.PK, Ci,SHE.CT)→ SHE.CTCi for i ∈ [η].

2. For each i ∈ [η], compute PHFE.Dec0(PHFE.skGi ,PHFE.CT) = gInti

3. Compute Int2,i = g−Inti · gSHE.CTCi for i ∈ [η].

4. For each i ∈ [η], compute Int3,i = PHFE.Dec1(Int2,i,BoundPHFE). Finally, if Int3,i is ⊥ then
set Int4,i = 1, otherwise set Int4,i = 0.

5. Output (Int4,1, . . . , Int4,η)

Correctness. We now go over each steps of the decryption algorithm and argue why correctness
holds.

Parse CT = (SHE.CT,PHFE.CT) and skC = (PHFE.skG1 , ...,PHFE.skGη). Now proceed as
follows. Recall that C = (C1, . . . , Cη) where Ci outputs ith bit of C.

1. Compute SHE.EvalCT(SHE.PK, Ci, SHE.CT) → SHE.CTCi for i ∈ [η]. This ensures that
SHE.CTCi = sT · bCi +Ci(m) ·Q+ eCi . Here Q is a large value described in the construction
of SHE and |eCi | < poly(λ, n)

2. For each i ∈ [η], compute PHFE.Dec0(PHFE.skGi ,PHFE.CT) = gInti . This ensures Inti =
sT · bCi − qi(Seed).

3. Compute Int2,i = g−Inti · gSHE.CTCi for i ∈ [η]. This ensures Int2,i = gCi(m)Q+eCi+qi(Seed)

4. For each i ∈ [η], compute Int3,i = PHFE.Dec1(Int2,i,BoundPHFE). This ensures that if Ci(m) =
0, Int3,i = eCi + qi(Seed) otherwise Int3,i = ⊥.

5. Finally, if Int3,i is ⊥ then set Int4,i = 1, otherwise set Int4,i = 0.

6. Output (Int4,1, . . . , Int4,η). This ensures output is C(m).

Output-Sublinearity. Now we argue about the size of the ciphertext. Ciphertext contains two
components: (SHE.CT,PHFE.CT).

• |SHE.CT| < n·poly(λ). As the depth of the circuit class is λ, this follows from the compactness
properties of [30] Predicate Encryption scheme.

• PHFE.CT is a PHFE encryption of three vectors x = (Seed.pub, 1), y = (Seed.priv(1), s) and
z = (Seed.priv(2), 1). Now note that |Seed| < n · poly(λ) for some fixed polynomial in λ and
s is a vector of dimension dim1, which is a polynomial in λ, independent of n. Thus by
linear efficiency of PHFE, the size of this component is bounded by n · poly(λ) for some fixed
polynomial poly.

• For ε1 > 0, let n1+ε1 be the stretch of F-∆RG. Thus the scheme allows to evaluate circuits

of output length `out = n1+ε1 . Thus, size of ciphertext is bounded by `
1/(1+ε1)
out poly(λ). This

proves output sublinearity.

Due to lack of space we present the security proof for this construction in Section E.
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6 Construction: Partially hiding FE

In this section we describe our construction for our PHFE scheme. Below we describe our function
class of interest. First let us define a few operators to make our description simpler.

• On input any matrix M ∈ Zk×kp for any integer k > 0, vec(M) outputs v, which is a row

vector in Z1×k2
p . This is computed by reading M into v row-wise.

• On input any vector v ∈ Z1×k2
p , diag(v) outputs a block diagonal matrix M′ ∈ Zk3×k3p where

each diagonal block M′
i,i = vi · Ik×k for i ∈ [k2]

• Define diagvec as the the operator that takes in a matrix M ∈ Zk×kp and outputs the compo-

sition of diag ◦ vec. This output can be denoted as M′ ∈ Zk3×k3p .

Function Class of Interest: We consider the following class of functions denoted by Fn,p,d.
Here d = poly(n) is some polynomial in n and p is the prime modulus over which computations are
done and 3 · n is the number of inputs.
Each function f ∈ Fn,p,d takes as input three vectors (x,y, z) where each vector is in Znp . Now f

can be described using d+ 1 linear functions f0, ..., fd. f0 is a matrix in Zn3×n3

p . For ` 6= 0, f ` is a

linear function from Znp to Zn3×n3

p generated as follows:

• For every i, j ∈ [n3], ` ∈ [1, d], let v`i,j be a vector ∈ Znp . Then define [f `(x)]i,j = 〈v`i,j ,x〉 for
` ≤ d.

Thus the function descriptions above define matrices [f `(x)] for ` ∈ [1, d]. In each of these matrices,
every entry is a linear polynomial in x. Now we define f as follows.

f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec([y ⊗ z])〉

Here, [f i] · [f j ] denote a matrix multiplication between matrices [f i] and [f j ]. For any matrices
A,B ∈ Zm×mp , define 〈A,B〉 = Σi,jAi,j ·Bi,j as standard inner product on the set of matrices.
Observe that this class of functions satisfy the template f(x,y, z) = L(g(x),y ⊗ z). Reflecting on
this, if f(x,y, z) = L(g(x),y ⊗ z), where L is a multilinear degree two polynomial (with degree
one in y ⊗ z) and g is arbitrary, the class of functions described above captures the case when g
comes from the set of branching programs of length d over Zp. If d is allowed to be a sufficiently
large polynomial in n and p is large enough, then via barrington’s theorem, it also contains the
case when g is chosen from set of boolean NC1 circuits (x being restricted to be a binary vector in
this case). Note that to realize boolean NC1 we need each matrix f i to be an affine function of x.
This can be ensured by setting, say x1 = 1.

We now describe our construction.

6.1 Construction

Ingredients: Our main ingredient is a secret-key function hiding canonical function-hiding inner
product functional encryption cIPE (refer Section C for a definition).
Notation. For a secret key generated for the cIPE encryption algorithm, by using primed variables
such as sk′ we denote the secret key that is not generated during the setup of the PHFE scheme
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but during its encryption algorithm. We describe the construction below.

Setup(1λ, 1n): On input security parameter 1λ and length 1n,

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).

• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to encrypt
vectors in Z2

p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ← cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

Enc(MSK,x,y, z): The input message M = (x,y, z) consists of a public attribute x ∈ Znp and
private vectors y, z ∈ Znp . Perform the following operations:

• Parse MSK = {sk0, sk1,β,γ}

• Sample r ← Zp.

• Compute CT0 = cIPE.Enc(sk0, (r, 0)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (rx1, ...., rxn, r, 0)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

KeyGen(MSK, f): On input the master secret key MSK and function f ,

• Parse MSK = {sk0, sk1,β,γ}

• Sample A1, ...,Ad randomly from Zn3×n3

p . Note that A1, ...,Ad are chosen freshly for each
function query f , we drop the function in the subscript for notational simplicity.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · [y ⊗ z]〉.

• Let θf = 〈f0,A1〉.

• Compute Key0,f = cIPE.KeyGen(sk0, (θf , 0)).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Observe that there exists a vector w`
i,j ∈ Zn+2

p such that 〈w`
i,j , (rx1, ..., rxn, r, 0)〉 = M`

f,i,j .

Note that each entry w`
i,j is some linear function of A`+1. Note that the last component

(component n+ 2) is just 0 and the second last component is −A`
i,j .
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• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

Dec(1B, skf ,CT): In the description below, by Mon, we will denote all elements being encoded to
target group.

• Parse skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3]).

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.

• Parse CT = (x,CT0,CTX, {CTCj ,CTKk}j,k∈[n])

• For every i, j ∈ [n], compute Intd+1
i,j = cIPE.Dec(CTKi,CTCj) = [yi · zj − rβi · γj ]T .

• Compute Mon0 = cIPE.Dec(Key0,f ,CT0) = [r〈f0,A1〉]T .

• Compute Int`i,j = cIPE.Dec(Key`f,i,j ,CTX) = [M`
f,i,j ]T for ` ∈ [d], i, j ∈ [n3].

• Now observe the following. Let Ad+1 = diagvec(β⊗ γ) and Md+1
f = diagvec(y⊗ z)− rAd+1.

Denote.

S = [f1(x)] · . . . · [fd−1(x)] · [fd(x)]Md+1
f + . . .+ [f1(x)] ·M2

f + M1
f

Here
S = [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)− rA1

• Thus one can compute encoding Moni,j = [Si,j ]T for i, j ∈ [n3] from the knowledge of Int`i,j
and x.

• Compute Monf = Mon0 ·Πi,j∈[n3]Mon
f0,i,j
i,j

• Observe that

Πi,j∈[n3]Mon
f0,i,j
i,j = [〈f0, [f

1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉 − r〈f0,A1〉]T

• Thus, Monf = [〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉]T .

• Using brute force, check if |f(x,y, z)| < B. If that is the case, output f(x,y, z) otherwise
output ⊥.

We now discuss correctness and linear efficiency:

Correctness: Correctness is implicit from the description of the decryption algorithm.

Linear Efficiency: Note that ciphertext is of the following form:

CT = (x,CT0,CTX, {CTCj ,CTKk}j,k∈[n])

CT0 is a ciphertext for vectors of length 2. CTCj and CTCk are cIPE ciphertexts and keys for vector
of length 4. Finally CTX is a cIPE ciphertext for vector of length n + 2. Thus, linear efficiency
follows due to linear efficiency of cIPE.
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Security Proof Here is our theorem.

Theorem 6. Assuming SXDH holds relative to PPGen, the construction described in Section 6
satisfies semi-functional security.

Due to lack of space we describe our proof in Section D.

7 Summing Up

In Section 5 we prove the following theorem.

Theorem 7. Let λ be the security parameter. Let s(λ) be any size parameter larger than any
polynomial. Then assuming,

• Security of LWE with subexponential approximation factors against adversaries of size O(s).

• PHFE for F secure against adversaries of size O(s).

• F-∆RG satisfying (O(s), adv)−perturbation resilience.

Then there exists a output-sublinear FE scheme satisfying (O(s), adv+ negl)−semi-functional secu-
rity for circuit class Cn,λ.

In Section 6, we construct a PHFE scheme for arithmetic branching programs assuming SXDH
holds over bilinear groups. Note that [33] gave various candidates for perturbation resilient gener-
ators for this class (refer Section B for details).

Invoking the amplification theorem in [6] and the result of [7, 19, 17, 34], we obtain the following
theorem:

Theorem 8. Assuming the following:

• Security of LWE against subexponential sized circuits.

• SXDH over bilinear maps against subexponential sized circuits

• Perturbation resilient generators, F-∆RG satisfying (1−1/λ)−perturbation resilience against
circuits of subexponential size.

There exists an indistinguishability obfuscation scheme for P/poly
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[3] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from
standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 333–362. Springer, Heidelberg (Aug 2016)

[4] Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: TCC. pp.
173–205 (2017)

[5] Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without
multilinear maps: New paradigms via low degree weak pseudorandomness and security ampli-
fication. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694,
pp. 284–332. Springer, Heidelberg (Aug 2019)

[6] Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: io
from lwe, bilinear maps, and weak pseudorandomness. IACR Cryptology ePrint Archive 2018,
615 (2018)

[7] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In:
Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326.
Springer, Heidelberg (Aug 2015)

[8] Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishabil-
ity obfuscation from degree-5 multilinear maps. In: Coron, J., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer, Heidelberg (Apr / May 2017)

[9] Applebaum, B.: Pseudorandom generators with long stretch and low locality from random
local one-way functions. SIAM J. Comput. 42(5), 2008–2037 (2013)

[10] Applebaum, B.: Exponentially-hard gap-CSP and local PRG via local hardcore functions. In:
Umans, C. (ed.) 58th FOCS. pp. 836–847. IEEE Computer Society Press (Oct 2017)

[11] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92–110. Springer, Heidelberg (Aug
2007)

[12] Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: Ostrovsky,
R. (ed.) 52nd FOCS. pp. 120–129. IEEE Computer Society Press (Oct 2011)

[13] Applebaum, B., Kachlon, E.: Sampling graphs without forbidden subgraphs and almost-
explicit unbalanced expanders. Electronic Colloquium on Computational Complexity (ECCC)
26, 11 (2019)

[14] Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their coun-
termeasures. SIAM J. Comput. 47(1), 52–79 (2018)

[15] Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudoran-
dom generators (or: Sum-of-squares meets program obfuscation). In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 649–679. Springer, Heidelberg
(Apr / May 2018)

28



[16] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On
the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 1–18. Springer, Heidelberg (Aug 2001)
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A Semi-functional Security for Functional Encryption

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, C, θ): On input the master secret key MSK, func-
tion C ∈ Cλ and a value θ, it computes the semi-functional key skC,θ.

Semi-functional Encryption, sfEnc(MSK, 1λ): On input the master encryption key MSK, and
the length 1λ, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional key property.

Definition 7 ( s-Indistinguishability of Semi-functional Key). An FE scheme for circuits FE for
a class of functions C = {Cλ}λ∈N is said to satisfy s−indistinguishability of semi-functional
key property if for sufficiently large λ ∈ N, for any adversary A of size s, the probability that A
succeeds in the following experiment bounded by negl.
Expt(1λ,b):

1. A specifies the following:

• It can specify messages Mj = {xj} for j ∈ [q] for any polynomial q. Here each Mj ∈ χλ.

• It specifies function queries as follows:

– It specifies C ∈ Cλ.

– It specifies values θ in output space of C.
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2. The challenger computes the following:

• MSK← Setup(1λ)

• CTj ← Enc(MSK,Mj), for every j ∈ [q].

• If b = 0, compute sk∗C ← KeyGen(MSK, C). Otherwise, compute sk∗C ← sfKG(MSK, C, θi).

3. Challenger sends {CTi}i∈q and {sk∗C} to A:

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

Definition 8 (Indistinguishability of Semi-functional Ciphertexts). For an FE scheme FE for a
class of functions C = {Cλ}λ∈N , the (s.adv)− indistinguishability of semi-functional ci-
phertexts property is associated with two experiments. The experiments are parameterised with
aux = (1λ,Γ,Mi = {xi}i∈Γ,M

∗ = x,C)
Exptaux(1

λ,b):

1. The challenger sets θ = C(x). The challenger computes the following:

2. Compute MSK← Setup(1λ).

3. Compute skC,θ ← sfKG(MSK, C, θ).

4. CTi ← Enc(MSK,Mi), for every i ∈ [Γ].

5. If b = 0, compute CT∗ ← Enc(MSK,M∗).

6. If b = 1 compute CT∗ ← sfEnc(MSK, 1λ).

7. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skC,θ.

(c) M∗ and {Mi}i∈Γ

(d) C

An FE scheme FE associated with plaintext space χ is said to satisfy (s, adv)-indistinguishability
of semi-functional ciphertexts property if the following happens: ∀λ > λ0, any polynomial Γ,
messages {Mi}i∈Γ ∈ χλ, M∗ ∈ χλ , C ∈ Cλ and any adversary A of size s:

|Pr[A(Exptaux(1
λ, 0) = 1]− Pr[A(Exptaux(1

λ, 1)) = 1]| ≤ adv

where aux = (1λ,Γ,Mi = {xi}i∈Γ,M
∗ = x,C)

Definition 9 ( Semi-functional Security). Consider an FE scheme FE for a class of circuits Cλ. We
say that FE satisfies (s, adv)−semi-functional security if it satisfies (s, adv)−indistinguishability
of semi-functional ciphertexts property (Definition 8) and s−indistinguishability of semi-functional
key property (Definition 7).

Remark: We now remark that for iO, we need size s to be greater than 2λ
c

for some constant
c > 0, and adv to be at most 1−1/poly(λ) for any fixed polynomial poly independent of the output
length of C. This is because of the amplification theorem proved in [6]. In order to construct
standard sublinear FE, we need adv security to hold against any polynomial time adversary.
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B Pseudorandomness Assumptions Implying Obfuscation

Now, we recall the new pseudorandomness assumptions of perturbation resilient generator (∆RG)
that were made initially by the work of [6, 5] and then developed in the work of [33]. In particular,
[6, 5] made degree-3 version of the assumption described below. Later [33], obtained obfuscation
if the assumption below holds for any constant degree D ≥ 3. Below we present an assumption
that is an instantiation of the general assumption with specific parameters so that the assumption
is simplified with least number of parameters. This assumption is sufficient to imply iO. The
assumption has the following specification:

• The distinguishing advantage is set to be bounded by 0.99 as opposed to 1− 1/poly(λ).

• The magnitude of the perturbations handled are bounded by n. We can set parameters for
our SHE scheme so that this sufficies.

• We set D ≥ 4.

Definition 10 (Constant-Degree Multivariate Polynomial Samplers). For any integer constant
D ≥ 4, ε > 0 and a parameter n, we let Q[D,n, ε] be shorthand for an arbitrary “polynomial
sampler” that outputs bn1+εc polynomials

q1, . . . , qbn1+εc ← Q[D,n, ε]

where each polynomial qk takes in n variables e1, . . . , en, and each monomial has total degree (at
most) D over the ei variables.

We will typically use the shorthand e = (e1, . . . , en) and write these polynomials as qk(e). When
the inputs are suppressed, qk will denote the vector of coefficients of qk.

Definition 11 (LWE with leakage). For any p, χ, n, ε,D,Q, let Distleak[p, χ, n, ε,D,Q] be the fol-
lowing sampling procedure. For each i ∈ [n], sample

• LWE coefficient vector ai ← Zn2/D

p ,

• LWE error ei ← χ.

Sample a random secret vector s← Zn2/D

p . Next, sample “leakage” polynomials (q1, . . . , qbn1+εc)←
Q[D,n, ε]. Let e := (e1, . . . , en), Output

{ai, 〈ai, s〉+ ei mod p}i∈[n], {qk, qk(e)}k∈[n1+ε].

The following distribution is defined almost identically to Distleak, except that it additionally
takes perturbation values {δi}i∈[n1+ε]. The differences between definition 11 are highlighted in red.

Definition 12 (LWE with δ-perturbed leakage). For any p, χ, n, ε,D,Q and bounded integer per-
turbations5 {δi}i∈[n1+ε] where |δi| < n for all i ∈ [n1+ε], let Distpert[p, χ, n, ε,Q, {δi}] be the following
sampling procedure. For each i ∈ [n], sample

5In our SHE construction, parameters can be set so that perturbation resilience is only required for magintudes
upto n as opposed to a general polynomial.
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• LWE coefficient vector ai ← Zn2/D

p ,

• LWE error ei ← χ.

Sample a random secret vector s← Zn2/D

p . Next, sample “leakage” polynomials (q1, . . . , qbn1+εc)←
Q[D,n, ε]. Let e := (e1, . . . , en). Output

{ai, 〈ai, s〉+ ei mod p}i∈[n], {qk, qk(e)+2 · δk}k∈[n1+ε].

We can now state our main assumption.

Main Assumption. Let ε > 0 be some constant. Consider the following setting of parameters:

1. Let χ be the discrete gaussian random variable with mean 0 and variance n2.

2. p is a O(2n
ε/2

) prime.

The assumption states that for all degree D ≥ 4, there exists an ε > 0 such that for all large
enough natural number n > ND,ε and any δ1, ...., δn1+ε ∈ [−n, n] and for any adversary A of size

2n
O(ε)

, ∣∣∣ Pr
Z

$←−Dleak[p,χ,n,ε,Q]

[A(Z) = 1]− Pr
Z

$←−Dpert[p,χ,n,ε,Q,{δi}]
[A(Z) = 1]

∣∣∣ ≤ 0.99.

Below we recall two concrete candidates for instantiating polynomial sampler that were proposed
by [33].

B.1 Candidates

Let n ∈ N be a natural number. We will consider multivariate polynomials f : {−1,+1}n → R
which can be represented as f(x) =

∑
S⊆[n] cS

∏
i∈S xi. In this notation, x = (x1, ..., xn) is the

input. We will refer by XS =
∏
i∈S xi. Therefore in this notation f(x) =

∑
S cS ·XS . We also refer

to cS for any set S ⊂ [n] as the fourier coefficient of f with respect to S. One can compute it as:
cS = 1

2n ·
∑

x∈{−1,1}n f(x) ·XS .
Next, we describe a linear transform φ : {−1,+1} → {0, 1} given by φ(x) → (1 − x)/2. By x̃
we will denote φ(x). Observe that for any input x = (x1, ..., xn) ∈ {−1,+1}n. it holds that
φ(XS) =

⊕
i∈S x̃i. The intuition is really simple and relates the boolean operation of ⊕ over

inputs from {0, 1} to the product of inputs from {+1,−1}. The idea is that there is a natural
correspondance between:

• 0 in the xor notation (boolean variable False) with 1 in {+1,−1} notation.

• 1 in the xor notation (boolean variable True) with −1 in {+1,−1} notation.

B.1.1 D-XOR Based Candidate

Now we recall the D−XOR based candidate proposed by [33]. For a more natural definition, we
treat x as the variable representing input to the polynomials and e as the planted input.
Polynomial Sampler- D-XOR Based:
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• On input 1n and ε > 0, sample randomly sets Si,j ⊂ [n] of size |Si,j | = D for i ∈ [n1+ε],
j ∈ [nD/2−1−2ε].

• For all i ∈ [n1+ε], define qi(x) =
∑

j∈[nD/2−1−2·ε] ci,j
∏
`∈Si,j x`, where coefficients ci,j are

chosen at random from {+1,−1}.

• Output q1, ...., qn1+ε . Observe that we must have 1 + 2ε < D/2 in order to instantiate this
candidate.

The reason it is called D-XOR based candidate is that each polynomial is a signed sum of
random degree D−monomials, and, as noted above, each monomial has a correspondance to xor of
D inputs in the boolean {0, 1} notation. Although, this (as well as the next candidate) is inspired
from boolean functions, for constructing indistinguishability obfuscation, they are evaluated over
some set like the set of integers Z or reals R. We view these candidates as polynomials being
evaluated over R depending on the context.

B.1.2 TSA Based Candidate

[33] also proposed a candidate that is inspired from the Tri-Sum-And predicate given by:

TSA : {0, 1}5 → {0, 1}
TSA(x̃1, ..., x̃5) = x̃1 ⊕ x̃2 ⊕ x̃3 ⊕ x̃4 · x̃5

This predicate has been extensively studied, and is used to instantiate goldreich’s PRG. For an
input of length n, it can provide a stretch of upto n1.5−ε for any constant ε > 0 [45, 46, 14].
We can also write the predicate above in {−1,+1} notation as follows:

TSA : {−1,+1}5 → {−1,+1}

TSA(x1, x2, x3, x4, x5) = x1 · x2 · x3 ·
(

1− (1− x4) · (1− x5)

2

)
Note that:

2 · TSA(x1, x2, x3, x4, x5) = x1 · x2 · x3 · (1− x4 − x5 + x4 · x5)

We call this function as 2TSA. For any ordered set S ⊂ [n] of size 5, we denote by 2TSA({xi}i∈S),
the predicate evaluated on inputs {xi}i∈S . If the inputs are not in {-1,+1} but rather lie in Z, from
the context it will mean that the polynomial is evaluated over the reals.
Polynomial Sampler- TSA Based:

• On input 1n and ε > 0, sample randomly (ordered) sets Si,j ⊂ [n] of size |Si,j | = 5 for
i ∈ [n1+ε], j ∈ [n0.5−2ε] 6.

• For all i ∈ [n1+ε], define qi(x) =
∑

j∈[n0.5−2·ε] ci,j · 2TSA({x`}`∈Si,j ), where coefficients ci,j are
chosen at random from {+1,−1}.

6This bound comes from [36] lowerbound.
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• Output q1, ...., qn1+ε .

The difference between this and the previous candidate is that the monomials are now replaced
with arithmetized versions of the 2TSA function. Similarly, one can propose more boolean PRG
inspired candidates by replacing 2TSA with some other PRG predicate.

C Canonical Function Hiding Inner Product FE

We now describe the notion of a canonical function hiding inner product FE proposed by [38]. A
canonical function hiding scheme FE scheme consists of the following algorithms:

• PPSetup(1λ)→ pp. On input the security parameter, PPSetup, outputs parameters pp, which
contain description of the groups and the plain text space Zp.

• Setup(pp, 1n)→ sk. The setup algorithm takes as input the length of vector 1n and parameters
pp and outputs a secret key sk. We assume that pp is always implicitly given as input to this
algorithm and the algorithms below (sometimes we omit this for ease of notation).

• Enc(sk,x) → CT. The encryption algorithm takes as input a vector x ∈ Znp and outputs a
ciphertext CT.

• KeyGen(sk,y)→ sky. The key generation algorithm on input the master secret key sk and a
function vector y ∈ Znp and outputs a function key sky

• Dec(1B, sky,CT)→ m∗. The decryption algorithm takes as input a ciphertext CT, a function
key sky and a bound B and it outputs a value m∗. Further, it is run in two steps. First step
Dec0, computes [〈x,y〉]T (if the keys and ciphertexts were issued for x and y) and then the
second step, Dec1, computes its discrete log, if this value lies in [−B,B]

We now list the requirements:

B-Correctness: Consider the following process:

1. PPSetup(1λ)→ pp

2. Setup(pp, 1n)→ sk. Fix any x, y ∈ Znp

3. KeyGen(sk,y)→ sky.

4. Enc(sk,x)→ CT

5. Dec(1B, sky,CT) = θ

We require with overwhelming probability the following holds: θ = 〈x,y〉 if 〈x,y〉 ∈ [−B,B] and
⊥ otherwise
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Linear Efficiency: We require that for any message (x,y) ∈ Znp the following happens:

• Let sk← Setup(1λ, 1n).

• Compute CT← Enc(sk,x).

• Compute sky ← KeyGen(sk,y)

The size of the circuit computing CT and sky is less than n log2 p · poly′(λ) < npoly(λ). Here poly
is some polynomial independent of n.

Canonical Structure: We require the scheme consists of a canonical structure described as
follows:

1. PPSetup runs PPGen (the algorithm used to sample bilinear map parameters) and outputs a
bilinear map (e,G1, G2, GT , g1, g2) and a plaintext space Zp which is the order of G1, G2 and
GT .

2. Encryption algorithm encodes the message vector on group G1.

3. Key generation algorithm encodes the function vector on group G2.

4. Encryption, setup and key generation algorithm do not use pairing operation at all.

5. The decryption algorithm just computes homomorphically a degree 2 polynomial (namely
inner product), on the encodings in the secret key and the secret key (by using pairing e)
and then computes discrete log (by doing brute force) on the resulting element in the target
group.

We note this structure is satisfied by the construction proposed in [38].

Function hiding security: We say that a secret key IPE scheme cIPE is µ−function hiding if
for any stateful p.p.t. adversary A and sufficently large λ ∈ N and n = λc for any constant c the
following occurs:
|Pr[Aα←D0(α)] = 1− Pr[Aα←D1(α)]| < µ(λ) Where the distributions D0 and D1 are generated

as follows:
Distribution Db

1. Run PPSetup(1λ)→ pp.

2. Run Setup(pp, 1n)→ (pp, sk).

3. Adversary A on input pp outputs (x0
i ,x

1
i ) and (y0

i ,y
1
i ) for i ∈ [L] for some L = poly(λ). Here

each vector is in Znp . It is required that 〈x0
i ,y

0
j 〉 = 〈x1

i ,y
1
j 〉 for i, j ∈ [L].

4. Compute CTi = Enc(sk,xbi) for i ∈ [L] and ski = KeyGen(sk,ybi ) for i ∈ [L].

5. Output {CTi, ski}i∈[L].

Theorem 9 (Imported Theorem [38]). Assuming subexponential SXDH holds relative to PPGen,
there exists a subexponential canonical function hiding inner product functional encryption scheme.
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D Security Proof: PHFE Construction

Here is our theorem.

Theorem 10. Assuming SXDH holds relative to PPGen, the construction described in Section 6
satisfies semi-functional security.

We now describe semi-functional algorithms.
First we describe the semi-functional encryption and key generation algorithm.

sfKG(MSK, f,∆): On input the master secret key MSK, function f and a value ∆, perform the
following steps. The change from regular key generation algorithm is marked with boldfaced
[Change].

On input the master secret key MSK and function f ,

• Parse MSK = {sk0, sk1,β,γ}

• Sample A1, ...,Ad randomly from Zn3×n3

p

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.

• Let θf = 〈f0,A1〉.

• [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆)).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Observe that there exists a vector w`
i,j ∈ Zn+2

p such that 〈w`
i,j , (rx1, ..., rxn, r, 0)〉 = M`

f,i,j .

Note that each entry w`
i,j is some linear function of A`+1. Note that the last component

(component n+ 2) is just 0 and the second last component is −A`
i,j .

• For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

We now describe semi-functional encryption algorithm:
sfEnc(MSK,x, 1n): On input the public attribute x ∈ Znp and MSK. Perform the following opera-
tions. The change from regular encryption algorithm is marked with boldfaced [Change].

• Parse MSK = {sk0, sk1,β,γ}

• Sample r ← Zp.

• [Change] Compute CT0 = cIPE.Enc(sk0, (r, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• [Change] Compute CTCj ← cIPE.Enc(sk′, (0, βj, 0, 0)) for j ∈ [n]
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• [Change] Compute CTKk ← cIPE.KeyGen(sk′, (0,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (rx1, ...., rxn, r, 0)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

Note that the decryption of semi-functional ciphertext with a semi-functional key with value ∆
will return f(x,0,0) + ∆ = ∆ as the output of the decryption.

Indistinguishability of Semi-Functional Key: This is straight-forward to show

Lemma 1. Assuming cIPE is a canonical function hiding inner product FE scheme, the scheme
described in Section 6, satisfies indistinguishability of semi-functional keys property.

Proof. The only difference between the distribution of keys and ciphertexts corresponding to chal-
lenge bit 0 and challenge bit 1 in the security game of semi-functional key security is the following.
If challenge bit is 0, the function keys are functionally generated while if challenge bit is 1 the
function keys are semi-functionally generated. A function key for a function f is of the follow-
ing form. The only difference lies in the component Key0,f . If challenge bit is 0, it is generated as
cIPE.KeyGen(sk0, (θf , 0)) otherwise as cIPE.KeyGen(sk0, (θf ,∆)). Note in both the cases ciphertexts
generated by sk0 always has 0 in the second slot, so the inner products in both the cases remain
the same. The proof now holds because of the function hiding security of cIPE.

Theorem 11. Assuming SXDH holds relative to PPGen, the scheme described in Section 6, satisfies
indistinguishability of semi-functional ciphertexts property.

We now list hybrids and prove indistinguishability between them. In the first hybrid the chal-
lenge ciphertext is generated honestly and the keys are semi-functionally generated. In the last
hybrid, the challenge ciphertext is generated semi-functionally and the keys are semi-functionally
generated. The change in each intermediate hybrid is marked with boldfaced [Change].

Hybrid0 :

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also gives
out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge ciphertext
CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated similarly. Note that for ci-
phertext for messagem(i), the components will be denoted as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
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• Sample r ← Zp.
• Compute CT0 = cIPE.Enc(sk0, (r, 0)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj, 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (rx1, ...., rxn, r, 0)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

3. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn×np . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) untill necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆)).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Observe that there exists a vector w`
i,j ∈ Zn+2

p such that 〈w`
i,j , (rx1, ..., rxn, r, 0)〉 =

M`
f,i,j . Note that each entry w`

i,j is some linear function of A`+1. Note that the last

component (component n+ 2) is just 0 and the second last component is −A`
i,j .

• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n])

4. Adversary then outputs a bit b′ ∈ {0, 1}

Hybrid1 : This hybrid is the same as the previous hybrid except that the randomness r used
for challenge ciphertext is chosen at Setup. At the same time ciphertext component CT0 and key
components Key0,f is generated differently. CT0 now encrypts (0, 1). Key0,f is now computed to
ensure that inner products remain the same.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.
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• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. [Change] Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
• [Change] Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj, 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (rx1, ...., rxn, r, 0)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn3×n3

p . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) untill necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf , rθf )).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Observe that there exists a vector w`
i,j ∈ Zn+2

p such that 〈w`
i,j , (rx1, ..., rxn, r, 0)〉 =

M`
f,i,j . Note that each entry w`

i,j is some linear function of A`+1. Note that the last

component (component n+ 2) is just 0 and the second last component is −A`
i,j .

• For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])
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5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 2. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid0) = 1] −
Pr[A(Hybrid1) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The only difference between the two hybrids is the way that the challenge ciphertext compo-
nent CT0 is generated and the functional key components Key0,f are generated. In both the hybrids,
the decryption of CT0 from Key0,f is rθf . The decryption of component CT(i)0 (corresponding to
other ciphertext queries) for i ∈ [L] is also the same- r(i)θf . Thus the claim follows from security
of cIPE scheme.

Hybrid2 : This hybrid is the same as the previous hybrid except the challenge ciphertext
component CTX and key components Key`fi,j,k are generated for i ∈ [L], ` ∈ [d] and j, k ∈ [n3].

They are done in such a way that decryption of all components CTX(i) with keys Key`g,j,k remain
the same.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj, 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, 0, 0)) for k ∈ [n].

• [Change] Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.
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• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn3×n3

p . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) until necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf , rθf )).

• Define Ad+1 = diagvec(β ⊗ γ).

• [Change] For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M`

f,i,j in the
component n+ 2.

• [Change] For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 3. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid1) = 1] −
Pr[A(Hybrid2) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The only difference between the two hybrids is the way that the challenge ciphertext com-
ponent CTX is generated and the functional key components Key`f,i,j are generated for all queried

functions f and i, j ∈ [n3]. In both the hybrids, the decryption of CTX from Key`f,i,j is M`
i,j for

i, j ∈ [n3]. In Hybrid1 CTX is generated as an encryption of (rx1, ..., rxn, r, 0), while in Hybrid2

it is generated as an encryption of (0, ..., 0, 1). In Hybrid1, Key`f,i,j is generated as a cIPE key for

w`
f,i,j , while in Hybrid2 it is generated as a cIPE key for vector w′`

f,i,j . Note that this ensures that

the decryptions of CTX(i) and CTX with all keys Key`f,i,j remain the same. Thus the claim follows
from security of cIPE scheme.

We now define a series of hybrids.
Hybrid3,a : For a ∈ [n], this hybrid is the same as the previous hybrid except the challenge
ciphertext component CTCa is generated differently. The CTCj encrypt 0 for j ≤ a, and yj
otherwise. In order to account for this change, we change we change Key0,f to be the key for
(θf , rθf + f(x,y, z)− f(x,ya, z)). Here ya = (0, ..., 0, ya+1, ..., yn).

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.
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• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• [Change] Compute CTCj ← cIPE.Enc(sk′, (0, βj, 0, 0)) for j ≤ a
• Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [a+ 1, n].

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn3×n3

p . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) untill necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• [Change] Compute Key0,f = cIPE.KeyGen(sk0, (θf , rθf + ∆ − f(x,ya, z))). Here ya =

(0, .., 0, ya+1, ..., yn). Note that for a = n, the hardwiring ∆− f(x,ya, z) is just equal to
∆.

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M`

f,i,j in the
component n+ 2.
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• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Let Hybrid2 = Hybrid3,−1. We defer indistinguishability of Hybrid3,i from Hybrid3,i+1 for
i ∈ [−1, n− 1] is argued later in Section D.1.

Hybrid4 : This hybrid is the same as the previous hybrid except that in the challenge ciphertext
components CTKj for j ∈ [n] are generated by replacing zj with 0. This can be done because the
output of the decryption of CTCj with CTKk do not change.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (0, βj, 0, 0)) for j ∈ [n]

• [Change] Compute CTKk ← cIPE.KeyGen(sk′, (0,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn×np . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) until necessary.
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• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf , rθf + ∆)).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M`

i,j in the
component n+ 2.

• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 4. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid3,n) =
1]−Pr[A(Hybrid4) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The only difference between the two hybrids is the way that the challenge ciphertext com-
ponent CTKj for j ∈ [n] is generated. They are generated as function key for vector (zj ,−rγk, 0, 0)
in Hybrid3,n, where as in Hybrid4, they are generated as function keys for (0,−rγj , 0, 0). Note
that in both hybrids when decrypted using CTCk, they both result in [−rβkγj ]T . Thus the claim
follows from security of cIPE scheme.

Hybrid5 : This hybrid is the same as the previous one except that now we switch CT0. We
ensure that the decryption of CT0 as well as CT(i)0 with key components Key0,f remain the same.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k
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• Parse MSK = {sk0, sk1,β,γ}
• [Change] Compute CT0 = cIPE.Enc(sk0, (r, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (0, βj, 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (0,−rγk, 0, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn3×n3

p . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) until necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆)).

• Define Ad+1 = β ⊗ γ.

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M`

f,i,j in the
component n+ 2.

• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 5. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid4) = 1] −
Pr[A(Hybrid5) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The proof of this is similar to the proof of lemma 2

Hybrid6 : This hybrid is the same as the previous one except that now we switch CTX and
Key`f,i,j for all functions f . We ensure that the decryption of CTX as well as CTX(i) with key

components Key`f,i,j remain the same for ` ∈ [d] and i, j ∈ [n3].

1. The challenger does setup for the scheme as follows:
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• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.

3. Then adversary releases challenge messages m[i] = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k

• Parse MSK = {sk0, sk1,β,γ}
• Compute CT0 = cIPE.Enc(sk0, (r, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (0, βj, 0, 0)) for j ∈ [n]

• Compute CTKk ← cIPE.KeyGen(sk′, (0,−rγk, 0, 0)) for k ∈ [n].

• [Change] Compute CTX = cIPE.Enc(sk1, (rx1, ...rxn, r, 0)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1, ...,Ad randomly from Zn×np . This step is done for each query. We omit

subscript of the function (e.g. A`
f ) until necessary.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf ,∆)).

• Define Ad+1 = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1 − rA`

• [Change] For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])
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5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 6. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid5) = 1] −
Pr[A(Hybrid6) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The proof of this is similar to the proof of lemma 3

Note that Hybrid6 corresponds to the case with semi-functional challenge ciphertext and semi-
functional function keys.

Now we argue indistinguishability of Hybrid3,i with Hybrid3,i+1 for i ∈ [−1, n− 1]

D.1 Indistinguishability of Hybrid3,i and Hybrid3,i+1

We will prove indistinguishability between Hybrid2 and Hybrid3,0. For successive hybrids, indis-
tinguishability argument is similar. Here is a brief description of the intermediate hybrids. We will
elaborate on them.

• Hybrid2,0 : This hybrid is the same as the previous one except that now we change CTC1,
(also CTC(i)1) to encrypt (0, 0, 1, 0). There is a corresponding change in CTKk (and CTK(i)k)
for k ∈ [n]. CTKk is generated as a key for the vector (zk,−rγk, y1zk − rβ1γk, 0)

• Hybrid2,1 : This hybrid is the same as the previous one except that now we use SXDH

to replace rβ1γk with randomly chosen v1,k. At the same time, matrices rA`
f for ` ∈ [d]

(corresponding to all queried functions f) are replaced with randomly chosen matrices B`
f .

• Hybrid2,2 : Now we can replace y1 with 0. This change is information theoretic.

• Hybrid2,3 : Now we use SXDH again to undo the change and replace B`
f and v1,k.

• Hybrid2,4: This is the same as Hybrid3,0.

Now we describe the hybrids.
Hybrid2,0 :

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly.
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3. Then adversary releases challenge messages m(i) = (x(i),y(i), z(i)) for i ∈ [L]. It also gives
out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge ciphertext
CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the previous hybrid.
Except that the change is described below. Note that for ciphertext for message m(i), the
components will be denoted as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k
Here is how CT is generated.

• Parse MSK = {sk0, sk1,β,γ}
• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• [Change] Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [n] \ 1

• [Change] Compute CTC1 ← cIPE.Enc(sk′, (0, 0, 1, 0)).

• [Change] Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, y1zk − rβ1γk, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

The only change in generating CT(i) for i ∈ [L] from the previous hybrid is marked below.

• [Change] Compute CTC(i)1 ← cIPE.Enc(sk′(i), (0, 0, 1, 0)).

• [Change] Compute CTK(i)k ← cIPE.Enc(sk′(i), (z(i)k,−r(i)γk, y(i)1z(i)k−r(i)β1γk, 0))
for k ∈ [n].

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1

f , ...,A
d
f randomly from Zn3×n3

p . This step is done for each function query.

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1

f 〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf , rθf )).

• Define Ad+1
f = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1

f − rA`
f

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M`

f,i,j in the
component n+ 2.

• For ` ∈ [1, d] and i, j ∈ [n3], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n])
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5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 7. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid2) = 1] −
Pr[A(Hybrid2,0) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

Proof. The only difference between the two hybrids is the way CTC1 (and CTC(i)1) and CTCk (and
CTKk) for k ∈ [n] are generated. CTKk are generated so that decryption of CTCj for j ∈ [n] is the
same in both hybrids- yjzk − rβjγk.

The security thus follows from the security of cIPE scheme.

Hybrid2,1 : In this hybrid, we rely on SXDH to switch elements.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. [Change] Challenger samples randomness r from uniformly. Also, sample u1,k for k ∈ [n]
randomly from Zp. This will be used to replace rβ1γk.

3. Then adversary releases challenge messages m(i) = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k
Here is how CT is generated.

• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [n] \ 1

• Compute CTC1 ← cIPE.Enc(sk′, (0, 0, 1, 0)).

• Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk, y1zk − u1,k, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.
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• Parse MSK = {sk0, sk1,β,γ}
• Sample matrices A`

f randomly for ` ∈ [d] from Zn3×n3

p .

• [Change] For every function f , sample B`
f for ` ∈ [d] randomly from Zn3×n3

p .

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1

f 〉.
• [Change] Let θ′f = 〈f0,B1

f 〉.
• Compute Key0,f = cIPE.KeyGen(sk0, (θf , θ

′
f )).

• Define Ad+1
f = diagvec(β ⊗ γ). Define Bd+1

f as the matrix rAd+1, except that rβ1γk is
replaced with random element u1,k.

• [Change] For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1

f − rA`
f

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M′`

f,i,j in the

component n+ 2, where M′`
f is defined below for ` ∈ [d].

M′`
f = [f `(x)]B`+1

f −B`
f

• For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 8. If SXDH holds relative to PPGen, then, for all polynomial time adversaries A, |Pr[A(Hybrid2,0) =
1]− Pr[A(Hybrid2,1) = 1]| ≤ negl(λ). If SXDH is subexponentially hard, this gap is subexponen-
tially small.

Proof. The only difference between the two hybrids is the way hardcodings using rβ1γk for k ∈ [n]
and rA`

f is generated for ` ∈ [d]. In Hybrid2,1, the hardcoding rβ1γk used in generating CTKk is
replaced with a random value v1,k. Note that this can be done due to canonical structure of cIPE.
Exponent r, β1 and γk for all k ∈ [n], only appear in group G2. Hence, this follows from SXDH.

At the same time, hardcodings correponding to rA`
f that appear in Key`f,i,j is computed by

using a random matrix B`
f instead of rA` for ` ∈ [d] and i, j ∈ [n3]. Since exponents A`

f and r
appear only in G2 (due to canonical structure of cIPE), this can also be done due to SXDH.

Hybrid2,2 : In this hybrid, we replace CTKk to hardcode 0− u1,k instead of y1zk − u1,k. This
change is accounted for by adding an offset in the hardcoded value.

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.
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• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. [Change] Challenger samples randomness r from uniformly. Let Ad+1 = diagvec(β ⊗ γ).
Also, sample u1,k for k ∈ [n] randomly from Zp. This will be used to replace rβ1γk.

3. Then adversary releases challenge messages m(i) = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k
Here is how CT is generated.

• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [n] \ 1

• Compute CTC1 ← cIPE.Enc(sk′, (0, 0, 1, 0)).

• [Change] Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk,−u1,k, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1

f , ...,A
d
f randomly from Zn3×n3

p .

• Sample B1
f , ...,B

d
f randomly from Zn3×n3

p .

• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1

f 〉.

• [Change] Let θ′f = 〈f0,B1
f 〉+ f(x,y0, z). Here y0 = (y1, 0, ..., 0).

• Compute Key0,f = cIPE.KeyGen(sk0, (θf , θ
′
f )).

• Define Ad+1
f = diagvec(β ⊗ γ). Define Bd+1

f as the matrix rAd+1
f , except that rβ1γk is

replaced with random element u1,k.

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1

f − rA`
f
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Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrid. We define w′`
i,j be

the vector that equals w`
i,j in its first n + 1 components and is equal to M′`

f,i,j in the

component n+ 2, where M′`
f is defined below for ` ∈ [d].

M′`
f = [f `(x)]B`+1

f −B`
f

• For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
′`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

5. Adversary then outputs a bit b′ ∈ {0, 1}

Lemma 9. For any adversary A, |Pr[A(Hybrid2,1) = 1]− Pr[A(Hybrid2,2)]| = 0.

Proof. To prove this, we consider following distributions. First distribution corresponds to hard-
codings corresponding to Hybrid2,1 and the last one corresponds to Hybrid2,2.

Distribution 1:

• Set ui,j = rβiγj for i ∈ [2, n] and j ∈ [n] and u1,j as a randomly sampled element in Zp for
j ∈ [n]. Let U be the matrix denoted by the entries ui,j .

• Denote −ũ1,k = y1zk − u1,k for k ∈ [n]. Output the following.

• −ũ1,k for k ∈ [n].

• M`
f = [f `(x)]B`+1

f −B`
f for ` ∈ [d], and all queried functions f .

• θ′f = 〈f0,B
1
f 〉 for all queried f .

Rewriting a bit differently and substuiting the following we get the next distribution.
Set B̃d+1

f = Bd+1
f − diagvec(y1 ⊗ z).

For ` ∈ [d], B̃`
f = B`

f − [f `(x)] · . . . · [f1(x)]diagvec(y1 ⊗ z).

Observe that M`
f = [f `(x)]B̃`+1

f − B̃`
f for ` ∈ [d]

Distribution 2:

• −ũ1,k for k ∈ [n].

• M`
f = [f `(x)]B̃`+1

f − B̃`
f for ` ∈ [d], and all queried functions f .

• θ′f = 〈f0,B
1
f 〉 = 〈f0, B̃

1
f + [f1(x)] · . . . · [fd(x)] · diagvec(y1 ⊗ z)〉 for all queried f . Thus,

θ′f = 〈f0, B̃
1
f 〉+ f(x,y1, z).

Now observe that B`
f is uniformly chosen and thus the distribution {B̃`

f = B`
f − [f `(x)] · . . . ·

[f1(x)]diagvec(y1 ⊗ z)}`∈[d+1] is identical to {B`
f}`∈[d+1]. Thus writing it differently we get the

third distribution.
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Distribution 3:

• 0− u1,k for k ∈ [n].

• M`
f = [f `(x)]B`+1

f −B`
f for ` ∈ [d]

• θ′f = 〈f0,B
1
f 〉+ f(x,y1, z).

Hybrid2,3 : In this hybrid, we replace u1,k = rβ1γk and B`
f = rA`

f for k ∈ [n] and ` ∈ [d].

1. The challenger does setup for the scheme as follows:

• Sample pp← cIPE.PPSetup(1λ). Let us assume pp = (e,G1, G2, GT , g1, g2,Zp).
• Run cIPE setup as follows. sk0 ← cIPE.Setup(pp, 12). Thus these keys are used to

encrypt vectors in Z2
p.

• Then run cIPE setup algorithm, for vectors of size 1n+2. That is, compute sk1 ←
cIPE.Setup(pp, 1n+2).

• Sample β,γ ← Znp .

• Output MSK = {sk0, sk1,β,γ}

2. Challenger samples randomness r from uniformly. Let Ad+1 = diagvec(β ⊗ γ).

3. Then adversary releases challenge messages m(i) = (x(i),y(i), z(i)) for i ∈ [L]. It also
gives out a challenge message m = (x,y, z) in Z3·n

p . We now describe how the challenge
ciphertext CT is generated. Other ciphertexts CT(i) for i ∈ [L] are generated as in the
previous hybrid. Note that for ciphertext for message m(i), the components will be denoted
as: CT(i)0,CTX(i), {CTC(i)j ,CTK(i)k}j,k
Here is how CT is generated.

• Compute CT0 = cIPE.Enc(sk0, (0, 1)).

• Sample sk′ ← cIPE.Setup(pp, 14).

• Compute CTCj ← cIPE.Enc(sk′, (yj , βj , 0, 0)) for j ∈ [n] \ 1

• Compute CTC1 ← cIPE.Enc(sk′, (0, 0, 1, 0)).

• [Change] Compute CTKk ← cIPE.KeyGen(sk′, (zk,−rγk,−rβ1 · γk, 0)) for k ∈ [n].

• Compute CTX = cIPE.Enc(sk1, (0, ...0, 1)).

• Output CT = (x,CT0,CTX, {CTCj ,CTKk, }j,k∈[n])

4. Adversary also (selectively) asks for keys functions fi for i ∈ [L]. Let us say ∆i = fi(m) for
i ∈ [L]. Then adversary is given semi-functional keys generated as follows. Below we denote
the procedure for a single function f associated with value ∆.

• Parse MSK = {sk0, sk1,β,γ}
• Sample A1

f , ...,A
d
f randomly from Zn×np
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• Parse f(x,y, z) = 〈f0, [f1(x)] · . . . · [fd(x)] · diagvec(y ⊗ z)〉.
• Let θf = 〈f0,A1

f 〉.
• [Change] Let θ′f = θf + f(x,y0, z). Here y0 = (y1, 0, ..., 0).

• Compute Key0,f = cIPE.KeyGen(sk0, (θf , θ
′
f )).

• Define Ad+1
f = diagvec(β ⊗ γ).

• For ` ∈ [1, d], define M`
f as the following matrix.

M`
f = r[f `(x)]A`+1

f − rA`
f

Let w`
i,j ∈ Zn+2

p be the vector computed as in the previous hybrids.

• [Change] For ` ∈ [1, d] and i, j ∈ [n], compute Key`f,i,j = cIPE.KeyGen(sk1,w
`
i,j)

• Output skf = (Key0,f , {Key`f,i,j}`∈[d],i,j∈[n3])

5. Adversary then outputs a bit b′ ∈ {0, 1}

The proof of this is similar to the proof of lemma 8

Lemma 10. If SXDH holds relative to PPGen, then, for all polynomial time adversaries A,
|Pr[A(Hybrid2,2) = 1] − Pr[A(Hybrid2,3) = 1]| ≤ negl(λ). If SXDH is subexponentially hard,
this gap is subexponentially small.

The proof of the following lemma is similar to lemma 7

Lemma 11. Assuming cIPE is secure, then, for all p.p.t. adversaries A, |Pr[A(Hybrid2,3) =
1]−Pr[A(Hybrid3) = 1]| ≤ negl(λ). If cIPE is subexponentially secure, this gap is subexponentially
small.

E Security Proof for FE Construction

We now present semi-functional encryption and key generation algorithms and then argue indistin-
guishability. First we define semi-functional encryption algorithm:

sfEnc(MSK, 1n) : The encryption algorithm takes as input MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗, Seed∗)
and does the following.

1. Parse Seed∗ = (Seed∗.pub,Seed∗.priv(1),Seed∗.priv(2)).

2. Set x = (Seed∗.pub, 1)

3. PHFE.sfEnc(MSK,x, 1n
′
)→ PHFE.ctsf .

4. Output (CT1 = SHE.CT∗,CT2 = PHFE.ctsf)

Now we describe our semi-functional key generation algorithm:

sfKG(MSK, C,θ = (θ1, ..., θη)) : The semi-functional keygen algorithm takes as input MSK = (PHFE.MSK,

SHE.PK, s∗, SHE.CT∗, Seed∗) and a circuit C ∈ Cn,λ,ε along with value θ = (θ1, ..., θη). Here η is
the length of the output of C.
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1. Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

2. For each i ∈ [η], compute SHE.EvalCT(SHE.PK, Ci,SHE.CT
∗, )→ CT∗Ci .

3. Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ).

4. Run H(q1, ..., qn1+ε′ ,Seed
∗)→ (h1, ..., hn1+ε′ )

5. Compute γi ← CT∗Ci − θi ·Q− hi.

6. Let Gi be the following arithmetic circuit. On input, vectors (x,y, z) where x = (Seed.pub, 1),
y = (Seed.priv(1),S) and z = (Seed.priv(2), 1), Gi outputs sT · bCi − qi(Seed). Note that the
computations are done over Zp and thus Gi ∈ F .

7. For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

8. Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

Observe that the decryption of a normal ciphertext m with a semi-functional key for circuit C
with hardwired value θ, outputs C(m). Whereas, the decryption of a semi-functional ciphertext
with such a key will output θ.

Now observe that it is trivial to argue indistinguishability of the semi-functional key property.
The only difference between the honest key generation algorithm and semi-functional key generation
algorithm is that to generate PHFE keys for circuits Gi, semi-functional key generation algorithm
relies on semi-functional key generation algorithm of PHFE scheme. Note that hardwirings γi is
independent of PHFE.MSK. Thus, this property follows directly from the security of PHFE scheme.

Here is the theorem:

Theorem 12. Let s(λ) be a parameter larger than any polynomial. Assuming PHFE satisfies
indistinguishability of semi-functional key properties for adversaries of size O(s), then the scheme
described above satisfies indistinguishability of semi-functional key property against adversaries of
size O(s).

Now we show that FE indistinguishability of semi-functional ciphertext property. We will prove
the following:

Theorem 13. Let s(λ) be any size parameter larger than any polynomial. Then assuming,

• Security of LWE with subexponential approximation factors against adversaries of size O(s).

• PHFE for F secure against adversaries of size O(s).

• F-∆RG satisfying (O(s), adv)−perturbation resilience.

Then, FE scheme described above satisfies (O(s), adv+negl)−indistinguishability of semi-functional
ciphertexts property.

We now present hybrids and argue indistinguishability between them. The first hybrid corre-
sponds to the case when the challenge ciphertext is honestly encrypted, where as the last hybrid
correspond to the case when it is semi-functionally encrypted. Function key is semi-functionally
generated in both these hybrids. Then, we analyze the indistinguishability between them.

Hybrid0 : In this hybrid, all ciphertexts are generated honestly using honest encryption algorithm.
Function key is generated semi-functionally.
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1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK, s∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→
Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts all messages using honest encryption algorithm and hands over the ci-
phertexts to the adversary. These ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe
below, how challenge ciphertext is encrypted.

(a) Sample a secret s← χdim1×1. Set s[1, 1] = 1.

(b) Compute SHE.Encode(SHE.PK, s,m)→ SHE.CT.

(c) Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed. Parse Seed = (Seed.pub, Seed.priv(1), Seed.priv(2)).

(d) Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

(e) PHFE.Enc(MSK, (x,y, z))→ PHFE.CT.

(f) Output CT = (CT1 = SHE.CT,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = Ci(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) For each i ∈ [η], compute SHE.EvalCT(SHE.PK, Ci,SHE.CT
∗)→ CT∗Ci .

(c) Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ). RunH(q1, ..., qn1+ε ,Seed∗) =
(h1, ..., hn1+ε).

(d) Compute γi ← CT∗Ci − θi ·Q− hi.
(e) Let Gi be the following arithmetic circuit. On input, vectors (x,y, z) where x =

(Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1), Gi outputs sT · bCi −
qi(Seed). Note that the computations are done over Zp and thus Gi ∈ F .

(f) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(g) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.
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Hybrid1 : This hybrid is the same as the previous hybrid except that hardwirings γi used in
generating semi-functional keys are generated differently. The change from the previous hybrid is
marked in boldfaced [Change].

1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK,S∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→
Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts all messages using honest encryption algorithm and hands over the ci-
phertexts to the adversary. These ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe
below, how challenge ciphertext is encrypted.

(a) Sample a secret s← χdim1×1. Set s[1, 1] = 1.

(b) Compute SHE.Encode(SHE.PK, s,m)→ SHE.CT.

(c) Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed. Parse Seed = (Seed.pub, Seed.priv(1), Seed.priv(2)).

(d) Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

(e) PHFE.Enc(MSK, (x,y, z))→ PHFE.CT.

(f) Output CT = (CT1 = SHE.CT,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = Ci(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) [Change] For i ∈ [η], compute SHE.EvalPK(PK, Ci)→ bCi .

(c) Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ).

(d) [Change] Compute γi ← sT ·bCi−qi(Seed). Set x = (Seed.pub, 1), y = (Seed.Priv(1), s)
and z = (Seed.Priv(2), 1). Note that Gi(x,y, z) = γi.

(e) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(f) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.

Lemma 12. Let s(λ) be a parameter greater than any polynomial in λ. If PHFE satisfies in-
distinguishability of semi-functional keys property against adversaries of size O(s), then for any
adversary A of size O(s), |Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1]| ≤ negl(λ).
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Proof. The only difference between the hybrids is that in Hybrid0, for each i ∈ [η], the hardwirings
γi are generated as in semi-functional key generation algorithm, where as in Hybrid1, they are gen-
erated as Gi(x,y, z) where PHFE.CT encrypts (x,y, z). Note that in both cases γi is independent
of PHFE.MSK. Indistinguishability now follows from the security of PHFE scheme.
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Hybrid2 : This hybrid is the same as the previous hybrid except that the challenge ciphertext
component PHFE.CT is semi-functionally generated.

1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK,S∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)
→ Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts all messages and hands over the ciphertexts to the adversary. These
ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe below, how challenge ciphertext is
encrypted. Other ciphertexts are generated as in the previous hybrid.

(a) Sample a secret s← χdim1×1. Set s[1, 1] = 1.

(b) Compute SHE.Encode(SHE.PK, s,m)→ SHE.CT.

(c) Run F-∆RG.SetupSeed(1λ, 1n,Bound∆) → Seed. Parse Seed = (Seed.pub, Seed.priv(1),
Seed.priv(2)).

(d) Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

(e) [Change] PHFE.sfEnc(MSK, (x, 1n
′
))→ PHFE.CT.

(f) Output CT = (CT1 = SHE.CT,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = C(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) For i ∈ [η], compute SHE.EvalPK(SHE.PK, Ci)→ bCi .

(c) Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ).

(d) Compute γi ← sT · bCi − qi(Seed). Set x = (Seed.pub, 1), y = (Seed.Priv(1), s) and
z = (Seed.Priv(2), 1). Note that Gi(x,y, z) = γi.

(e) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(f) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.

Lemma 13. Let s(λ) be a parameter greater than any polynomial in λ. If PHFE satisfies indis-
tinguishability of semi-functional ciphertext property against adversaries of size O(s), then for any
adversary A of size O(s), |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| ≤ negl(λ).
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Proof. The only difference between the hybrids is that in Hybrid1, for each i ∈ [η], the ciphertext
PHFE.CT are generated using PHFE.Enc, where as in Hybrid2, it is generated using PHFE.sfEnc
algorithm. Note that in both cases γi = Gi(x,y, z) where PHFE.CT encrypts (x,y, z) in Hybrid1.
Indistinguishability now follows from the security of PHFE scheme.
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Hybrid3 : This hybrid is the same as the previous hybrid except that hardwirings γi is generated
differently by invoking the security of F-∆RG.

1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK, s∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→
Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts all messages and hands over the ciphertexts to the adversary. These
ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe below, how challenge ciphertext is
encrypted. Other ciphertexts are generated as in the previous hybrid.

(a) Sample a secret s← χdim1×1. Set s[1, 1] = 1.

(b) Compute SHE.Encode(SHE.PK, s,m)→ SHE.CT.

(c) Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed. Parse Seed = (Seed.pub, Seed.priv(1), Seed.priv(2)).

(d) Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

(e) PHFE.sfEnc(MSK, (x, 1n
′
))→ PHFE.CT.

(f) Output CT = (CT1 = SHE.CT,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = Ci(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) [Change] For i ∈ [η], compute SHE.EvalCT(SHE.PK, Ci, SHE.CT)→ SHE.CTCi .

(c) [Change] Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆)→ (q1, ..., qn1+ε′ ). Compute (h1, .., hn1+ε′ )←
H(q1, ..., qn1+ε′ , Seed)

(d) [Change] Compute γi ← CTCi − θi ·Q−hi. Set x = (Seed.pub, 1), y = (Seed.Priv(1), s)
and z = (Seed.Priv(2), 1). Note that Gi(x,y, z) 6= γi.

(e) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(f) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.

Lemma 14. Let s(λ) be a parameter greater than any polynomial in λ. If F-∆RG satisfies
(O(s), adv)−security, then for any adversary A of size O(s), |Pr[A(Hybrid2) = 1]−Pr[A(Hybrid3) =
1]| ≤ adv.
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Proof. The only difference between the hybrids is that for each i ∈ [η], hardwirings γi are generated
differently. In Hybrid2, it is generated as γi = sT · bCi − qi(Seed). In Hybrid3, it is generated as
SHE.CTCi − Ci(m) ·Q− hi. Due to structure of SHE encodings the following holds,

SHE.CT = sT · bCi + C(m) ·Q+ error

Where |error| ≤ Bound∆. Since Seed.priv(1) and Seed.priv(2) are hidden, hardwirings γi are indis-
tinguishable due to security of F-∆RG.
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Hybrid4 : This hybrid is the same as the previous hybrid except that now SHE.CT is generated as
an encryption of 0n.

1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK, s∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→
Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts all messages using and hands over the ciphertexts to the adversary. These
ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe below, how challenge ciphertext is
encrypted. Other ciphertexts are generated as in the previous hybrid.

(a) Sample a secret s← χdim1×1. Set s[1, 1] = 1.

(b) [Change] Compute SHE.Encode(SHE.PK, s, 0n)→ SHE.CT.

(c) Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→ Seed. Parse Seed = (Seed.pub, Seed.priv(1), Seed.priv(2)).

(d) Set x = (Seed.pub, 1), y = (Seed.priv(1), s) and z = (Seed.priv(2), 1).

(e) PHFE.sfEnc(MSK, (x, 1n
′
))→ PHFE.CT.

(f) Output CT = (CT1 = SHE.CT,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = Ci(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) For i ∈ [η], compute SHE.EvalCT(SHE.PK, Ci, SHE.CT)→ SHE.CTCi .

(c) Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆) → (q1, ..., qn1+ε′ ). Compute (h1, .., hn1+ε′ ) ←
H(q1, ..., qn1+ε′ , Seed)

(d) Compute γi ← CTCi − θi · Q − hi. Set x = (Seed.pub, 1), y = (Seed.Priv(1), s) and
z = (Seed.Priv(2), 1). Note that Gi(x,y, z) 6= γi.

(e) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(f) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.

Lemma 15. Let s(λ) be a parameter greater than any polynomial in λ. If SHE is secure against ad-
versaries of size O(s), then for any adversary A of size O(s), |Pr[A(Hybrid3) = 1]−Pr[A(Hybrid4) =
1]| ≤ negl.
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Proof. The only difference between Hybrid3 and Hybrid4 is the way SHE.CT is generated. In
Hybrid3 it is generated as an encoding of m, while in Hybrid4, it is generated as 0n. Note that
the randomness used to generate the encodings is nowhere else used. Thus indistinguishability
holds due to security of SHE.
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Hybrid5 : This hybrid is the same as the previous hybrid except that it has syntactic differences.

1. Adversary outputs length 1n, challenge message m along with messages m1, ...,mΓ. It also
outputs a circuit C ∈ Cλ,n,ε. Let C = (C1, ..., Cη) where each sub-circuit Ci outputs ith bit of
C.

2. Challenger does setup. We recall the algorithm below.

(a) Run PHFE.Setup(1λ, 1n
′
)→ PHFE.MSK. Here n′ = n · poly(λ).

(b) Run SHE.Setup(1λ, 1n)→ SHE.PK.

(c) Sample a secret vector s∗ ∈ χdim1×1. Set s∗[1, 1] = 1.

(d) Compute SHE.Encode(SHE.PK, s∗, 0n)→ SHE.CT∗. Run F-∆RG.SetupSeed(1λ, 1n,Bound∆)→
Seed∗.

(e) Output MSK = (PHFE.MSK, SHE.PK, s∗,SHE.CT∗,Seed∗)

3. Challenger encrypts the challenge ciphertext using semi-functional encryption algorithm.
These ciphertexts are denoted CT,CT[1], ...,CT[Γ]. We describe below, how challenge ci-
phertext is encrypted.

(a) Set x = (Seed∗.pub, 1), y = (Seed∗.priv(1), s∗) and z = (Seed∗.priv(2), 1).

(b) PHFE.sfEnc(MSK, (x, 1n
′
))→ PHFE.CT.

(c) Output CT = (CT1 = SHE.CT∗,CT2 = PHFE.CT)

4. Function key for circuit C is generated as follows using the semi-functional key generation
algorithm. Let θi = Ci(m) for i ∈ [η].

(a) Parse C = (C1, . . . , Cη) where Ci is the circuit that outputs ith bit of C. Here η ≤ n1+ε.

(b) For i ∈ [η], compute SHE.EvalCT(SHE.PK, Ci, SHE.CT)→ SHE.CTCi .

(c) Sample F-∆RG.SetupPoly(1λ, 1n,Bound∆) → (q1, ..., qn1+ε′ ). Compute (h1, .., hn1+ε′ ) ←
H(q1, ..., qn1+ε′ , Seed)

(d) Compute γi ← CTCi − θi ·Q− hi. Note that Gi(x,y, z) 6= γi.

(e) For each i ∈ [η], compute PHFE.sk[Gi, γi]← PHFE.sfKG(PHFE.MSK, Gi, γi).

(f) Output skC = (PHFE.sk[G1, γ1], . . . ,PHFE.sk[Gη, γη])

5. Adversary is handed over the function key. Finally, adversary outputs a guess ρ ∈ {0, 1}.

Lemma 16. For all adversaries A |Pr[A(Hybrid4) = 1]− Pr[A(Hybrid5) = 1]| = 0.

Proof. These hybrids are identical.
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