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4 Universidad Politécnica de Madrid, Spain

5 Geometry Research
6 cLabs

Abstract. We consider the problem of proving in zero knowledge that an element of a public set
satisfies a given property without disclosing the element, i.e., for some u, “u ∈ S and P (u) holds”. This
problem arises in many applications (anonymous cryptocurrencies, credentials or whitelists) where, for
privacy or anonymity reasons, it is crucial to hide certain data while ensuring properties of such data.

We design new modular and efficient constructions for this problem through new commit-and-prove
zero-knowledge systems for set membership, i.e. schemes proving u ∈ S for a value u that is in a public
commitment cu. We also extend our results to support non-membership proofs, i.e. proving u /∈ S.

Being commit-and-prove, our solutions can act as plug-and-play modules in statements of the form
“u ∈ S and P (u) holds” by combining our set (non-)membership systems with any other commit-and-
prove scheme for P (u). Also, they work with Pedersen commitments over prime order groups which
makes them compatible with popular systems such as Bulletproofs or Groth16.

We implemented our schemes as a software library, and tested experimentally their performance. Com-
pared to previous work that achieves similar properties—the clever techniques combining zkSNARKs
and Merkle Trees in Zcash—our solutions offer more flexibility, shorter public parameters and 3.7×–30×
faster proving time for a set of size 264.

1 Introduction

The problem of proving set membership—that a given element x belongs to some set S—arises in
many applications, including governmental white-lists to prevent terrorism or money-laundering,
voting and anonymous credentials, among others. More recently, this problem also appears at the
heart of currency transfer and identity systems over blockchains. In this setting, parties can first
publicly commit to sets of data (through the blockchain itself) and then, by proving set membership,
can claim ownership of assets or existence of identity attributes, while ensuring privacy.

A naive approach to check if an element is in a set is to go through all its entries. The complexity
of this approach, however, is unacceptable in many scenarios. This is especially true for blockchains,
where most of the parties (the verifiers) should run quickly.

How to efficiently verify set membership then? Cryptographic accumulators [Bd94] provide a
nice solution to this problem. They allow a set of elements to be compressed into a short value (the
accumulator) and to generate membership proofs that are short and fast to verify. As a security
guarantee they require it should be computationally infeasible to generate a false membership proof.

As of today, we can divide constructions for accumulators into three main categories: Merkle
Trees [Mer88]; RSA-based [BP97, CL02, LLX07, BBF18a]; pairing-based [Ngu05, DT08, CKS09,



ZKP17]. Approaches based on Merkle Trees1 allow for short (i.e., O(1)) public parameters and
accumulator values, whereas the witness for membership proofs is of size log(n), where n is the
size of the set. In RSA-based constructions (which can be actually generalized to any group of
unknown order [Lip12], including class groups) both the accumulator and the witness are each a
single element in a relatively large hidden-order group G,2 and thus of constant-size. Schemes that
use pairings in elliptic curves such as [Ngu05, CKS09] offer small accumulators and small witnesses
(which can each be a single element of a prime order bilinear group, e.g., 256 bits) but require large
parameters (approximately O(n)) and a trusted setup.

In anonymous cryptocurrencies, e.g. Zerocash [BCG+14] (but also in other applications such
as Anonymous Credentials [Cha85] and whitelists), we also require privacy. That is, parties in the
system would not want to disclose which element in the set is being used to prove membership.
Phrased differently, one desires to prove that u ∈ S without revealing u, or: the proof should be
zero-knowledge [GMR89] for u. As an example, in Zerocash users want to prove that a coin exists
(i.e. belongs to the set of previously sent coins) without revealing which coin it is that they are
spending.

In practice it is common that this privacy requirement goes beyond proving membership. In
fact, these applications often require proving further properties about the accumulated elements,
e.g., that for some element u in the set, property P (u) holds. And this without leaking any more
information about u other than what is entailed by P . In other words, we desire zero-knowledge
for the statement R∗(S, u) := “u ∈ S and P (u)”.

One way to solve the problem, as done in Zerocash, is to directly apply general-purpose zero-
knowledge proofs for R∗, e.g., [PHGR13, Gro16]. This approach, however, tends to be expensive
and ad-hoc. One of the questions we aim to tackle is that of providing a more efficient proof systems
for set membership relations, that can also be modular.

Specifically, as observed in [CFQ19], the design of practical proof systems can benefit from
a more modular vision. A modular framework such as the one in [CFQ19] not only allows for
separation of concerns, but also increases reusability and compatibility in a plug-and-play fashion:
the same proof system is designed once and can be reused for the same sub-problem regardless of
the context3; it can be replaced with a component for the same sub-problem at any time. Also,
as [CFQ19] shows, this can have a positive impact on efficiency since designing a special-purpose
proof system for a specific relation can lead to significant optimizations. Finally, this compositional
approach can also be leveraged to build general-purpose proof systems.

In this work we focus on applying this modular vision to designing succinct zero-knowledge
proofs for set membership. Following the abstract framework in [CFQ19] we investigate how to
apply commit-and-prove techniques [CLOS02] to our setting. Our approach uses commitments
for composability as follows. Consider an efficient zero-knowledge proof system Π for property
P (u). Let us also assume it is commit-and-prove, i.e. the verifier can test P (u) by simply holding a
commitment c(u) to u. SuchΠ could be for example a commit-and-prove NIZK such as Bulletproofs
[BBB+18] or a commit-and-prove zkSNARK such as LegoGroth16 from [CFQ19] that are able to
operate on Pedersen commitments c(·) over elliptic curves. In order to obtain a proof gadget for set

1 We can include under this class currently known lattice-based accumulators such as [PSTY13, LLNW16].
2 The group G is typically Z∗

N where N is an RSA modulus. The size of an element in this group for a standard
128-bit security parameter is of 3072 bits.

3 For instance, one can plug a proof system for matrix product C = A · B in any larger context of computation
involving matrix multiplication. This regardless of whether, say, we then hash C or if A,B are in turn the output
of a different computation
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membership, all one needs to design is a commit-and-prove scheme for the relations “u ∈ S” where
both u and S are committed: u through c(u) and S through some other commitment for sets, such
as an accumulator.

Our main contribution is to propose a formalization of this approach and new constructions of
succinct zero-knowledge commit-and-prove systems for set membership. In addition, as we detail
later, we also extend our results to capture proofs of non-membership, i.e., to show that u /∈ S. For
our constructions we focus on designing schemes where c(u) is a Pedersen commitment in a prime
order group Gq. We focus on linking through Pedersen commitments as these can be (re)used in
some of the best state-of-the-art zero-knowledge proof systems for general-purpose relations that
offer for example the shortest proofs and verification time (see, e.g.,[Gro16] and its efficient commit-
and-prove variant [CFQ19]), or transparent setup and logarithmic-size proofs [BBB+18].

Before describing our results in more detail, we review existing solutions and approaches to
realize commit-and-prove zkSNARKs for set membership.

Existing Approaches for Proving Set Membership for Pedersen Commitments. The
accumulator of Nguyen [Ngu05], by the simple fact of having a succinct pairing-based verification
equation, can be combined with standard zero-knowledge proof techniques (e.g., Sigma protocols or
the celebrated Groth-Sahai proofs [GS08]) to achieve a succinct system with reasonable proving and
verification time. The main drawbacks of using [Ngu05], however, are the large public parameters
(i.e. requiring as many prime group elements as the elements in the set) and a high cost for updating
the accumulator to the set, in order to add or remove elements (essentially requiring to recompute
the accumulator from scratch).

By using general-purpose zkSNARKs one can obtain a solution with constant-size proofs based
on Merkle Trees: prove that there exists a valid path which connects a given leaf to the root; this
requires proving correctness of about log n hash function computations (e.g., SHA256). This solution
yields a constant-size proof and requires log n-size public parameters if one uses preprocessing
zkSNARKs such as [PHGR13, Gro16]. On the other hand, often when proving a relation such as
R∗(S, u) := “u ∈ S and P (u)” the bulk of the work stems from the set membership proof. This is
the case in Zcash or Filecoin4 where the predicate P (·) is sufficiently small.

Finally, another solution that admits constant-size public parameters and proofs is the protocol
of [CL02]. Specifically, Camenisch and Lysyanskaya showed how to prove in zero-knowledge that
an element u committed in a Pedersen commitment over a prime order group Gq is a member of an
RSA accumulator. In principle this solution would fit the criteria of the gadget we are looking for.
Nonetheless, its concrete instantiations show a few limitations in terms of efficiency and flexibility.
The main problem is that, for its security to hold, we need a prime order group (the commitment
space) and the primes (the message space) to be quite large, for example5 q > 2519. But having
such a large prime order group may be undesirable in practice for efficiency reasons. In fact the
group Gq is the one that is used to instantiate more proof systems that need to interact and be
linked with the Pedersen commitment.

4 https://filecoin.io
5 More specifically: the elements of a set need to be prime numbers in a range (A,B) such that q/2 > A2 − 1 >
B · 22λst+2. If aiming at 128 bits of security level one can meet this constraint by choosing for example A = 2259,
B = 2260 and q > 2519.
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1.1 Our Contributions

We investigate the problem of designing commit-and-prove zero-knowledge systems for set mem-
bership and non-membership that can be used in a modular way and efficiently composed with
other zero-knowledge proof systems for potentially arbitrary relations. Our main results are the
following.

First, building upon the view of recent works on composable proofs [AGM18, CFQ19], we define
a formal framework for commit-and-prove zkSNARKs (CP-SNARKs) for set (non-)membership.
The main application of this framework is a compiler that, given a CP-SNARK CPmem for set
membership and any other CP-SNARK CPR for a relation R, yields a CP-SNARK CP for the
composed relation “u ∈ S ∧ ∃ω : R(u, ω)”. As a further technical contribution, our framework
extends the one in [CFQ19] in order to work with commitments from multiple schemes (including
set commitments, e.g., accumulators).

Second, we propose new efficient constructions of CP-SNARKs for set membership and non-
membership, in which elements of the accumulated set can be committed with a Pedersen com-
mitment in a prime order group Gq—a setting that, as argued before, is of practical relevance due
to the widespread use of these commitments and of proof systems that operate on them. In more
detail, we propose: four schemes (two for set membership and two for non-membership) that enjoy
constant-size public parameters and are based on RSA accumulators for committing to sets, and a
scheme over pairings that has public parameters linear in the size of the set, but where the set can
remain hidden.

Finally, we implement our solutions in a software library and experimentally evaluate their
performance.

Like the recent works [AGM18] and [CFQ19], our work can be seen as showing yet another
setting—set membership— where the efficiency of SNARKs can benefit from a modular design.

RSA-based constructions. Our first scheme, a CP-SNARK for set membership based on RSA
accumulators, supports a large domain for the set of accumulated elements, represented by binary
strings of a given length η. Our second scheme, also based on RSA accumulators, supports elements
that are prime numbers of exactly µ bits (for a given µ). Neither scheme requires an a-priori bound
on the cardinality of the set. Both schemes improve the proof-of-knowledge protocol by Camenisch
and Lysyanskaya [CL02]: (i) we can work with a prime order group Gq of “standard” size, e.g., 256
bits, whereas [CL02] needs a much larger Gq (see above). We note that the size of Gq affects not
only the efficiency of the set membership protocol but also the efficiency of any other protocol that
needs to interact with commitments to alleged set members; (ii) we can support flexible choices for
the size of set elements. For instance, in the second scheme, we could work with primes of about
50 or 80 bits,6 which in practice captures virtually unbounded sets and can make the accumulator
operations 4–5× faster compared to using ≈ 256-bits primes as in [CL02].

Our main technical contribution here involves a new way to link a proof of membership for RSA
accumulators to a Pedersen commitment in a prime order group, together with a careful analysis
showing this can be secure under parameters not requiring a larger prime order group (as in [CL02]).
See Section 4 for further details.

Pairing-based construction. Our pairing-based scheme for set membership supports set elements
in Zq, where q is the order of bilinear groups, while the sets are arbitrary subsets of Zq of cardinality
6 When prime representation is suitable for the application, distinct primes can be generated without a hash fuction
(e.g. by using sequential primes).
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less than a fixed a-priori bound n. This scheme has the disadvantage of having public parameters
linear in n, but has other advantages in comparison to previous schemes with a similar limitation
(and also in comparison to the RSA-based schemes above). First, the commitment to the set can be
hiding and untrusted for the verifier, i.e., the set can be kept hidden and it is not needed to check the
opening of the commitment to the set; this makes it composable with proof systems that could for
example prove global properties on the set, i.e., that P (S) holds. Second, the scheme works entirely
in bilinear groups, i.e., no need of operating over RSA groups. The main technical contribution
here is a technique to turn the EDRAX vector commitment [CPZ18] into an accumulator admitting
efficient zero-knowledge membership proofs.

Extensions to Set Non-Membership. We propose extensions of both our CP-SNARK frame-
work and RSA constructions to deal with proving set non-membership, namely proving in zero-
knowledge that u /∈ S with respect to a commitment c(u) and a committed set S. Our two RSA-
based schemes for non-membership have the same features as the analogous membership schemes
mentioned above: the first scheme supports sets whose elements are strings of length η, the second
one supports elements that are prime numbers of µ bits, and both work with elements committed
using Pedersen in a prime order group and sets committed with RSA accumulators. A byproduct of
sharing the same parameters is that we can easily compose the set-membership and non-membership
schemes, via our framework, in order to prove statements like u ∈ S1 ∧ u /∈ S2. Our technical con-
tribution in the design of these schemes is a zero-knowledge protocol for non-membership witnesses
of RSA accumulators that is linked to Pedersen commitments in prime order groups.

Implementation and Experiments. We have implemented our RSA-based7 schemes for mem-
bership and non-membership as a Rust library which is publicly available [cps]. Our library is
implemented in a modular fashion to work with any elliptic curve from libzexe [SCI] and Ristretto
from curve25519-dalek [LdV]. This choice enables everyone to easily and efficiently combine our
CP-SNARKs in a modular way with other CP-SNARKs implemented over these elliptic curves,
such as Bulletproofs [BBB+18] and LegoGroth16 [CFQ19].

We evaluated our RSA-based constructions and compared them against highly optimized so-
lutions based on Merkle Trees8. Our schemes achieve significantly better performance in proving
time while slightly compromising on proof size and verification time. Our implementation is fast,
yet we have not heavily optimized it and thus expect the results can be further improved.

Our solutions supporting sets of arbitrary elements achieve a proving time that is up to9 3.7×
faster for set membership (309ms vs. 1.14s) and up to 7× faster for set non-membership (325ms
vs. 2.28s).10

Our solutions where elements of the set are large prime numbers (i.e., of 252-bit size) offer even
better results: our proving time is 4.5×–23.5× faster for membership and 6.8×–36× faster for non-
membership (depending on the depth of the Merkle tree used in the comparison). We also show an
optimization that, at the price of achieving computational (instead of statistical) zero-knowledge,
is twice faster (see section 7.4). This scenario can for example capture the case of sets made of

7 For the implementation we focused on schemes where the public parameters do not depend on the set size; hence,
we did not implement the pairing-based solutions.

8 For our experiments we consider Merkle Trees using Pedersen Hash over the JubJub curve [HBHW16].
9 We stress the proving time for our construction does not vary when the set grows. On the other hand this time
varies for solutions based on Merkle trees.

10 These ratios refer to a comparison against Interval Merkle Trees which require opening two paths to prove non-
membership. When compared against Sparse Merkle Trees, our solutions show similar improvement ratios.
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hiding commitments that are prime numbers. In Section 8 we discuss how this can be relevant for
a slight variant of the Zerocash protocol where commitments can be made prime numbers.

More details on the implementation and the benchmarks are available in Section 7.

Transparent Instantiations. We generalize our building blocks for RSA groups to any hidden-
order group (appendix E). By instantiating the latter with class groups and by using a transparent
CP-NIZK such as Bulletproofs, we obtain variants of our RSA-based schemes with transparent
setup. Class groups are more expensive than traditional RSA groups; in this setting we still obtain
performance (proving time 12s; |Π| = 6.4KB) outperforming other transparent solution for large
Merkle trees, roughly 264 leaves (see [ZXZS20, Fig. 5] which summarizes performances of transparent
SNARKs used to prove Merkle tree computations using SHA256 as hash). These potential gains
come at the price of a relatively longer verification (compared to other solutions): 6.4s.

1.2 Other Related Work

Ozdemir et al. [OWWB19] recently proposed a solution to scale operations on RSA accumulators
inside a SNARK. In particular, their approach scales when these operations are batched (i.e., when
proving membership of many elements at the same time); for example, they surpass a 220-large
Merkle tree when proving batches of at least 600 elements. This approach is attractive in settings
where we can delegate a large quantity of these checks to an untrusted server as there is a high
constant proving cost. In contrast, our approach can achieve faster proving time than Merkle trees
already for a single membership check. It is an interesting open problem to adapt our techniques
for modular set (non-)membership for the case of batched membership while keeping the tested
elements hidden.

1.3 Organization

We give basic definitions in Section 2. In Section 3 we formalize commit-and-prove zkSNARKs for
set (non-)membership. We describe our main constructions based on RSA accumulators for set
membership and non-membership respectively in Sections 4 and 5. We describe our construction
for set membership based on bilinear pairings in Section 6. Finally, in Sections 7 and 8 we discuss
our implementation, experiments and applications.

1.4 Recent Developments

Here we mention recent developments in the area of zero-knowledge proof for set (non-)membership,
following the conference version of this paper published in 2021 [BCF+21].

A closely related work is that of Campanelli et al. [CFH+22] who present zero-knowledge pro-
tocols for RSA Accumulators with which one can prove membership for any number of Pedersen-
committed elements (a so-called ‘batch proof’). That is the proofs of [CFH+22] are independent
both of the size of the set and the number of elements proving membership for.

In the bilinear groups setting, Srinivasan et al. [SKBP22], among other improvements on
the functionalities and security properties of the actual pairing-based accumulator, provide zero-
knowledge (batch) proofs for membership and non-membership over the Nguyen accumulator [Ngu05].

Another relevant, rapidly developing, line of work has to do with succinct zero-knowledge lookup
arguments. That is, given a committed vector of n elements, one proves that a number m of
committed elements are all values of the vector in some hidden position, while retaining the elements

6



secret. The proofs are succinct in both n and m. This line of work was initiated by the seminal work
of Zapico et al. [ZBK+22] followed by a number of works improving the prover’s complexity [PK22,
GK22, ZGK+22, EFG22]. All these constructions work over bilinear groups.

Finally, Lipmaa and Parisella [LP22] (building on [CLPØ21] and [CH20]) construct succinct
set (non-)membership NIZKs from falsifaible assumptions. That is, the objective of their work is
constructing efficient NIZKs for set (non-)membership that can be proven secure in the standard
model and assuming only falsifiable assumptions.

1.5 Publication note

This article is the long version of the homonymous paper that appeared in the proceedings of
Financial Cryptography and Data Security 2021 [BCF+21]. This version additionally contains:

– The subsection 1.4 on recent developements (subsequent to [BCF+21] works) in the area.

– The full definitional framework of CP-SNARKs for set (non-)membership (section 3).

– The pairing-based construction of section 6.

– Full security proofs of the RSA-based constructions (section 4 and 5).

– An experimental evaluation of our RSA-based protocols (section 7).

– A (slightly) different variant of our non-membership protocol (appendix D).

– A discussion on how to extend our RSA-based protocols to work with any Hidden Order Group
(appendix E).

2 Preliminaries

Notation. We denote the security parameter with λ ∈ N and its unary representation with 1λ.
Throughout the paper we assume that all the algorithms of the cryptographic schemes take as
input 1λ, which is thus omitted from the list of inputs. If D is a distribution, we denote by x← D
the process of sampling x according to D. An ensemble X = {Xλ}λ∈N is a family of probability
distributions over a family of domains D = {Dλ}λ∈N, and we say that two ensembles D = {Dλ}λ∈N
and D′ = {D′

λ}λ∈N are statistically indistinguishable (denoted by D ≈s D′) if 1
2

∑
x |Dλ(x) −

D′
λ(x)| < negl(λ). If A = {Aλ} is a (possibly non-uniform) family of circuits and D = {Dλ}λ∈N is

an ensemble, then we denote by A(D) the ensemble of the outputs of Aλ(x) when x← Dλ. We say
two ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are computationally indistinguishable (denoted
by D ≈c D′) if for every non-uniform polynomial time distinguisher A we have A(D) ≈s A(D′).

We use [n] to denote the set of integers {1, . . . , n}, and [0, n] for {0, 1, . . . , n}. We denote by
(uj)j∈[ℓ] the tuple of elements (u1, . . . , uℓ).

We denote Primes := {e ∈ N : e is prime} the set of all positive integers e > 1 such that
they do not have non-trivial (i.e. different than e and 1) factors. More specifically, given two
positive integers A,B > 0 such that A < B, we denote with Primes(A,B) the subset of Primes of
numbers lying in the interval (A,B), i.e., Primes(A,B) := {e ∈ Z : e is prime ∧ A < e < B}.
According to the well known prime number theorem |Primes(1, B)| = O( B

logB ) which results to

|Primes(A,B)| = O( B
logB )−O( A

logA).
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2.1 RSA Groups

We say that N = pq is an RSA modulus for some primes p, q, such that |p| = |q|. We further
say that N is a strong RSA modulus if there are primes p′, q′ such that p = 2p′ + 1, q = 2q′ + 1.
We call Z∗

N for an RSA modulus an RSA group. With ϕ : N → N we denote the Euler’s totient
function, ϕ(N) := |Z∗

N |. In particular for RSA modulus ϕ(N) = (p − 1)(q − 1). An RSA Group
generator N ←$ GenSRSAmod(1λ) is a probabilistic algorithm that outputs a strong RSA modulus
N of bit-length ℓ(λ) for an appropriate polynomial ℓ(·).

For any N we denote by QRN := {Y : ∃X ∈ Z∗
N such that Y = X2 (mod N)}, the set of all

the quadratic residues modulo N . QRN is a subgroup (and thus closed under multiplication) of Z∗
N

with order |QRN | = |Z∗
N |/2. In particular for a strong RSA modulus |QRN | = 4p′q′

2 = 2p′q′.

Computational Assumptions in RSA Groups. The most fundamental assumption for RSA
groups is the factoring assumption which states that given an RSA modulus N ← GenSRSAmod(1λ)
it is hard to compute its factors p and q. We further recall the Discrete Logarithm and strong RSA
[BP97] assumptions:

Definition 2.1 (DLOG Assumption for RSA groups). We say that the Discrete Logarithm
(DLOG) assumption holds for GenSRSAmod if for any PPT adversary A:

Pr

Gx′ = Y (mod N) :

N ← GenSRSAmod(1λ)

G←$ Z∗
N ;x←$ Z

Y ← Gx (mod N)

x′ ← A(Z∗
N , G, Y )

 = negl(λ)

Definition 2.2 (Strong-RSA Assumption [BP97]). We say that the strong RSA assumption
holds for GenSRSAmod if for any PPT adversary A:

Pr

 U e = G

∧e ̸= 1,−1
:

N ← GenSRSAmod(1λ)

G←$ Z∗
N

(U, e)← A(Z∗
N , G)

 = negl(λ)

2.2 Non-Interactive Zero-Knowledge (NIZK)

We recall the definition of zero-knowledge non-interactive arguments of knowledge (NIZKs, for
short).

Definition 2.3 (NIZK). A NIZK for {Rλ}λ∈N is a tuple of three algorithms Π = (KeyGen,Prove,
VerProof) that work as follows and satisfy the notions of completeness, knowledge soundness and
(composable) zero-knowledge defined below.

– KeyGen(R) → (ek, vk) takes the security parameter λ and a relation R ∈ Rλ, and outputs a
common reference string consisting of an evaluation and a verification key.

– Prove(ek, x, w) → π takes an evaluation key for a relation R, a statement x, and a witness w
such that R(x,w) holds, and returns a proof π.

– VerProof(vk, x, π) → b takes a verification key, a statement x, and either accepts (b = 1) or
rejects (b = 0) the proof π.
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Completeness. For any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w), it holds Pr[(ek, vk) ←
KeyGen(R), π ← Prove(ek, x, w) : VerProof(vk, x, π) = 1] = 1.

Knowledge Soundness. Let RG be a relation generator such that RGλ ⊆ Rλ. Π has computational
knowledge soundness for RG and auxiliary input distribution Z, denoted KSND(RG,Z) for brevity,
if for every (non-uniform) efficient adversary A there exists a (non-uniform) efficient extractor E
such that Pr[GameKSNDRG,Z,A,E = 1] = negl. We say that Π is knowledge sound if there exists benign
RG and Z such that Π is KSND(RG,Z).

GameKSND
RG,Z,A,E → b

(R, auxR)← RG(1λ) ; crs := (ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs) ;
(
x, π

)
← A(R, crs, auxR, auxZ)

w ← E(R, crs, auxR, auxZ) ; b = VerProof(vk, x, π) ∧ ¬R(x,w)

Composable Zero-Knowledge. A scheme Π satisfies composable zero-knowledge for a relation
generator RG if there exists a simulator S = (Skg,Sprv) such that both following conditions hold:

Keys Indistinguishability For all adversaries A

Pr

 (R, auxR)← RG(1λ)
crs← KeyGen(R)

A(crs, auxR) = 1

 ≈ Pr

 (R, auxR)← RG(1λ)
(crs, tdk)← Skg(R)
A(crs, auxR) = 1


Proof Indistinguishability For all adversaries A = (A1,A2)

Pr


(R, auxR)← RG(1λ)
(crs, tdk)← Skg(R)
(x,w, st)← A1(crs, auxR)

π ← Prove(ek, x, w)

A2(st, π) = 1

: R(x,w)

 ≈ Pr


(R, auxR)← RG(1λ)
(crs, tdk)← Skg(R)
(x,w, st)← A1(crs, auxR)

π ← Sprv(crs, tdk, x)
A2(st, π) = 1

: R(x,w)


Definition 2.4 (zkSNARKs). A NIZK Π is called zero-knowledge succinct non-interactive ar-
gument of knowledge (zkSNARK) if Π is a NIZK as per Definition 2.3 enjoying an additional
property, succinctness, i.e., if the running time of VerProof is poly(λ+ |x|+ log |w|) and the proof
size is poly(λ+ log |w|).

Remark 2.1 (On Knowledge-Soundness). In the NIZK definition above we use a non black-box
notion of extractability. Although this is virtually necessary in the case of zkSNARKs [GW11],
NIZKs can also satisfy stronger (black-box) notions of knowledge-soundness.

2.3 Type-Based Commitments

We recall the notion of Type-Based Commitment schemes introduced by Escala and Groth [EG14].
In brief, a Type-Based Commitment scheme is a normal commitment scheme with the difference
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that it allows one to commit to values from different domains. More specifically, the Commit al-
gorithm (therefore the VerCommit algorithm also) depends on the domain of the input, while the
commitment key remains the same. For example, as in the original motivation of [EG14], the com-
mitter can use the same scheme and key to commit to elements that may belong to two different
groups G1,G2 or a field Zp. In our work we use type-based commitments. The main benefit of this
formalization is that it can unify many commitment algorithms into one scheme. In our case this
is useful to formalize the notion of commit-and-prove NIZKs that work with commitments from
different groups and schemes.

More formally, a Type-Based Commitment is a tuple of algorithms Com = (Setup,Commit,
VerCommit) that works as a Commitment scheme defined above with the difference that Commit
and VerCommit algorithms take an extra input t that represent the type of u. All the possible types
are included in the type space T 11.

Definition 2.5. A type-based commitment scheme for a set of types T is a tuple of algorithms
Com = (Setup,Commit,VerCommit) that work as follows:

– Setup(1λ)→ ck takes the security parameter and outputs a commitment key ck. This key includes
∀t ∈ T descriptions of the input space Dt, commitment space Ct and opening space Ot.

– Commit(ck, t, u) → (c, o) takes the commitment key ck, the type t of the input and a value
u ∈ Dt, and outputs a commitment c and an opening o.

– VerCommit(ck, t, c, u, o) → b takes as a type t, a commitment c, a value u and an opening o,
and accepts (b = 1) or rejects (b = 0).

Furthermore, the security properties depend on the type, in the sense that binding and hiding
should hold with respect to a certain type.

Definition 2.6. Let T be a set of types, and Com be a type-based commitment scheme for T .
Correctness, t-Type Binding and t-Type Hiding are defined as follows:

Correctness. For all λ ∈ N and any input (t, u) ∈ (T ,Dt) we have:

Pr[ck← Setup(1λ), (c, o)← Commit(ck, t, u) : VerCommit(ck, t, c, u, o) = 1] = 1.

t-Type Binding. Given t ∈ T , for every polynomial-time adversary A:

Pr

[
ck← Setup(1λ)

(c, u, o, u′, o′)← A(ck, t)
:
u ̸= u′ ∧ VerCommit(ck, t, c, u, o) = 1

∧ VerCommit(ck, t, c, u′, o′) = 1

]
= negl

In case Com is t-Type Bidning for all t ∈ T we will say that it is Binding.

t-Type Hiding. Given a t ∈ T , for ck ← Setup(1λ) and every pair of values u, u′ ∈ Dt, the
following two distributions are statistically close:

{c : (c, o)← Commit(ck, t, u)} ≈ {c′ : (c′, o′)← Commit(ck, t, u′)}

.
In case Com is t-Type Hiding for all t ∈ T we say it is Hiding.

11 Normally T is finite and includes a small number of type, e.g. T = {G1,G2,Zp}.
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Composing Type-Based Commitments. For simplicity we now define an operator that allows
to compose type-based commitment schemes in a natural way.

Definition 2.7. Let C and C′ be two commitment schemes respectively for (disjoint) sets of types
T and T ′. Then we denote by C • C′ the commitment scheme C̄ for T ∪ T ′ such as:

– C̄.Setup(secpar, secpar′)→ ck : compute ck← C.Setup(secpar) and ck′ ← C′.Setup(secpar′); ck :=
(ck, ck′).

– C̄.Commit(ck := (ck, ck′), t, u) : If t ∈ T then output C.Commit(ck, t, u); otherwise return
C′.Commit(ck′, t, u).

– C̄.VerCommit(ck := (ck, ck′), t, c, u, o) : If t ∈ T then return C.VerCommit(ck, t, c, u, o); otherwise
return C′.VerCommit(ck′, t, c, u, o).

The following property of • follows immediately from its definition.

Lemma 2.1. Let C and C′ be two commitment schemes with disjoint sets of types. For all types t
if C or C′ is t-hiding (resp. t-binding) then C • C′ is t-hiding (resp. t-binding).

Remark 2.2. We observe that a standard non type-based commitment scheme with input space D
induces directly a type-based commitment scheme with the same input space and a type we denote
by T[D].

2.4 Commit-And-Prove NIZKs

We give the definition of commit-and-prove NIZKs (CP-NIZKs). We start from the definition given
in [CFQ19, BCF19] and we extend it to type-based commitments. The main benefit of such exten-
sion is that we can formalize CP-NIZKs working with commitments over different domains. In a
nutshell, a CP-NIZK is a NIZK that can prove knowledge of (x,w) such that R(x,w) holds with
respect to a witness w = (u, ω) such that u opens a commitment cu. As done in [CFQ19], we explic-
itly considers the input domain Du at a more fine grained-level splitting it over ℓ subdomains. We
call them commitment slots as each of the Di-s intuitively corresponds to a committed element12.
The description of the splitting is assumed part of R’s description.

In the remainder of this work we use the following shortcut definition. If C is a type-based
commitment scheme over set of types T , we say that a relation R over (D1×· · ·×Dℓ) is T -compatible
if for all j ∈ [ℓ] it holds that T[Dj ] ∈ T . We say a relation family R is T -compatible if every R in
R is T -compatible; a relation generator RG is T -compatible if Range(RG) is T -compatible.

Definition 2.8 (CP-NIZKs [CFQ19]). Let {Rλ}λ∈N be a family of relations R over Dx×Du×
Dω such that Du splits over ℓ arbitrary domains (D1 × · · · × Dℓ) for some arity parameter ℓ ≥ 1.
Let C = (Setup,Commit,VerCommit) be a commitment scheme (as per Definition 2.5) over set of
types T such that {Rλ}λ∈N is T -compatible. A commit and prove NIZK for C and {Rλ}λ∈N is a
NIZK for a family of relations {RC

λ}λ∈N such that:

– every R ∈ RC is represented by a pair (ck, R) where ck ∈ C.Setup(1λ) and R ∈ Rλ;
12 Each of the “open” elements in the Di-s (together with any auxiliary opening information) should also be thought

of as the witness to the relation as we require them to be extractable. On the other hand, the commitments
themselves are part of the public input.
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– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[ℓ]) ∈ Dx × Cℓ, the witness is w :=

((uj)j∈[ℓ], (oj)j∈[ℓ], ω) ∈ D1 × · · · × Dℓ ×Oℓ ×Dω, and the relation R holds iff∧
j∈[ℓ]

VerCommit(ck,T[Dj ], cj , uj , oj) = 1 ∧R(x, (uj)j∈[ℓ], ω) = 1

We denote knowledge soundness of a CP-NIZK for commitment scheme C and relation and auxiliary
input generators RG and Z as CP-KSND(C,RG,Z).

We denote a CP-NIZK as a tuple of algorithms CP = (KeyGen,Prove,VerProof). For ease of
exposition, in our constructions we adopt the following explicit syntax for CP’s algorithms.

– KeyGen(ck, R)→ crs := (ek, vk)
– Prove(ek, x, (cj)j∈[ℓ], (uj)j∈[ℓ], (oj)j∈[ℓ], ω)→ π
– VerProof(vk, x, (cj)j∈[ℓ], π)→ b ∈ {0, 1}

2.5 Commit-and-Prove NIZKs with Partial Opening

We now define a variant of commit-and-prove NIZKs with a weaker notion of knowledge-soundness.
In particular we consider the case where part of the committed input is not assumed to be ex-
tractable (or hidden)13, i.e., such input is assumed to be opened by the adversary. This models
scenarios where we do not require this element to be input of the verification algorithm (the verifier
can directly use a digest to it).

The motivation to define and use this notion is twofold. First, in some constructions commit-
ments on sets are compressing but not knowledge-extractable. Second, in many applications this
definition is sufficient since the set is public (e.g., the set contain the valid coins).

The definition below is limited to a setting where the adversary opens only one input in this
fashion14. We will assume, as a convention, that in a scheme with partial opening this special input
is always the first committed input of the relation, i.e. the one denoted by u1 and corresponding to
D1. We note that the commitment to u1 does not require hiding for zero-knowledge to hold.

Definition 2.9 (CP-NIZK with Partial Opening). A commit and prove NIZK with partial
opening for C and {Rλ}λ∈N is a NIZK for a family of relations {RC

λ}λ∈N (defined as in Definition
2.8)such that the property of knowledge soundness is replaced by knowledge soundness with partial
opening below.

Knowledge Soundness with Partial Opening. Let RG be a relation generator such that RGλ ⊆
Rλ. Π has knowledge soundness with partial opening for C, RG and auxiliary input distribution Z,
denoted CP-poKSND(C,RG,Z) for brevity, if for every (non-uniform) efficient adversary A there

exists a (non-uniform) efficient extractor E such that Pr[GameCP-poKSNDC,RG,Z,A,E = 1] = negl. We say that Π

is knowledge sound for C if there exists benign RG and Z such that Π is CP-poKSND(C,RG,Z)15.

13 This is reminiscent of the soundness notions considered in [FFG+16]
14 We can easily generalize the notion for an adversary opening an arbitrary subset of the committed inputs.
15 We point out that, although in the game below we make explicit the commitment opening in the relation, this is

essentially the same notion of knowledge soundness as in CP-NIZKs (i.e. Definition 2.3) where the only tweak is
that the adversary gives explicitly the first input in the commitment slot. We make commitments explicit hoping
for the definition to be clearer. This is, however, in contrast to the definition of CP-NIZKs where the commitment
opening is completely abstracted away inside the relation.
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GameCP-poKSNDC,RG,Z,A,E → b

ck← C.Setup(1λ); (R, auxR)←RG(1λ); R := (ck, R)

crs := (ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs)(
x, (cj)j∈[ℓ], u1, o1, π

)
← A(R, crs, auxR, auxZ)(

(uj)j∈[ℓ], (oj)j∈[ℓ], ω
)
← E(R, crs, auxR, auxZ)

b = VerProof(vk, x, (cj)j∈[ℓ], π) ∧

¬
(∧

j∈[ℓ]
C.VerCommit(ck,T[Dj ], cj , uj , oj) = 1 ∧R(x, (uj)j∈[ℓ], ω) = 1

)

Remark 2.3 (On Weaker ZK in the Context of Partial Opening). The notion of zero-knowledge for
CP-NIZKs with partial opening that is implied by our definition above implies that the simulator
does not have access to the opening of the first input (as it is the case in zero-knowledge for CP-
NIZKs in general). Since this first commitment is opened, in principle one could also consider and
define a weaker notion of zero-knowledge where the simulator has access to the first opened input.
We leave it as an open problem to investigate if it can be of any interest.

Remark 2.4 (Full Extractability). If a CP-NIZK has an empty input u1 opened by the adversary in
the game above, then we say that it is fully extractable. This roughly corresponds to the notion of
knowledge soundness in Definition 2.3.

Composition Properties of Commit-and-Prove Schemes In [CFQ19] Campanelli et al. show
a compiler for composing commit-and-prove schemes that work for the same commitment scheme
in order to obtain CP systems for conjunction of relations. In this section we generalize their results
to the case of typed relations and type-based commitments. This generalization in particular can
model the composition of CP-NIZKs that work with different commitments, as is the case in our
constructions for set membership in which one has a commitment to a set and a commitment to
an element.

We begin by introducing the following compact notation for an augmented relation generator.

Definition 2.10 (Augmented Relation Generator). Let RG be a relation generator and F(1λ)
an algorithm taking as input a security parameter. Then we denote by RG[F ] the relation generator
returning (R, (auxR, outF )) where outF ← F(1λ) and (R, auxR)← RG(1λ).

The next lemma states that we can (with certain restrictions) trivially extend a CP-NIZK for
commitment scheme C to an extended commitment scheme C • C′.

Lemma 2.2 (Extending to Commitment Composition). Let C,C′ be commitment schemes
defined over disjoint type sets T and T ′. If CP is CP-poKSND(C,RG[C.Setup],Z) for some relation
and auxiliary input generators RG,Z. Then CP is CP-poKSND(C • C′,RG[C.Setup],Z) if RG is
T -compatible.

We now define relation generators and auxiliary input generators for our composition constructions.
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AuxRG(1λ) :

(R1, aux
(1)
R )←RG1(1λ)

(R2, aux
(2)
R )←RG2(1λ)

return (Rb, aux
(b)
R )b∈{1,2}

AuxZ(ck, (crsb, Rb, aux
(b)
R )b∈{1,2}) :

aux
(1)
Z ← Z1(ck, R1, crs1, aux

(1)
R )

aux
(2)
Z ← Z2(ck, R2, crs2, aux

(2)
R )

return (aux
(b)
Z )b∈{1,2}

RG∗(1λ) :

(Rb, aux
(b)
R )b∈{1,2} ← AuxRG(1λ)

return (R∧
R1,R2

, (aux
(b)
R )b∈{1,2})

Z∗((ck, R∧
R1,R2

), (ek∗, vk∗), (auxR, aux
′
R)) :

(aux
(b)
Z )b∈{1,2}

← AuxZ(ck, (crsb, Rb, aux
(b)
R )b∈{1,2})

return (aux
(b)
Z )b∈{1,2}

RGb(1λ) :

(Rb, aux
(b)
R )b∈{1,2}

← AuxRG(1λ)

return (Rb, aux
(b)
R

:= (R3−b, (aux
(b)
R )b∈{1,2}))

Zb(ck, Rb, crsb, aux
(b)
R ) :

Parse auxR as (R3−b, (aux
(b)
R )b∈{1,2})

crs3−b ← CP3−b.KeyGen(ck, R3−b)

(aux
(b)
Z )b∈{1,2} ← AuxZ(ck, . . .

. . . , (crsb, Rb, aux
(b)
R )b∈{1,2})

aux
(b)
Z := (crs3−b, (aux

(b)
Z )b∈{1,2})

return aux
(b)
Z

Fig. 1: Relation and Auxiliary Input Generators for AND Composition Construction

The following lemma shows how we can compose CP-NIZKs even when one of them is fully ex-
tractable but the other is not. We are interested in the conjunction R∧

asym of relations of type
R1(x1, (u0, u1, u3), ω1) and R2(x2, (u2, u3), ω2) where

R∧
asym(x1, x2, (u0, u1, u2, u3), ω1, ω2) := R1(x1, (u0, u1, u3), ω1) ∧R2(x2, (u2, u3), ω2)

Lemma 2.3 (Composing Conjunctions (with asymmetric extractability). Let C be a com-
putationally binding commitment scheme.If CP1 is CP-poKSND(C,RG1,Z1) and CP2 is KSND(C,RG2,Z2)
(where RGb,Zb are defined in terms of RGb,Zb in Figure 1 for b ∈ {1, 2}), then the scheme CP∧

asym

in Figure 2 is CP-poKSND(C,RG∗,Z∗) where RG∗,Z∗ are as defined in Figure 1.

The following lemma is a symmetric variant of Lemma 2.3, i.e. the CP-NIZKs we are composing
are both secure over the same commitment scheme and support partial opening, that is they both
handle relations with and adversarially open input u0. This time we are interested in the conjunction
R∧
sym of relations of type R1(x1, (u0, u1, u3), ω1) and R2(x2, (u0, u2, u3), ω2) where

R∧
sym(x1, x2, (u0, u1, u2, u3), ω1, ω2) := R1(x1, (u0, u1, u3), ω1) ∧R2(x2, (u0, u2, u3), ω2)

Lemma 2.4 (Composing Conjunctions (symmetric case)). Let C be a (type-based) com-
putationally binding commitment scheme. If CPb is CP-poKSND(C,RGb,Zb) (where RGb,Zb are
defined in terms of RGb,Zb in Figure 1) for b ∈ {1, 2}, then the scheme CP∧

sym in Figure 3 is
CP-poKSND(C,RG∗,Z∗) where RG∗,Z∗ are as defined in Figure 1.
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CP∧
asym.KeyGen(ck, R∧

R1,R2
) :

(ek1, vk1)← CP1.KeyGen(ck, R1)

(ek2, vk2)← CP2.KeyGen(ck, R2)

ek∗ := (ekb)b∈{1,2}

vk∗ := (vkb)b∈{1,2}

return (ek∗, vk∗)

CP∧
asym.VerProof(vk∗, x1, x2, (cj)j∈[0,3], π

∗) :

b
(1)
ok ← CP1.VerProof(vk1, x1, (c0, c1, c3), π1)

b
(2)
ok ← CP2.VerProof(vk2, x2, (c2, c3), π2)

return b
(1)
ok ∧ b

(2)
ok

CP∧
asym.Prove(ek∗, x1, x2, (cj)j∈[0,3], (uj)j∈[0,3], (oj)j∈[0,3], ω1, ω2) :

π1 ← CP1.Prove(ek1, x1, (c0, c1, c3), (u0, u1, u3), (o0, o1, o3), ω1)

π2 ← CP2.Prove(ek2, x2, (c2, c3), (u2, u3), (o2, o3), ω2)

return π∗ := (πb)b∈{1,2}

Fig. 2: CP-NIZK construction for AND composition (asymmetric case)

CP∧
sym.KeyGen(ck, R∧

R1,R2
) :

(ek1, vk1)← CP1.KeyGen(ck, R1)

(ek2, vk2)← CP2.KeyGen(ck, R2)

ek∗ := (ekb)b∈{1,2}

vk∗ := (vkb)b∈{1,2}

return (ek∗, vk∗)

CP∧
sym.VerProof(vk∗, x1, x2, (cj)j∈[0,3], π

∗) :

b
(1)
ok ← CP1.VerProof(vk1, x1, (c0, c1, c3), π1)

b
(2)
ok ← CP2.VerProof(vk2, x2, (c0, c2, c3), π2)

return b
(1)
ok ∧ b

(2)
ok

CP∧
sym.Prove(ek∗, x1, x2, (cj)j∈[0,3], (uj)j∈[0,3], (oj)j∈[0,3], ω1, ω2) :

π1 ← CP1.Prove(ek1, x1, (c0, c1, c3), (u0, u1, u3), (o0, o1, o3), ω1)

π2 ← CP2.Prove(ek2, x2, (c0, c2, c3), (u0, u2, u3), (o0, o2, o3), ω2)

return π∗ := (πb)b∈{1,2}

Fig. 3: CP-NIZK construction for AND composition (symmetric case)
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3 CP-SNARKs for Set Membership (and non-Membership)

In this section we discuss a specialization of CP-SNARKs for the specific NP relation that models
membership (resp. non-membership) of an element in a set, formally defined below.

Set membership relations. Let Delm be some domain for set elements, and let Dset ⊆ 2Delm be a
set of possible sets over Du. We define the set membership relation Rmem : Delm ×Dset as

Rmem(U, u) = 1 ⇐⇒ u ∈ U

This is the fundamental relation that we deal with in the rest of this work.
The non-membership relation Rnmem : Delm ×Dset can be defined analogously as

Rnmem(U, u) = 1 ⇐⇒ u ̸∈ U

CP-SNARKs for set membership. Intuitively, a commit-and-prove SNARK for set membership
allows one to commit to a set U and to an element u, and then to prove in zero-knowledge that
Rmem(U, u) = 1. More formally, let Rmem : Delm×Dset be a set membership relation as defined above
where T[Delm] = telm and T[Dset] = tset, and let ComS∪elm be a type-based commitment scheme for
T such that tset, telm ∈ T . Basically, ComS∪elm allows one to either commit an element of Delm or
to a set of values of Delm. Then a CP-SNARK for set membership is a CP-SNARK for the family
of relations {Rmem

λ } and a type-based commitment scheme ComS∪elm. It is deduced from definition
2.8 that this is a zkSNARK for the relation:

R = (ck,Rmem) over (x,w) = ((x, c), (u, o, ω)) := ( (∅ , (cU , cu) ) , ( (U, u) , (oU , ou) , ∅ ) )

such that R holds iff:

Rmem(U, u) = 1 ∧ VerCommit(ck, tset, cU , U, oU ) = 1 ∧ VerCommit(ck, telm, cu, u, ou) = 1

A commit-and-prove version of Rnmem can be defined as a natural variant of the relation above.
Notice that for the relation Rmem it is relevant for the proof system to be succinct so that proofs

can be at most polylogarithmic (or constant) in the the size of the set (that is part of the witness).
This is why for set membership we are mostly interested in designing CP-SNARKs.

Proving arbitrary relations involving set (non-)membership. As discussed in the intro-
duction, a primary motivation of proving set membership in zero-knowledge is to prove additional
properties about an alleged set member. In order to make our CP-SNARK for set membership
a reusable gadget, we discuss a generic and simple method for composing CP-SNARKs for set
membership (with partial opening) with other CP-SNARKs (with full extractability) for arbitrary
relations. More formally, let Rmem be the set membership relation over pairs (U, u) ∈ X×Du as R
be an arbitrary relation over pairs (u, ω), then we define as R∗ the relation:

R∗(U, u, ω) := Rmem(U, u) ∧R(u, ω)

The next corollary (direct consequence of Lemmas 2.2, 2.3) states we can straightforwardly compose
a CP-SNARK for set membership with a CP-SNARK for an arbitrary relation on elements of the
set.
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Corollary 3.1 (Extending Relations with Set Membership). Let CS,Cu be two computa-
tionally binding commitment schemes defined over disjoint type sets TS and Tu. Let CPmem,CPu be
two CP-SNARKs and Rmem,RGu (resp. Zmem,Zu) be two relation (resp. auxiliary input) gener-
ators. If CPmem is CP-poKSND(CS • Cu, Rmem,Zmem) and CPu is KSND(Cu,RGu,Zu) then there
exists a CP∗ that is CP-poKSND(CS • Cu,RG∗,Z∗) where RG∗,Z∗ are as defined in Figure 1.

In a similar fashion, we can combine an arbitrary relationR with the relation for non-membership
obtaining relation R̄∗ defined as:

R̄∗(U, u, ω) := Rnmem(U, u) ∧R(u, ω)

The next corollary states we can straightforwardly compose a CP-SNARK for set non-membership
with a CP-SNARK for an arbitrary relation on elements in the universe of the set.

Corollary 3.2 (Extending Relations with Set non-Membership). Let CS,Cu be two compu-
tationally binding commitment schemes defined over disjoint type sets TS and Tu. Let CPnmem,CPu
be two CP-SNARKs and Rnmem,RGu (resp. Znmem,Zu) be two relation (resp. auxiliary input) gen-
erators. If CPnmem is CP-poKSND(CS • Cu, Rnmem,Znmem) and CPu is KSND(Cu,RGu,Zu) then
there exists a CP∗ that is CP-poKSND(CS • Cu,RG∗,Z∗) where RG∗,Z∗ are as defined in Figure
1.

CP-SNARKs for set membership from accumulators with proofs of knowledge. As dis-
cussed in the introduction, CP-SNARKs for set membership are simply a different lens through
which we can approach accumulators that have a protocol for proving in zero-knowledge that a
committed value is in the accumulator (i.e., it is in the set succinctly represented by the accumu-
lator). To strengthen this intuition in Appendix B we formally show that a CP-SNARK for set
membership can be constructed from an accumulator scheme that has a zero-knowledge proof for
committed values. This allows us to capture existing schemes such as [CL02] and [Ngu05].

4 A CP-SNARK for Set Membership with Short Parameters

In this section we describe CP-SNARKs for set membership in which the elements of the sets
can be committed using a Pedersen commitment scheme defined in a prime order group, and the
sets are committed using an RSA accumulator. The advantage of having elements committed with
Pedersen in a prime order group is that our CP-SNARKs can be composed with any other CP-
SNARK for Pedersen commitments and relations R that take set elements as inputs. The advantage
of committing to sets using RSA accumulators is instead that the public parameters (i.e., the CRS)
of the CP-SNARKs presented in this section are short, virtually independent of the size of the sets.
Since RSA accumulators are not extractable commitments, the CP-SNARKs presented here are
secure in a model where the commitment to the set is assumed to be checked at least once, namely
they are knowledge-sound with partial opening of the set commitment.

A bit more in detail, we propose two CP-SNARKs. Our first scheme, called MemCPRSA, works
for set elements that are arbitrary strings of length η, i.e., Delm = {0, 1}η, and for sets that are any
subset of Delm, i.e., Dset = 2Delm . Our second scheme, MemCPRSAPrm, instead works for set elements
that are prime numbers of exactly µ bits, and for sets that are any subset of such prime numbers.
This second scheme is a simplified variant of the first one that requires more structure on the set
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elements (they must be prime numbers) but in exchange of that offers better efficiency. So it is
preferable in those applications that can work with prime representatives.

An High-Level Overview of Our Constructions.We provide the main idea behind our scheme,
and to this end we use the simpler scheme MemCPRSAPrm in which set elements are prime numbers
in
(
2µ−1, 2µ

)
. The commitment to the set P = {e1, . . . , en} is an RSA accumulator [Bd94, BP97]

that is defined as Acc = G
∏

ei∈P ei for a random quadratic residue G ∈ QRN . The commitment
to a set element e is instead a Pedersen commitment ce = gehrq in a group Gq of prime order q,
where q is of ν bits and µ < ν. For public commitments Acc and ce, our scheme allows to prove

in zero-knowledge the knowledge of e committed in ce such that e ∈ P and Acc = G
∏

ei∈P ei . A
public coin protocol for this problem was proposed by Camenisch and Lysyanskaya [CL02]. Their
protocol however requires various restrictions. For instance, the accumulator must work with at
least 2λ-bit long primes, which slows down accumulation time, and the prime order group must
be more than 4λ-bits (e.g., of 512 bits), which is undesirable for efficiency reasons, especially if
this prime order group is used to instantiate more proof systems to create other proofs about the
committed element. In our scheme the goal is instead to keep the prime order group of “normal”
size (say, 2λ bits), so that it can be for example a prime order group in which we can efficiently
instantiate another CP-SNARK that could be composed with our MemCPRSAPrm. And we can also
allow flexible choices of the primes size that can be tuned to the application so that applications
that work with moderately large sets can benefit in efficiency. In order to achieve these goals, our
idea to create a membership proof is to compute the following:

– An accumulator membership witness W = G
∏

ei∈P\{e} ei , and an integer commitment to e in the
RSA group, Ce = GeHr, where H ∈ QRN .

– A ZK proof of knowledge CPRoot of a committed root for Acc, i.e. a proof of knowledge of e and
W such that W e = Acc and Ce = GeHr. Intuitively, this gives that Ce commits to an integer
that is accumulated in Acc (at this point, however, the integer may be a trivial root, i.e., 1).

– A ZK proof CPmodEq that Ce and ce commit to the same value modulo q.
– A ZK proof CPRange that ce commits to an integer in the range

(
2µ−1, 2µ

)
.

From the combination of the above proofs we would like to conclude that the integer committed in
ce is in P . Without further restrictions, however, this may not be the case; in particular, since for
the value committed in Ce we do not have a strict bound it may be that the integer committed in
ce is another eq such e = eq (mod q) but e ̸= eq over the integers. In fact, the proof CPRoot does
not guarantee us that Ce commits to a single prime number e, but only that e divides

∏
ei∈P ei,

namely e might be a product of a few primes in P or the corresponding negative value, while its
residue modulo q may be some value that is not in the set—what we call a “collision”. We solve
this problem by taking in consideration that eq is guaranteed by CPRange to be in

(
2µ−1, 2µ

)
and by

enhancing CPRoot to also prove a bound on e: roughly speaking |e| < 22λs+µ for a statistical security
parameter λs. Using this information we develop a careful analysis that bounds the probability that
such collisions can happen for a malicious e (see Section 4.2 for more intuition).

In the following section we formally describe the type-based commitment scheme supported
by our CP-SNARK, and a collection of building blocks. Then we present the MemCPRSA and
MemCPRSAPrm CP-SNARKs in Sections 4.2 and 4.3 respectively, and finally we give instantiations
for some of our building blocks in Section 4.4.

Remark 4.1. Although we specifically describe our protocols for RSA groups, they generalize to
work over any Hidden Order Group with slight modifications. See appendix E for details.
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Setup(1λ) : Choose a prime order group Gq of order
q ∈ (2ν−1, 2ν) and generators g, h←$ Gq.
Return ck := (Gq, g, h)

Commit(ck, tq, u) : sample r ←$ Zq.
Return (c, o) := (guhr, r).

VerCommit(ck, tq, c, u, r) : Output 1 if c = guhr; out-
put 0 otherwise.

(a) PedCom

Setup(1λ, 1µ) : LetN ← GenSRSAmod(1λ), F ←$ Z∗
N ,

and Hprime ←$ H; compute G ← F 2 mod N ∈
QRN . Return ck := (N,G,Hprime).

Commit(ck, tU , U) : compute P := {Hprime(u) | u ∈
U}, Acc← GprodP . Return (c, o) := (Acc,∅).

VerCommit(ck, tU ,Acc, U,∅) : compute P := {Hprime(u) |
u ∈ U} and return 1 iff Acc = GprodP mod N .

(b) SetComRSA

Fig. 4: RSA Accumulator and Pedersen commitment schemes for RSAHashmem.

4.1 Preliminaries and Building Blocks

Notation. Given a set U = {u1, . . . , un} ⊂ Z of cardinality n we denote compactly with prodU :=∏n
i=1 ui the product of all its elements. We use capital letters for elements in an RSA group Z∗

N ,
e.g., G,H ∈ Z∗

N . Conversely, we use small letters for elements in a prime order group Gq, e.g.,
g, h ∈ Gq. Following this notation, we denote a commitment in a prime order group as c ∈ Gq,
while a commitment in an RSA group as C ∈ Z∗

N .

Commitment Schemes. Our first CP-SNARK, called MemCPRSA, is for a family of relations
Rmem : Delm × Dset such that Delm = {0, 1}η, Dset = 2Delm , and for a type-based commitment
scheme that is the canonical composition SetComRSA • PedCom of the two commitment schemes
given in Fig. 4. PedCom is essentially a classical Pedersen commitment scheme in a group Gq of
prime order q such that q ∈ (2ν−1, 2ν) and η < ν. PedCom is used to commit to set elements and its
type is tq. SetComRSA is a (non-hiding) commitment scheme for sets of η-bit strings, that is built
as an RSA accumulator [Bd94, BP97] to a set of µ-bit primes, each derived from an η-bit string by
a deterministic hash function Hprime : {0, 1}η → Primes

(
2µ−1, 2µ

)
. SetComRSA is computationally

binding under the factoring assumption16 and the collision resistance of Hprime. Its type for sets is
tU .

Hashing to primes. The problem of mapping arbitrary values to primes in a collision-resistant
manner has been studied in the past, see e.g., [GHR99, CMS99, CS99], and in [FT14] a method to
generate random primes is presented. Although the main idea of our scheme would work with any
instantiation of Hprime, for the goal of significantly improving efficiency, our construction considers
a specific class of Hprime functions that work as follows. Let H : {0, 1}η × {0, 1}ι → {0, 1}µ−1 be a
collision-resistant function, and define Hprime(u) as the function that starting with j = 0, looks for
the first j ∈ [0, 2ι − 1] such that the integer represented by the binary string 1|H(u, j) is prime.
In case it reaches j = 2ι − 1 it failed to find a prime and outputs ⊥ 17. We consider two main
candidates of such function H (and thus Hprime):

– Pseudorandom function. Namely H(u, j) := Fκ(u, j) where Fκ : {0, 1}η+ι is a PRF with public
seed κ and ι = ⌈logµλ⌉. Due to the density of primes, the corresponding Hprime runs in the
expected running time O(µ) and ⊥ is returned with probability ≤ exp(−λ) = negl(λ).18 Under
the random oracle heuristic, F can be instantiated with a hash function like SHA256.

16 Here is why: finding two different sets of primes P, P ′, P ̸= P ′ such that GprodP = Acc = GprodP ′ implies finding an
integer α = prodP − prodP ′ ̸= 0 such that Gα = 1. This is known to lead to an efficient algorithm for factoring N .

17 For specific instantiations of H, ι can be set so that ⊥ is returned with negligible probability.
18 We assume for simplicity that the function never outputs ⊥, though it can happen with negligible probability.
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– Deterministic map. H(u, j) := f(u) + j with u > 2η−1 and j ∈ (f(u), f(u+ 1)), where f(u) :=
2(u+2) log2(u+1)2. The corresponding function Hprime(u) is essentially the function that maps
to the next prime after f(u). This function is collision-free (indeed it requires to take µ > η)
and generates primes that can be smaller (in expectation) than the function above. Cramer’s
conjecture implies that the interval (f(u), f(u+1)) contains a prime when u is sufficiently large.

aCP-NIZK for H computation and PedCom. We use a CP-NIZK CPHashEq for the relation

RHashEq : {0, 1}µ × {0, 1}η × {0, 1}ι defined as

RHashEq(u1, u2, ω) = 1 ⇐⇒ u1 = (1|H(u2, ω))

and for the commitment scheme PedCom. Essentially, with this scheme one can prove that two
commitments ce and cu in Gq are such that ce = gehrq , cu = guhru and there exists j such that
e = (1|H(u, j)). As it shall become clear in our security proof, we do not have to prove all the
iterations of H until finding j such that (1|H(u, j)) = Hprime(u) is prime, which saves significantly
on the complexity of this CP-NIZK.

Integer Commitments.We use a scheme for committing to arbitrarily large integer values in RSA
groups introduced by Fujisaki and Okamoto [FO97] and later improved in [DF02]. We briefly recall
the commitment scheme. Let Z∗

N be an RSA group. The commitment key consists of two randomly
chosen generators G,H ∈ Z∗

N ; to commit to any x ∈ Z one chooses randomly an r ←$ [1, N/2] and
computes C ← GxHr; the verifier checks whether or not C = ±GxHr. This commitment scheme
is statistically hiding, as long as G and H lie in the subgroup of Z∗

N . This can be achieved by
setting G ← F 2, H ← J2 ∈ QR(N), where F, J are randomly sampled from Z∗

N . Moreover it’s
computationally binding under the assumption that factoring is hard in Z∗

N . Furthermore, a proof
of knowledge of an opening was presented in [DF02], its knowledge soundness was based on the
strong RSA assumption, and later found to be reducible to the plain RSA assumption in [CPP17].
We denote this commitment scheme as IntCom.

Strong-RSA Accumulators. As observed earlier, our commitment scheme for sets is an RSA
accumulator Acc computed on the set of primes P derived from U through the map to primes, i.e.,
P := {Hprime(s)|s ∈ U}. In our construction we use the accumulator’s feature for computing succinct

membership witnesses, which we recall works as follows. Given Acc = G
∏

ei∈P ei := GprodP , the

membership witness for ek is Wk = G
∏

ei∈P\{ek} ei , which can be verified by checking if W ek
k = Acc.

Argument of Knowledge of a Root.We make use of a zero-knowledge non-interactive argument
of knowledge of a root of a public RSA group element Acc ∈ QRN . This NIZK argument is called
CPRoot. More precisely, it takes in an integer commitment to a e ∈ Z and then proves knowledge

of an e-th root of Acc, i.e., of W = Acc
1
e . More formally, CPRoot is a NIZK for the relation RRoot :

(Z∗
N × QRN × N)× (Z× Z× Z∗

N ) defined as
RRoot ((Ce,Acc, µ), (e, r,W )) = 1 iff

Ce = ±GeHr mod N ∧ W e = Acc mod N ∧ |e| < 2λz+λs+µ+2

where λz and λs are the statistical zero-knowledge and soundness security parameters respectively
of the protocol CPRoot. CPRoot is obtained by applying the Fiat-Shamir transform to a public-
coin protocol that we propose based on ideas from the protocol of Camenisch and Lysysanskaya
for proving knowledge of an accumulated value [CL02]. In [CL02], the protocol ensures that the
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committed integer e is in a specific range, different from 1 and positive. In our CPRoot protocol
we instead removed these constraints and isolated the portion of the protocol that only proves
knowledge of a root. We present the CPRoot protocol in Section 4.4; its interactive public coin
version is knowledge sound under the RSA assumption and statistical zero-knowledge. Finally, we
notice that the relation RRoot is defined for statements where Acc ∈ QRN , which may not be
efficiently checkable given only N if Acc is adversarially chosen. Nevertheless CPRoot can be used
in larger cryptographic constructions that guarantee Acc ∈ QRN through some extra information,
as is the case in our scheme.

Proof of Equality of Commitments in Z∗
N and Gq. Our last building block, called CPmodEq,

proves in zero-knowledge that two commitments, a Pedersen commitment in a prime order group
and an integer commitment in an RSA group, open to the same value modulo the prime order
q = ord(G). This is a conjunction of a classic Pedersen Σ-protocol and a proof of knowledge of
opening of an integer commitment [DF02], i.e. for the relation

RmodEq ((Ce, ce), (e, eq, r, rq)) = 1 iff e = eq mod q ∧ Ce = ±GeHr mod N ∧ ce = geq mod qhrq mod q

We present CPmodEq in Section 4.4.

4.2 Our CP-SNARK MemCPRSA

We are now ready to present our CP-SNARK MemCPRSA for set membership. The scheme is fully
described in Figure 5 and makes use of the building blocks presented in the previous section.

The KeyGen algorithm takes as input the commitment key of Com1 and a description of Rmem

and does the following: it samples a random generator H ←$ QRN so that (G,H) define a key for
the integer commitment, and generate a CRS crsHashEq of the CPHashEq CP-NIZK.

For generating a proof, the ideas are similar to the ones informally described at the beginning of
Section 4 for the case when set elements are prime numbers. In order to support sets U of arbitrary
strings the main differences are the following: (i) we use Hprime in order to derive a set of primes P
from U , (ii) given a commitment cu to an element u ∈ {0, 1}η, we commit to e = Hprime(u) in ce;
(iii) we use the previously mentioned ideas to prove that ce commits to an element in P (that is
correctly accumulated), except that we replace the range proof πRange with a proof πHashEq that cu
and ce commits to u and e respectively, such that ∃j : e = (1|H(u, j)).

Remark 4.2 (On the support of larger η.). In order to commit to a set element u ∈ {0, 1}η with
the PedCom scheme we require η < ν. This condition is actually used for ease of presentation. It is
straightforward to extend our construction to the case η ≥ ν, in which case every u should be split
in blocks of less than ν bits that can be committed using the vector Pedersen commitment.

The correctness of MemCPRSA can be checked by inspection: essentially, it follows from the
correctness of all the building blocks and the condition that η, µ < ν. For succinctness, we observe
that the commitments CU , cu and all the three proofs have size that does not depend on the
cardinality of the set U , which is the only portion of the witness whose size is not a-priori fixed.

Proof of Security. Recall that the goal is to prove in ZK that cu is a commitment to an element
u ∈ {0, 1}η that is in a set U committed in CU . Intuitively, we obtain the security of our scheme
from the conjunction of proofs for relations RRoot, RmodEq and RHashEq: (i) πHashEq gives us that ce
commits to eq = (1|H(u, j)) for some j and for u committed in cu. (ii) πmodEq gives that Ce commits

21



KeyGen(ck, R∈) : parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of SetComRSA and PedCom
respectively. Sample a random generator H.
Generate crsHashEq ←$ CPHashEq.KeyGen((Gq, g, h), RHashEq), a crs for CPHashEq.
Return crs := (N,G,H,Hprime,Gq, g, h, crsHashEq).
Given crs, one can define crsRoot := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

Prove(crs, (CU , cu), (U, u), (∅, ru)) : e← Hprime(u) = (1|H(u, j)), (ce, rq)← Com1.Commit(ck, tq, e).

(Ce, r)← IntCom.Commit((G,H), e); P ← {Hprime(u) : u ∈ U}, W = G
∏

ei∈P\{e} ei .
πRoot ← CPRoot.Prove(crsRoot, (Ce, CU , µ), (e, r,W ))
πmodEq ← CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))
πHashEq ← CPHashEq.Prove(crsHashEq, (ce, cu), (e, u), (rq, ru), j)
Return π := (Ce, ce, πRoot, πmodEq, πHashEq).

VerProof(crs, (CU , cu), π) : Return 1 iff CPRoot.VerProof(crsRoot, (Ce, CU , µ), πRoot) = 1 ∧
CPmodEq.VerProof(crsmodEq, (Ce, ce), πmodEq) = 1 ∧ CPHashEq.VerProof(crsHashEq, (ce, cu), πHashEq) = 1.

Fig. 5: MemCPRSA CP-SNARK for set membership

to an integer e such that e mod q = eq is committed in ce. (iii) πRoot gives us that the integer e
committed in Ce divides prodP , where CU = GprodP with P = {Hprime(ui) : ui ∈ U}.

By combining these three facts we would like to conclude that eq ∈ P that, together with
πHashEq, should also guarantee u ∈ U . A first problem to analyze, however, is that for e we do not
have guarantees of a strict bound in

(
2µ−1, 2µ

)
; so it may in principle occur that e = eq (mod q) but

e ̸= eq over the integers. Indeed, the relation RRoot does not guarantee us that e is a single prime
number, but only that e divides the product of primes accumulated in CU . Assuming the hardness
of Strong RSA we may still have that e is the product of a few primes in P or even is a negative
integer. We expose a simple attack that could arise from this: an adversary can find a product of
primes from the set P , let it call e, such that e = eq (mod q) but e ̸= eq over the integers. Since
e is a legitimate product of members of P , the adversary can efficiently compute the e-th root of
CU and provide a valid πRoot proof. This is what we informally call a “collision”. Another simple
attack would be that an adversary takes a single prime e and then commits to its opposite eq ← −e
mod q in the prime order group. Again, since e ∈ P the adversary can efficiently compute the e-th
root of CU , W

e = CU , and then the corresponding −e-th root of CU ,
(
W−1

)−e
= CU . This is a

second type of attack to achieve what we called “collision”. With a careful analysis we show that
with appropriate parameters the probability that such collisions occur can be either 0 or negligible.

One key observation is that RRoot does guarantee a lower and an upper bound, −2λz+λs+µ+2

and 2λz+λs+µ+2 respectively, for e committed in Ce. From these bounds (and that e | prodP ) we
get that an adversarial e can be the product of at most d = 1 + ⌊λz+λs+2

µ ⌋ primes in P (or their

corresponding negative product). Then, if 2dµ ≤ 2ν−2 < q, or dµ+ 2 ≤ ν, we get that e < 2dµ < q.
In case e > 0 and since q is prime, e = eq mod q ∧ e < q implies that e = eq over Z, namely no
collision can occur at all. In the other case e < 0 we have e > −2dµ and e = eq (mod q) implies
e = −q + eq < −2ν−1 + 2µ < −2ν−1 + 2ν−2 = −2ν−2. Therefore, −2dµ < −2ν−2, which is a
contradiction since we assumed dµ+ 2 ≤ ν. So this type of collision cannot happen.

If on the other hand we are in a parameters setting where dµ > ν−2, we give a concrete bound
on the probability that such collisions occur. More precisely, for this case we need to assume that
the integers returned by H are random, i.e., H is a random oracle, and we also use the implicit fact
that RHashEq guarantees that eq ∈

(
2µ−1, 2µ

)
. Then we give a concrete bound on the probability
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that the product of d out of poly(λ) random primes lies in a specific range
(
2µ−1, 2µ

)
, which turns

out to be negligible when d is constant and 2µ−ν is negligible.

Since the requirements of security are slightly different according to the setting of parameters
mentioned above, we state two separate theorems, one for each case.

Theorem 4.1. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption holds, and that H is collision resistant. If dµ+2 ≤ ν, then MemCPRSA is knowledge-
sound with partial opening of the set commitments CU .

Theorem 4.2. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption hold, and that H is collision resistant. If dµ+2 > ν, d = O(1) is a small constant,
2µ−ν ∈ negl(λ) and H is modeled as a random oracle, then MemCPRSA is knowledge-sound with
partial opening of the set commitments CU .

Remark 4.3. It is worth noting that Theorem 4.2 where we assume H to be a random oracle requires
a random oracle assumption stronger than usual; this has to do with the fact that while we assume
H to be a random oracle we also assume that CPmodEq can create proof about correct computations
of H. Similar assumptions have been considered in previous works, see, e.g, [Val08, Remark 2].

Finally, we state the theorem about the zero-knowledge of MemCPRSA.

Theorem 4.3. Let PedCom, SetComRSA and IntCom be statistically hiding commitments, CPRoot,
CPmodEq and CPHashEq be zero-knowledge arguments. Then MemCPRSA is zero-knowledge.

Proof [sketch] The proof is rather straightforward, so we only provide a sketch. We define the
simulator S that takes as input (crs, CU , cu) and does the following:

– Parses crs := (N,G,H,Hprime,Gq, g, h, crsHashEq), from which it computes the corresponding
crsRoot := (N,G,H) and crsmodEq := (N,G,H,Gq, g, h).

– Samples at random C∗
e ←$ Z∗

N and c∗e ←$ Gq.

– Invokes SRoot(crsRoot, C∗
e , CU ), SmodEq(crsmodEq, C

∗
e , c

∗
e) and SHashEq(crsHashEq, c∗e, cu) the corre-

sponding simulators of CPRoot, CPmodEq and CPHashEq respectively. They output simulated proof
π∗Root, π

∗
modEq and π∗HashEq respectively.

– S outputs (C∗
e , c

∗
e, π

∗
Root, π

∗
modEq, π

∗
HashEq).

Let π := (Ce, ce, πRoot, πmodEq, πHashEq) ← Prove(crs, (CU , cu), (U, u), (∅, ru)) be the output of a
real proof. Since IntCom and PedCom are statistically hiding C∗

e and c∗e are indistinguishable from
Ce and ce resp. Finally, since CPRoot, CPmodEq and CPHashEq are zero knowledge arguments π∗Root,
π∗modEq and π∗HashEq are indistinguishable from πRoot, πmodEq and πHashEq resp. ⊓⊔

Notation. We introduce some notation that eases our proofs exposition. Let U = {u1, . . . , un} ⊂ Z
be a set of cardinality n. We denote as prod a product of (an arbitrary number of) elements of
U , prod =

∏
i∈I ui, for some I ⊆ [n]. Furthermore, ΠU = {prod1, . . . , prod2n−1} is the set of all

possible products and more specifically ΠU,d ⊆ ΠU denotes the set of possible products of exactly
d elements of U , |I| = d, while for the degenerate case of d > n we define ΠU,d = ∅. We note that
|ΠU,d| =

(
n
d

)
(except for the degenerate case where |ΠU,d| = 0). For convenience, in the special case
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of prod ∈ ΠU,|U |, i.e. the (unique) product of all elements of U , we will simply write prodU . Finally,

for a J ⊆ [n] we let ΠU,J = ∪j∈JΠU,j ; for example ΠU,[1,...,d] = ∪dj=1ΠU,j is the set of all possible
products of up to d elements of U . For all of the above we also denote with ”−” the corresponding
set of the opposite element, e.g. −ΠU = {−prod1, . . . ,−prod2n−1}

Proof [of Theorem 4.1] Let a malicious prover P∗, a PPT adversary of Knowledge Soundness with
Partial Opening (see the definition in section 2.5) that on input (ck, Rmem, crs, auxR, auxZ) outputs
(CU , cu, U, π) such that the verifier V accepts, i.e. VerProof(crs, CU , cu), π) = 1 and VerCommit(ck, tU ,
CU , U,∅) = 1 with non-negligible probability ϵ. We will construct a PPT extractor E that on the
same input outputs a partial witness (u, rq) such that Rmem(U, u) = 1∧VerCommit(ck, tq, cu, u, rq) =
1.

For this we rely on the Knowledge Soundness of CPRoot,CPmodEq and CPHashEq protocols. E
parses π := (Ce, ce, πRoot, πmodEq, πHashEq) and crs := (N,G,H,Hprime,Gq, g, h, crsHashEq), from which
it computes the corresponding crsRoot := (N,G,H) and crsmodEq := (N,G,H,Gq, g, h). Then con-
structs an adversary ARoot for CPRoot Knowledge Soundness that outputs (Ce, CU , µ, πRoot). It is ob-
vious that since V accepts π then it also accepts πRoot, i.e., CPRoot.VerProof(crsRoot, (Ce, CU , µ), πRoot) =
1. From Knowledge Soundness of CPRoot we know that there is an extractor ERoot that out-
puts (e, r,W ) such that Ce = ±GeHr (mod N) ∧W e = CU (mod N) ∧ |e| < 2λz+λs+µ+2. Sim-
ilarly, E constructs adversaries AmodEq and AHashEq of protocols CPmodEq and CPHashEq respec-
tively. And similarly there are extractors EmodEq and EHashEq that output (e′, eq, r

′, rq) such that
e′ = eq (mod q)∧Ce′ = ±Ge

′
Hr′ (mod N)∧ceq = geq mod qhrq mod q and (e′q, u, r

′
q, ru, j) such that

ce = ge
′
qhr

′
q ∧ e′q = (1|H(u, j)) respectively.

From the Binding property of the integer commitment scheme we get that e = e′ and r = r′

(over the integers), unless with a negligible probability. Similarly, from the Binding property of the
Pedersen commitment scheme we get that eq = e′q (mod q) and rq = r′q (mod q), unless with a neg-
ligible probability. So if we put everything together the extracted values are (e, r,W, eq, rq, u, ru, j)
such that:

W e = CU (mod N) ∧ |e| < 2λz+λs+µ+2 ∧ e = eq (mod q) ∧ eq = (1|H(u, j))

and additionally

Ce = ±GeHr ∧ ce = geq mod qhrq mod q ∧ VerCommit(ck, tq, cu, u, ru) = 1

From VerCommit(ck, tU , CU , U,∅) = 1 we infer that CU = GprodP , where P := {Hprime(u) |
u ∈ U}. From the strong RSA assumption since W e = CU = GprodP (mod N) we get e ∈ ΠP or
e ∈ −ΠP , unless with a negligible probability (see appendix A.1).

Since, all the elements of P are outputs of Hprime they have exactly bitlength µ, that is 2µ−1 <
ei < 2µ for each ei ∈ P . This means that e is a (±) product of µ-sized primes. Let |e| be a product
of ℓ primes, meaning that 2ℓ(µ−1) < |e| < 2ℓµ, and d := ⌊λz+λs+µ+2

µ ⌋. From |e| < 2λz+λs+µ+2 we get

that 2ℓµ < 2λz+λs+µ+2 ⇒ ℓ < d which means that e ∈ ΠP,[1,...,d] or e ∈ −ΠP,[1,...,d] (i.e. e is a (±)
product of at most d primes).

First we show that e ∈ ΠP , i.e., that e cannot be negative. Let e ∈ −ΠP,[1,...,d]. We use the fact

that e = eq (mod q), so e ≤ −q + eq < −2ν−1 + 2µ < −2ν−1 + 2ν−2 = −2ν−2. Since −2dµ < e
this leads to −2dµ < −2ν−2 which contradicts the assumption dµ + 2 ≤ ν (we used the fact that
eq = (1|H(u, j)) to conclude that 2µ−1 < eq < 2µ, which comes from the definition of H). So e > 0
or e ∈ ΠP,[1,...,d].
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Recall that e < 2dµ. From the assumption dµ+ 2 ≤ ν which means that e < 2dµ < 2ν−2 < q ⇒
e < q. Since e = eq (mod q) and e < q this means that e = eq over the integers. Again we are using
the fact that eq = (1|H(u, j)) to conclude that 2µ−1 < eq < 2µ, which comes from the definition of
H, and combined with e = eq we get that 2µ−1 < e < 2µ. The last fact means that e ∈ ΠP,{1} (i.e.
e is exactly one prime from P ) otherwise it would exceed 2µ, so e ∈ P .

Finally, e = eq = (1|H(u, j)) = Hprime(u) ∈ P = {Hprime(u1), . . . ,Hprime(un)}, where U :=
{u1, . . . , un}. This means that there is an i such that Hprime(u) = Hprime(ui). From collision resistance
of Hprime we infer that u = ui. So we conclude that u ∈ U or Rmem(U, u) = 1 and as shown above
VerCommit(ck, tq, cu, u, ru) = 1. ⊓⊔

Collision Finding Analysis For the second theorem we cannot count on the formula dµ+2 ≤ ν
that ensures that the extracted integer e lies inside [0, q − 1]. As explained above, we can only
rely on the randomness of each prime to avoid the described ”collisions”. First, we formally define
what a ”collision” is through a probabilistic experiment, CollisionFinding, and then we compute a
concrete bound for the probability that this event happens, i.e. the experiment outputs 1. Finally,
we state a theorem that shows this probability is asymptotically negligible under the assumption
that 2µ−ν is a negligible value (and d is a constant).

CollisionFinding(µ, d,Gq, n)

Let P ⊆ Primes
(
2µ−1, 2µ

)
be a randomly chosen set of cardinality n, i.e. each e ∈ P is chosen

uniformly at random, ei ←$ Primes
(
2µ−1, 2µ

)
meaning that:

1. ei is prime.
2. 2µ−1 ≤ ei ≤ 2µ

3. Pr[ei = x] = µ
2µ + negl(λ) for each x ∈ Primes

(
2µ−1, 2µ

)
The output of the experiment is 1 iff there exists prod ∈

(
ΠP,[2,d] ∪ −ΠP,[2,d]

)
such that

(prod mod q) ∈
(
2µ−1, 2µ

)
Lemma 4.1. Let Gq be a prime order group of order q ∈

(
2ν−1, 2ν

)
and µ such that µ < ν then

Pr[CollisionFinding(µ, d,Ge, n) = 1] ≤ 2 ·
∑d

j=2

(nj)2
(j+1)µ−j−ν(2j−1)

2jµ−j

(µ−1)j
−(nj)

Proof First we will prove it for positive products, that is we bound the probability
Pr[CollisionFinding(µ, d,Ge, n) = 1|prod ∈ ΠP,[2,d]]. Let prod = q1...qj be a product of exactly j
primes for a 2 ≤ j ≤ d. Since qi ∈

(
2µ−1, 2µ

)
we get prod = q1...qj ∈

(
2jµ−j , 2jµ

)
. Also Z∗

q is cyclic
so we know that at most⌈∣∣(2jµ−j , 2jµ)∣∣

q

⌉
=

⌈
2jµ − 2jµ−j

q

⌉
=

⌈
2jµ−j · (2j − 1)

q

⌉
≤ 2jµ−j−ν+1 · (2j − 1)

integers in
(
2jµ−j , 2jµ

)
are equal to c modulo q, for any c ∈ {0, 1, ..., q − 1}.

We are interested in the interval
(
2µ−1, 2µ

)
modulo q. From the previous we get that at most

2jµ−j−ν+1 · (2j − 1) ·
∣∣(2µ−1, 2µ

)∣∣ = 2jµ−j−ν+1 · (2j − 1) · 2µ−1 = 2(j+1)µ−j−ν(2j − 1) integers in the
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range of
(
2jµ−j , 2jµ

)
are “winning” integers for the adversary, meaning that after modulo q they

are mapped to the winning interval
(
2µ−1, 2µ

)
.

From the distribution of primes we know that the number of primes in
(
2µ−1, 2µ

)
is ap-

proximately 2µ−1

µ−1 . So there are (approximately)
(
2µ−1

µ−1

)j
= 2jµ−j

(µ−1)j
different products of j primes

from Primes
(
2µ−1, 2µ

)
in
(
2jµ−d, 2jµ

)
. This leads us to the combinatorial experiment of choice of

B = 2jµ−j

(µ−1)j
“balls”, with T = 2(j+1)µ−j−ν(2j − 1) “targets” and X =

(
n
j

)
“tries” without replace-

ment, where “balls” are all possible products, “targets” are the ones that go to
(
2µ−1, 2µ

)
modulo

q (the winning ones) and tries are the number of products (for a constant j) that the adversary
can try. The “without replacement” comes from the fact that all products are different. The final
winning probability is:

Pr[prod mod q ∈
(
2µ−1, 2µ

)
∧ prod ∈ ΠP,j ] ≤

T

B
+

T

B − 1
+

T

B − 2
+ . . .+

T

B −X

≤ X · T

B −X

=

(
n
j

)
2(j+1)µ−j−ν(2j − 1)

2jµ−j

(µ−1)j
−
(
n
j

)
By applying the union bound for all j’s we get:

Pr[prod mod q ∈
(
2µ−1, 2µ

)
∧ prod ∈ ΠP,[2,d]] ≤

d∑
j=2

(
n
j

)
2(j+1)µ−j−ν(2j − 1)

2jµ−j

(µ−1)j
−
(
n
j

)
By using the same arguments for negative products we would conclude that

Pr[prod mod q ∈
(
2µ−1, 2µ

)
∧ prod ∈ −ΠP,[2,d]] ≤

d∑
j=2

(
n
j

)
2(j+1)µ−j−ν(2j − 1)

2jµ−j

(µ−1)j
−
(
n
j

)
Therefore

Pr[CollisionFinding(µ, d,Ge, n) = 1] =Pr[CollisionFinding(µ, d,Ge, n) = 1 ∧ prod ∈ ΠP,[2,d]]+

+Pr[CollisionFinding(µ, d,Ge, n) = 1 ∧ prod ∈ −ΠP,[2,d]] =

≤2 ·
d∑
j=2

(
n
j

)
2(j+1)µ−j−ν(2j − 1)

2jµ−j

(µ−1)j
−
(
n
j

)
⊓⊔

Theorem 4.4. Let Gq be a prime order group of order q ∈
(
2ν−1, 2ν

)
, µ such that 2µ−ν ∈ negl(λ),

d constant and n = poly(λ) then Pr[CollisionFinding(µ, d,Gq, n) = 1] ∈ negl(λ)

Proof Now n = poly(λ) so the set P is polynomially bounded. Due to lemma 4.1 it is straight-

forward that Pr[CollisionFinding(µ, d,Gq, n) = 1] ≤
∑d

j=2

(nj)2
(j+1)µ−j−ν(2j−1)

2jµ−j

(µ−1)j
−(nj)

. Since d is constant,

for any j ∈ [2, d]
(
n
j

)
= O(nj) and we get:
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2 ·
(
n
j

)
2(j+1)µ−j−ν(2j − 1)

2jµ−j

(µ−1)j
−
(
n
j

) = 2 · O(nj)2(j+1)µ−j−ν(2j − 1)
2jµ−j

(µ−1)j
−O(nj)

= 2 · O(nj)(2j − 1)(µ− 1)j

2jµ−j

2(j+1)µ−j−ν −
O(nj)(µ−1)j

2(j+1)µ−j−ν

O(nj)(2j − 1)(µ− 1)j = poly(λ) and O(nj)(µ−1)j

2(j+1)µ−j−ν = negl(λ). Also 2jµ−j

2(j+1)µ−j−ν = 2ν−µ, therefore for j

we get a probability bounded by poly(λ)2µ−ν

1−negl(λ)2µ−ν = negl(λ) by assumption.

Finally, Pr[CollisionFinding(µ, d,Gq, n) = 1] ≤ (d− 1) · negl(λ) = negl(λ). ⊓⊔

Remark 4.4. For the sake of generality, in CollisionFinding we do not specify how the random primes
are generated. In practice in our scheme they are outputs of the hash function Hprime that we model
as a random oracle.

Now we are ready to give the proof of theorem 4.2:

Proof [of theorem 4.2] The proof is almost the same as the one of Theorem 4.1 except for the
next-to-last paragraph, i.e. the justification of e ∈ ΠP,{1}. Since dµ+2 > ν we cannot use the same
arguments to conclude to it. However, still e ∈

(
ΠP,[1,...,d] ∪ −ΠP,[1,...,d]

)
.

Let e ∈
(
ΠP,[1,...,d] ∪ −ΠP,[1,...,d]

)
, it is straightforward to reduce this case to the the collision

finding problem. Assume that the adversary P∗ made qH random oracle queries to H and let QH

be the set of answers she received. Further assume that exactly qHprime
of the them are primes and

let QHprime
be the set of them. We note that P ⊆ QHprime

, unless a collision happened in H.

Now let QHprime
be the set of the CollisionFinding(µ, d,Gq, |QHprime

|) experiment. It satisfies all
three conditions since each ei ∈ QHprime

is an output of Hprime. Therefore ei is prime, 2µ−1 <
ei < 2µ and since H is modeled as a random oracle the outputs of Hprime are uniformly dis-
tributed in Primes

(
2µ−1, 2µ

)
. Then for the extracted e, we know that e = eq (mod q) ∈

(
2µ−1, 2µ

)
and from the assumption e ∈

(
ΠP,[1,...,d] ∪ −ΠP,[1,...,d]

)
, which (as noted above) means that e ∈(

ΠQHprime
,[2,...,d] ∪ −ΠQHprime

,[2,...,d]

)
. So CollisionFinding(µ, d,Gq, |QHprime

|) = 1. Since the adversary is

PPT |QHprime
| = poly(λ). Also, d = O(1) and 2µ−ν ∈ negl(λ) (from the assumptions of the theorem)

so the previous happens with a negligible probability according to theorem 4.4. So we conclude
that, unless with a negligible probability, e ∈ ΠP,{1}. ⊓⊔

4.3 Our CP-SNARK for Set Membership for Primes Sets

In this section we show a CP-SNARK for set membership MemCPRSAPrm that supports set ele-
ments that are prime numbers of exactly µ bits, i.e., Delm = Primes(2µ−1, 2µ), and Dset = 2Delm .
MemCPRSAPrm works for a type-based commitment scheme Com2 that is the canonical composition
SetComRSA′ •PedCom where SetComRSA′ is in Fig. 6 (it is essentially a simplification of SetComRSA

since elements are already primes).

The scheme MemCPRSAPrm is described in figure 7. Its building blocks are the same as the
ones for MemCPRSA except that instead of a CP-NIZK for proving correctness of a map-to-prime
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Setup(1λ, 1µ) : Sample an RSA modulus N ← GenSRSAmod(1λ), a random group element F ←$ Z∗
N , compute

G← F 2 mod N ∈ QRN . Return ck := (N,G).

Commit(ck, tU , U) : compute Acc← GprodP . Return (c, o) := (Acc,∅).

VerCommit(ck, tU ,Acc, U,∅) : Return 1 if for all ei ∈ P ei ∈ Primes
(
2µ−1, 2µ

)
and Acc = GprodP mod N , and 0

otherwise.

Fig. 6: SetComRSA′ Commitment to Sets.

KeyGen(ck, R∈) : parse ck := ((N,G), (Gq, g, h)) as the commitment keys of SetComRSA′ and PedCom respec-
tively. Sample a random generator H.
Generate crsRange ←$ CPRange.KeyGen((Gq, g, h), RRange), a crs for CPRange.
Return crs := (N,G,H,Gq, g, h, crsRange).
Given crs, one can define crsRoot := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

Prove(crs, (CP , ce), (P, e), (∅, rq)) :
(Ce, r)← IntCom.Commit((G,H), e)

W = G
∏

ei∈P\{e} ei .
πRoot ← CPRoot.Prove(crsRoot, (Ce, CP , µ), (e, r,W ))
πmodEq ← CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))
πRange ← CPRange.Prove(crsRange, (2

µ−1, 2µ), ce, e, rq)
Return π := (Ce, πRoot, πmodEq, πRange).

VerProof(crs, (CP , ce), π) : Return 1 iff
CPRoot.VerProof(crsRoot, (Ce, CP , µ), πRoot) = 1 ∧ CPmodEq.VerProof(crsmodEq, (Ce, ce), πmodEq) = 1 ∧
CPRange.VerProof(crsRange, ce, πRange) = 1.

Fig. 7: MemCPRSAPrm CP-SNARK for set membership
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computation, we use a CP-NIZK for range proofs. Namely, we let CPRange be a NIZK for the
following relation on PedCom commitments c and two given integers A < B:

RRange ((ce, A,B), (e, rq)) = 1 iff c = gehrq ∧ A < eq < B

The idea behind the security of the scheme is similar to the one of the MemCPRSA scheme. The
main difference is that here we rely on the range proof πRange in order to “connect” the Pedersen
commitment ce to the accumulator. In particular, in order to argue the absence of possible collisions
here we assume that dµ+2 ≤ ν holds, namely we argue security only for this setting of parameters.
It is worth noting that in applications where Delm is randomly chosen subset of Primes

(
2µ−1, 2µ

)
,

we could argue security even when dµ + 2 > ν, in a way similar to Theorem 4.2. We omit the
analysis of this case from the paper.

Theorem 4.5. Let PedCom, SetComRSA′ and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPRange be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption hold. If dµ+2 ≤ ν, then MemCPRSAPrm is knowledge-sound with partial opening of
the set commitments cP . Furthermore, if PedCom, SetComRSA′ and IntCom are statistically hiding
commitments, and CPRoot, CPmodEq and CPRange be zero-knowledge, then MemCPRSAPrm is zero-
knowledge.

Proof [of Theorem 4.5] Knowledge Soundness with Partial Opening of CP : the proof is

similar to the one of theorem 4.1 except for some minor parts.

Let a malicious prover P∗, a PPT adversary of Knowledge Soundness with Partial Opening (see the
definition in section 2.5) that on input (ck, Rmem, crs, auxR, auxZ) outputs (CP , ce, P, π) such that
the verifier V accepts, i.e. VerProof(crs, CP , ce), π) = 1 and VerCommit(ck, tU , CP , P,∅) = 1 with
non-negligible probability ϵ. We will construct a PPT extractor E that on the same input outputs
a partial witness (e, r) such that Rmem(P, e) = 1 ∧ VerCommit(ck, tq, ce, e, r) = 1.

For this we rely on the Knowledge Soundness of CPRoot,CPmodEq and CPRange protocols. E parses
π := (Ce, πRoot, πmodEq, πRange) and crs := (N,G,H,Hprime,Gq, g, h, crsRange), from which it com-
putes the corresponding crsRoot := (N,G,H) and crsmodEq := (N,G,H,Gq, g, h). Then constructs
an adversary ARoot for CPRoot Knowledge Soundness that outputs (Ce, CP , µ, πRoot). It is obvious
that since V accepts π then it also accepts πRoot, i.e., CPRoot.VerProof(crsRoot, (Ce, CP , µ), πRoot) = 1.
From Knowledge Soundness of CPRoot we know that there is an extractor ERoot that outputs (e, r,W )
such that Ce = ±GeHr (mod N)∧W e = CP (mod N)∧e < 2λz+λs+µ+2. Similarly, E constructs ad-
versaries AmodEq and ARange of protocols CPmodEq and CPRange respectively. And similarly there are
extractors EmodEq and ERange that output (e′, eq, r

′, rq) such that e′ = eq (mod q) ∧ Ce′ = ±Ge
′
Hr′

(mod N)∧ceq = geq mod qhrq mod q and (e′q, r
′
q) such that ce = ge

′
qhr

′
q ∧2µ−1 < e′q < 2µ respectively.

From the Binding property of the integer commitment scheme we get that e = e′ and r = r′

(over the integers), unless with a negligible probability. Similarly, from the Binding property of the
Pedersen commitment scheme we get that eq = e′q (mod q) and rq = r′q (mod q), unless with a
negligible probability. So if we put everything together the extracted values are (e, r,W, eq, rq) such
that:

W e = CP (mod N) ∧ e < 2λz+λs+µ+2 ∧ e = eq (mod q) ∧ 2µ−1 < eq < 2µ

and additionally

Ce = ±GeHr ∧ ce = geq mod qhrq mod q
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From VerCommit(ck, tU , CP , P,∅) = 1 we infer that CP = GprodP , where for each ei ∈ P it holds
that e ∈ Primes

(
2µ−1, 2µ

)
. From the strong RSA assumption since W e = CP = GprodP (mod N)

we get e ∈ ΠP , unless with a negligible probability (see appendix A.1).
The rest of the analysis that justifies e ∈ P is identical to the one of the proof of theorem 4.1.

So e ∈ P and as shown above VerCommit(ck, tq, ce, eq, rq) = 1.

Zero Knowledge: For the Zero Knowledge Property we rely on similar techniques with the ones
of the proof of theorem 4.3 except for the use of SHashEq. Here we use instead the simulator of the
CPRange protocol, SRange. ⊓⊔

4.4 Proposed Instantiations of Protocols for RRoot and RmodEq

Root protocol

On common reference string crs = (Z∗
N , G,H)

Prove(crs, (Ce, Acc), (e, r, w)) :
1. samples r2, r3 ←$ (−⌊N/4⌋ , ⌊N/4⌋) and computes CW ←WHr2 , Cr ← Gr2Hr3 .
2. Computes the non-interactive version of the above protocol

re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
, rr, rr2 , rr3 ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ , rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
α1 ← GreHrr , α2 ← Grr2Hrr3 , α3 ← Cre

W

(
1
H

)rβ , α4 ← Cre
r ( 1

H
)rδ
(

1
G

)rβ
c← H(α1, α2, α3, α4, Ce, Acc)
se ← re − ce, sr ← rr − cr, sr2 ← rr2 − cr2, sr3 ← rr3 − crr3 , sβ ← rβ − cer2, sδ ← rδ − cer3

Returns π ← (CW , Cr, α1, α2, α3, α4, se, sr, sr2 , sr3 , sβ , sδ)

VerProof(crs, (Ce, Acc), π) : returns 1 iff α1 = Cc
eG

seHsr ∧ α2 = Cc
rG

sr2Hsr3 ∧ α3 = AcccCse
W

(
1
H

)sβ ∧ α4 =

Cse
r

(
1
H

)sδ ( 1
G

)sβ ∧ se ∈
[
−2λ+λs+µ+1, 2λ+λs+µ+1

]

Fig. 8

Protocol CPRoot. We first give a protocol CPRoot′ for a simpler version of the Root relation in
which the upper bound on e is removed; let us call RRoot′ this relation.

Below is an interactive ZK protocol for RRoot′ :

1. Prover computes a W such that W e = Acc and CW = WHr2 , Cr = Gr2Hr3 and sends to the
verifier:
P → V : CW , Cr

2. Prover and Verifier perform a protocol for the relation:
R((Ce, Cr, CW , Acc), (e, r, r2, r3, β, δ)) = 1 iff

Ce = GeHr ∧ Cr = Gr2Hr3 ∧Acc = CeW

(
1

H

)β
∧ 1 = Cer

(
1

H

)δ ( 1

G

)β
Let λs be the size of the challenge space, λz be the statistical security parameter and µ the size
of e.
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– Prover samples:

re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
rr, rr2 , rr3 ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ, rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
and computes:

α1 = GreHrr , α2 = Grr2Hrr3 , α3 = CreW

(
1

H

)rβ
, α4 = Crer (

1

H
)rδ
(
1

G

)rβ
P → V : (α1, α2, α3, α4)

– Verifier samples the challenge c← {0, 1}λs
V → P : c

– Prover computes the response:

se = re − ce
sr = rr − cr, sr2 = rr2 − cr2, sr3 = rr3 − crr3
sβ = rβ − cer2, sδ = rδ − cer3

P → V : (se, sr, sr2 , sr3 , sβ, sδ)

– Verifier checks if:

α1
?
= CceG

seHsr , α2
?
= CcrG

sr2Hsr3 , α3
?
= AcccCseW

(
1

H

)sβ
, α4

?
= Cser

(
1

H

)sδ ( 1

G

)sβ
Theorem 4.6. Let Z∗

N be an RSA group where strong-RSA assumption holds, then the above pro-
tocol is a correct, knowledge sound and honest-verifier zero knowledge protocol for RRoot′.

The proof of the above is similar to the one of [CL02] where the more specific protocol was
introduced, but implicitly was including a protocol for RRoot′ . Before proceeding to the proof we
recall some properties related to RSA groups. First we expose two standard arguments. The first is
that obtaining a multiple of ϕ(N) is equivalent to factoring N . This directly allows us to argue that
for any G ∈ Z∗

N , if one is able to find an x ∈ Z such that Gx = 1 (mod N) then under the factoring
assumption x = 0, otherwise x is a multiple of ϕ(N). Secondly, finding any non-trivial solution of
the equation µ2 = 1 (mod N) in Z∗

N (non-trivial means µ ̸= ±1) is equivalent to factoring N .

Remark 4.5. In 2017 Couteau et al. proved that in fact knowledge soundness for the protocol of
opening an integer commitment can be reduced to (plain) RSA problem [CPP17]. This could be
inherited to our protocol too. However, the relation itself assumes strong RSA’s hardness, otherwise
finding a root would be computable in polynomial time. Additionally, in the reduction to (plain)
RSA, the extractor’s probability of success is cubic, while in the reduction to strong RSA linear, in
the adversary’s probability of success.

Proposition 4.1. Let Z∗
N be an RSA group with a modulus N and QRN the corresponding group

of quadratic residues modulo N .
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1. Let G,H ←$ QRN two random generators of QRN and a PPT adversary A outputting α, β ∈ Z∗
N

such that GαHβ = 1 then under the assumption that DLOG problem is hard in QRN it holds
that α = β = 0.

2. Let A,B ∈ Z∗
N and a PPT adversary A outputting x, y ∈ Z∗

N such that Ay = Bx and y | x then

under the assumption that factoring of N is hard it holds that A = ±B
x
y

Proof

1. Since G,H ∈ QRN there is an x ∈ Z∗
N such that G = Hx (mod N) which leads to Hxα+β = 1.

As we discussed above under the assumption that factoring of N is hard, xα+ β = 0. If α ̸= 0
then x ← −β

α is a discrete logarithm of H, so assuming that DLOG is hard α = 0. Similarly,
there is an y ∈ Z∗

N such that Gy = H (mod N) and with a similar argument we can conclude
that β = 0.

2. We discern two cases, y = ρ is odd or y = 2vρ is even (for an odd ρ). In case y is odd then it
is co-prime with ϕ(N) = p′q′ (otherwise if y = p′ or y = q′ we would be able to factor N), so

y−1 (mod ϕ(N)) exists and A = B
x
y . If y = 2vρ then

(
A−1B

x
y

)y
= 1 ⇒

(
A−1B

x
y

)2vρ
= 1 ⇒(

A−1B
x
y

)2v
= 1. From the second fact that we discussed above under the factoring assumption(

A−1B
x
y

)2v−1

= ±1. However for v > 1 the left part of the equation is a quadratic residue so it

cannot be −1, therefore
(
A−1B

x
y

)2v−1

= 1. Using the same facts repeatedly we will eventually

conclude that
(
A−1B

x
y

)2
= 1, hence A−1B

x
y = ±1⇒ A = ±B

x
y .

⊓⊔

Proof [proof of theorem 4.6] Correctness is straightforward. Honest-verifier zero knowledge can
be shown with standard arguments used in Σ-protocols and the fact that the commitments to
Ce, CW , Cr are statistically hiding. That is the simulator S on input (Ce,Acc) samples C∗

W ←$ Z∗
N

and C∗
r ←$ Z∗

N . Then samples

s∗e ←$
(
−2λz+λs+µ − 2λz+µ, 2λz+λs+µ + 2λz+µ

)
,

s∗r , s
∗
r2 , s

∗
r3 ←$

(
−⌊N/4⌋ 2λz+λs − ⌊N/4⌋ 2λs , ⌊N/4⌋ 2λz+λs + ⌊N/4⌋ 2λs

)
,

s∗β, s
∗
δ ←$

(
−⌊N/4⌋ 2λz+λs+µ − ⌊N/4⌋ 2λs+µ, ⌊N/4⌋ 2λz+λs+µ + ⌊N/4⌋ 2λs+µ

)
.

Finally it samples c∗ ←$ {0, 1}λs . Then it sets α∗
1 ← CceG

seHsr , α∗
2 ← CcrG

sr2Hsr3 , α∗
3 ←

AcccCseW
(
1
H

)sβ and α∗
4

?
= Cser

(
1
H

)sδ ( 1
G

)sβ . S outputs π∗ ← (C∗
W , C

∗
r , α

∗
1, α

∗
2, α

∗
3, α

∗
4, c

∗, s∗e, s
∗
r , s

∗
r2 , s

∗
r3 , s

∗
β, s

∗
δ).

The distribution of π∗ is identical to the one of a real proof π.
For the knowledge soundness, let an adversary of the knowledge soundness A that is able to

convince the verifier V with a probability at least ϵ. We will construct an extractor E that extracts
the witness (e, r, r2, r3, β, δ). Using rewinding E gets two accepted transcripts

(CW , Cr, α1, α2, α3, α4, c, se, sr, sr2 , sr3 , sβ, sδ) and (CW , Cr, α1, α2, α3, α4, c
′, s′e, s

′
r, s

′
r2 , s

′
r3 , s

′
β, s

′
δ)

on two different challenges c and c′. E aborts if it cannot get two such transcripts (abort1).
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We denote ∆c := c′−c,∆se := se−s′e, ∆sr := sr−s′r, ∆sr2 := sr2−s′r2 , ∆sr3 := sr3−s′r3 , ∆sβ :=
sβ − s′β, ∆sδ := sδ − s′δ then

C∆ce = G∆seH∆sr , C∆cr = G∆sr2H∆sr3 ,Acc∆c = C∆seW

(
1

H

)∆sβ
, 1 = C∆ser

(
1

H

)∆sδ ( 1

G

)∆sβ
Define the (possibly rational) numbers ê := ∆se

∆c , r̂ := ∆sr
∆c , r̂2 :=

∆sr2
∆c , r̂3 :=

∆sr3
∆c . In case ∆c

doesn’t divide ∆se and ∆sr, E aborts (abort 2a). Similarly, in case ∆c doesn’t divide ∆sr2 and
∆sr3 , E aborts (abort 2b). Therefore, since the above aborts didn’t happen and according to second
point of proposition 4.1, Ce = ±GêH r̂ and Cr = ±Gr̂2H r̂3 .

Now if we replace Cr in the fourth equation we get 1 = (±1)∆seGr̂2∆seH r̂3∆se
(
1
H

)∆sδ ( 1
G

)∆sβ
or (±1)∆seGr̂2∆se−∆sβH r̂3∆se−∆sδ = 1. However, (±1)∆se = 1 otherwise if (±1)∆se = −1 then
−Gr̂2∆se−∆sβH r̂3∆se−∆sδ would be a non-quadratic residue (since G,H are both in QRN and QRN
is closed under multiplication) equal to 1 which is a quadratic residue and this would be a contra-
diction, hence Gr̂2∆se−∆sβH r̂3∆se−∆sδ = 1. According to the first point of proposition 4.1, under
the factoring assumption r̂2∆se −∆sβ = r̂3∆se −∆sδ = 0, so r̂2∆se = ∆sβ.

Finally we replace ∆sβ in the third equation and we get Acc∆c = C∆seW

(
1
H

)r̂2∆se ⇒ Acc∆c =(
Cw

H r̂2

)∆se
. As stated above ∆c divides ∆se so according to the second point of proposition 4.1

Acc = ±
(
CW

H r̂2

)∆se
∆c

= ±
(
CW

H r̂2

)ê
. We discern three cases:

– Acc = +
(
CW

H r̂2

)∆se
∆c

: Then E sets W̃ ← CW

H r̂2
and ẽ← ê := ∆se

∆c r̃ ← r̂ := ∆sr
∆c as above. It is clear

that Acc = W̃ ẽ and as stated above Ce = GẽH r̃.

– Acc = −
(
CW

H r̂2

)∆se
∆c

and ∆se
∆c odd: Then E sets W̃ ← − CW

H r̃2
and ẽ ← ê := ∆se

∆c r̃ ← r̂ := ∆sr
∆c as

above. It is clear that Acc = W̃ ẽ and as stated above Ce = GẽH r̃.

– Acc = −
(
CW

H r̂2

)∆se
∆c

and ∆se
∆c even: this means that Acc is a non-quadratic residue, which is a

contradiction since in the RRoot′ relation we assume that Acc ∈ QRN .

Finally the E outputs (ẽ, r̃, W̃ ).
Now we show that the probability the extractor terminates with outputting a valid witness

is O(ϵ). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O(ϵ) (for the probabilistic analysis we
refer to [DF02]). Thus Pr[abort1] = 1−O(ϵ). For the second type of aborts (abort 2a and abort 2b),
they happen with negligible probability under the strong RSA assumption. For the details see
lemma 4.2 below, which was proven in [DF02]. Putting them together the probability of success of
E is at least O(ϵ)− negl(λs).

Lemma 4.2 ([DF02]). Given that abort 2a occurs a PPT adversary B can solve the strong RSA
problem with probability at least 1

2 − 2−λs.

From the above we get Pr[B solves sRSA] ≥
(
1
2 − 2−λs

)
Pr[abort 2a], so we conclude to Pr[abort 2a] ≤

1
1
2
−2−λs

Pr[B solves sRSA] = negl(λs). The same lemma holds for abort 2b. ⊓⊔
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Notice in the above protocol that

−2λz+λs+µ − 2λs+µ ≤ se ≤ 2λz+λs+µ + 2λs+µ ⇒

−2λz+λs+µ+1 ≤ se ≤ 2λz+λs+µ+1 ⇒

−2λz+λs+µ+2 ≤ ∆se ≤ 2λz+λs+µ+2 ⇒

−2λz+λs+µ+2 ≤ ê ≤ 2λz+λs+µ+2

so if we impose an additional verification check of honest se size, i.e., se ∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]
,

we get that |ê| ≤ 2λz+λs+µ+2. The verifier performs an extra range check se
?
∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]
and the resulting protocol is the CPRoot that except for proving of knowledge of an e-th root also
provides a bound for the size of |e|:

RRoot ((Ce, Acc, µ), (e, r,W )) = 1 iff Ce = ±GeHr (mod N)∧W e = Acc (mod N)∧|e| < 2λz+λs+µ+2

Protocol CPmodEq. Below we describe the public-coin ZK protocol for RmodEq. In Figure 9 we
summarize the corresponding NIZK obtained after applying the Fiat-Shamir transform to it.

1. Prover samples:

re ←
(
−2λz+λs+µ, 2λz+λs+µ

)
rr ←

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rrq ← Zq

and computes:

α1 = GreHrr , α2 = gre (mod p)hrrq

P → V : (α1, α2)
2. Verifier samples the challenge c← {0, 1}λs
V → P : c

3. Prover computes the response:

se = re − ce
sr = rr − cr
srq = rrq − crq (mod q)

P → V : (se, sr, srq)
4. Verifier checks if:

α1
?
= ±CceGseHsr (mod N), α2

?
= cceqg

se (mod q)hsrq

Theorem 4.7. Let Z∗
N be an RSA group where strong-RSA assumption holds and G be a prime

order group where DLOG assumption holds then the above protocol is a correct, knowledge sound
and honest-verifier zero knowledge protocol for RmodEq.

The proof is quite simple and is omitted.

34



modEq protocol

On common reference string crs = (Z∗
N , G,H,G, g, h)

Prove(crs, (Ce, ceq ), (e, eq, r, rq)) :
re ←$

(
−2λz+λs+µ, 2λz+λs+µ

)
, rr ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
, rr′ ←$ Zq

α1 ← GreHrr , α2 ← gre (mod q)hrr′

c← H(α1, α2, Ce, ceq )
se ← re − ce, sr ← rr − cr, sr′ ← rrq − crq (mod q)
Returns π ← (α1, α2, se, sr, srq )

VerProof(crs, (Ce, ceq ), π) : returns 1 iff α1 = ±Cc
eG

seHsr (mod N) ∧ α2 = cceqg
se (mod q)hsrq

Fig. 9

4.5 Instantiations

We discuss the possible instantiations of our schemes MemCPRSA and MemCPRSAPrm that can be
obtained by looking at applications’ constraints and security parameters constraints.

Parameters for dµ+2 ≤ ν and µ ≤ ν − 2. First we analyze possible parameters that satisfy the
conditions dµ+2 ≤ ν∧µ ≤ ν−2 that is used in Theorems 4.1 and 4.2; we recall d = 1+⌊λz+λs+2

µ ⌋,
where λz and λs are statistical security parameters for zero-knowledge and soundness respectively
of CPRoot.

If the prime order group Gq is instantiated with (pairing-friendly) elliptic curves, then the bitsize
ν of its order must be at least 2λ. And recall that for correctness we need µ < ν.

Considering these constraints, one way to satisfy dµ + 2 ≤ ν is to choose µ such that ν − 1 >
µ > λz + λs + 2. More specifically, a choice that maximizes security is ν = 2λ, µ = 2λ − 2 and
λz = λ − 3, λs = λ − 2. For the case of the MemCPRSA scheme, this choice yields an instantiation
with nearly λ bits of security and where the function H does not necessarily need to be a random
oracle (yet it must be collision resistant).

Because of the constraint µ > λz + λs + 2, we the choice above implies the use of large primes.
This would be anyway the case if one instantiates the scheme with a collision-resistant hash function
H (e.g., SHA256 or SHA3), e.g., because set elements are quite arbitrary. If on the other hand, one
could support more specific set elements, one could use instead a deterministic map-to-primes or
even use our scheme MemCPRSAPrm in which set elements themselves are primes. In this case one
may wonder if it is possible to choose values of µ smaller than 2λ; for example µ ≈ 30, 60, 80. The
answer is positive although the characterization of such µ’s require an involved analysis.

Let us fix ν = 2λ, and say that the statistical security parameters λz, λs are such that λz +
λs + 2 = 2λ− 2− c for some constant c (for example c = 4 if λz = λs = λ− 4). We are essentially
looking for µ such that

µ ≤ 2λ− 2− c and µ+ µ

⌊
2λ− 2

µ
− c

µ

⌋
≤ 2λ− 2

⇐⇒ µ ≤ 2λ− 2− c and
⌊
2λ− 2

µ
− c

µ

⌋
≤ 2λ− 2

µ
− 1
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From the fact x mod y = x− y⌊xy ⌋, we can reduce the above inequality into

µ ≤ 2λ− 2− c and 2λ− 2− c mod µ ≥ µ− c

that can admit solutions for c ≥ 2.
For instance, if λ = 128 and c = 4, then we get several options for µ, e.g., µ = 32, 42, 63, 84, 126, 127.

Parameters for dµ+ 2 > ν. This case concerns only MemCPRSA and Theorem 4.2 in particular.
In this case, if one aims at maximizing security, say to get a scheme with λ-bits of security, then
would have to set µ ≈ 2λ for collision resistance, and consequently select the prime order group
so that ν ≥ 3λ. This choice however is costly in terms of performance since the efficiency of all
protocols that work in the prime order group degrades.

5 A CP-SNARK for Set Non-Membership with Short Parameters

Here we describe two CP-SNARKs for set non-membership that work in a setting identical to the
one of section 4. Namely, the set is committed using an RSA accumulator, and the element (that
one wants to prove not to belong to the set) is committed using a Pedersen commitment scheme.
As in the previous section, we propose two protocols for non-membership, called NonMemCPRSA

and NonMemCPRSAPrm, in complete analogy to MemCPRSA and MemCPRSAPrm. In the former, the
elements of the set are arbitrary bit-strings of length η, Delm = {0, 1}η, while in the latter the
elements are primes of length µ. The schemes are fully described in figures 10 and 11.

An High-Level Overview of the Constructions. The main idea of NonMemCPRSA is similar
to the one of the corresponding membership protocol, MemCPRSA. It uses in the same modular way
the modEq and HashEq protocols. The only difference lies in the third protocol: instead of using
Root it uses a new protocol Coprime. In a similar manner, NonMemCPRSAPrm uses modEq, Range
and Coprime.

Let us explain the need of the Coprime protocol and what it does. First, recall how a non-
membership proof is computed in RSA Accumulators [LLX07]. Let P be a set of primes to be
accumulated and prod the corresponding product. For any prime element e /∈ P it holds that
gcd(e, prod) = 1, while for any member e ∈ P it is gcd(e, prod) = e ̸= 1. Thus, proving that
gcd(e, prod) = 1 would exhibit non-membership of e in P . Recall, also, that using the extended
Euclidean algorithm one can efficiently compute coefficients (a, b) such that a · e + b · prod =
gcd(e, prod). A non-membership proof for an element e w.r.t. an accumulator Acc = Gprod consists
of a pair (D = Ga, b), where a, b are such that a · e+ b · prod = 1. The verification is DeAccb = G,
which ensures that e and prod are coprime, i.e. gcd(e, prod) = 1. Therefore, the goal of the Coprime
protocol is to prove knowledge of an element e committed in an integer commitment Ce that
satisfies this relation. A more formal definition of Coprime is given below and an instantiation of
this protocol is in Section 5.1.

Argument of Knowledge for a coprime element.Wemake use of a non-interactive argument of
knowledge of a non-membership witness of an element such that the verification equation explained
above holds. More formally CPCoprime, is a NIZK for the relation: RCoprime : (Z∗

N ×QRN )× (Z×Z×
QRN × Z) defined as
RCoprime ((Ce,Acc), (e, r,D, b)) = 1 iff

Ce = ±GeHr mod N ∧ DeAccb = G ∧ |e| < 2λz+λs+µ+2
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KeyGen(ck, R∈) : parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of SetComRSA and PedCom
respectively. Sample a random generator H.
Generate crsHashEq ←$ CPHashEq.KeyGen((Gq, g, h), RHashEq), a crs for CPHashEq.
Return crs := (N,G,H,Hprime,Gq, g, h, crsHashEq).
Given crs, one can define crsCoprime := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

Prove(crs, (CU , cu), (U, u), (∅, ru)) : e← Hprime(u) = (1|H(u, j)), (ce, rq)← Com1.Commit(ck, tq, e).
(Ce, r)← IntCom.Commit((G,H), e); P ← {Hprime(u) : u ∈ U}, compute a, b s.t. a · e+ b ·

∏
ei∈P ei = 1 and

set D = Ga.
πCoprime ← CPCoprime.Prove(crsCoprime, (Ce, CU , µ), (e, r,D, b))
πmodEq ← CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))
πHashEq ← CPHashEq.Prove(crsHashEq, (ce, cu), (e, u), (rq, ru), j)
Return π := (Ce, ce, πRoot, πmodEq, πHashEq).

VerProof(crs, (CU , cu), π) : Return 1 iff CPRoot.VerProof(crsCoprime, (Ce, CU , µ), πCoprime) = 1 ∧
CPmodEq.VerProof(crsmodEq, (Ce, ce), πmodEq) = 1 ∧ CPHashEq.VerProof(crsHashEq, (ce, cu), πHashEq) = 1.

Fig. 10: NonMemCPRSA CP-SNARK for set non-membership

KeyGen(ck, R∈) : parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of SetComRSA′ and PedCom
respectively. Sample a random generator H.
Generate crsRange ←$ CPRange.KeyGen((Gq, g, h), RRange), a crs for CPRange.
Return crs := (N,G,H,Hprime,Gq, g, h, crsRange).
Given crs, one can define crsCoprime := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

Prove(crs, (CP , ce), (P, e), (∅, re)) : (Ce, r)← IntCom.Commit((G,H), e); , compute a, b s.t. a·e+b·
∏

ei∈P ei = 1
and set D = Ga.
πCoprime ← CPCoprime.Prove(crsCoprime, (Ce, CP , µ), (e, r,D, b))
πmodEq ← CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))
πRange ← CPRange.Prove(crsRange, (2

µ−1, 2µ), ce, e, rq)
Return π := (Ce, ce, πCoprime, πmodEq, πRange).

VerProof(crs, (CP , ce), π) : Return 1 iff CPCoprime.VerProof(crsCoprime, (Ce, CP , µ), πCoprime) = 1 ∧
CPmodEq.VerProof(crsmodEq, (Ce, ce), πmodEq) = 1 ∧ CPRange.VerProof(crsRange, ce, πRange) = 1.

Fig. 11: NonMemCPRSAPrm CP-SNARK for set non-membership

We propose an instantiation of a protocol for the above relation in the Section 5.1.

Our Constructions of NonMemCPRSA and NonMemCPRSAPrm. In Figures 10 and 11 we give a
full description of the schemes.

The security of these schemes follow very closely the one of the corresponding membership
schemes given in Section 4. Below we give the Theorems that state their security. The proofs are
omitted since they are almost identical to the corresponding proofs for the membership schemes.

Theorem 5.1. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPCoprime, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption hold, and that H is collision resistant. If dµ+2 ≤ ν, λs+1 < µ and λs < log(N)/2
then NonMemCPRSA is knowledge-sound with partial opening of the set commitments CU .

Theorem 5.2. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPCoprime, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the Strong
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RSA assumption hold, and that H is collision resistant. If dµ+2 > ν, λs+1 < µ, λs < log(N)/2, d =
O(1) is a small constant, 2µ−ν ∈ negl(λ) and H is modeled as a random oracle, then NonMemCPRSA

is knowledge-sound with partial opening of the set commitments CU .

Theorem 5.3. Let PedCom, SetComRSA′ and IntCom be computationally binding commitments,
CPCoprime, CPmodEq and CPRange be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption hold. If dµ + 2 ≤ ν, λs + 1 < µ and λs < log(N)/2 then NonMemCPRSAPrm

is knowledge-sound with partial opening of the set commitments cP . Furthermore, if PedCom,
SetComRSA′ and IntCom are statistically hiding commitments, and CPCoprime, CPmodEq and CPRange

be zero-knowledge, then NonMemCPRSAPrm is zero-knowledge.

5.1 Proposed Instantiations of Protocol for RCoprime

Below we propose an interactive ZK protocol for RCoprime. As the relation indicates, we need to
prove knowledge of (D, b) such that DeAccb = G, for a committed e. Proving opening of Ce to e
is straightforward, so the main challenge is to prove the non-membership equation. For this the
prover should send D and Accb to the verifier so that she can check that DeAccb = G herself. Of
course, there are two caveats. The first one is that D and Accb cannot be sent in the plain as we
require zero-knowledge; we solve this by sending them in a hiding manner, i.e., Ca = DHra and
CB = AccbHρB for random values ra, ρB. Consequently, the verification now should work with the
hiding elements. Secondly, the verifier should be ensured that Accb is indeed an exponentiation of
Acc with a known (to the prover) value b, otherwise soundness can be broken. More specifically we
require extraction of b, ρB such that CB = AccbHρB . This is done using the partial opening of Acc
to the set represented by prod, i.e., the protocol assumes that Acc = Gprod is a common knowledge.

Below we present our protocol in full details.

1. Prover computes Ca = DHra , Cra = GraHr′a , CB = AccbHρB , CρB = GρBHρ′B and sends to the
verifier:

P → V : Ca, Cra , CB, CρB
2. Prover and Verifier perform a protocol for the relation:

R((Acc, Ce, Ca, Cra , CB, CρB ), (e, b, r, ra, r
′
a, ρB, ρ

′
B, β, δ)) = 1 iff

CB = AccbHρB ∧ Ce = GeHr ∧ Cra = GraHr′a

∧CρB = GρBHρ′B ∧ CeaCB = GHβ ∧ CeraCρB = GβHδ

Let λs be the size of the challenge space, λz be the statistical security parameter and µ the size
of e.

– Prover samples:

rb, re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
rρB , rr, rra , rr′a , rρ′B ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ, rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
and computes:
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α2 = AccrbHrρB , α3 = GreHrr , α4 = GrraH
rr′a ,

α5 = Crea H
rβ , α6 = CreraG

rβHrδ , α7 = GrρBH
rρ′

B

P → V : (α2, α3, α4, α5, α6, α7)

– Verifier samples the challenge c← {0, 1}λs
V → P : c

– Prover computes the response:

sb = rb − cb, se = re − ce
sρB = rρB − cρB, sr = rr − cr, sra = rra − cra, sr′a = rr′a − cr

′
a, sρ′B = rρ′B − cρ

′
B

sβ = rβ + c(era + ρB), sδ = rδ + c(er′a + ρ′B)

P → V : (sb, se, sρB , sr, sra , sr′a , sρ′B , sβ, sδ)

– Verifier checks if:

α2
?
= CcBAcc

sbHsρB , α3
?
= CceG

seHsr , α4
?
= CcraG

sraH
sr′a ,

α5
?
= Csea H

sβGcC−c
B , α6

?
= CseraH

sδGsβC−c
ρB
, α7

?
= CcρBG

sρBH
sρ′

B ,

se
?
∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]

Coprime protocol

On common reference string crs = (Z∗
N , G,H)

Prove(crs, (Ce,Acc), (e, r, (D, b))) :

1. samples ra, ra′ , ρB , ρB′ ←$ (−⌊N/4⌋ , ⌊N/4⌋) and computes Ca = DHra , Cra = GraHr′a , CB =

AccbHρB , CρB = GρBHρ′B .
2. Computes the non-interactive version of the above protocol

rb, re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
rρB , rr, rra , rr′a , rρ′B ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ , rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
α2 = AccrbHrρB , α3 = GreHrr , α4 = GrraH

rr′a , α5 = Cre
a Hrβ , α6 = Cre

raG
rβHrδ , α7 = GrρBH

rρ′
B

c← H(α2, α3, α4, α5, α6, α7, Ce, Acc)
sb = rb − cb, se = re − ce, sρB = rρB − cρB , sr = rr − cr, sra = rra − cra, sr′a = rr′a − crra , sρ′B =

rρ′
B
− cρ′B , sβ = rβ + c(era + ρB), sδ = rδ + c(er′a + ρ′B)

Returns π ← (Ca, Cra , CB , CρB , α2, α3, α4, α5, α6, α7, sb, se, srb , sρB , sr, sra , sr′a , sρ′B , sβ , sδ)

VerProof(crs, (Ce,Acc), π) : returns 1 iff α2 = Cc
BAcc

sbHsρB ∧ α3 = Cc
eG

seHsr ∧ α4 = Cc
raG

sraH
sr′a ∧ α5 =

Cse
a HsβGcC−c

B ∧ α6 = Cse
raH

sδGsβC−c
ρB ∧ α7 = Cc

ρBGsρBH
sρ′

B ∧ ∧se ∈
[
−2λ+λs+µ+1, 2λ+λs+µ+1

]

Fig. 12
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Correctness. Here we show the correctness of the protocol.

α2 = AccrbHrρB = Accsb+cbHsρB+cρB = AccsrbHsρB (AccbHρB )c

= AccsbHsρBCcB

α3 = GreHrr = Gse+ceHsr+cr = GseHsr(GeHr)c

= GseHsrCce

α4 = GrraH
rr′a = Gsra+craH

sr′a
+cr′a = GsraH

sr′a (GraHr′a)c

= GsraH
sr′aCcra

α5 = Crea H
rβ = Cse+cea Hsβ−c(era+ρB) = Csea H

sβ (DeHera)cH−c(era+ρB)

= Csea H
sβ (DeH−ρB )c = Csea H

sβ (GAcc−bH−ρB )c =

= Csea H
sβGcC−c

B

α6 = CreraG
rβHrδ = Cse+cera Gsβ−c(era+ρB)Hsδ−c(er′a+ρ′B)

= CseraG
sβHsδ(GraHr′a)ceG−c(era+ρB)H−c(er′a+ρ′B) = CseraG

sβHsδG−cρBH−cρ′B

= CseraG
sβHsδC−c

ρB

α7 = GrρBH
rρ′

B = GsρB+cρBH
sρ′

B
+cρ′B = GsρBH

sρ′
B (GρBHρ′B )c

= GsρBH
sρ′

BCcρB

Security. Security of our scheme holds with the partial opening of Acc, i.e., when it is ensured
outside the protocol that Acc is a valid commitment of the set. The proof is similar to the one of
theorem 4.6. The main technical difference is in the extraction of the opening of CB, because Acc is
not a random generator sampled at the setup phase. However, from partial opening we know that
it is Acc = Gprod for a random generator G. This will allow us to state an alternative to lemma 4.2
to justify the extraction of the opening of CB.

Theorem 5.4. Let Z∗
N be an RSA group where strong-RSA assumption holds, then the above pro-

tocol is honest-verifier zero knowledge protocol and, also, if λs + 1 < µ and λs < log(N)/2, is
knowledge sound with partial opening of Acc for RCoprime.

Proof Zero-Knowledge can be proven with standard techniques, similar to the ones in the proof
of theorem 4.6 and is therefore omitted.

For the knowledge soundness, let an adversary of the knowledge soundness A that is able to
convince the verifier V with a probability at least ϵ. We will construct an extractor E that extracts
the witness (e, r, r2, r3, β, δ). Using rewinding E gets two accepted transcripts

(Ca, Cra , CB, CρB , α2, α3, α4, α5, α6, α7, c, sb, se, sρB , sr, sra , sr′a , sρ′B , sβ, sδ)

(Ca, Cra , CB, CρB , α2, α3, α4, α5, α6, α7, c
′, s′b, s

′
e, s

′
ρB
, s′r, s

′
ra , s

′
r′a
, s′ρ′B

, s′β, s
′
δ)

on two different challenges c and c′. E aborts if it cannot get two such transcripts (abort1).
We denote ∆c := c′−c,∆sb := sb−s′b, ∆se := se−s′e, ∆sρB := sρB −s′ρB , ∆sr := sr−s′r, ∆sra :=

sra − s′ra , ∆sr′a := sr′a − s
′
r′a
, ∆sρ′B

:= sρ′B − s
′
ρ′B
, ∆sβ := sβ − s′β, ∆sδ := sδ − s′δ then

C∆cB = Acc∆sbH∆sρB ⇒ CB = ±Accb̂H ρ̂B (1)
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C∆ce = G∆seH∆sr ⇒ Ce = ±GêH r̂ (2)

C∆cra = G∆sraH
∆sr′a ⇒ Cra = ±Gr̂aH r̂′a (3)

1 = C∆sea H∆sβG−∆cC∆cB (4)

1 = C∆sera H∆sδG∆sβC∆cρB (5)

C∆cρB = G∆sρBH
∆sρ′

B ⇒ CρB = ±Gρ̂BH ρ̂′B (6)

define the (possibly rational) numbers b̂ := ∆sb
∆c , ê := ∆se

∆c , r̂ := ∆sr
∆c , r̂a := ∆sra

∆c , r̂′a :=
∆sr′a
∆c ,

ρ̂B :=
∆sρB
∆c , ρ̂′B :=

∆sρ′
B

∆c .
E aborts in case ∆c doesn’t divide: ∆se and ∆sr(abort 2a), ∆sra and ∆sr′a(abort 2b), ∆sρB and

∆sρ′B (abort 2c). And finally, E aborts if ∆c doesn’t divide ∆sb and ∆sρB (abort 2d). Therefore, after
these aborts didn’t happen we can infer the equivalent equalities on the right of equations 2,3,6
and 1.

If we replace equations 3 and 6 in equation 5 we get 1 =
(
±Gr̂aH r̂′a

)∆se
H∆sβG∆sβ

(
±Gρ̂BH ρ̂′B

)∆c
or 1 = (±1)∆se(±1)∆cGr̂a∆se+ρ̂B∆c+∆sβH r̂′a∆se+ρ̂

′
B∆c+∆sβ . Since G,H, 1 are quadratic residues then

(±1)∆se(±1)∆c = 1, hence 1 = Gr̂a∆se+ρ̂B∆c+∆sβH r̂′a∆se+ρ̂
′
B∆c+∆sβ . Then under the DLOG assump-

tion r̂a∆se + ρ̂B∆c+∆sβ = 0 = r̂′a∆se + ρ̂′B∆c+∆sβ, which gives us that

∆sβ = −r̂a∆se − ρ̂B∆c (7)

Finally, we replace equations 1 and 7 in equation 4 we get 1 = C∆sea H−r̂a∆se−ρ̂B∆cG−∆c
(
±Accb̂H ρ̂B

)∆c
or 1 = (±1)∆cC∆sea Accb̂∆cG−∆cH−r̂a∆se or

(
±Accb̂G−1

)∆c
=
(
C−1
a Hra

)∆se . But as noted above

∆c divides ∆se so ±Accb̂G−1 = ±
(
C−1
a Hra

)ê ⇒ Accb̂G−1 = ±
(
C−1
a H r̂a

)ê ⇒ (
Ca

H r̂a

)ê
Accb̂ = ±G.

We discern two cases:

–
(
Ca

H r̂a

)ê
Accb̂ = +G: Then E sets D̃ ← Ca

H r̂a
, ẽ← ê := ∆se

∆c , r̃ ← r̂ := ∆sr
∆c and b̃← b̂ := ∆sb

∆c

–
(
Ca

H r̂a

)ê
Accb̂ = −G: Then ê should be odd otherwise if ê = 2ρ then G = −

(
Ca

H r̂a

)2ρ
Accb̂ would be

a non-quadratic residue. So E sets D̃ ← − Ca

H r̂a
, ẽ ← ê := ∆se

∆c , r̃ ← r̂ := ∆sr
∆c and b̃ ← b̂ := ∆sb

∆c .

It is clear that D̃ẽAccb̃ = G.

Finally the E outputs (ẽ, r̃, D̃, b̃).
Now we show that the probability the extractor terminates with outputting a valid witness is

O(ϵ). If the extractor does not abort then it clearly outputs a valid witness (under the factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is able
to extract two accepting transcripts with probability O(ϵ) (for the probabilistic analysis we refer
to [DF02]). Thus Pr[abort1] = 1−O(ϵ). For the aborts abort 2a, abort 2b and abort 2c they happen
with negligible probability (≤ 2

1−2−λs+1Pr[B solves sRSA] each, for any PPT adversary B) under
the strong RSA assumption according to lemma 4.2. For abort 2d we cannot directly use the same
lemma as Acc is not a random generator that is part of the crs. However, with a similar argument and
using partial extractability we show below that the probability for this abort is the same. Putting
them together the probability of success of E is at least O(ϵ) − 8

1−2−λs+1Pr[B solves sRSA] =
O(ϵ)− negl(λs).
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For equation 1, we get from partial opening that Acc = GprodP , where P := {Hprime(u) | u ∈ U},
so

C∆cB = G
∏

u∈U Hprime(u)·∆sbH∆sρB

We use a similar to [DF02] argument to prove that ∆c divides ∆sb and ∆sρB under the strong
RSA assumption, given that λs + 1 < µ. Then

CB = ±Accb̂H ρ̂B (8)

Lemma 5.1. Let λs + 1 < µ and λs < log(N)/2 then ∆c divides ∆sb and ∆sρB under the strong
RSA assumption.

Proof An adversary against the strong RSA assumption receives H ∈ QRN and does the follow-
ing: sets G = Hτ for τ ←$ [0, 2λsN2] and sends (G,H) to the adversary A which outputs a proof
πCoprime. Then we rewind to get another successful proof π′Coprime and we use the extractor as above

to get C∆cB = G
∏

u∈U Hprime(u)·∆sbH∆sρB or

C∆cB = Hτ
∏

u∈U Hprime(u)·∆sb+∆sρB

We can exclude the case that ∆c divides
∏
u∈U Hprime(u), since ∆c is smaller than the domain of

the hash function Hprime, i.e. ∆c < Hprime(u) for each u ∈ U , which comes from λs+1 < µ. Assume
that ∆c ∤ ∆sb ∨∆c ∤ ∆sρB . we discern two cases:

– ∆c doesn’t divide τ
∏
u∈U Hprime(u)·∆sb+∆sρB : then gcd(∆c, τ

∏
u∈U Hprime(u)·∆sb+∆sρB ) = g

and there are χ, ψ such that χ ·∆c+ ψ ·
(
τ
∏
u∈U Hprime(u) ·∆sb +∆sρB

)
= g. Thus

Hg = Hχ·∆c+ψ·(τ
∏

u∈U Hprime(u)·∆sb+∆sρB ) = Hχ∆c · Cψ∆cB =
(
Hχ · CψB

)∆c
Since g divides ∆c we get H = ±

(
Hχ · CψB

)∆c
g
. However H is a quadratic residue (thus CB

is so), meaning that H =
(
Hχ · CψB

)∆c
g
, thus (Hχ · CψB,

∆c
g ) is a solution to the strong RSA

problem.

– ∆c divides τ
∏
u∈U Hprime(u) ·∆sb +∆sρB : let q

ℓ be the maximal q-power that divides ∆c (i.e.
qℓ is a factor of ∆) and doesn’t divide at least one of ∆sb and ∆sρB , where q is prime. Such a qℓ

should exist otherwise∆c would divide both∆sb and∆sρB , which we assumed it doesn’t. Notice
that if qℓ divided ∆sb then it would also divide ∆sρB , as q

ℓ divides τ
∏
u∈U Hprime(u)·∆sb+∆sρB

(from assumption), so qℓ ∤ ∆sb.

qℓ |

(
τ
∏
u∈U

Hprime(u) ·∆sb +∆sρB

)
⇒ τ

∏
u∈U

Hprime(u) ·∆sb +∆sρB = 0 (mod qℓ)

We can write τ := τ1 + τ2 ord(H). Notice that τ2 is information theoretically hidden to the
adversary and thus is uniformly random in [0, 2λsN2/ord(H)] ⊃ [0, 2λsN ] in its view.

⇒ τ1
∏
u∈U

Hprime(u) ·∆sb + τ2ord(H)
∏
u∈U

Hprime(u) ·∆sb +∆sρB = 0 (mod qℓ)
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⇒ τ2 ·∆sb =

(
−τ1

∏
u∈U

Hprime(u) ·∆sb −∆sρB

)
·

(∏
u∈U

Hprime(u)

)−1

· (ord(H))−1 (mod qℓ)

To see that
∏
u∈U Hprime(u) has an inverse modulo qℓ note that since ∆c < Hprime(u) implies

qℓ < Hprime(u), so gcd(
∏
u∈U Hprime(u), q

ℓ) = 1. For the inverse of ord(H) note that H ∈ QRN
so ord(H) ∈ {q1, q2, q1q2}, where N = (2q1 + 1)(2q2 + 1) is the RSA modulus. Then from
λs < log(N)/2 we get ∆c < q1, q2 and thus gcd(ord(H), qℓ) = 1.

As noted above, τ2 is uniformly random in a superset of [0, 2λsN ]. But qℓ < ∆c < N , so
2λsN is at least 2λs larger than qℓ. Thus τ2 is statistically close to uniform in {0, 1, . . . , qℓ − 1}
(with 2−λs error), Prτ2 [τ2 = C (mod qℓ)] ≈ 1

qℓ
. Furthermore, for any ∆sb, Prτ2 [τ2 · ∆sb = C

(mod qℓ)] ≈ 1
qℓ
·gcd(qℓ, ∆sb) ≤ 1

qℓ
·qℓ−1 (since qℓ doesn’t divide ∆sb). This is because for variable

τ2, the equation τ2∆sb = C (mod qℓ) has gcd(qℓ, ∆sb) solutions.

In conclusion, the probability that the above equation holds is at most 1
q + 2−λs ≤ 1

2 + 2−λs .

To summarize we showed that the probability to fall in the second case is at most 1
2 +2−λs . So with

probability to fall in the first case, and thus solve the strong RSA problem, is at least 1
2 − 2−λs . ⊓⊔

By a simple argument identical to the one of section 4.4, we can also conclude about the range of

the extracted ẽ: se
?
∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]
implies −2λz+λs+µ+2 ≤ ê ≤ 2λz+λs+µ+2. ⊓⊔

6 A CP-SNARK for Set Membership in Bilinear Groups

In this section we propose another CP-SNARK, called MemCPVC, for the set membership relation
that works in bilinear groups. Unlike the schemes of Section 4, the CP-SNARK given in this
section does not have short parameters; specifically it has a CRS linear in the size of the sets to
be committed. On the other hand, it enjoys other features that are not satisfied by our previous
schemes (nor by other schemes in the literature): first, it works solely in Bilinear Groups without
having to deal with RSA groups; second, it allows to commit the set in an hiding manner and, for
the sake of soundness, does not need to be opened by the adversary. This is possible thanks to the
fact that the set is committed in a way that (under a knowledge assumption) guarantees that the
prover knows the set.

More in detail, MemCPVC is a CP-SNARK for set membership where set elements are elements
from the large field F = Zq where q is the order of bilinear groups. So Delm = F. In terms of set it
supports all the subsets of 2Delm of cardinality bounded by n, Dset = {U ∈ 2Delm : #U ≤ n}, which
we denote by Sn, # symbol denotes the cardinality of a set. So U has elements in F and is a subset
of Sn.

6.1 Preliminaries and Building Blocks

Bilinear Groups. A bilinear group generator BG(1λ) outputs (q,G1,G2,GT , e), where G1, G2,
GT are additive groups of prime order q, and e : G1 × G2 → GT is an efficiently computable,
non-degenerate, bilinear map. For ease of exposition we present our results with Type-1 groups
where we assume that G1 = G2. Our results are under the (ℓ + 1)d-Strong Diffie Hellman and

43



the (d, ℓ)-Extended Power Knowledge of Exponent assumptions, for which we refer the reader to
[ZGK+17].

A Polynomial-Pedersen Type-Based Commitment Scheme. First we present PolyCom, a
type-based commitment scheme which was introduced in [CFQ19] extracted from the verifiable
polynomial delegation scheme of [ZGK+17]. The scheme has two types: one for ℓ-variate polynomials
f : Fℓ → F over F of variable degree at most d, and one which is a standard Pedersen commitment
for field elements. Let Wℓ,d be the set of all multisets of {1, . . . , ℓ} where the cardinality of each
element is at most d. The scheme is described in figure 13.

Setup(1λ, ℓ, d) : samples a bilinear group of order q, bp := (q, g,G1,GT , e) ← BilGen(1λ), samples

α, β, s1, . . . , sℓ ← F. Computes prk ←
{
g
∏

i∈W si : W ∈ Wℓ,d

}
and prkα ←

{
gα·

∏
i∈W si : W ∈ Wℓ,d

}
. Fi-

nally samples an sℓ+1 ←$ F and computes h← gsℓ+1 and hα.
Return ck← (bp, prk, prkα, gα, gβ , h, hα, hβ)

Commit(ck, tF[s], f) : parses ck := (bp, prk, prkα, gα, gβ , h, hα, hβ) and uses prk :=
{
g
∏

i∈W si : W ∈ Wℓ,d

}
and

prkα :=
{
gα·

∏
i∈W si : W ∈ Wℓ,d

}
to compute gf(s) and gα·f(s) respectively. Then samples a random rf ←$ F

and computes cf,1 ← gf(s)hrf and cf,2 ← gα·f(s)(hα)rf

Return (c, o)← ((cf,1, cf,2), rf )
Commit(ck, tq, y) : parses ck := (bp, prk, prkα, gα, gβ , h, hα, hβ) and samples r ←$ F. Computes cy,1 ← gyhr and

cy,2 ← (gβ)y(hβ)r and return (c, o) := ((cy,1, cy,2), r).

VerCommit(ck, tF[s], c, f, o) : parses ck := (bp, prk, prkα, gα, gβ , h, hα, hβ) and uses prk :=
{
g
∏

i∈W si : W ∈ Wℓ,d

}
to compute gf(s). Parses c := (cf,1, cf,2). Output 1 iff cf,1 = gf(s)ho ∧ e(cf,1, g

α) = e(cf,2, g).
VerCommit(ck, tq, c, y, o) : parses ck := (bp, prk, prkα, gα, gβ , h, hα, hβ). Parses c := (cy,1, cy,2) Output 1 iff cy,1 =

gyhr ∧ e(cy,1, g
β) = e(cy,2, g).

Fig. 13: PolyCom Commitment Scheme

Theorem 6.1. Under the (ℓ+1)d-Strong Diffie Hellman and the (d, ℓ)-Extended Power Knowledge
of Exponent assumptions PolyCom is an extractable trapdoor commitment scheme.

For the proof we refer to [CFQ19, ZGK+17].

Input-Hiding CP-SNARK for Polynomial Evaluation The main building block of our main
protocol is a CP-SNARK CPPolyEval for the type-based commitment PolyCom. Loosely speaking the
idea is to commit to the input t and the output y of a polynomial (with a Pedersen commitment),
further commit to the polynomial f itself (with a polynomial commitment) and then prove that the
opening of the committed polynomial evaluated on the opening of the committed input gives the
committed output. The relation of the protocol is RPolyEval((tk)k∈[ℓ], f, y)) = 1 iff f(t1, . . . , tℓ) = y:

R = (ck, RPolyEval) where R is over

(x,w) = ((x, c), (u, o, ω)) =
(
(∅, (cy, (ctk)k∈[ℓ], cf )) , ((y, (tk)k∈[ℓ], f), (ry, (rtk)k∈[ℓ], rf ),∅)

)
We will present a CP-SNARK for this relation, CPPolyEval, in section 6.3. CPPolyEval is based on
a similar protocol for polynomial evaluation given in [CFQ19] which was in turn based on the

44



verifiable polynomial delegation scheme of zk-vSQL [ZGK+17]. In those protocols, however, the
input t is public whereas in ours we can keep it private and committed.

Range Proof CP-NIZK. We make use of CPRange, a CP-NIZK for the following relation on
PedCom commitments c and two given integers A < B:

RRange ((ce, A,B), (e, rq)) = 1 iff c = gehrq ∧ A < eq < B

CPRange can have various instantiations such as Bulletproofs [BBB+18].

Multilinear Extensions of vectors. Let F be a field and n = 2ℓ. The multilinear extension of a
vector a = (a0, . . . , an−1) in F is a polynomial fa : Fℓ → F with variables x1, . . . , xℓ defined as

fa(x1, . . . , xℓ) =
n−1∑
i=0

ai ·
ℓ∏

k=1

selectik(xk)

where iℓiℓ−1 . . . i2i1 is the bit representation of i and selectik(xk) =

{
xk, if ik = 1

1− xk, if ik = 0

A property of Multilinear extension of a is that fa(i1, . . . , iℓ) = ai for each i ∈ [n].

The type-based commitment scheme of MemCPVC. We define the type-based commitment
CEdraxPed for our CP-SNARK MemCPVC. We recall we need a commitment that allows one to
commit to both elements and sets. We build this based on a hiding variant of EDRAX Vector
Commitment [CPZ18], which in turn relies on a polynomial commitment. Therefore, we use a
special case of PolyCom for polynomials of maximum variable degree d = 1. Let ℓ := ⌈log(n)⌉ and
2[ℓ] be the powerset of [ℓ] = {1, ..., ℓ} thenWℓ,1 = 2[ℓ]. Furthermore, for any n′ ≤ n let L : Sn′ → Fn′

be a function that maps a set of cardinality n′ to its corresponding vector according to an ordering.
The description of the scheme can be found in figure 14. Essentially the idea is to take the set, fix
some ordering so that we can encode it with a vector, and then commit to such vector using the
vector commitment of [CPZ18], which in turn commits to a vector by committing to its multilinear
extension polynomial.

Setup(1λ, ℓ) : executes ck← PolyCom.Setup(1λ, ℓ, 1)
Commit(ck, tU , U) : computes

#»
U ← L(U) and then the corresponding multilinear extension of

#»
U , f #»

U . Returns
(c, o)← PolyCom.Commit(ck, tF[s], f #»

S ).
Commit(ck, tq, y) : returns (c, o)← PolyCom.Commit(ck, tq, y)
VerCommit(ck, tU , c, U, o) : computes

#»
U ← L(U) and then the corresponding multilinear extension of

#»
U , f #»

U .
Outputs PolyCom.VerCommit(ck, tF[s], c, f #»

S , o).
VerCommit(ck, tq, c, y, o) : outputs PolyCom.VerCommit(ck, tq, c, y, o).

Fig. 14: CEdraxPed

6.2 CP-SNARK for Set membership using EDRAX Vector Commitment

Here we present a CP-SNARK for set membership that uses a Vector Commitment - an EDRAX
[CPZ18] variant - to commit to a set. The idea is to transform a set to a vector (using for example
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lexicographical order) and then commit to the vector with a vector commitment. Then the set
membership is proven with a zero knowledge proof of opening of the corresponding position of
the vector. However to preserve zero knowledge we additionally need to hide the position of the
element. For this we construct a zero knowledge proof of knowledge of an opening of a position
that does not give out the position. Finally, since the position is hidden we additionally need to
ensure that the prover is not cheating by providing a proof for a position that exceeds the length
of the vector. For this we, also, need a proof of range for the position, i.e. that i < n.

In this section the domain of the elements is a field, Delm := F, and the domain of the set is all
the subsets of 2Delm of cardinality bounded by n, Dset = {U ∈ 2Delm : #U ≤ n}, which we denote by
Sn (the # symbol denotes the cardinality of a set). So U has elements in F and is a subset of Sn.

The type-based commitment of our scheme is CEdraxPed (fig. 14) that is presented in the previous
section, and the relation is

R = (ck, RVCmem) where R is over

(x,w) = ((x, c), (u, o, ω)) =
((
#U, (cy, (cik)k∈[ℓ], cU )

)
,
(
(y, (ik)k∈[ℓ], U), (ry, (rik)k∈[ℓ], rU ),∅

))
RVCmem(#U,

(
y, (ik)k∈[ℓ], U

)
) = 1 iff y = L(U)[i] ∧ i < #U ∧ i =

∑ℓ
k=1 ik2

k−1

Note that in the above the prover should normally give exactly ℓ = ⌈log(#U)⌉ commitments.
In case ℓ < ⌈log(#U)⌉ the position is not fully hiding since it is implicit that i < 2ℓ−1 so the verifier
gets a partial information about the position.

For this we will compose a CP-SNARK CPPolyEval and a CP-NIZK CPRange for the relations
RPolyEval((ik)k∈[ℓ], f, y)) = 1 iff f(i1, . . . , iℓ) = y and RRange(T, (ik)k∈[ℓ]) = 1 iff i < T respectively
and the commitment scheme CEdraxPed. So CPVCmem is a conjuction of the former, where the
common commitments are (cik)k∈[ℓ].

CP-SNARK for RVCmem

KeyGen(ck, RVCmem) : computes (ek1, vk1) ← CPPolyEval.KeyGen(ck, RPolyEval) and (ek2, vk2) ←
CPRange.KeyGen(ck, RRange)
Return (ek, vk)← ((ek1, ek2) , (vk1, vk2))

Prove(ek,#U, (cy, (cik )k∈[ℓ], cU ), (y, (ik)k∈[ℓ], U), (ry, (rik )k∈[ℓ], rU ),∅) : parses ek := (ek1, ek2) and com-
putes π1 ← CPPolyEval.Prove

(
ek1,∅, (cy, (cik )k∈[ℓ]), cU ), (y, (ik)k∈[ℓ], U), (ry, (rik )k∈[ℓ], rU ),∅

)
. Parses ck :=

(bp, prk, prkα, gα, gβ , h, hα, hβ) and further bp := (q, g,G1,GT , e) to get (g, h), then computes i ←∑ℓ
k=1 ik2

k−1 and ri ←
∑ℓ

k=1 rik2
k−1 and the corresponding commitment ci ← gihri . Notice that ci is

a commitment to i with o = ri. Computes π2 ← CPRange.Prove (ek1, (1,#U), ci, i, ri,∅)
Return π = (π1, π2)

VerProof(vk,#U, (cy, (cik )k∈[ℓ], cU ), π) : parses vk := (vk1, vk2) and π := (π1, π2). Then computes homomorhi-

cally ci,1 ←
∏ℓ

k=1(cik,1)
2k−1

and ci,2 ←
∏ℓ

k=1(cik,2)
2k−1

.
Return b← CPPolyEval.VerProof(vk1,∅, (cy, (cik )k∈[ℓ]), cU ), π1) ∧ CPRange.VerProof(vk2, (1,#U), ci,∅)

Fig. 15: MemCPVC

Theorem 6.2. Let CPPolyEval and CPRange be zero knowledge CP-SNARKs for the relations RPolyEval

and RRange respectively under the commitment scheme PolyCom then the above scheme is a zero
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knowledge CP-SNARK for the relation RVCmem and the commitment scheme CEdraxPed. Further it
is a CP-SNARK for Rmem under the same commitment scheme.

Proof Zero Knowledge comes directly from the zero knowledge of CPPolyEval and CPPolyEval.

For Knowledge Soundness, let an adversary A(R, crs, auxR, auxZ) outputting (x, c) :=
(
#U,

(cy, (cik)k∈[ℓ], cU )
)
and π such that VerProof(vk,#U, (cy, (cik)k∈[ℓ], cU ), π) = 1. We will construct an

extractor E that on input (R, crs, auxR, auxZ) outputs a valid witness w :=
(
(y, (ik)k∈[ℓ], U), (ry, (rik)k∈[ℓ],

rU ),∅
)
.

E uses the extractors of EPolyEval, ERange of CPPolyEval and CPRange. EPolyEval outputs (y, (ik)k∈[ℓ], f),
(ry, (rik)k∈[ℓ], rf ) such that f(i1, . . . , iℓ) = y ∧ PolyCom.VerCommit(ck, tF[s], cU , f, rf ) = 1∧
PolyCom.VerCommit(ck, tq, cy, y, ry) = 1

∧ℓ
k=1 PolyCom.VerCommit(ck, tq, cik , ik, rik) = 1. Further,

from the Extended Power Knowledge of Exponent assumption we know that f is an ℓ-variate
polynomial of maximum variable degree 1. Therefore it corresponds to a multilinear extension
of a unique vector

#»

U , which is efficiently computable. The extractor computes the vector
#»

U
from f and the corresponding set U . It is clear that, since f is the multilinear extension of
the U and PolyCom.VerCommit(ck, tF[s], cU , f, rf ) = 1, CEdraxPed.VerCommit(ck, tU , cU , U, rf ) = 1.

CEdraxPed.VerCommit(ck, tq, cy, y, ry) = 1
∧ℓ
k=1 CEdraxPed.VerCommit(ck, tq, cik , ik, rik) = 1 is straight-

forward from the definition of the CEdraxPed commitment scheme for field elements type.

E uses the extractor of the commitment scheme PolyCom, EPolyCom, that outputs for each k =
1, . . . , ℓ ik, rik such that cik,1 = gikhrik∧e(cik,1, gβ) = e(cik,2, g) or CEdraxPed.VerCommit(ck, tq, cik , rik) =
1. ERange outputs (i, ri) such that i < #U∧PolyCom.VerCommit(ck, tq, ci, i, ri) = 1 which means that

ci,1 = gihri . Since the proof π is verified then ci,1 =
∏ℓ
k=1(cik,1)

2k−1
or gihri = g

∑ℓ
k=1 ik2

k−1
h
∑ℓ

k=1 rik2
k−1

.

From the binding property of the Pedersen commitment we get that i =
∑ℓ

k=1 ik2
k−1 and ri =∑ℓ

k=1 rik2
k−1.

Putting them together the extractor outputs
(
(y, (ik)k∈[ℓ], U), (ry, (rik)k∈[ℓ], rf ),∅

)
such that

CEdraxPed.VerCommit(ck, tq, cy, ry) = 1
∧ℓ
i=1 CEdraxPed.VerCommit(ck, tq, cik , rik) = 1∧

CEdraxPed.VerCommit(ck, tU , cf , U, rf ) = 1 and further y = L(U)[i] ∧ i < #U ∧ i =
∑ℓ

k=1 ik2
k−1. It

is straightforward that y = L(U)[i]∧ i < #U means that y ∈ U which leads to Rmem(y, U) = 1. ⊓⊔

6.3 Input-hiding CP-SNARKs for Polynomial Evaluation

Here, we present an instantiation of a a zero knowledge CP-SNARK for the relation RPolyEval

presented in section 6.1.

To give an intuition of the protocol we recall that zk-vSQL uses lemma 6.1 to prove the correct
evaluation of the polynomial, that we recall below.

Lemma 6.1 ([PST13]). Let f : Fℓ → F be a polynomial of variable degree d. For all t :=
(t1, . . . , tℓ) ∈ Fℓ there exist efficiently computable polynomials q1, . . . , qℓ such that: f(z) − f(t) =∑ℓ

i=1(zi − ti)qi(z).

With this one can verify in time linear in the number of variables that f(t) = y by checking
iff gf(t)g−y =

∏ℓ
i=1 e(g

si , wi), given the values gf(s), {gsi}ℓi=1, {wi = gqi(s)}ℓi=1 We are interested in
the committed values of f, y = f(t) and t, cf , cy, ct respectively, that hide them. For this we will
use instead the equation below for verification:
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(f(z) + rfzℓ+1)− (f(t) + ryzℓ+1) =

ℓ∑
k=1

(zk − tk)qk(z) + zℓ+1(rf − ry) =

ℓ∑
k=1

(zk − tk)(qk(z) + rkzℓ+1) + zℓ+1

(
rf − ry −

ℓ∑
k=1

rk(zk − tk)

)
=

ℓ∑
k=1

[zk − (tk + rtkzℓ+1)] · [qk(z) + rkzℓ+1]+

+ zℓ+1

(
rf − ry −

ℓ∑
k=1

rk(zk − tk) +
ℓ∑

k=1

rtk [qk(z) + rkzℓ+1]

)

The equation indicates us how to construct the protocol which we present in figure 16.

Theorem 6.3. Under the (ℓ+ 1)d-Strong Diffie Hellmann and the (d, ℓ)-Extended Power Knowl-
edge of Exponent assumptions, CPPolyEval is a Knowledge Extractable CP-SNARK for the relation
RPolyEval and the commitment scheme PolyCom.

Proof Below is a proof sketch, which however is quite similar to the one of CPpoly in [CFQ19].

Knowledge Soundness. The proof comes directly from Evaluation Extractability of vSQL (see
[ZGK+17]) with the difference that here tk for each k ∈ [ℓ] should also be extracted. However, its
extraction is straightforward from the extractability of the commitment scheme.

Zero-Knowledge. Consider the following proof simulator algorithm

Sprv(td, cf , (ctk)k∈[ℓ], cy):

– Use td to get α and sℓ+1.

– For k = 1 to ℓ, sample ξk ←$ Zq and sets wk ← gξk .

– Compute wℓ+1 such that e
(
cf,1 · c−1

y,1, g
)
=
∏ℓ
k=1 e

(
gskc−1

tk,1
, wk

)
· e (gsℓ+1 , wℓ+1) holds. That is:

wℓ+1 ←
(
cf · c−1

y ·
∏ℓ
k=1 (g

−skctk,1)
ξk
)s−1

ℓ+1

– Use α to compute w′
k = wak for all k ∈ [ℓ+ 1]

– Return {w1, ..., wℓ, wℓ+1, w
′
1, . . . , w

′
ℓ, w

′
ℓ+1}

It is straightforward to check that proofs created by Sprv are identically distributed to the ones
returned by CPPolyEval.Prove. (wk)k∈[ℓ]’s are uniformely distributed in both cases. For wℓ+1 there is
a function W such that wℓ+1 =W (cf,1, cy,1, vk, (ctk,1)k∈[ℓ], (wk)k∈[ℓ]) in both cases. Since the inputs
are either identical or identically distributed, the outputs wℓ+1 are also identically distributed in
the case of of Sprv and CPPolyEval.Prove. ⊓⊔

48



CP-SNARK for RPolyEval

KeyGen(ck, RPolyEval) : parses ck := (bp, prk, prkα, gα, gβ , h, hα, hβ) and computes vrk← {gs1 , . . . , gsℓ}
Return (ek, vk)←

( (
bp, prk, prkα, gα, gβ , h, hα, hβ

)
,
(
bp, vrk, gα, gβ , h

) )
Prove(ek,∅, (cy, (ctk )k∈[ℓ], cf ), (y, (tk)k∈[ℓ], f), (ry, (rtk )k∈[ℓ], rf ),∅) : let ck := (bp, prk, prkα, gα, gβ , h, hα, hβ) :=(

(q, g,G1,GT , e),
{
g
∏

i∈W si : W ∈ Wℓ,d

}
,
{
gα·

∏
i∈W si : W ∈ Wℓ,d

}
, gα, gβ , gsℓ+1 , gαsℓ+1 , gβsℓ+1

)
and

1. Sample r1, ..., rℓ ← F and compute q1, . . . , qℓ such that

(f(z) + rfzℓ+1)− (f(t) + ryzℓ+1) =

ℓ∑
k=1

[zk − (tk + rtkzℓ+1)] · [qk(z) + rkzℓ+1] + zℓ+1

(
rf − ry −

ℓ∑
k=1

rk(zk − tk) +

ℓ∑
k=1

rtk [qk(z) + rkzℓ+1]

)

By using prk :=
{
g
∏

i∈W si : W ∈ Wℓ,d

}
and h compute wk = gqk(s)+rksℓ+1 for each k = 1, . . . , ℓ and

wℓ+1 = grf−ry−
∑ℓ

k=1 rk(sk−tk)+
∑ℓ

k=1 rtk [qk(s)+rksℓ+1]

2. By using prkα :=
{
gα·

∏
i∈W si : W ∈ Wℓ,d

}
and hα compute w′

k = gα·(qk(s)+rksℓ+1) for each k = 1, . . . , ℓ

and w′
ℓ+1 = gα·(rf−ry−

∑ℓ
k=1 rk(sk−tk)+

∑ℓ
k=1 rtk [qk(s)+rksℓ+1])

Return π = {w1, ..., wℓ, wℓ+1, w
′
1, ..., w

′
ℓ, w

′
ℓ+1}

VerProof(vk,∅, (cy, (ctk )k∈[ℓ], cf ), π) : parse π := {w1, ..., wℓ, wℓ+1, w
′
1, ..., w

′
ℓ, w

′
ℓ+1}, vk :=

(
bp, vrk, gα, gβ , h

)
and cy := (cy,1, cy,2), ctk := (ctk,1, ctk,2) for each k = 1, . . . , ℓ] and cf := (cf,1, cf,2)
Return 1 iff

1. e(cy,1, g
β) = e(cy,2, g)

2. e(cf,1, g
α) = e(cf,2, g)

3. e(ctk,1, g
β) = e(ctk,2, g) for all k = 1, ..., ℓ

4. e(wk, g
α) = e(w′

k, g) for all k = 1, ..., ℓ, ℓ+ 1

5. e
(
cf · c−1

y , g
)
=
∏ℓ

k=1 e
(
gskc−1

tk
, wk

)
· e (gsℓ+1 , wℓ+1)

Fig. 16
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7 Experimental Evaluation

We implemented all our RSA-based CP-SNARKs for set-membership and non-membership as a
Rust library cpsnarks-set[cps]. Our library is implemented in a modular fashion such that any
elliptic curve from libzexe [SCI] and Ristretto from curve25519-dalek [LdV] can be used. In
particular, this means that our CP-SNARKs can be easily (and efficiently) used in combination
with other CP-SNARKs implemented over these elliptic curves, such as Bulletproofs [BBB+18] and
LegoGroth1619 [CFQ19].

In this section, we provide details on the implementation, we present experimental results to
validate the concrete efficiency of our solutions and we compare with existing approaches.

7.1 Implementation of cpsnarks-set

Our cpsnarks-set library includes implementations of the schemes MemCPRSA, MemCPRSAPrm,
NonMemCPRSA, and NonMemCPRSAPrm. In all the schemes, the RSA accumulator implementation is
a modification of accumulator [Cam19], and the internal protocols are implemented as interactive
and are made non-interactive with the use of Merlin [Hen19]. For MemCPRSA and NonMemCPRSA

– where we recall set elements can be binary strings and the protocol encodes them into primes – we
used our implementation of LegoGroth16 [leg] on top of libzexe to provide efficient instantiations
of CPHashEq. For MemCPRSAPrm and NonMemCPRSAPrm – where set elements are already primes and
one needs to verify a claim about ranges – we implemented two instantiations of CPRange: one based
on LegoGroth16 and one based on Bulletproofs.

Each of the protocols Root,Coprime,modEq,HashEq and the different instantiations of Range
are implemented individually and are further composed into the higher level membership and
non-membership protocols. The higher level protocols are modular: they can use any hash-to-
prime proof—or range proof in the prime elements case—as long as it implements the appropriate
interface.

We benchmark the implementation on a desktop machine having a 3.8 Ghz 6-Core Intel Core
i7 processor and 32GB RAM. The benchmarks code is available on [cps] and [lib].

7.2 CP-SNARKs for Set Membership

For the problem of set membership, we tested the following instantiations of our solutions using
the RSA-2048 [rsa] modulus: 1. MemCPRSA with LegoGroth16 for CPHashEq and a Blake2s-based
hash-to-prime mapping to 252-bit primes (MemCPLG

RSA);
2. MemCPRSAPrm with LegoGroth16 on the BLS12-381 curve for CPRange (MemCPLG

RSAPrm), and:
(a) 252-bit primes, (b) 63-bit primes; 3. MemCPRSAPrm with Bulletproofs on the Ristretto curve for
CPRange (MemCPBP

RSAPrm), and: (a) 250-bit primes; (b) 62-bit primes. The results of our experiments
are summarized in Figure 17.

Comparison with Merkle-tree approach. We compare our solutions against one based on
proving a valid opening of a Merkle Tree in a SNARK. Specifically, we ran experiments for Merkle
trees with maximum capacities of {28, 216, 232, 264} elements, using the Groth16 SNARK [Gro16]
over the BLS12-381 curve, with the following hash functions: 1. Pedersen Hash over the Jubjub
curve, a curve defined over the scalar field of the BLS12-381G1 group.

20 2. SHA256. The Merkle tree

19 We implemented this scheme in Rust on top of libzexe as part of this work [leg].
20 This is the Bowe-Hopwood variant of a Pedersen hash, as described in [HBHW16].
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Fig. 17: Set Membership asymptotic complexity and benchmarks – Our RSA schemes (|x|: size of
set elements). All the metrics of our protocols are independent of the number of elements in the
set.

Solution Ptime Vtime |crs| |Π|
MemCPLG

RSA O(|x| log |x|+ λ) O(|x|+ λ) O(|x|+ λ) O(|x|+ λ)

MemCPLG
RSAPrm O(|x| log |x|+ λ) O(|x|+ λ) O(|x|+ λ) O(|x|+ λ)

MemCPBP
RSAPrm O(|x|+ λ) O(|x|+ λ) O(λ) O(|x|+ λ)

Solution |x| Ptime Vtime |crs| |Π| Pmemory

MemCPLG
RSA 252 309.10 31.44 6852 4.4 45

MemCPLG
RSAPrm 252 48.14 29.10 86 4.4 5

MemCPLG
RSAPrm 63 43.91 27.492 86 4.4 5

MemCPBP
RSAPrm 250 62.69 25.46 8 5.0 5

MemCPBP
RSAPrm 62 38.04 21.97 2 5.0 5

bits ms ms KB KB MB

Fig. 18: Set membership asymptotic complexity and benchmarks – Merkle trees through [Gro16]
zkSNARK (n: number of elements in the set).

Depth Hash Ptime Vtime |crs| |Π|
logn Pedersen O(λ log λ logn log logn) O(λ) O(λ logn) O(λ)

logn SHA256 O(λ log λ logn log logn) O(λ) O(λ logn) O(λ)

Depth Hash Ptime Vtime |crs| |Π| Pmemory

8 Pedersen 216 2.8 2512 0.192 22
16 Pedersen 356 2.8 5023 0.192 35
32 Pedersen 607 2.8 10047 0.192 49
64 Pedersen 1135 2.8 20094 0.192 79

8 SHA256 1333 2.8 41276 0.192 93
16 SHA256 2563 2.8 82430 0.192 196
32 SHA256 5066 2.8 164737 0.192 423
64 SHA256 10005 2.8 329352 0.192 913

ms ms KB KB MB

benchmark code is based on the production Zcash code from [Zca]. The results of the experiments
are in Fig. 18. We recall that proofs in this solution are of 192 bytes.

As one can see from the results, our solutions are highly attractive in terms of proving time
and CRS size. For instance, compared to an optimized solution based on a Pedersen-Hash-based
Merkle tree containing up to 232 elements, our MemCPRSA scheme for arbitrary elements enjoys a
sub-second proof generation on a commodity laptop, it is more than twice faster and requires a
shorter CRS. A price to pay in our solution is a larger proof size (4.4 kilobytes vs. 192 bytes) and
higher verification time (31ms vs. 2.8ms). Nevertheless, these values stay within practical reach.
When comparing to less optimized solutions based on Merkle trees (e.g., using SHA256, something
common in lack of specialized elliptic curves), we achieve up to 32× faster proving time and a 48×
shorter CRS.

In addition to the aforementioned gains in prover efficiency, our solutions can benefit from
the use of RSA accumulators to succinctly represent sets in comparison to using Merkle trees. In
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Fig. 19: Set non-membership benchmarks – Our RSA schemes (|x|: size of set elements)

Solution Ptime Vtime |crs| |Π|
NMemLG

RSA O(|x| log |x|+ λ) O(|x|+ λ) O(|x|+ λ) O(|x|+ λ)

NMemLG
RSAPrm O(|x| log |x|+ λ) O(|x|+ λ) O(|x|+ λ) O(|x|+ λ)

NMemBP
RSAPrm O(|x|+ λ) O(|x|+ λ) O(λ) O(|x|+ λ)

Solution |x| Ptime Vtime |crs| |Π| Pmemory

NMemLG
RSA 252 324.90 40.37 6852 6.1 45

NMemLG
RSAPrm 252 63.39 38.12 86 6.1 5

NMemBP
RSAPrm 250 79.46 34.58 8 6.6 5

bits ms ms KB KB MB

particular, the algebraic properties of RSA accumulators yield simple and efficient methods to add
(resp. delete) elements to (resp. from) the set.

For instance, we can insert an element in an RSA accumulator in O(1) time and space, and with
the same complexity we can update each existing membership and non-membership witness. This
means that, once having an updated witness, our zero-knowledge proofs can also be recomputed
in O(1) time and space. With respect to deleting elements, this can also be done in constant time
and space by a party who holds a valid membership witness.

Insertion and deletion in ordinary Merkle Trees may require O(n) time by rebuilding the tree
from scratch from the whole set (thus also requiring O(n) storage). A more efficient method for
insertion requires clients to store a “frontier” of size Θ(log(n)) of internal hashes which lowers
the time complexity to O(log(n)). One can also lower deletion times to O(log(n)) by using other
techniques, e.g., [Ray19], but at the expense of keeping O(n) storage. Updating a Sparse Merkle
Trees requires O(n) time and space during updates. Inserting and deleting elements in Interval
Merkle trees requires keeping the elements contiguous and sorted. This brings the time/storage
complexity to O(n) for insertion and deletion, since we may need to rebuild substantial portions of
the tree from scratch.

7.3 CP-SNARKs for Set Non-Membership

For set non-membership, we tested the following instantiations of our solutions using the RSA-
2048 [rsa] modulus: 1. NonMemCPRSA with LegoGroth16 for CPHashEq and a Blake2s-based hash–
to-prime mapping yielding primes of 252 bits; 2. NonMemCPRSAPrm with LegoGroth16 on the
BLS12-381 curve for CPRange, and 252-bit primes; 3. NonMemCPRSAPrm with Bulletproofs on the
Ristretto curve for CPRange, and 250-bit primes.

The results of our experiments are summarized in Figure 19.

Comparison to other approaches for non-membership Non-membership proofs are usually
a more computationally intensive task in SNARKs. There are two common approaches to deal with
this problem using Merkle trees: sparse Merkle trees and interval Merkle trees. We did not test
these solutions experimentally. However, as we detail below, creating a zero-knowledge proof for
one of these solutions would not be more efficient than proving one Merkle tree path. Therefore,
our solutions for non-membership achieve at least the same improvement as in the previous section.

Sparse Merkle trees for a set S are built through an ordinary Merkle Tree T on the universe U
of elements (we assume there is some conventional way to index the elements). For each element x
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not in the set S we store a dummy element in T corresponding to the index of x. For each element
in the S we store that particular element at the corresponding index. In order to prove that x ̸∈ S
we provide an opening path of a Merkle tree whose leaf is a dummy value at the right index.
Although there are efficient techniques to build or update a sparse Merkle Tree [LK12, DPP16], the
main drawback with this technique is the opening size, which is Θ(log(|U|)) instead of Θ(log(|S|)).
If we perform the opening inside a SNARK, we have to pay a higher proving time. For example,
consider if we use SHA256 to index elements in a set with a roughly 32 bit-representations. This
would require a tree of size 2256 which typically implies at least a 256/32 = 8× slowdown.

Interval Merkle trees work by sorting the leaves on each insertion and storing a pair of adjacent
elements in each leaf, signifying intervals that don’t contain elements in the set. The depth of an
Interval Merkle Tree is the same as in an ordinary Merkle Tree. Nonetheless it has the following
performance overheads: (i) opening requires two opening paths instead of only one (typically dou-
bling the proving time); (ii) insertion requires sorting all leaves, which may be computationally
demanding if the set is large.

Unlike either of the approaches above, the size of the set does not impact proving time in
our constructions. Moreover, both insertions and non-membership witness updates are efficient to
compute.

7.4 Improving Running Times: from Statistical ZK to Computational ZK

The schemes described in this section use statistically hiding commitments to achieve statistical
zero-knowledge. We can improve our running times switching to computationally hiding commit-
ments and thus computational zero-knowledge. This optimization has concrete benefits as it can
cut running times by approximately half. Specifically, it reduces by 50%:

– verification time in constructionsMemCPRSA,MemCPRSAPrm, NonMemCPRSA and NonMemCPRSAPrm;

– proving time in constructions MemCPRSAPrm and NonMemCPRSAPrm.

The results of our experiments for membership and non-membership are summarized in Figures
20 and 21 respectively.

Here are more details about the optimization. Our protocols, as originally described, make use
of the integer commitment of Damgard and Fujisaki [DF02] as described in section 4.1. In this
scheme we hide the value by uniformly sampling an integer r from a large set. Its size should be
at least around the order of the group; for RSA groups, for example, this is equivalent to sampling
r ←$ [1, N/2]. Performing exponentiations with such a large integer—on average N/4 in the RSA
case— is expensive.

To overcome this problem, we propose a computationally hiding integer commitment variant
of the above, in which r is picked from a smaller set; we sample it as r ←$ [1, 22λ]. The scheme is
hiding under the assumption that {Gr1 : r1 ←$ [1, N/2]} and {Gr2 : r2 ←$ [1, 22λ]} are computa-
tionally indistinguishable 21. This assumption can be justified in the generic group model. Similar
assumption related to non-uniform distributions over [1, ord(G)] have been proven secure in GGM
by Bartusek et. al. [BMZ19]. This approach makes exponentiations by r faster on average since
N > 22λ.

21 Due to generic lower bounds on the DLOG problem [Sho97], [1, 2λ] would not be enough.
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Fig. 20: Set Membership benchmarks – Our RSA schemes with the computational ZK optimization
(|x|: size of set elements)

Solution |x| Ptime Vtime |crs| |Π|
MemCPLG

RSA 252 292 17.6 6852 3

MemCPLG
RSAPrm 252 26.11 15.12 86 3

MemCPLG
RSAPrm 63 21.95 13.61 86 3

MemCPBP
RSAPrm 250 41.53 11.21 8 3.6

MemCPBP
RSAPrm 62 16.26 7.83 2 3.6

bits ms ms KB KB

Fig. 21: Set non-membership benchmarks – Our RSA schemes with the computational ZK opti-
mization (|x|: size of set elements)

Solution |x| Ptime Vtime |crs| |Π|
NMemLG

RSA 252 301 22.41 6852 4.2

NMemLG
RSAPrm 252 30.26 17.99 86 4.2

NMemBP
RSAPrm 250 45.23 14.33 8 4.7

bits ms ms KB KB

8 Applications

In this section, we discuss applications of our solutions for proving set (non-)membership in a
succinct and modular way.

As one can note, in our solutions the set of committed elements is public and not hidden to the
verifier. Nevertheless, our solutions can still capture some applications in which the “actual” data in
the set is kept private. This is for example the case of anonymous cryptocurrencies like Zerocash. In
this scenario, the public set of elements to be accumulated, U , is derived by creating a commitment
to the underlying data, X, e.g., u = COMM(x). To support this setting, we can use our solutions
for arbitrary elements (so supporting virtually any commitment scheme). Interestingly, though, we
can also use our (more efficient) solution for sets of primes if commitments are prime numbers. This
can be done by using for example the hash-to-prime method described in Section 4.1 or another
method for Pedersen commitments that we explain below in the context of Zerocash.

We now discuss concrete applications for which our constructions are suitable, both for set-
membership and set non-membership. In particular these are applications in which: (1) the prover
time must be small; (2) the size of the state (i.e.: the accumulator value and commitments) must be
small (potentially constant); (3) the verifier time should be small; and (4) the time to update the
accumulator—adding or deleting an element—should be fast. As we discuss below, our RSA-based
constructions are suitable candidate for settings with these constraints.

Zerocash. Zerocash [BCG+14] is a UTXO-type (Unspent Transaction Output) cryptocurrency
protocol which extends Bitcoin with privacy-preserving (shielded) transactions. When performing
a shielded transaction users need to prove they are spending an output note from a token they had
previously received. Users concerned with privacy should not reveal which note they are spending,
else their new transaction could be linked to the original note that contained the note commitment.
This would reveal information both to the public and the sender of the initial transaction, and hence
partially reveal the transaction graph. In order to keep transactions unlinkable, the protocol uses
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zkSNARKs to prove a set membership relation, namely that a note commitment is in a publicly
known set of “usable” note commitments.

Zcash is a full-fledged digital currency using Zerocash as the underlying protocol. In its current
deployment, Sapling [HBHW16], it employs Pedersen commitments of the notes and makes a zero-
knowledge set membership proof of these commitments using a Pedersen-Hash-based Merkle tree
approach. This is the part of the protocol that can be replaced by one of our RSA-based solutions
in order to obtain a speedup in proving time. In particular, we could slightly modify the note
commitments in order to enable the use of our scheme MemCPRSAPrm for sets of prime numbers,
which gives the best efficiency. We can proceed as follows. Let us recall that the note commitments
are represented by their x coordinates in the underlying elliptic curve group. We can then modify
them so that the sender chooses a blinding factor such that the commitment representation of
a note is a prime number, and we can add a consensus rule that enforces this check. With this
change, we can achieve a solution that is significantly more efficient than that currently used in
Zcash. Currently Zcash uses a Merkle Tree whose depth is 32. In this setting, we would be able to
reduce proving time of set-membership from 1.12s to 54.51ms, trading it for larger proof sizes. We
note that in this application, the set-membership proof about u ∈ S is accompanied by another
predicate P (u). In the proof statement of the Zcash protocol, proving that P (u) is satisfied takes
considerably less time than the membership proof, hence this is why our solution would improve the
overall proving time considerably, albeit the proof having more components. Another interesting
comment is that our solution significantly reduces the size of the circuit, hence the need of a succinct
proof system is reduced and one may even consider instantiations with other proof systems, such
as Bulletproofs, that would offer transparency at the price of larger proofs and verification time.

Asset Governance. In the context of blockchain-based asset transfers protocols, a governance
system must be established to determine who can create new assets. In many cases these assets
must be publicly traceable (i.e., their total supply must be public), yet in others, where the assets
can be issued privately, validators still need to verify that the assets were issued by an authorized
issuer. Specifically, there may be a public set of rules, X (where a rule = (pk, [a, b])), defining
which entities (public keys) are allowed to issue which assets (defined by a range of asset types),
forming an “issuance whitelist”. When one of those issuers wants to issue a new asset, they need to
prove (in zero knowledge) that their public key belongs to the issuance whitelist, which entails set
membership, as well as prove that the asset type they issued is within the allowed range of asset
types (as defined in the original rule). In this case, the accumulated set of rules is public to all,
and this public information may also include a mapping between rules and prime numbers. Our
RSA-based scheme for sets of primes (Section 4.3) can suit this scenario.

Anonymous Broadcast. In a peer-to-peer setting, anonymous broadcast allows users in a group
to broadcast a message without revealing their identity. They can only broadcast once on each
topic. One approach described in [sem19] works by asking users to put down a deposit which they
will lose if they try and broadcast multiple messages on the same topic. In this approach users
joining a group deposit their collateral in a smart contract. Whoever has the private key used by
the client for the deposit can claim the sum. The approach in [sem19] makes sure that the key is
leaked if one broadcasts more than one message. To enforce this leakage we require that at broadcast
time users (i) derive an encryption key K that depends on their private key and the topic, and (ii)
compute an encryption of the private key by the newly derived K. Then the users publish both the
ciphertext and a secret share of the encryption key K, and prove (in zero-knowledge) their public
key is part of the group and that (i) and (ii) were performed correctly. Which specific share needs
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to be revealed depends on the broadcasted message, thus making it likely two different shares will
be leaked for two different messages.

This way, broadcasting multiple messages on the same topic reveals the user’s private key,
allowing other users to remove them from the group by calling a function in the smart contract
and receive part of the deposit.

A particularly interesting use case for anonymous broadcast is that in which the group is com-
prised of validators participating in a consensus algorithm, who would like to broadcast messages
without exposing their node’s identity and thus prevent targeted DoS attacks. This setting requires
proofs to be computed extremely fast while verification performance requirements are less strict.
Our MemCPRSAPrm can satisfy these performance requirements trading for a modest increase in
proof size.

Financial Identities. In the financial world, regulations establish that financial organizations
must know who their costumers are [FIN]. This is called a KYC check and allows to reduce the risk
of fraud. Some common practices for KYC often undermines user privacy as they involve collecting
a lot of personal information on them. Zero-knowledge proofs allow for an alternative approach.
In modern systems, one can expect that individuals or companies will be able to prove that they
belong to a set of accepted or legitimate identities. A privacy-preserving KYC check would then be
reduced to generating a set-membership proof in zero-knowledge. Often some further information
is required, e.g. the credit score of the individual. In such cases our CP-SNARK for set membership
can be combined with one proving an additional predicate P (id) on the identity in a modular
fashion.

Regarding applications of non-membership proofs, we expand on the well-known concept of
“blacklists”, where identities (or credentials) must be shown to not belong to a certain set of iden-
tities (or credentials). As an example, in the context of financial identities, anti-money laundering
regulations (AML) [SC18] require customers not to be in a list of fraudulent identities. Here one
can use our non-membership construction to generate a proof that the customer does not belong
to the set of money launderers (or those thought to be). Because, as in the set-membership case,
a user may have to prove additional information about their identity, here we can also benefit
from a modular framework. Furthermore, modularity allows us to cheaply prove both membership
and non-membership (at the same time) for the same identity id together with some additional
information P (id) : holding commitment c(id) one can produce the following tuple of proofs: (1) a
membership proof (id ∈ S); (2) a non-membership proof (id ̸∈ S′); (3) a CP-SNARK proof that
includes the statement to be proven on that identity (P (id)).

We note that in some cases, a central authority, who controls the white and black lists, is trusted
to ensure the integrity of the lists. This means that the identities can be added or removed from
the lists, which means that our RSA-based construction is ideal given the comparatively reduced
cost of updating the dynamic accumulator.

Zerocoin Vulnerability. Another specific application of our RSA-based constructions is that of
solving the security vulnerability of the implementation of the Zerocoin protocol [MGGR13] used in
the Zcoin cryptocurrency [Yap19]. The vulnerability in a nutshell: when proving equality of values
committed under the RSA commitment and the prime-order group commitment, the equality may
not hold over the integers, and hence one could easily produce collisions in the prime order group.
Our work can provide different ways to solve this problem by generating a proof of equality over
the integers.
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A Accumulator Definitions

Below is the definition of Accumulators, following the definition of [FN02]. We insist on public key
accumulators, meaning that after the key generation phase no party has access to the secret key.

Definition A.1 (Accumulators). A static (non-Universal) Accumulator with domain X is a
tuple of 4-algorithms, Acc = (Gen,Eval,Witness,VerWit)

Gen(1λ, t) → (sk, ek, vk) is a (probabilistic) algorithm that takes the security parameter λ and a
parameter t for the upper bound of the number of elements to be accumulated. If t =∞ there is
no upper bound. Returns a secret key sk, an evaluation key ek and a verification key vk.

Eval(ek,X ) → (accX , aux) takes the evaluation key and a set X and in case X ⊆ X outputs the
accumulated value accX and some auxiliary information aux. If X ⊈ X outputs ⊥.

Witness(ek, x, aux) → witx takes the evaluation key ek, the value x and the auxiliary information
aux and outputs either a witness witx of x ∈ X or ⊥ if x /∈ X .

VerWit(vk, accX , x, w) → b takes the verification key vk, the accumulation value accX , a value x
and a witness w and outputs 1 if witx is a witness of x ∈ X and 0 otherwise.

Further, we give the definition of Dynamic Accumulators, a notion that was introduced by
Camenisch and Lysyanskaya [CL02]. Dynamic Accumulators are Accumulators that additionally
provide the ability to update the accumulated value and the witnesses when the set is updated,
either on addition of a new element or on deletion.

Definition A.2 (Dynamic Accumulators). A Dynamic Accumulator Acc with domain X is a
static Accumulator that additionally provides three algorithms (Add,Delete,WitUpdate).

Add(ek, accX , y, aux)→ (accX ′ , aux′) takes the evaluation key ek, the accumulated value accX , the
value to be added to the set y and the auxiliary information aux. If y /∈ X ∧ y ∈ X outputs the
new accumulation value for X ′ = X ∪ {y}, accX ′ and a new auxiliary information aux′. In case
y ∈ X or y /∈ X outputs ⊥.

Delete(ek, accX , y, aux) → (accX ′ , aux′) takes the evaluation key ek, the accumulated value accX ,
the value to be deleted from the set y and the auxiliary information aux. If y ∈ X ∧y ∈ X outputs
the new accumulation value for X ′ = X \ {y}, accX ′ and a new auxiliary information aux′. In
case y /∈ X or y /∈ X outputs ⊥.

WitUpdate(ek, witx, y, aux) → wit′x takes the evaluation key ek, a witness witx to be updated, the
value y that was either added or deleted from X and the auxiliary information. In case x ∈ X ′

outputs the updated witness wit′x, otherwise outputs ⊥.

Normally, we demand that update algorithms, Add and Delete are more efficient than recomputing
the accumulation value from scratch with Eval. However in the publicly updatable setting this is
not always possible, while it may be possible when the party holds the secret key. Still in this work
we treat public key accumulators.
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Security Correctness. For every t = poly(λ) and |X | ≤ t:

Pr

(sk, ek, vk)← GenAcc(1λ, t);

accX ← EvalAcc(ek,X );
w ←Witness(ek,X , x)

: VerWit(vk, accX , x, w)

 = 1

Soundness. A cryptographic accumulator is sound if for all t = poly(λ) and for all PPT adversaries
A there is a negligible function negl(·) such that:

Pr

[
(sk, ek, vk)← GenAcc(1λ, t); (y∗, wit∗y,X ∗)← A(1λ, ek, vk);
accX ∗ ← EvalAcc(ek,X ∗) : VerWit(vk, accX ∗ , y∗, wit∗y) = 1 ∧ y∗ ∈ X ∗

]
≤ negl(λ)

A.1 Dynamic Strong RSA Accumulators

We formally define Dynamic Strong RSA Accumulators [Bd94, BP97, CL02] described in section
4.1. It has domain X = Primes.

Gen(1λ,∞) → (sk, ek, vk) samples an RSA modulus (N, (q1, q2)) ← GenSRSAmod(1λ) and a gen-
erator F ←$ Z∗

N and computes a quadratic residue G← F 2 (mod N).
Return (sk, ek, vk)← ((q1, q2), (N,G), (N,G))

Eval(ek,X ) → (accX , aux) parses ek := (N,G). If X ⊈ Primes return ⊥, otherwise computes
prodX :=

∏
xi∈X xi and

Return (accX , aux)← (GprodX mod N,X )
Witness(ek, x, aux)→ witx parses ek := (N,G), X := aux and computes prodX\{x} :=

∏
xi∈X\{x} xi

Return witx ← GprodX\{x} mod N
VerWit(vk, accX , x, w)→ b parses vk := (N,G)

Return b← (wx = accX (mod N))

Security of strong RSA Accumulator and Batch-Verification Collision Freeness of the
above Accumulator comes directly from strong RSA assumption. What is more interesting is that
the same scheme allows for many memberships to be verified at the same time, what is called
batch-verification. That is, given x1, . . . , xm ⊆ Primes one can compute a batch-witness W =
GprodX\{x1,...,xm} and the verification will be b ← (W x1...xm = accX ). Again the security of the
batch-verification comes from strong RSA assumption and it allows us argue that for any W,x if
W x = accX := GprodX then x ∈ ΠX , meaning that x is a product of primes of the set X .

B Generic CP-SNARK for set membership from accumulators with proof of
knowledge

We show here that any accumulator Acc scheme together with a zero knowledge proof of knowl-
edge that a committed value is accumulated, with a commitment scheme Com, can generically
construct a CP-SNARK for set membership. Let CPAccWit be a zero knowledge proof for the rela-
tion RAccWit((Acc, cu), (wit, u, o)) = 1 iff VerCommit(ck, cu, u, o) = 1 ∧ VerWit(vk, Acc, u, wit) = 1.
Consider a type commitment scheme that takes one type for sets that can be accumulated by Acc
and one for elements of the domain of Com. So it is the canonical composition of ComAcc • Com,
where ComAcc is decribed in figure 22.

Finally the generic CP-SNARK can be seen in figure 23.
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Setup((1λ, t)) : computes (sk, ek, vk)← Acc.Gen(1λ, t) and returns ck := (ek, vk).
Commit(ck, tU , U) : parses ck := (ek, vk), computes (Acc, aux)← Eval(ek, U) and returns (c, o) := (Acc,∅).
VerCommit(ck, tU , c, U,∅) : parses ck := (ek, vk), computes (Acc, aux)← Eval(ek, U) and return 1 iff c = Acc.

Fig. 22: ComAcc

KeyGen(ck, R∈) : Generate the crsAccWit ←$ CPAccWit.KeyGen(RAccWit)
Return crs := crsAccWit.

Prove(crs, (cU , cu), (U, u), (∅, o)) : parse ck := ((ekAcc, vkAcc), ckCom) and compute witu ← Acc.Witness(ek, u, U).
Then compute πAccWit ← CPAccWit.Prove(crs, (Acc, cu), (wit, u, o))
Return π := πAccWit

VerProof(crs, (cU , cu), π) : Return 1 iff CPAccWit.VerProof(crsAccWit, (ce, cU ), πRoot) = 1.

Fig. 23: MemCPAcc CP-SNARK for set membership

Theorem B.1. Let Com be a computationally binding commitment scheme, Acc a sound Accu-
mulator scheme and CPAccWit be a knowledge sound proof then MemCPAcc is a knowledge-sound
with partial opening of the set commitments cU for the Rmem relation and the ComAcc commitment
scheme. Furthermore, if Com,is statistically hiding commitments and CPAccWit is zero-knowledge,
then MemCPAcc is zero-knowledge.

C Vector Commitments

A vector commitment (VC) [LY10, CF13] is a primitive that allows one to commit to a vector
v of length n in such a way that it can later open the commitment at any position i ∈ [n]. In
terms of security, a VC should be position binding in the sense that it is not possible to open
a commitment to two different values at the same position. Also, what makes VC an interesting
primitive is conciseness, which requires commitment and openings to be of fixed size, independent
of the vector’s length. Furthermore, a vector commitment can also support updates, meaning that
updates in the underlying vector allow efficient updates of the commitment and the opening proofs.
We note that in this case position binding should also hold with respect to updates.

C.1 Definition

We follow the definition of a Vector Commitment Scheme and its security with respect to updates
as defined in [CPZ18].

Definition C.1. A Vector Commitment Scheme is tuple of PPT algorithms, VC = (KeyGen,Com,Prove,Ver,UpdateCom,UpdateCom):

KeyGen(1λ, n)→ (prk, vrk, upk0, . . . , upkn−1) : given the security parameter λ and the size n of the
committed vector it outputs a prover key prk, a verifier key vrk and update keys upk0, . . . , upkn−1.

Com(prk, a0, . . . , an−1)→ diga : given prover key prk and vector a = (a0, ..., an−1), it outputs a
digest diga of vector a.
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Prove(prk, i,a)→ (ai, πi) : given prover key prk, a vector a = (a0, ..., an−1) and an index i, it
outputs the element ai in the i-th position of the vector and a proof πi.

Ver(vrk, dig, i, a, π)→ b : given the verifier key prk, a digest dig, an index i, a value a and a proof
π it outputs 1 iff π is a valid proof that a is in the i-th position of the vector that is committed
in dig.

UpdateCom(dig, i, δ, upki)→ dig′ : given a digest dig, an index i, an update δ and an update key of
i-th position it outputs an updated digest dig′ of a vector the same as before but with value a+ δ
(instead of a) in the i-th position.

UpdateProof(π, i, δ, upki)→ π′ : given a digest dig, an index i, an update δ and an update key of
i-th position it outputs an updated proof that a + δ (instead of a) is in the i-th position of the
vector.

Soundness A Vector Commitment Scheme VC is sound if for all PPT adversaries A the below
probability is negl(λ)

Pr



Ver(vrk, dig, i, a, π) = 1

∧ a ̸= ai
:

(n, state)← A
(prk, vrk, upk0, . . . , upkn−1)← KeyGen(1λ, n)

a← A
dig← Com(prk,a)

for k = 1, . . . , t = poly(λ)

(j, δ)← A
dig← UpdateCom(dig, j, δ, upkj)

endfor

(i, a, π)← A


= negl(λ)

C.2 EDRAX - A Vector Commitment from multilinear extensions

Multilinear Extension of vectors Let F be a field and n = 2ℓ. Multilinear Extension of a vector
a a = (a0, . . . , an−1) in F is a polynomial fa : Fℓ → F with variables x1, . . . , xℓ

fa(x1, . . . , xℓ) =

n−1∑
i=0

ai ·
ℓ∏

k=1

selectik(xk)

where iℓiℓ−1 . . . i2i1 is the bit representation of i and selectik(xk) =

{
xk, if ik = 1

1− xk, if ik = 0

A property of Multilinear extension of a is that fa(i1, . . . , iℓ) = ai for each i ∈ [n].

Vector Commitment Scheme We describe the EDRAX Vector Commitment:

Definition C.2. Let a bilinear group bp = (q, g,G1,GT , e)← RG(1λ) generated by a group gener-
ator. Let n = 2ℓ be the length of the vector and 2[ℓ] be the powerset of [ℓ] = {1, . . . , ℓ}
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KeyGen(1λ, n)→ (prk, vrk, upk0, . . . , upkn−1) : samples random s1, . . . , sℓ ←$ F and computes prk←{
g
∏

i∈S si : S ∈ 2[ℓ]
}
and vrk← {gs1 , . . . , gsℓ}. For each i = 0, . . . , n−1 computes the update key

upki ←
{
g
∏t

k=1 selectik (sk) : t = 1, . . . , ℓ
}
:= {upki,t : t = 1, . . . , ℓ}.

Com(prk, a0, . . . , an−1)→ diga : let a := (a0, . . . , an−1). Computes diga ← gfa(s1,...,sℓ) where fa is
the multilinear extension of vector a as described above.

Prove(prk, i,a)→ (ai, πi) : let x = (x1, . . . , xℓ) be an ℓ-variable. Compute q1, . . . , qℓ such that fa(x)−
fa(i1, . . . , iℓ) =

∑ℓ
k=1(xk − ik)qk(x) and πi ←

{
gq1(s), . . . , gqℓ(s)

}
(where gqi(s) is evaluated by

using prk :=
{
g
∏

i∈S si : S ∈ 2[ℓ]
}

without s).

Ver(vrk, dig, i, a, π)→ b : parse π := (w1, . . . , wℓ) and outputs 1 iff e(dig/ga, g) =
∏ℓ
k=1 e(g

sk−ik , wk)

UpdateCom(dig, i, δ, upki)→ dig′ : computes dig′ ← dig ·
[
g
∏ℓ

k=1 selectik (sk)
]δ

:= dig ·
[
upki,ℓ

]δ
=

g(ai+δ)·
∏ℓ

k=1 selectik (sk)+
∑n−1

j=0,j ̸=i aj ·
∏ℓ

k=1 selectjk (sk)

UpdateCom(π, i, a′, upki)→ π′ : Parses π := (w1, . . . , wℓ) and computes w′
k ← wk · g∆i(s) for each

k = 1, . . . , ℓ, where ∆k(x) are the delta polynomials computed by the DELTAPOLYNOMIALS
algorithm (for more details about the algorithm and its correctness we refer to [CPZ18]).

The above scheme is proven in [CPZ18] to satisfy the Soundness property under the q-Strong
Bilinear Diffie-Hellman assumption.

D Another Instantiation of Protocol for RCoprime

Below we propose another interactive ZK protocol for RCoprime. The difference with the above is that
it doesn’t have the limitation of λs + 1 < µ and λs < log(N)/2. Also, partial opening of Acc isn’t
needed. This comes with a cost of 2 more group elements in the proof size, 4 more exponentiations
for the prover and 2 more for the verifier.

1. Prover computes Ca = DHra , Cra = GraHr′a , Cb = GbHρb , CB = AccbHρB , CρB = GρBHρ′B and
sends to the verifier:

P → V : Ca, Cb, Cra , CB, CρB
2. Prover and Verifier perform a protocol for the relation:

R((Acc, Ce, Ca, Cra , Cb, CB, CρB ), (e, r, ra, r
′
a, b, ρb, ρB, ρ

′
B, D,B, β, δ)) = 1 iff

Cb = GbHρb ∧ CB = AccbHρB ∧ Ce = GeHr ∧ Cra = GraHr′a

∧CρB = GρBHρ′B ∧ CeaCB = GHβ ∧ CeraCρB = GβHδ

Let λs be the size of the challenge space, λz be the statistical security parameter and µ the size
of e.

– Prover samples:

rb, re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
rρb , rρB , rr, rra , rr′a , rρ′B ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ, rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
65



and computes:

α1 = GrbHrρb , α2 = AccrbHrρB , α3 = GreHrr , α4 = GrraH
rr′a ,

α5 = Crea H
rβ , α6 = CreraG

rβHrδ , α7 = GrρBH
rρ′

B

P → V : (α1, α2, α3, α4, α5, α6, α7)
– Verifier samples the challenge c← {0, 1}λs
V → P : c

– Prover computes the response:

sb = rb − cb, se = re − ce
sρb = rρb − cρb, sρB = rρB − cρB, sr = rr − cr, sra = rra − cra, sr′a = rr′a − cr

′
a, sρ′B = rρ′B − cρ

′
B

sβ = rβ + c(era + ρB), sδ = rδ + c(er′a + ρ′B)

P → V : (sb, se, sρb , sρB , sr, sra , sr′a , sρ′B , sβ, sδ)
– Verifier checks if:

α1
?
= CcbG

sbHsρb , α2
?
= CcBAcc

sbHsρB , α3
?
= CceG

seHsr , α4
?
= CcraG

sraH
sr′a ,

α5
?
= Csea H

sβGcC−c
B , α6

?
= CseraH

sδGsβC−c
ρB
, α7

?
= CcρBG

sρBH
sρ′

B ,

se
?
∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]
Correctness. Here we show the correctness of the protocol.

α1 = GrbHrρb = Gsb+cbHsρb+crb = GsbHsρb (GbHρb)c

= GsbHsρbCcb

α2 = AccrbHrρB = Accsb+cbHsρB+cρB = AccsrbHsρB (AccbHρB )c

= AccsbHsρBCcB

α3 = GreHrr = Gse+ceHsr+cr = GseHsr(GeHr)c

= GseHsrCce

α4 = GrraH
rr′a = Gsra+craH

sr′a
+cr′a = GsraH

sr′a (GraHr′a)c

= GsraH
sr′aCcra

α5 = Crea H
rβ = Cse+cea Hsβ−c(era+ρB) = Csea H

sβ (DeHera)cH−c(era+ρB)

= Csea H
sβ (DeH−ρB )c = Csea H

sβ (GAcc−bH−ρB )c =

= Csea H
sβGcC−c

B

α6 = CreraG
rβHrδ = Cse+cera Gsβ−c(era+ρB)Hsδ−c(er′a+ρ′B)

= CseraG
sβHsδ(GraHr′a)ceG−c(era+ρB)H−c(er′a+ρ′B) = CseraG

sβHsδG−cρBH−cρ′B

= CseraG
sβHsδC−c

ρB

α7 = GrρBH
rρ′

B = GsρB+cρBH
sρ′

B
+cρ′B = GsρBH

sρ′
B (GρBHρ′B )c

= GsρBH
sρ′

BCcρB
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Coprime2 protocol

On common reference string crs = (Z∗
N , G,H)

Prove(crs, (Ce,Acc), (e, r, (D, b))) :

1. samples ra, ra′ , ρb, ρB , ρB′ ←$ (−⌊N/4⌋ , ⌊N/4⌋) and computes Ca = DHra , Cra = GraHr′a , Cb =

GbHρb , CB = AccbHρB , CρB = GρBHρ′B .
2. Computes the non-interactive version of the above protocol

rb, re ←$
(
−2λz+λs+µ, 2λz+λs+µ

)
rρb , rρB , rr, rra , rr′a , rρ′B ←$

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
rβ , rδ ←$

(
−⌊N/4⌋ 2λz+λs+µ, ⌊N/4⌋ 2λz+λs+µ

)
α1 = GrbHrρb , α2 = AccrbHrρB , α3 = GreHrr , α4 = GrraH

rr′a , α5 = Cre
a Hrβ , α6 = Cre

raG
rβHrδ , α7 =

GrρBH
rρ′

B

c← H(α1, α2, α3, α4, α5, α6, α7, Ce, Acc)
sb = rb − cb, se = re − ce, sρb = rρb − cρb, sρB = rρB − cρB , sr = rr − cr, sra = rra − cra, sr′a =
rr′a − crra , sρ′B = rρ′

B
− cρ′B , sβ = rβ + c(era + ρB), sδ = rδ + c(er′a + ρ′B)

Returns π ← (Ca, Cra , Cb, CB , CρB , α1, α2, α3, α4, csb, se, sρb , sρB , sr, sra , sr′a , sρ′B , sβ , sδ)

VerProof(crs, (Ce, Acc), π) : returns 1 iff α1 = Cc
bG

sbHsρb ∧ α2 = Cc
BAcc

sbHsρB ∧ α3 = Cc
eG

seHsr ∧
α4 = Cc

raG
sraH

sr′a ∧ α5 = Cse
a HsβGcC−c

B ∧ α6 = Cse
raH

sδGsβC−c
ρB ∧ α7 = Cc

ρBGsρBH
sρ′

B ∧ ∧se ∈[
−2λ+λs+µ+1, 2λ+λs+µ+1

]

Fig. 24

Security.

Theorem D.1. Let Z∗
N be an RSA group where strong-RSA assumption holds, then the above

protocol is an honest-verifier zero knowledge and knowledge sound protocol for RCoprime.

Proof Zero-Knowledge can be proven with standard techniques, similar to the ones in the proof
of theorem 4.6 and is therefore omitted.

For the knowledge soundness, let an adversary of the knowledge soundness A that is able to
convince the verifier V with a probability at least ϵ. We will construct an extractor E that extracts
the witness (e, r, r2, r3, β, δ). Using rewinding E gets two accepted transcripts

(Ca, Cb, Cra , CB, CρB , α1, α2, α3, α4, α5, α6, α7, c, sb, se, sρb , sρB , sr, sra , sr′a , sρ′B , sβ, sδ)

(Ca, Cb, Cra , CB, CρB , α1, α2, α3, α4, α5, α6, α7, c
′, s′b, s

′
e, s

′
ρb
, s′ρB , s

′
r, s

′
ra , s

′
r′a
, s′ρ′B

, s′β, s
′
δ)

on two different challenges c and c′. E aborts if it cannot get two such transcripts (abort1).

We denote ∆c := c′−c,∆sb := sb−s′b, ∆se := se−s′e, ∆sρb := sρb−s′ρb , ∆sρB := sρB−s′ρB , ∆sr :=
sr − s′r, ∆sra := sra − s′ra , ∆sr′a := sr′a − s

′
r′a
, ∆sρ′B

:= sρ′B − s
′
ρ′B
, ∆sβ := sβ − s′β, ∆sδ := sδ − s′δ then

C∆cb = G∆sbH∆sρb ⇒ Cb = ±Gb̂H ρ̂b (9)

C∆cB = Acc∆sbH∆sρB ⇒ CB = ±Accb̂H ρ̂B (10)

C∆ce = G∆seH∆sr ⇒ Ce = ±GêH r̂ (11)
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C∆cra = G∆sraH
∆sr′a ⇒ Cra = ±Gr̂aH r̂′a (12)

1 = C∆sea H∆sβG−∆cC∆cB (13)

1 = C∆sera H∆sδG∆sβC∆cρB (14)

C∆cρB = G∆sρBH
∆sρ′

B ⇒ CρB = ±Gρ̂BH ρ̂′B (15)

define the (possibly rational) numbers b̂ := ∆sb
∆c , ρ̂b :=

∆sρb
∆c , ê := ∆se

∆c , r̂ := ∆sr
∆c , r̂a := ∆sra

∆c ,

r̂′a :=
∆sr′a
∆c , ρ̂B :=

∆sρB
∆c , ρ̂′B :=

∆sρ′
B

∆c .

E aborts in case ∆c doesn’t divide: ∆sb and ∆sρb(abort 2a), ∆se and ∆sr(abort 2b), ∆sra and
∆sr′a(abort 2c), ∆sρB and ∆sρ′B (abort 2d). And finally, E aborts if ∆c doesn’t divide ∆sρB (abort 2e).
Therefore, after these aborts didn’t happen we can infer the equivalent equalities on the right of
equations 9,11,12,15 and 10.

If we replace equations 12 and 15 in equation 14 we get 1 =
(
±Gr̂aH r̂′a

)∆se
H∆sβG∆sβ

(
±Gρ̂BH ρ̂′B

)∆c
or 1 = (±1)∆se(±1)∆cGr̂a∆se+ρ̂B∆c+∆sβH r̂′a∆se+ρ̂

′
B∆c+∆sβ . Since G,H, 1 are quadratic residues then

(±1)∆se(±1)∆c = 1, hence 1 = Gr̂a∆se+ρ̂B∆c+∆sβH r̂′a∆se+ρ̂
′
B∆c+∆sβ . Then under the DLOG assump-

tion r̂a∆se + ρ̂B∆c+∆sβ = 0 = r̂′a∆se + ρ̂′B∆c+∆sβ, which gives us that

∆sβ = −r̂a∆se − ρ̂B∆c (16)

Finally, we replace equations 10 and 16 in equation 13 we get 1 = C∆sea H−r̂a∆se−ρ̂B∆cG−∆c
(
±Accb̂H ρ̂B

)∆c
or 1 = (±1)∆cC∆sea Accb̂∆cG−∆cH−r̂a∆se or

(
±Accb̂G−1

)∆c
=
(
C−1
a Hra

)∆se . But as noted above

∆c divides ∆se so ±Accb̂G−1 = ±
(
C−1
a Hra

)ê ⇒ Accb̂G−1 = ±
(
C−1
a H r̂a

)ê ⇒ (
Ca

H r̂a

)ê
Accb̂ = ±G.

We discern two cases:

–
(
Ca

H r̂a

)ê
Accb̂ = +G: Then E sets D̃ ← Ca

H r̂a
, ẽ← ê := ∆se

∆c , r̃ ← r̂ := ∆sr
∆c and b̃← b̂ := ∆sb

∆c

–
(
Ca

H r̂a

)ê
Accb̂ = −G: Then ê should be odd otherwise if ê = 2ρ then G = −

(
Ca

H r̂a

)2ρ
Accb̂ would be

a non-quadratic residue. So E sets D̃ ← − Ca

H r̂a
, ẽ ← ê := ∆se

∆c , r̃ ← r̂ := ∆sr
∆c and b̃ ← b̂ := ∆sb

∆c .

It is clear that D̃ẽAccb̃ = G.

Finally the E outputs (ẽ, r̃, D̃, b̃).

Now we show that the probability the extractor terminates with outputting a valid witness
is O(ϵ). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the first abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probabilityO(ϵ) (for the probabilistic analysis we refer
to [DF02]). Thus Pr[abort1] = 1−O(ϵ). For the aborts abort 2a, abort 2b, abort 2c and abort 2d they
happen with negligible probability (≤ 2

1−2−λs+1Pr[B solves sRSA] each, for any PPT adversary B)
under the strong RSA assumption according to lemma 4.2. For abort 2e we show in the lemma below
that in case it happens an adversary can solve the strong RSA problem. Putting them together the

probability of success of E is at least O(ϵ)−
(

8
1−2−λs+1 + 1

)
Pr[B solves sRSA] = O(ϵ)− negl(λs).

Lemma D.1. If ∆c divides ∆sb then it also divides ∆ρB under the strong RSA assumption.
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Proof An adversary to the strong RSA assumption receives H ∈ QRN and does the following:
set G = Hτ for τ ←$ [0, 2λsN2] and send (G,H) to the adversary A which outputs a proof πCoprime2.
Then we rewind to get another successful proof π′Coprime2 and we use the extractor as above to get

C∆cB = Acc∆sbH∆sρB .

Assume that ∆c ∤ ∆ρB. Since ∆c divides ∆sb then there is a k such that k · ∆c = ∆sb.

Then C∆cB = Acck·∆cH∆sρB ⇒
(
CBAcc

−k)∆c = H∆sρB . From assumption ∆c doesn’t divide ∆ρB,
so gcd(∆c,∆ρB) = g for a g ̸= ∆c,∆ρB. Hence, there are there are χ, ψ such that χ · ∆c +
ψ · ∆ρB = g. Thus, Hg = Hχ·∆c+ψ·∆ρB = Hχ∆c

(
CBAcc

−k)ψ∆c =
(
HχCψBAcc

−ψk
)∆c

so H =

±
(
HχCψBAcc

−ψk
)∆c

g
. Now since H and Acc are quadratic residues (and so is CB) we get that

H =
(
HχCψBAcc

−ψk
)∆c

g
and thus

(
HχCψBAcc

−ψk, ∆cg

)
is a solution to the strong RSA problem.

⊓⊔

By a simple argument identical to the one of section 4.4, we can also conclude about the range of

the extracted ẽ: se
?
∈
[
−2λz+λs+µ+1, 2λz+λs+µ+1

]
implies −2λz+λs+µ+2 ≤ ê ≤ 2λz+λs+µ+2. ⊓⊔

E Instantiation over Hidden Order Groups

In sections 4, 5 we construct zero knowledge protocols for set membership/non-membership, where
the sets are committed using an RSA accumulator. The integer commitment scheme IntCom, the
RSA accumulator-based commitments to sets SetComRSA, SetComRSA′ , the proof of equality modEq,
the argument of knowledge of a root Root and the argument of knowledge of coprime element
Coprime are all working over RSA groups.

Although in our work above we specify the group to be an RSA group, we note that our protocols
can also work over any Hidden Order Group. For example Class Groups [BH01] or the recently
proposed groups from Hyperelliptic Curves [DG20, Lee20].

Here we describe the (slight) modifications, in the protocols and the assumptions under which
they would be secure, that are necessary to switch to (general) Hidden Order Groups.

Let Ggen(1λ) be a probabilistic algorithm that generates such a group G with order in a specific
range [ordmin, ordmax] such that 1

ordmin
, 1
ordmax

, 1
ordmax−ordmin

∈ negl(λ).
The additional assumption that we need to make is that it is hard to find any group element in

G of low (poly-size) order. This is the Low Order Assumption [BBF18b]], which is formally defined
below:

Definition E.1 (Low Order Assumption [BBF18b]). We say that the low order assumption
holds for a Ggen if for any PPT adversary A:

Pr

 uℓ = 1

∧u ̸= 1

∧1 < ℓ < 2poly(λ)
:
G← Ggen(λ)

(u, ℓ)← A(G)

 = negl(λ)

We note that specifically for RSA groups, for Low Order assumption to hold, we have to work in
the quotient group Z∗

N/{1,−1} [Wes18], since otherwise−1 would trivially break the assumption. So
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Z∗
N/{1,−1} would be an instantiation of a Hidden Order Group where the Low Order assumption

holds.
In terms of constructions, one difference regards the upper bound on the order of G that is

used in the protocols. More precisely, throughout the main core of our work we use N as an upper
bound for the order of the group Z∗

N and N/2 as an upper bound for the order of the quadratic
residues subgroup QRN . Similarly, in a Hidden Order Group G generated by Ggen, although the
order of the group is unknown, a range in which the order lies is known [ordmin, ordmax]. So the
maximum order ordmax can be used, instead of N , as an upper bound. In many cases these values
are used either to securely sample a random value or to bound the size of a value needed for a
security proof. For example a random value that is sampled from

(
−⌊N/4⌋ 2λz+λs , ⌊N/4⌋ 2λz+λs

)
in the RSA group instantiation will be sampled from

(
−ordmax

2 2λz+λs , ordmax
2 2λz+λs

)
in the case of

hidden order groups.
Here we give other specific changes that need to be made to instantiate our protocols in general

hidden order groups. For IntCom, the verification equation becomes C = GxHr (without the ±).
Then the argument of knowledge of opening of such a commitment would be secure under the
strong RSA and low order assumptions. The set commitments SetComRSA, SetComRSA′ remain the
same and are binding under the strong RSA assumption for Ggen (and collision resistance of Hprime

for the case of SetComRSA). For modEq, the same difference as for the AoK of an opening of an
IntCom commitment is inherited. For Root and Coprime, the proposition 4.1 needs to be slightly
modified: A = B

x
y can be without ±, and can be proven under the low order assumption instead.

Finally, in the proof of security of protocol Coprime, in lemma 5.1 the assumption λs < log(N)/2 is
not needed as long as the low order assumption holds (an adversary that can find H,∆c such that
gcd(ord(H), qℓ) = 1 can be used to break low order assumption).

Transparent instantiation and efficiency The above instantiation combined with a transparent
proof system (for instance Bulletproofs) gives transparent CP-NIZKs for set (non)-membership
analogously with the ones described for RSA groups in section 4, i.e. proof systems with a uniformly
random CRS. We ran some preliminary experiments for this instantiation over class groups of 2048-
bit discriminant and using Bulletproofs. The results showed proving time of 3.3s, verification time
of 2.3 s and proof size of 5.3KB, for arbitrary accumulated elements(i.e. not necessarily primes).
Furthermore, if we make use of the optimization described in section 7.4 it boosts the efficiency to
1.66s, 1.33s and 4KB (prover/verifier and proof size resp.).

Unfortunately, very recent cryptanalytic results on class groups [DG20] showed that a discrim-
inant of 2048 bits yields only about 60 bits of security level, while for 128 bits of security one
needs to choose a 6600-bit discriminant for the class group. We estimate that over class groups of
a 6000-bit discriminant our aforementioned protocol, together with the optimization of section 7.4,
will give proving time of ∼ 12s, verification time of ∼ 6.4s and proof size of 6.4KB. Finally, our es-
timations for the respective protocol for prime elements (with the computational ZK optimization)
are: ∼ 7s/∼ 6.2s/6KB (proving time/verification time/proof size resp.).
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