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Abstract. As perfect building blocks for the diffusion layers of many symmetric-key
primitives, the construction of MDS matrices with lightweight circuits has received
much attention from the symmetric-key community. One promising way of realizing
low-cost MDS matrices is based on the iterative construction: a low-cost matrix
becomes MDS after rising it to a certain power. To be more specific, if A is MDS,
then one can implement A instead of A’ to achieve the MDS property at the expense
of an increased latency with ¢ clock cycles. In this work, we identify the exact lower
bound of the number of nonzero blocks for a 4 x 4 block matrix to be potentially
iterative-MDS. Subsequently, we show that the theoretically lightest 4 x 4 iterative
MDS block matrix (whose entries or blocks are 4 X 4 binary matrices) with minimal
nonzero blocks costs at least 3 XOR gates, and a concrete example achieving the
3-XOR bound is provided. Moreover, we prove that there is no hope for previous
constructions (GFS, LFS, DSI, and spares DSI) to beat this bound. Since the
circuit latency is another important factor, we also consider the lower bound of the
number of iterations for certain iterative MDS matrices. Guided by these bounds
and based on the ideas employed to identify them, we explore the design space of
lightweight iterative MDS matrices with other dimensions and report on improved
results. Whenever we are unable to find better results, we try to determine the bound
of the optimal solution. As a result, the optimality of some previous results is proved.

Keywords: Lightweight cryptography - MDS matrix - Iterative constructions - Shortest
linear program (SLP) - Latency

1 Introduction

Shannon’s confusion and diffusion principle is best manifested in the design of symmetric-
key cryptographic primitives. In many cases, the round function of an iterative design is
clearly separated into non-linear and linear layers to provide confusion and diffusion effects
respectively. In this article, we mainly focus on the construction of linear diffusion layers,
whose functionality is to spread the internal dependencies as much as possible.

Optimal diffusion layers can be constructed from the so-called Maximal Distance
Separable (MDS) matrices whose branch numbers (first defined in [Dae95]) reach the
upper bounds. The Advanced Encryption Standard (AES) [DR02] is one of the most
prominent designs employing MDS matrices as their linear layers. By using an MDS
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matrix, AES enjoys an elegant security reasoning with respect to differential and linear
attacks. Moreover, its security strength gets strong enough without consuming a large
number of rounds, which is preferable for low-latency applications. Therefore, the search
for good MDS matrices is a major endeavor of the community.

In recent years, the attention of the community naturally turns to the construction
of lightweight MDS matrices due to the rapid development of pervasive computing. The
diversity of the application scenarios creates a tension between several (potentially conflict)
design considerations such as security, low latency, small area, low power and low energy,
leading to a large volume of research. When an MDS matrix is too luxury to be used
in certain resource constrained devices, compromises can be made by employing almost
MDS matrices [BBIT15, Aval7], linear layers that can be implemented with several bitwise
XORs [BJKT16], or even a permutation of the positions of the input signals [BKLT07,
BPPT17]. Typically, this kind of compromises has to be compensated by a large number
of rounds, and complicates the security proof significantly.

Related Work. The constructions of lightweight MDS matrices can be divided into two
categories: iterative constructions and single-cycle constructions.

Tterative Constructions. By repeatedly multiplying a non-MDS matrix A ¢ times, one
obtains the matrix A* which may enjoy the MDS property. If A? is implemented in a
serialized approach with ¢ clock cycles, the cost of the implementation in terms of area
is determined by A regardless of how complicated A? is. This approach is first proposed
by Guo, Peyrin, and Poschmann, and used to construct the diffusion components of the
PHOTON hash function [GPP11] as well as the LED block cipher [GPPR11].

One method to obtain iterative MDS matrices is to exhaust certain search space of A
with a predefined form, and test whether A* is MDS [GPP11, TTKS18, GPV17, WWW12,
SSSM17]. Another approach for producing iterative MDS matrices is to construct matrices
with the iterative-MDS property directly based on some codes (e.g., shortened BCH
codes, Gabidulin codes) [AF14, Berl3, CLM16]. However, this approach mainly focuses on
providing new methods for direct constructions, and accounts for a very limited spectrum
of iterative-MDS matrices. Moreover, with respect to lightweightness, this approach is
inferior.

The main drawback of iterative MDS matrices is that the reduced area footprint comes
at the cost of increased delays. In certain low-latency applications, we do not have the
luxury to compute an MDS matrix with several clock cycles.

Single-cycle Constructions. For this type of constructions, an MDS matrix is supposed to
be implemented as a block of combinatorial logic circuit which can be computed in one
clock cycle.

Initial efforts on finding lightweight MDS matrices in this category are started with
the investigation on the selection of matrix entries enjoying low area footprints [SKOP15,
BKL16, LS16, LW16, LW17, SS16a, SS16b, SS17, JPST17, ZWS18, GLWL16]. Then MDS
matrices can be constructed from some special classes of matrices (e.g., circulant, Hadamard,
Toeplitz, etc.) with lightweight entries [SKOP15, LS16, SS16b]. Generalizing the matrix
entries from finite field elements to general linear transformations leads to considerable
improvements [BKL16, LW16]. However, optimizing matrix entries are fundamentally
heuristic and only locally sound with respect to the real problem of constructing the most
lightweight MDS matrices.

Therefore, there is a trend in the community to optimize globally, viewing the implemen-
tation of linear transformations (matrices) as the well-known Shortest Linear straight-line
Problem (SLP). With this approach, more accurate estimations of hardware costs and
more lightweight (involutory) MDS matrices are obtained recently [KLSW17, LSLT19,
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BFT19, TP19, Max19]. Another quite special approach is proposed by Duval and Leurent:
instead of looking for an optimized circuit of a given matrix, a space of circuits is examined
to find the optimal ones yielding MDS matrices [DL18].

Our Contribution. By viewing previous constructions as general block matrices without
any special structure, we observe that the minimum number of nonzero blocks of previous
iterative MDS constructions in the domain of 4 x 4 block matrices is 6. We prove that it
is impossible for an iterative MDS matrix to have only 4 or less nonzero blocks. Then, we
explore the space of 4 x 4 block matrices with 5 nonzero blocks whose entries (or blocks)
are 4 X 4 binary matrices, and we find that the lightest iterative MDS matrix in this
domain can be implemented with only 3 XOR gates. We further prove that the area of
this matrix reaches the global minimum in the domain of all 4 x 4 block matrices (whose
blocks are 4 x 4 binary matrices) with 5 nonzero blocks. Moreover, theoretical analysis
shows that there is no hope for previous constructions (GFS, LFS, DSI, and spares DSI)
to beat the 3-XOR bound.

However, the 3-XOR implementation requires 451 clock cycles to complete, which is
not desirable for low-latency designs. With this in mind, we identify the exact lower bound
of the number of iterations of 4 x 4 iterative MDS matrices with 5 nonzero blocks, which
turns out to be 14. Then we provide a concrete iterative MDS matrix achieving this bound,
whose implementation costs only 7 XOR gates. Moreover, we also try to determine the
lower bounds of the number of iterations of iterative MDS matrices of other types.

Guided by the bounds and based on the ideas employed to obtain them, we explore the
design spaces of iterative MDS matrices with other dimensions that are mostly interested
in the context of lightweight symmetric-key cryptography. As a result, we improve the
state-of-the-art, and a comparison is made with previous results in Table 1.

Table 1: A comparison with previous results, where all costs are recalculated with Boyar’s
SLP heuristic [BMP13]

Domain Type #Nonzero blocks #XOR gates Clock cycles Source
M4 (M4 (F2)) Sparse DSI 6 10 4 [TTKS18]
GFS 6 10 4 [WWW12]
LFS 7 14 4 [KPPY14]

LFS 7 13 8 [SSSM17]

General block 5 3 451 Sect. 3

General block 5 7 14 Sect. 4
M4 (Msg(F2)) GFS 6 18 4 [WWW12]
Sparse DSI 6 20 4 [TTKS18]
LFS 7 32 4 [KPPY14]

General block 5 6 451 Sect. 3

General block 5 14 14 Sect. 4

Sparse DSI 6 18 4 Sect. 4

M (M4 (F2)) LFS 9 18 5 [GPP11]
LFS 9 19 5 [WWW12]

General block 6 6 981 Sect. 3

General block 8 15 8 Sect. 4
M;(Ms(F2))  Sparse DSI 8 31 5 [TTKS18]
LFS 9 35 5 [WWW12]

General block 6 12 981 Sect. 3

Sparse DSI 8 30 5 Sect. 4

Whenever we cannot find better results, we try to prove the optimality of the previous
results. For example, we prove that the lower bound of the area of a matrix A €
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My (My(F2)) with 6 nonzero blocks such that its 4th power is MDS is 10. Also, a similar
result is proved for iterative MDS matrices in My(Mg(F3)). Moreover, we make all of our
code and results publicly available at

https://github.com/siweisun/iterative_mds

Remark. Up to now, we do not know much about the security effect caused by an MDS
matrix in word-oriented designs beyond its MDS property. For example, considering a
design where the MC operation of AES is replaced by a lighter MDS matrix found in this
work, we do not know whether there is any security escalation or degeneration due to
the differences of the bit-level representations of the MDS matrices. We review a list of
papers [SD18, DR09a, DR09b, DR07, DR06] discussing the interactions between linear
and nonlinear layers, and we think the most relevant property of an MDS matrix in an
AES-like design beyond its branch number is the so-called related differential [DR09b]. We
try to search for related differentials of the new design. However, the algorithm proposed
in [DRO9b] does not apply since it requires that the entries of the underlying matrix
are field elements, while the entries of our matrices are general linear transformations.
Using a modified version of the algorithm presented in [DR09b], we also find some related
differentials for our matrices, which is similar to the MC operation of AES. However, no
concrete security implications can be derived since as far as we know, no cryptanalytic
technique which can exploit related differentials is known.

Organization. In Section 2, we give some preliminaries on MDS matrices and their
implementation costs in terms of both area and latency. In Section 3, we identify the
lightest iterative 4 x 4 MDS matrix with minimal nonzero blocks by enumerating the
representatives of carefully established equivalence classes covering all possibilities. We
take the circuit latency into account in Section 4 and explore the space of lightweight
iterative MDS matrices of other dimensions with low latencies. Section 5 concludes the
paper and proposes several open problems.

2 Preliminaries

Let Fy be the finite field with ¢ elements and My (R) be the set of all k x k matrices
whose entries are in a ring R. Then, every matrix A in My (Fan) or Mi(M,(F2)) can
be represented as an nk X nk binary matrix in M,;(F3), which is called the binary
representation of A. Typically, we regard a matrix A € My(M,,(F3)) as a block matrix

)

Air 0 Al
A = : .. :
Ag1 - Ak

whose entries or blocks are n x n binary matrices. The n x n identity matrix is denoted as
I,,, and we may omit the subscript when it can be inferred from the context. Also, we use
Ory (A) to denote the number of nonzero n x n binary blocks of A, that is,

Definition 1. Given a binary vector z € F3*¥ which is regarded as the concatenation of k
n-bit words. The Hamming weight of x over F% is defined as the number of non-zero n-bit
words of z, and is denoted by wyy (z).

Definition 2 ([Dae95]). The branch number of a matrix A € My (M, (Fz)) over F} is
defined as

Bpn(A) = min  {wpr(z) + wpn (Az)}.
’ weFk\{o} 7 ’
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Definition 3. A matrix A € My (M, (Fz)) is MDS over F3 if and only if Bpy (A) = k + 1.
We can use the following lemma to check whether a given matrix is MDS.

Lemma 1 ([BR99, LW16]). A matriz in My(M,,(F2)) is MDS over F% if and only if all
its square block sub-matrices (whose entries are n x n binary matrices) are invertible.

Lemma 2. An invertible matriz A is MDS if and only if A~' is MDS.

Definition 4. Let A € M;(M,,(Fz2)). A is called an iterative MDS matrix with MDS
order ¢, denoted by ord(A) = t, if t is the smallest positive integer such that A* is MDS.

Definition 5 (Characteristic polynomial [Wan03]). The characteristic polynomial f of
a binary matrix A € M,,(F2) is defined as f(z) = |z + A| € Fa[z], where | - | is the
determinant.

Lemma 3 ([DF04]). If f is a characteristic polynomial of A € M, (F2), then f(A) = 0.

An mxn binary matrix M = (b;j)1<i<m,1<j<n 1S associated with a linear transformation
mapping (1, ,Zn) to (Y1, , Ym):

o o= buxi+---+binzy,

Ym = bmlxl +--+ bmnxn

This linear transformation can be implemented with a certain number of XOR gates. We
denote the minimum number of XOR gates required to implement (1) by C®(M), which
can be obtained by solving the well-known Shortest Linear Program (SLP) problem. The
SLP problem has been shown to be NP-hard [BMPO08]. For small matrices, the exact
solution of the SLP problem can be obtained with the SAT-based approach [FS10], while
for large matrices, some SLP heuristics [BMP13, RTA18, LSL*19, JFP19] are able to
produce fairly good solutions. Finally, we would like to emphasis that unlike some metrics
somehow based on simple XOR counts, the notation C¥(-) represents the global minimum
of the cost in terms of circuit area.

Given an iterative MDS matrix A such that ord(A) = ¢, then the MDS matrix A’ can
be implemented in a serial approach requiring C®(A) XOR gates and ¢ cycles. Also, we
can implement A? directly with C®(A*) XOR gates such that it can be computed in one
clock cycle. In practice, it may be computationally infeasible to obtain a C®(A?)-XOR
implementation of Af. In such situation, we can apply certain SLP heuristics to A? to get
some compact implementations.

3 Towards the Lightest Iterative MDS Matrix in M4 (M4 (F2))

In this section, we regard all matrices in My(My(Fs)) as 4 x 4 block matrices whose
entries are 4 x 4 binary matrices (the blocks). We prove that if a matrix in My (M4 (F2))
is iterative-MDS, then it has at least 5 nonzero blocks. Afterwards, we identify the
theoretically smallest iterative-MDS matrix with 5 nonzero blocks in My (My(F2)).

3.1 Iterative MDS Matrices with 5 Nonzero Blocks

We start by recalling existing iterative constructions over My (M, (F53)), and generalize
these constructions into a unified view. The structures of four different types of iterative
MDS matrices appearing in previous work are listed in Fig. 1.

According to Fig. 1, the number of nonzero blocks for LFS, GFS, DSI, and sparse DSI
matrices are 7, 6, 7, and 6, respectively. At this point, a natural question can be asked:
what is the minimum number of nonzero blocks of A such that A* can be MDS for some
positive integer t ?
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0 I 0 0 0 I 0 O * 0 0 = * 0 0 =
0 0 I O 0 0 = = * x 0 0 * 0 0 O
0 0 0 I 0 0 0 I 0 x x 0 0 x x 0
x ok k% x x 0 0 0O 0 = 0 0 0 = 0

(a) LFS (b) GFS (c) DSI (d) Sparse DSI

Figure 1: Types of iterative MDS matrices

Lemma 4. Let A € My(M,(F2)) with at most four nonzero blocks (i.e., Oyp(A) < 4).
Then At is not MDS for any positive integer t.

Proof. Assume that A € M4(M,,(F2)) has only four nonzero blocks. If there are two or
more blocks in the same row or same column, then |A?| = |A|* = 0 for any positive integer
t. Therefore, A cannot be iterative-MDS in this case. Let the four nonzero blocks of A be
in different rows and different columns. We claim that A? has only four nonzero blocks for
any ¢, and these nonzero blocks are in different rows and different columns. Therefore, A
cannot be iterative-MDS.

For t = 1, the claim is obviously fulfilled. We assume that the claim is also fulfilled
for t = s, that is, A° has only 4 nonzero blocks which are in different rows and different
columns. We investigate what happens to AT! = ASA. Let B = A° and assume that the
p;-th column of the i-th row of the block matrix B = A® is nonzero. That is, B, p, # 0,
where 1 < ¢,p; < 4. Also, we use g; to denote the column number such that A, ., is a
nonzero block, where 1 < i,q; < 4. The i-th row of A5t! is

4 4 4 4
(Z Bi,uAu,la Z Bi,uAu,Qa Z Bi,uAu,B; Z Bi,uAuA)

u=1 u=1 u=1 u=1

or (Bjp,Api1,Bip,Ap; 2, Bip, Ap. 3, Bip, Ap, 4), where only the ¢;-th column B; ,, A,, 4,

is nonzero. In summary, there is one and only one nonzero block in each row of Ast!,
which cannot be MDS. O

According to Lemma 4, an iterative MDS matrix in M4 (My(FF3)) has at least 5 nonzero
blocks. Next, we show that the MDS order of an iterative MDS matrix in My (My(FF3)) is
upper bounded by 65535. Consequently, when testing whether a given matrix A is iterative-
MDS, we only need to check the MDS property of the matrices in {A? : 1 <t < 65535}

Lemma 5. If A € My(My(Fs)) is an iterative MDS matriz, then ord(A) < 65535.

Proof. For an arbitrary invertible matrix A € My (M4 (F2)), the characteristic polynomial
of Ais f(x) = |A+al|. Thus f(A) = 0and deg(f) = 16. Let g(x), h(x) and g(x) be three
polynomials in Fy[z] such that g(z) = h(z) + ¢(z) f(x). Then g(A) = h(A4) + q(A)f(A) =
h(A), indicating that A® = A7 if and only if ' = 2/ mod f(x). We consider the following
sequence of polynomials

[91() = @ mod f(z), galw) =a” mod f(2), ..., gore(X) = 2*" mod f(a)],
in which each g(z) can be represented as a polynomial with degree less than 16:
g(x) = by + b1+ box? + ... + bysa'®,

where b; € Fy. We claim that f(z) is not in the sequences, otherwise A* = 0 for some F,
contradicting with the fact that A is invertible. Therefore, there are at most 21 —1 = 65535
different polynomials in the sequence, which implies that there must be repetitions in
the sequence. Assume g; = g; or 2t = 2/ mod f(x) with 1 <i < j < 65536. We have
At = AJ or AJ7H1 = A, where the largest possible values of j — 4 is 65535. O
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At this point, to find the lightest iterative MDS matrix in My (M4 (F3)) with five
nonzero blocks, we have to enumerate all matrices in

{A": A € My(My(F2)),0ps(A) = 5, and 1 <t < 65535},

which is infeasible. Therefore, reducing the search space is necessary.

3.2 Reducing the Search Space

First of all, for a matrix A € My(M4(F2)) with s (A) = 5 to be iterative-MDS, the
placement of the 5 nonzero blocks is not arbitrary.

Lemma 6. Let A be a 4 x 4 iteratively-MDS matriz with 5 nonzero blocks. Then we can
identify 4 blocks (from the 5 monzero blocks) such that any two of them are in different
rows and different columns (for convenience, we say that the four blocks are row-column
separated).

Proof. We prove by contradiction. If any four nonzero blocks of A are not row-column
separated, we have two possible cases. In the first case, there is one row of the 4 x 4 block
matrix A contains no nonzero blocks. Then A cannot be iteratively-MDS since for any
positive integer ¢, A’ contains a row of four zero blocks.

In the second case, each row of A contains at least one nonzero block. Let us assume
that there are four nonzero blocks at column ji, jo, j3, and j4 for row 1, 2, 3, and 4,
respectively, and the remaining nonzero block is placed at row ¢ and column j. Then
{41,792, 73, 74,3} # {1,2, 3,4}, otherwise we can identify 4 blocks (from the 5 nonzero blocks)
such that any two of them are in different rows and different columns. This indicates that
A has one zero column, whose powers cannot be MDS. O

However, we are going to see that having 4 nonzero blocks placed at different rows and
columns is not sufficient. Given a matrix A € {A € My(M4(F2)) : 01 (A) = 5} such that 4
nonzero blocks of A are row-column separated, it can be decomposed as A = B+ Z, where
B has 4 nonzero blocks from A which are placed at different rows and different columns,
and Z has a single nonzero block from A. For example:

0 Ay 0 As 0 AL 0 O 00
0 0A4; 0 ) _ (0040, (00
0 0 0 Ag - 0 0 0 As 00
Ag 0 0 O Ags 0 0 O 00

For the convenience of discussion, we say that B is the principal component of A, and Z
is the minor component of A. Note that the principal and minor components are only
defined for a matrix in {A € My(M4(F2)) : 0p1(A) = 5} such that 4 nonzero blocks of A
are row-column separated, which are the only matrices we care about in what follows. It
can be easily verified by enumeration that for a given matrix A that can be decomposed
as defined, the decomposition is unique, where the minor component contains the single
block at row ¢ and column j of A such that both row ¢ and column j of A contains two
nonzero blocks.

Next, we show that for a 4 x 4 block matrix A with 5 nonzero blocks such that 4 of
them are row-column separated to be iterative MDS, the positions of the 4 nonzero blocks
of the principal component of A is highly restricted: only 6 out of 24 possibilities of the
choices of the positions of the 4 nonzero blocks are allowed, which are listed as follows:

A
0
0
0

(=]l N)
<

0*x00 0*x00 00x*0 00x*0 000 * 000 *

00=x*0 000 * *000 000 * *000 00=x*0 (2)
000 J>»\ *000 J>»\ 000 J>\0*x00 J>\0*x00 J>\*000 /"

*000 00x*0 000 *000 00x*0 0*x00

Let us consider a 4 x 4 block matrix whose 4 nonzero blocks are placed at row i
and column j;, for i € {1,2,3,4}. The positions of the nonzero blocks correspond to a
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1234
J1 J2 J3 Jja
We use the product of cycles to denote the type of the block matrix. Therefore, there are
totally 4! = 24 different types for all 4 x 4 matrices with 4 row-column separated nonzero

blocks. For example,
0
¢
)

*000 0*x00 *000 0*0
0*x00 *000 00x*0 and 00 *
000 J>»\{ 000x* J>\ 000=* J> 000
000 * 00x*0 0*x00 * 00

are of type (1)(2)(3)(4), (1,2)(3,4), (1)(2,3,4), and (1,2, 3,4), respectively.

permutation ( ), which can be represented as the product of some disjoint cycles.

Remark. Similarly, we can use the cycle notation 7 of a permutation to denote a block
permutation matrix P, in My(My(F3)). For example, if 7 = (1,2, 3,4), then

0 I, 0 0
(o 0o 5 o
Px=109 0 0 0|
I, 0 0 0

where the 4 x 4 identity matrices are placed at row-column coordinates (1,2), (2, 3), (3,4),
and (4,1). Under this notation, we always have P! = P, 1.

Lemma 7. A € M;(M,,(F3)) is an iterative MDS matriz if and only if PAP™1 is an
iterative MDS matriz, where P is a block permutation matriz.

Proof. Tt comes from (PAP~ ')t = PA*P~! and Lemma 1. O

Lemma 8 ([DF04], Chapter 4.3, Proposition 11). Two elements of S, are conjugate in
Sn if and only if they have the same cycle type. That is, given the permutations o, T as

g = (817827 e 78d1)(8d1+17 e 7sd2) e (Sdm,1+17 e 7Sdm)
7=t b, s tay ) (s s tdy) - (b i1y 5 td,)
in cycle notation, one can find some w € S,, such that tor~! = 7.

Lemma 9. Let A be a 4 x 4 iterative MDS matrix with 5 nonzero blocks. Then the
principal component of A has to be one of the following six types : (1,2,3,4), (1,3,4,2),
(1,4,3,2), (1,4,2,3), (1,3,2,4), and (1,2,4,3), which are listed in Equation (2).

Proof. Let A be a 4 x 4 iterative MDS matrix with 5 nonzero blocks whose principal
component B is of a type other than the six possibilities listed in Lemma 9. Then, we claim
that there always exists a block permutation matrix P such that the principal component
of PAP~! belongs to one of the following types: (1)(2)(3)(4), (1)(2)(3,4), (1)(2,3,4).
For example, let B (the principal component of A) be of type (1)(2, 3)(4). According to
Lemma 8, we can find a permutation , such that 7(1)(2,3)(4)m— = (1)(2)(3,4). It can
be verified that the principal component of P, AP ! is of type (1)(2)(3,4). However, it can
be shown that any power of Py AP whose principal component is of type (1)(2)(3)(4),
(1)(2)(3,4), or (1)(2, 3,4) is always an upper or lower triangular block matrix (by considering
the powers of the block structures induced by the types), which cannot be MDS. Due to
Lemma 7, A itself cannot be iterative-MDS. Therefore, the principal component cannot be

of type (1)(2)(3)(4), (1)(2)(3,4), or (1)(2,3,4). O

Taking one step further, we can show that to find the lightest iterative MDS matrix in
{A € My(M4(F2)) : 0ps(A) = 5}, we only need to consider the matrices whose principal
components are of type (1,2,3,4).
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Let A, B € M4(My(F2)), and B = 7(A), where 7 is an invertible transformation such
that B is iterative-MDS if and only if A is iterative-MDS and C®(A) = C®(B) (7 is cost
and iterative-MDS invariant). Then, in the searching process, we only need to check one
of A, B and ignore the other. Let P and @ be 4 x 4 block permutation matrices and
M be an arbitrary matrix. Then it is obvious that C®(P- M) = C®(M - Q) = C®(M),
where PM can be implemented by renaming the output signals of the implementation of
M, and M@ can be implemented by renaming the input signals of the implementation
of M. Therefore, the transformation 7: A — PAP~! presented in Lemma 7 is cost and
MDS-iterative invariant.

Lemma 10. To find the smallest iterative MDS matriz in {A € My(M4(F2)) : 01 (A) =
5}, we only need to consider the case where the principal components of the matrices are
of type (1,2,3,4).

Proof. We only need to show that for any given iterative MDS matrix A whose principal
component is of type (a, b, ¢,d) (one of the six possibilities shown in Lemma 9), A can be
transformed into a matrix of type (1,2, 3,4) through a series of cost and iterative-MDS
invariant operations.

Let a matrix A be of type (a, b, ¢, d). According to Lemma 8, there is some permutation
7 such that 7w(a,b,c,d)7! = (1,2,3,4). Then P, AP ! is of type (1,2,3,4). O

At this point, the search space is restricted to be the following 12 cases:

0*0 * 0*x00 0x00 0x*x00

00=*0 *0*0 00x*0 00x*0 (3)
000* J>»L 000x* JoL O*x0x* J>\ 000 |~

*x000 *x000 *x000 *0*0

*x 00 0*x00 0*x00 0*x00

00x*0 00x*0 0x*=*0 00=*0 (4)
000x* J»L 000* J>L O000x* Jo\ 00x*=x* |»

*x000 * 00 * *x000 *000

0x*x0 0*x00 0*x00 0x00

00=*0 00=*0 00 * * 00x*0 (5)
000x* J»L O000* Jo»L O000* Jo\ *x00=x* |-

*000 * %00 *x000 *000

3
—~~

D
~

0*x00 1 ) 0 1
)=r(ihit)rr=a (b5t e=r(
)r=r(

)rr=e(

00 0 *
* () 0 *
0 * 00
0 * * 0
20 00
* j—

0 * P=p 00
00 * 0

indicating that the forms of the matrices in each group listed in (3), (4), and (5) can be
transformed to each other via a series of invertible operations preserving the area cost and
iterative MDS property. Therefore, only three cases has to be considered. Now, we show

)
)

) Q (3)

~__~ COxO
Y
L
Q
L
7\
* *x0O0O ¥OO0OO xooo
o)
—
-3
N

7 N
* 000 *¥*OO*¥ xooo
oxoco O*¥0O0 oxoo

coox CCPO*¥ coox
coxo O*¥*¥O xoxoO

0 A 0 M
the matrices presented in Equation (6) cannot be iterative-MDS. Let B= | J J 42 23 .
Ag 0 0 0
Then we have
Bi, = B{'A
BiS - Bi,_QlAQ )
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which implies B} | = B{ ;M + B{ *A1A;A3. Since B} ; = B} | =0, Bf | must be zero
when ¢ is odd. From Bf , = BfllAl, we have Bf , = 0 when ¢ is even, which cannot be
iterative-MDS. Now, we are only left with two cases:

We can further give some restrictions on their entries.

M A, 0 0 0 Ay M 0
Lemma11. If| J § 4 XS or 9 9 4 ,23 is an iterative MDS matriz in M4 (M, (F2)),
Ay 0 0 0 A 0 0 0

then A1, As, Az, and Ay are nonsingular.

M A, 0 0 0 Ay M 0
A A
Proof. It comes from the fact that | § § X3 =5 9% 23 = |A1||As||As||Ayg]. O
A1 0 0 0 A4 0 0 0

3.3 The Global Minimum

According to the previous discussion, the search space can be formulated as the union of
the following two sets

M A, 0 0
{ 8 8 ‘%2 123 t Ay, Ao, As, and Ay in My (FF3) are nonsigular} (9)
A1 0 0 O
and
0 AL M 0
{95 5 XB : Ay, Ag, As, and Ay in My () are nonsigular}. (10)
A 0 0 O

We start a trail search in the space
MIO0O0
{( 6ot 9) : P is a permutation matrix}, (11)
000

and we find a 3-XOR matrix whose 451st power is MDS:

0000100000000000Y 451 0100001000111111
0010010000000000 0010101110111101
0000001000000000 0001101011111100
1010000100000000 1010110111010110
0000000010000000 110101000010001 1
0000000001000000 1111100001000111
0000000000100000 0110000110101111
0000000000010000 _ 1100001000011110 (12)
0000000000001000 = 1011110101000010
0000000000000100 0011111110000100
0000000000000010 1101011000011010
000000000000000 1 1111110000100001
0100000000000000 1011101111010100
1000000000000000 0010001111111000
0001000000000000 1101110101100001
0010000000000000 1010111111000010

It turns out that this matrix is the globally smallest iterative MDS matrix in {A? :
A € My(My(F2)), 01 (A) = 5}. We call a row of a binary matrix A heavy if it contains
two or more 1’s, and we define ((A) to be the number of different heavy rows of A. For

example, if A = @ ! ?) and B = (é ! ?) then C(A) = 2 and ¢(B) = 1. Under this
notation, obviously, we always have C®(M) > ((M) for any matrix M.

Lemma 12. For an arbitrary iterative MDS block matriz A in My(M4(F2)) with Ops (A) =
5, we have CP(A) > 3.
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Proof. We only need to consider the following two cases:

M A 0 0 0 Ay M 0
_[ 0o 040 _[ 0o o040
A=l o o 0a]orB=0 00| (13)
Ay 0 0 O As 0 0 0

For brevity, we only show that C®(A) > 3, and C®(B) > 3 can be proved in a similar
way. We prove by contradiction. Assuming that C®(A) < 2, we have ((M|A;) < ((A) <
C®(A) < 2. Now, we can discuss case by case according to ((M|A;):

fin

w
@

e ((M]A;) = 0. In this case, we have M = 0 since A; is nonsingular, which is
impossible according to Lemma 4.

e ((M]A;) =1. In this case, A has the following four possibilities:

Case 1 : As, Az, A4 are permutation matrices

Case II : ((A4) =1, and Ay, A3 are permutation matrices (14)
Case III : ((A2) =1, and Az, A4 are permutation matrices

Case IV : ((43) =1, and A,, A4 are permutation matrices

We exhaustively search through all matrices that comply with the above four possi-
bilities, and no iterative MDS matrix is found. Note that in the search, we can fix
all permutation matrices to be the identity matrix.

o ((M]A;) = 2. In this case, we have ((Az) = ((A3) = ((A4) = 0, which implies
that Ao, As, and Ay are all permutation matrices. Moreover ((A4;) < 1. Otherwise
the two different rows of (M]A;) cannot be implemented with only two XOR gates.
We exhaustively check all matrices of the forms shown in Equation (13) such that
C(A1) <1, and no iterative MDS matrix is found.

O

The 3-XOR matrix shown in Equation (12) is not only the theoretically lightest iterative
MDS matrix in {4 : A € My(M4(F2)), 01 (A) = 5}, but also sets a lower bound for all
previous constructions listed in Figure 1 with respect to circuit area. Therefore, there is no
hope to find an iterative MDS matrices which costs less than 3 XOR gates with previous
techniques. A detailed analysis can be found in Appendix A.

Note that the 3-XOR matrix is not guaranteed to be the global minimum without the
condition that there are only 5 nonzero blocks in the matrix. Although intuitively it is
unlikely that there are smaller iterative MDS matrices, we do not rule out the possibilities.
Therefore, try to prove that there are no smaller matrices with more nonzero blocks.
However, we only succeed with matrices with 6, 7, and 8 nonzero blocks. The proof
involves some enumeration strategies which cannot be done for more nonzero blocks. Here,
we only present the proof for the case of 6 nonzero blocks, other cases can be proved
similarly.

Lemma 13. For an arbitrary iterative MDS block matriz A in My(M4(F2)) with Ops(A) =
6, we have C®(A) > 3.

Proof. See Appendix B. O

4 Lightweight Iterative MDS Matrices with Small Orders

While the matrix obtained in the previous section whose area cost reaches the minimum
may be of theoretic interest, to the best of our knowledge, employing this matrix as a
diffusion layer and using the 3-XOR implementation is hardly desirable given that it
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requires 451 cycles to complete the computation and thus suffers from high latency. In
this section, we derive some bounds on the MDS orders of certain iterative MDS matrices,
and try to find lightweight iterative MDS matrices with minimal MDS orders. Note that
we only consider matrices in My(M,,(F2)) and Ms(M,,(F2)) with n = 4 or 8. These
are arguably the most interested dimensions in the context of lightweight symmetric-key
cryptography [BFI19, Max19, TP19, ABB*16, CDL*19, GPPR11, GPP11]. First, we
give two useful lemmas.

Lemma 14. Let a block matrit M = (A | B), where A and B are n x n invertible binary
matrices. Then C®(M) > n, and C®(M) = n if and only if A and B are both permutation
matrices.

Proof. Due to the invertibility of A and B, M has n different heavy rows. Since for any
SLP program, each XOR can generate at most one heavy row, we have C®(M) > n.

If A and B are both permutation matrices, then M has n different rows, each of which
contains two 1’s. Therefore, M can be implemented with n XOR gates, where each XOR
gate corresponds to one row of M, which implies C® (M) = n.

Finally, if C®(M) = n and A, B are not all permutation matrices, then M has at least
one row with more than two 1’s. Now, there are only two possibilities. Firstly, this row is
the sum of two rows of M, which contradicts to the invertibility of A and B. Secondly,

this row is the sum of one row of M and a unite row vector (0,---,0,1,0,---,0), which
implies that there are rows of A or B are the same, again contradicting to the invertibility
of A and B. Therefore, A and B must be permutation matrix. O

Lemma 14 implies that if A and B are not all permutation matrices, C®(M) > n + 1.

Lemma 15. If G = (é g) € Msy(My(Fy)), where A, B,C are invertible matrices

and C®(G) =5, then ((C) <1

Proof. Since C¥(G) = 5 and C®(G) > ¢
invertibility of A and B, we have ((A | B)
which implies that {(C) = {(G) — (A | B)

(G

we have ((G) < 5. Also, due to the
= )
<

),
4. For matrix G, {(G) = ((A | B) + ¢(C),
5—4=1. O

4.1 Lightweight Iterative MDS Matrices in M4(M,,(F2))

First, we give a lemma lower bounding the MDS orders.

Lemma 16. If A is an iterative MDS matriz in M4(Ma(F2)) with 0gi(A) =5, then the
exact lower bound of ord(A) is 14.

Proof. Without loss of generality, we can assume that the numbers of nonzero blocks of the
first row, second row, third row, and fourth row of A are 2, 1, 1, and 1, since other patterns
can be put into this form with a series of invertible transformations that is iterative-MDS
and MDS-order invariant. It can be easily verified that A’ always has some zero block(s)
when ¢ is less than 14. Moreover, we can find a concrete A with ord(A) = 14. O

The lightest iterative MDS matrix we find with MDS order 14 costs 7 XOR gates, and
it is given in the following equation:

0000,0100,00710,000°0 100 0,00 10,010 1;,1000
000001 1010100000 10011000 1'1 0100110
000 0,0101/01 10,0000 101 0/01 00,101 1,1 111
00001 100001110000 1100100001 1 111011
07076 0,0 0 0051 060,000 0 B T W | T R e T M N R B O
00 00'000 001000000 101 1'1 11010101 101
0000,0000,00°710/00°0°0 00101,0011,1000/00T1°1
0 000/00060/0001/00007} 101010001 001/0100
0700 0,0000,0000,1 000 T70 1 1,1 171 1,1 0600,110°0
0000000000000 100 11011101100 11010
000 0,0000,0000,00710 001 1/1010,1010,10°0°0
00000000000 0/0001 01001000 1/1100/1001
17070 0,000 0/00 00,0000 T 1700, 170 1710600, 1000
0100000000000 000 1010111001 10/100°1
00 1 0/0000,0000,000 0 100 0,100 1,1 1 11,1010
000 1'00000000'0000 100101 1010111100
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Lemma 17. If A is an iterative MDS matriz in My(M,(F2)) with Ops(A) = 6, then
the exact lower bound of ord(A) is 4. Moreover, when ord(A) = 4, there are only two
possibilities for the distribution of the nonzero blocks of A:

6060 0860

* 0 * * *

0x00 | and 0%00 |- (15)
*000 *000

Proof. Without loss of generality (similar to the proof of Lemma 16), we can assume that
the numbers of nonzero blocks of the first row, second row, third row, and fourth row are in
non-increasing order. Then we have two possible distributions of the nonzero blocks for the
four rows: 3+1+1+4+1 or 2424141, which leads to 4 x4 x3x2+6x6x4x3 = 96+432 = 528
possibilities with respect to the positions of the nonzero blocks. It can be easily verified
that all the 528 possible structures have some zero blocks when their powers are less than
4, and only the matrices with the structures shown in (15) have no zero blocks in their 4th
power. O

Lemma 18. Let A be an iterative MDS matriz in My(My(F2)) with 0ps(A) = 6 and
ord(A) = 4. Then C®(A) > 10.

Proof. We prove by showing that there is no iterative MDS matrix with 0gs(A) = 6,
ord(A) = 4, and C®(A4) < 9. According to Lemma 17, the form of A has only two
possibilities. Here we only prove for the first possibility shown in Equation (15), the other
case can be proved similarly. Let

Ain 0 A3 O
*0*0 ’ ’
A=(0*x0x) — 0 Az2 0 Azg
- 06‘88 - 0 Az O 0 ’
*

Asp O 0 0

which can be decomposed into two disjoint parts

_ Al,l A1,3 _ A2,2 A2,4
AL_<A4,1 0 and AR— A3’2 0 .

With this decomposition, we have C®(A) = C®(AL) + C®(AR). According to Lemma 15,
C®(AL) Z 4, and CED(AR) 2 4.

If C9(AL) = C®(AR) = 4, then the 6 nonzero blocks are all permutation matrices,
which is impossible for A to be iterative-MDS.

If one of C¥(Ap) and C®(AR) is 5, say CP(AL) = 4, and CP(AR) = 5. We generate
all 5-XOR linear programs with only 8 input signals, from which all possible Agr’s can be
obtained. However, no case leads to iterative MDS matrix with MDS order 4. O

According to Lemma 18, the 10-XOR iterative MDS matrices presented in [TTKS18,
WWW12] with MDS order 4 cannot be further improved in terms of area without increasing
the MDS orders or the number of nonzero blocks. Hence, we do not make any effort to find
any lighter iterative MDS matrices in {4 € M4(Ma4(F2)) : p1(A) = 6 and ord(A) = 4}.

For matrices in A € M4(M;g(F2)), we find an 18-XOR matrix
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