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Abstract. Machine Learning has been widely applied in practice, such
as disease diagnosis, target detection. Commonly, a good model relies
on massive training data collected from different sources. However, the
collected data might expose sensitive information. To solve the problem,
researchers have proposed many excellent methods that combine machine
learning with privacy protection technologies, such as secure multiparty
computation(MPC), homomorphic encryption(HE), and differential pri-
vacy. In the meanwhile, some other researchers proposed distributed ma-
chine learning which allows the clients to store their data locally but train
a model collaboratively. The first kind of methods focuses on security,
but the performance and accuracy remain to be improved, while the
second provides higher accuracy and better performance but weaker se-
curity, for instance, the adversary can launch membership attacks from
the gradients’ updates in plaintext.
In this paper, we join secret sharing to distributed machine learning to
achieve reliable performance, accuracy, and high-level security. Next, we
design, implement, and evaluate a practical system to jointly learn an
accurate model under semi-honest and servers-only malicious adversary
security, respectively. And the experiments show our protocols achieve
the best overall performance as well.

Keywords: Secret Sharing · Distributed Machine Learning · Privacy-
Preserving.

1 Introduction

Recent advances in machine learning have produced exciting achievements both
in academia and industry, the machine learning systems are approaching or even
surpassing human-level accuracy in speech, image and text recognition. That
thanks to algorithmic breakthroughs and hardware developments, which help
our systems process massive amounts of data.

However, massive data collection, which is a key step in learning an ac-
curate model, has caused public panic about privacy breaches. As a conse-
quence, the useful but sensitive data such as medical records, are forbidden
to be shared among different institutes due to proprietary reasons or compliance
requirements[21,33]. Privacy-preserving machine learning via MPC provides a
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promising solution by allowing different institutions to train various models
based on their joint data without revealing any sensitive information beyond
the outcome.

The state-of-the-art solutions for privacy-preserving machine learning based
on MPC, i.e. [23,27,29], are many orders of magnitude slower than training on
plaintext. The main source of inefficiency is that the bulk of computation in
the training phase takes place within a secure manner such as garbled circuits
or HE. It is well-known that computing complex function, especially non-linear
function, in secure form is very expensive.

To improve the efficiency, we design our protocols based on distributed ma-
chine learning and instead of joining the secure computation technologies to
these expensive computations in our protocols, we join secret sharing to the gra-
dients’ sharing phase which only consists of simple arithmetics, i.e. addition. In
this way, we can improve efficiency greatly while still meet the security require-
ments. Finally, each client can learn no information beyond the trained model,
and the parameter servers can learn no sensitive information.

1.1 Our Contribution

In this paper, We design two new and efficient protocols for privacy-preserving
linear regression,Multilayer perceptron(MLP), and Convolutional neural net-
work(CNN) in the distributed machine learning settings assuming the data are
distributed across the clients. Then we give the security analysis of our protocols.
And lastly, we implement, evaluate our protocols and compare them with other
latest results in a comparable environment.

Resistance to semi-honest and servers-only malicious adversary. In the
semi-honest setting, we use Shamir’s Secret Sharing to design protocol Γsash. As
long as no more than t−1(t is the threshold) servers can collude and at least two
clients are honest, Γsash can against users-only, servers-only and users-servers
threat models.

In the malicious setting, to resist servers-only malicious modifications, we
design a verifiable protocol Γsam via a variant of Secret Sharing with information-
theoretic Message Authentication Code(MAC)[12]. In Γsam, besides sharing the
gradients g, each client computes g’s information-theoretic MAC and shares it
among parameter servers. In addition to protecting privacy like Γsash, Γsam can
prevent servers from malicious modifications as long as no more than t−1 servers
can collude and no client colludes with servers.

Performances Our privacy-preserving machine learning protocols are more ef-
ficient than state-of-the-art solutions. For example, for a dataset with 60,000
samples and 784 features, our protocol is 30× faster than the protocols im-
plemented in[28] for CNN in the semi-honest setting. And even our malicious
protocol can achieve 25× improvement.
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As discussed above, our protocols can be divided into two phases, offline and
online phase. In a comparable experimental environment, our protocols are at
the same efficiency level with[25] in the online phase, but we can achieve 5×-
10× improvement in the offline phase. Note that vectorization, i.e. operating
on matrices and vectors, is critical in the efficiency of training on plaintext, we
can benefit from this technique here. For instance, we find that the vectorized
protocols improve our efficiency around 7.5-10× in the online phases and 5-10×
in the offline phases.

As experiments show, our protocols are even more competitive with training
on plaintext. For instance, for the MNIST1, our protocols can achieve the same
level of accuracy at a total time of 40.2 seconds for linear regression, 205.2
seconds for MLP and 723.6 seconds for CNN.

1.2 Related Work

In the earlier stage, the work on privacy-preserving machine learning mainly
focused on traditional machine learning models such as linear regression[3,4,5],
logistic regression[8], decision trees[2], k-means clustering[6,9] and SVM[7,10].
These papers proposed solutions based on MPC but were limited to a partic-
ular kind of model. For example, Nikolaenko et. al.[13] and Gascon et. al.[20]
presented secure computation protocols for linear regression on mega datasets
via leveled-HE(LHE) and garbled circuits. However, both papers are limited to
linear regression and the key problems are both reduced to solving a linear sys-
tem using Yao’s garbled circuits.And the efficiency overheads appear to be very
high.

For the logistic regression, Wu et. al.[14] chose to approximate the sigmoid
function using polynomials and train the model using LHE, but the complexity
is too high and accuracy is poor. Yupeng Zhang et. al.[23] presented a solution
that can be applied to linear regression, logistic regression and neural networks
on the two-server setting where data owners distribute their private data among
two non-collude servers and proposed a new method based on piecewise linear
function for the non-linear function to improve efficiency. However, there is still
a big gap compared to training on plaintext.

Meanwhile, Jian L. et. al.[24] proposed a secure inference framework that can
protect the server’s model and client’s data at the same time. Privacy-preserving
predictions were also studied by Galad-Bachrach et. al.[22,32]. But the models
in this setting need to be trained on plaintext ahead of time.

Shokri and Shmatikov[17] proposed a solution by sharing the model’s gradi-
ents among the clients during the training via a parameter server. They improve
the efficiency greatly, but the leaks of gradients could weaken the security[30]. Le
Trieu Phon et. al.[28] extended the result against semi-honest adversaries using
LHE, but the performance is too poor. Recently, Bonawitz et. al.[25] proposed a
protocol to secure aggregate gradients. But their offline phase is very complex,
and if some clients dropped out, the efficiency would be reduced.

1MNIST database, http://yann.lecun.com/exdb/mnist/. Accessed: 2017-09-24.

http://yann.lecun.com/exdb/mnist/
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So it is urgent and challenging to propose a secure framework to train complex
and huge machine learning models efficiently.

An orthogonal and complementary work considers the differential privacy of
machine learning algorithms[15,19]. In this setting, the key point is to intro-
duce an additive noise to the data or the update function, so as to prevent the
adversary from inferring the data from the released model. Our system can be
combined with such technology to provide stronger security.

1.3 Roadmap

In section 2, we introduce the preliminaries. In section 3, we give our system
architecture and the design of our protocols. We also analyze the correctness
and privacy of our protocols. In section 4, we give the results of our experiments,
and in section 5, we conclude our paper.

2 Preliminaries

In this paper, the notations we used are as below:
a denotes a scalar, g denotes a vector and gi denotes the i-th element of g.

X denotes a matrix and Xij denotes the element in row i and column j. 〈a〉i
denotes the i-th shares of a, and the same as to vector and matrix. And N
denotes the number of servers and M denotes the number of clients.

2.1 Machine Learning

In this section, we briefly review the distributed machine learning and some
machine learning algorithms: linear regression, MLP, CNN. All these algorithms
are classic and can be found in standard machine learning papers or textbooks.

Distributed Machine Learning is a new kind of settings of machine learn-
ing, there exist many different settings[31],[26] and we adopt the Parameter-
Server(PS) setting[16] in this paper. As shown in Fig 1, in the P-S setting there
are many clients and one parameter server. Each client has a private dataset.
Note that the data between different clients are of the same type, i.e. medical
records. In general, there are five phases in the P-S setting, local training phase,
upload phase, aggregate phase, download phase, and update phase.

Before training, all the clients negotiate a unified model and everyone stores a
replica and initializes it. In the local training phase, each client trains the model
locally and computes the gradients g = (g0, g1, ..., gn−1), where gi is the gradient
for coefficient wi. Next, the clients will upload g to the parameter server. On the
other hand, the parameter server will wait a while to receive enough gradients
and then aggregate them as sum gs =

∑
g or average gavg = 1

M gs. Finally, the
clients will download the aggregated gradients and update the local model for
the next training epoch.
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……

Parameter Server

Model Replicas

Datasets

𝑔𝑎 = 𝛴𝑔𝑖

𝑔𝑖

Fig. 1. Distributed Machine Learning, Parameter-Server setting. 1© local training, 2©
upload gradients, 3© aggregate gradients, 4© download gradients, 5© update the local
model.

Distributed Selective SGD Learning the parameters of a model is not easy,
especially for a complex model, i.e. neural networks. The methods that solve this
problem are typically variants of gradient descent algorithm(GD)[11]. Among
these algorithms, stochastic gradient descent(SGD) is a drastic simplification
that computes the gradients over a subset(mini-batch) of the whole dataset while
maintains high accuracy.

Let w be the vector of all parameters in a model, wi is the i-th element of
w. Let E be the error function which can be based on L2 norm or cross-entropy.
The update rule of SGD for a parameter wi is

wi = wi − α
∂Ei

∂wi
(1)

where α is the learning rate and Ei is the error computed over the mini-batch i.
Note that the update of each parameter is independent, so that the client

can send a portion of gradients which are important instead of all gradients to
reduce communication[17], which we use in this paper.

Linear Regression Given n training data samples xi, each contains d features
and the corresponding labels yi, where yi = ±1. Training a linear regression
model is a process to learn a function f such that f(xi) = yi. Linear regression
has many applications in real life, i.e. detecting diseases in medical research.

In linear regression, the function f is a linear operation and can be repre-
sented as the inner product of xi and the coefficient vector w:

f(xi) =

d∑
j=1

xijwj = xi ·w (2)

where · denote the inner product of two vectors.



6 Y. Dong et al.

Multi-Layer Perceptron Deep Learning aims to extract more complex fea-
tures than traditional machine learning models. MLP is one basic form of deep
learning models.

Fig 2(a) shows a typical MLP with two hidden layers, each node represents a
neuron, it receives the output of the neurons of previous layers plus a bias from
a special neuron. Then it computes a weighted average of its inputs. Finally, the
neuron applies a non-linear function to the weighted average.

+1

+1

+1

Input Layer

Hidden Layers

Output Layer

weights

(a)

……

……

Input Image

Kernels

Feature Maps

FC weights

Convolutional Layer

Activation Layer

Activatio Layer

Fully Connected

Fully Connected

Output Label

ReLu

argmax

ReLu

Reshape

(b)

Fig. 2. Neural Networks. (a) is for MLP, (b) is for CNN.

Convolutional Neural Networks CNN has gained much more attention in
the past decades owing to its superb accuracy. While there are many different
CNNs, they all share a similar structure.

As shown in Fig 2(b), the input to a CNN is represented as a matrix X where
each element corresponds to the value of a pixel. Pictures can have multiple color
channels, i.e. RGB, in which case the picture is represented as a multidimensional
matrix, i.e. tensor. Compared to MLP, CNN has additive layers: (i)Convolution
layer,(ii) (Mean or Max)-Pooling layer, both play important roles.

2.2 Secure Computation

Secret-Sharing. Shamir’s Secret Sharing[1] is a powerful cryptographic prim-
itive which allows a client to split a secret into n shares, so that any less than
t shares reveal no information about the original secret while any t shares can
recover the secret.

Definition 1. Shamir’s Secret Sharing scheme consists of a sharing algorithm
S and a reconstruct algorithm R.
S takes a secret s, a threshold t, and n as inputs, outputs n shares of s

S(s, t, n)→ {〈s〉0, 〈s〉1, ..., 〈s〉n} (3)
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with t ≤ n.
R takes the threshold t, a subset of the shares with size m as inputs, and

recovers the secret s

R({〈s〉0, 〈s〉1, ..., 〈s〉m}, t)→ s (4)

with m ≥ t.

Correctness requires that ∀s ∈ F, ∀t, n(t ≤ n), if {〈s〉0, 〈s〉1, ..., 〈s〉n} are
shares of s, then any subsets of size m(m ≥ t) could reconstruct the original
secret s.

Security requires that any subsets of shares of size m′(m′ ≤ t − 1) disclose
no information about s, which means that ∀s, s′ ∈ F and two subsets of shares
with size m′(m′ ≤ t − 1), no polynomial-time adversary A can distinguish the
distribution of the two subsets

|Pr[A({〈s〉0, ..., 〈s〉m′}) = 1]− Pr[A({〈s′〉0, ..., 〈s′〉m}) = 1]| ≤ 1

p(x)
(5)

where p(·) is a positive polynomial and x is sufficiently large.

Secret Sharing with information-theoretic MAC. The Shamir’s Secret
Sharing scheme can only against semi-honest adversaries, but not resist mali-
cious modifications. So we import a variant of information-theoretic Message
Authentication Code(MAC)[12].

Definition 2. Secret Sharing scheme with information-theoretic MAC consists
of a sharing algorithm S, a reconstruct algorithm R, an authentication function
δ, a verification function υ, and a global key α.
S takes a secret s, the function δ, the threshold t, and n as inputs, and

outputs their shares

S(s, δ, t, n)→ {(〈s〉0, ..., 〈s〉n), (〈δ(s)〉0, ..., 〈δ(s)〉n)} (6)

R takes the threshold t, the function υ and the subsets of shares as inputs,
and outputs s

R(({〈s〉0, ..., 〈s〉m}), ({〈δ(s)〉0, ..., 〈δ(s)〉m}),υ, t)→ s (7)

if υ(s, δ(s), α) = 1, else R(·) returns ⊥.
Note δ(s) = α · s mod p and υ(·) = 1 if and only if the reconstructed s and

δ(s) satisfy δ(s) = α · s mod p.

Correctness and privacy against the semi-honest adversary are identical to
what we have mentioned in Shamir’s Secret Sharing scheme.

Since we require that the global key α is unknown to the adversary M. So
∀〈s〉i, evenM modifies it with only one bit, the possibility thatM can construct
a valid share of its MAC is negligible.
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3 System Architecture

Our scheme is based on distributed machine learning except that we introduce
two or more non-collude servers like[23,29], to protect the privacy. However, the
servers in our protocols are not responsible for storing data or training the model
but aggregating the gradients.

Instead of uploading the plain gradients to one parameter server in dis-
tributed machine learning, the clients share gradients after each training epoch
and upload these shares to corresponding servers in our protocols.

In this paper, we propose two protocols, Γsash and Γsam. In Γsash, we require
the servers are semi-honest or honest-but-curious and at most t− 1 servers can
collude. In Γsam, we enhance our security capabilities to against servers-only
malicious adversary via Secret Sharing with information-theoretic MAC.

……

Parameter Servers

( 𝑔𝑖 0, 𝛿(𝑔𝑖) 0) ( 𝑔𝑖 1, 𝛿(𝑔𝑖) 1)

( 𝑔𝑎 0= σ𝑖 𝑔𝑖 0 , 𝛿(𝑔𝑎) 0 = σ𝑖 𝛿(𝑔𝑖) 0) ( 𝑔𝑎 1= σ𝑖 𝑔𝑖 1 , 𝛿(𝑔𝑎) 1 = σ𝑖 𝛿(𝑔𝑖) 1)

Fig. 3. Architecture for our protocols with two parameter servers. 1©local training,
2©share the gradients(and MACs), 3©upload gradients’ shares(and MACs’ shares),
4©aggregate gradients’ shares(and MACs’ shares), 5©download aggregated gradients’
shares(and MACs’ shares), 6©reconstruct aggregated gradients(, MACs and verify),
7©update the local model and train it again(or abort). Note that MACs are for mali-
cious security.

3.1 Γsash−Protocol for Semi-honest Security

In the offline phase, the clients communicate with each other to agree on a com-
mon secret sharing scheme, a machine learning model, i.e. a neural network,
through secure channels. Also, clients need to generate random numbers inde-
pendently. The parameter servers initialize the shares of ga as all zeros. Then
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each client establishes a TLS/SSL secure channel with each server to protect the
integrity of the shares.

Next, each client trains the model using private data locally and computes
the gradients g as Equation 1.

The elements of g are all float-point decimal numbers, which are not suitable
for arithmetic operations in secure computations. So we have to encode all the
elements of g as integers in a large finite field.

For instance, we can multiply them by a large scaling factor and truncate the
results as integers modulo p, p is a big prime. When decode, we could determine
the sign of an encoded element and divide the scaling factor2. As shown in the
experiments, the errors introduced by truncation are so small that have little
impacts on the final model.

Note that the clients can only encode and share a portion of gradients which

are important, and we use s
(up)
i to indicate them.

Next, the client i shares gi as 〈gi〉0, 〈gi〉1, ..., 〈gi〉N−1, sends 〈gi〉j and s
(up)
i

to the j-th server. Note that both encoding and secret sharing can be accelerated
via vectorization.

On the other hand, the servers would wait a while to receive enough se-
cret shares, i.e. all the secret shares, and then compute the secret shares of the

aggregated gradients according to {s(up)i }

〈ga〉j =
∑
i

〈gi〉j (8)

After the aggregation, the servers will reply to clients’ requests s
(down)
i with

the aggregated shares, s
(down)
i indicates the elements to be downloaded. The

details are in Fig 4. We will prove the correctness and security below.

Correctness. In Γsash, the parameter servers are responsible for aggregating
the gradients’ shares, which is in secret sharing form. To prove our protocol’s
correctness, we import lemma 1, which we prove in Appendix A.1.

Lemma 1. The addition of secret shares is the secret shares of the sum. For
example, {〈x〉i} are the secret shares of x and {〈y〉i} are the secret shares of y,
then {〈z〉i = 〈x〉i + 〈y〉i} are the secret shares of z = x+ y.

According to lemma 1, we know that each server aggregates one of the secret
shares of ga rightly. So in the end, the clients will receive enough secret shares
and reconstruct the ga.

Security. In Γsash, we consider the security of the training protocol against
semi-honest adversaries with three different threat models, namely users-only
threat model where some users are corrupted, servers-only threat model where
some servers are corrupted, and users-servers threat model where some users
and servers are controlled by adversary.

2https://mortendahl.github.io/2017/04/17/private-deep-learning-with-mpc/
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Theorem 1 (Privacy in Semi-honest Adversary). The protocol Γsash is
secure in presence of semi-honest adversaries, meaning they leak no sensitive
information about the honest clients’ gradients, as long as the adversary can
only corrupt no more than t− 1 servers and M − 2 clients.

In the users-only threat model, what the adversary A can get about honest
clients is the sum of their gradients.∑

j∈honest.

gj =
∑
i∈all

gi −
∑

k∈corrupted

gk (9)

Even the number of corrupted clients are M − 2, A get no information about
the gradients towards a particular client. So we can protect the honest clients’
privacy.

In the servers-only threat model, we require A can only corrupt up to t −
1 servers. So A can not distinguish the gradients’ shares from pseudorandom
numbers under Shamir’s Secret Sharing scheme, which means A can not violate
clients’ privacy.

From users-only threat model and servers-only threat model, we can know
that even A corrupt t− 1 servers and M − 2 clients, what A can get is as in the
users-only threat model since the corrupted servers leak no private information.

3.2 Γsam−Protocol for Servers-only Malicious Security

Protocol Γsash can against semi-honest adversary, but not ensure that servers
will sum up the gradients honestly, which means if a server is controlled by
a malicious adversary M, he can launch an attack,i.e. poisoning attack. For
instance,M can replace the gradients’ shares with random values to reduce the
performance of the final model.

In order to prevent this kind of attacks, we propose Γsam, a protocol based
on Secret Sharing with information-theoretic MAC, which can detect servers’
malicious behaviors. So in Γsam, in addition to sharing the gradients, the clients
have to compute and share the gradients’ MAC δ(g). And the servers have to
aggregate the shares of δ(g). The details are in Fig 4.

Correctness. In protocol Γsash we have proved that the sum of secret shares
is the secret shares of the sum. Now we bring in lemma 2, we give its proof in
Appendix A.2.

Lemma 2. The sum of homomorphic MACs is the MAC of the sum. For ex-
ample, δ(x) and δ(y) are homomorphic MACs of x and y, respectively, then
δ(x) + δ(y) is the homomorphic MAC of x+ y.

As long as the clients compute homomorphic MACs of gradients, we have that
the sum of the MACs is the MAC of the sum of gradients on the basis of lemma
2. So combining with lemma 1, we can prove the correctness of Γsam.
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Security. The privacy of Γsam is the same as Γsash, and we can prevent the
corrupted servers from malicious modification with a servers-only threat model.

Theorem 2 (Resistance to Malicious Adversary in servers-only threat
model). The protocol Γsam is secure against malicious adversaries in the servers-
only threat model, meaning the adversary can not launch active poisoning attacks
without detection, as long as the adversary can only corrupt no more than t− 1
servers.

As long as the global secret key α is only known to clients, the possibility that
M can construct a valid MAC for an arbitrary secret s is equal to the possibility
that M can get α. So we have

Pr(M(δ, s) = 1) =
1

2dlog pe (10)

As long as the prime p is sufficient large, the possibility is negligible.

Assuming M modifies the 〈g〉u to launch a poisoning attack. So he would
add the modified shares to aggregated shares, which denoted as 〈ga〉′u. If 〈ga〉′u
is downloaded and the client would try using it to reconstruct the ga

g′a = R({〈ga〉i}i∈{t},i6=u ∪ {〈ga〉′u}) (11)

Also, the client can reconstruct δ(ga) at the same time.

It is obvious that the possibility υ(α, g′a, δ(ga)) = 1 is negligible as long as
α is unknown to the M and no more than t− 1 servers could collude.

So in Γsam, we can avoid disclosing any particular client’s gradients under
the assumption of Shamir’s Secret Sharing scheme. Moreover, we could detect
corrupted servers’ malicious behaviors via information-theoretic MAC.
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Secure Training Protocol

Input: M local datasets and replicas of a model
Output: a trained model

if Server then
Initialize. Initializing 〈ga〉j and 〈δ(g)a〉j as all-zeros;
Update. After receiving gradients’ secret shares, MACs’ secret

shares and s
(up)
i from each client, each server will add these secret

shares to 〈ga〉j and 〈δ(g)a〉j according to s
(up)
i , usually s

(up)
i ⊂ g;

Response. For each downloading request, each server will reply

with the gradients’ shares and MACs’ shares according to s
(down)
i ;

if Client then
Initialize. Initializing models according to the same policy;
Local training. Each client gets a mini-batch from the local
dataset, trains the model and computes the gradients g;
Secret Sharing. The clients encode g and generate the secret
shares of g as {〈g〉j} , compute δ(g) and share it as {〈δ(g)〉j} (or
only processing the top k of g with the largest absolute value, where

we use s
(up)
i to indicate the corresponding elements);

Upload. Sending the gradients’ secret shares, MACs’ secret shares

and s
(up)
i to corresponding servers;

Download. Sending a downloading request along with s
(down)
i ,

which indicates the elements to be downloaded, to all servers;
Reconstruct. After sending the request, the client will wait until
receiving enough secret shares to reconstruct the aggregated
gradients, aggregated MACs and verify the validity, update the local
model and go to Local training or abort if the verification failed;

1

Fig. 4. Details for our protocol. Note that the red-and-underlined parts are only re-
quired for malicious protocol Γsam(not necessary for semi-honest protocol Γsash).

4 Experiments

4.1 Environment

Our experiments are executed on three Intel(R) Xeon(R) CPU E5-2650 v3@
2.30GHz servers with each has 64G RAM in the LAN setting.

We simulate 2 parameter servers and 32 clients. All protocols have been
implemented in Python3 language, and we use Tensorflow 1.13.13 library, this
popular machine-learning library has been used by major Internet companies
such as Google.

3https://github.com/tensorflow/tensorflow/releases/tag/v1.13.1
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4.2 Experiments setup

In our experiments, we use MNIST as our training set. And we compare all re-
sults with two baseline scenarios. The first is the basic federate learning Γfl,
which consists of one parameter server and 32 clients with no secure tech-
niques. The other scenario is Google’s Secure Aggregation protocol Γsag[25],
which masks the gradients before uploading4. All the protocols are executed
synchronously.

For all the scenarios, we implement linear regression, MLP, and CNN. We
compare them in accuracy, convergence rate and performance in detail below.

4.3 Experiments Results

Accuracy We compare the same model in different scenarios, we find that
our accuracies in the semi-honest and malicious setting are both nearly to the
accuracy of Γfl. The highest accuracy’s drop is within 0.01 for CNN and MLP,
and 0.02 for linear regression.

We plot the accuracy changes along with the training epochs. And we show
that with the increasing of the training epochs, the influence produced by en-
coding a float-number as a big integer is being smaller and smaller. For instance,
Fig.5(a) shows that in a CNN, the curve for Γsash almost coincides with the
curve for Γfl. And we get similar results for linear regression and MLP, we plot
them in Appendix B due to the space limit.

The best accuracies for each model in all protocols are shown in Table 1.

Table 1. Accuracy for each model in all protocols.

Model
Protocol

Γfl Γsag Γsash Γsam

Linear Regression 0.929 0.924 0.918 0.913

MLP 0.979 0.977 0.978 0.974

CNN 0.997 0.994 0.995 0.991

Convergence Rate Our experiments also illustrate that the convergence rates
in all protocols over training epochs are at the same level, the secure techniques
do not influence the results much.

For instance, the convergence rates of Γsash and Γsam are almost the same
as Γfl for CNN. From Fig 5(a), it is obvious that the models all approach 0.95
at around 50 epochs and reach 0.99 at around 100 epochs in different protocols.

4We only implement the basic secure aggregation with no dropouts
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Fig. 5. Experimental results of CNN. (a) is for accuracy, (b) is for performance.

Performance Our protocols can be divided into offline phase and online phase
naturally. In the offline phase, the clients mainly generate random numbers in-
dependently. We run the process 10 times for each model and take the average
as the result. The details are in Table 2. Note that protocol Γsag needs around
22.81 seconds in our setting to negotiate keys between clients, and we do not
include it in Table 2.

Table 2. Offline performances(seconds, 100 epochs).

Model
Protocol

Γfl Γsag Γsash Γsam

Linear Regression 0 11.90 0.60 1.19

MLP 0 110.53 14.24 27.47

CNN 0 243.92 21.77 41.44

From Table 2 we can see that Γsash is around 10× faster than Γsag, and Γsam

is around 5× faster than Γsag.
As for the online phase, we plot the running time along with the epochs for

CNN in Fig 5(b). It is illustrated that our semi-honest protocol Γsash is faster
than Γsag even Γsag is in the best situation. For example, the running time for
Γsash is 701.85 seconds, while Γsag needs 744.68 seconds, both run 100 epochs.
As for our malicious protocol Γsam, the running time is a little longer, which is
around 819.99 seconds.

However, we know that Γsag needs extra time to deal with the masking
elements if some clients dropped out in the training process, this reduces their
efficiency greatly, while our protocols do not need this extra operation even if
the same misfortune happens. This is because the clients in our protocols are
independent of each other, which means the dropped clients do not impact other
online clients. Combining offline and online, we can see that our protocol’s whole
performance is better than Γsag, both semi-honest and malicious. And compared
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to privacy-preserving deep learning methods based on HE[28], our improvements
are dramatically where they need 2.25 hours for MLP and 7.3 hours for CNN.
Note that we plot the figures for linear regression and MLP in Appendix B.

On the other hand, Γsag only needs one parameter server, but Γsash and Γsam

need two or more parameter servers, and we require that at most t − 1 servers
could collude. However, import two or more servers is a common method for
distributing machine learning, and it is easy to satisfy this security requirement
in practice. Meanwhile, in Γsag the parameter server would learn the aggregated
gradients and even the trained model, but in Γsash and Γsam the parameter
servers can learn nothing. What’s more, our protocols are more robust than
Γsag, since we allow n − t servers to halt at worst but Γsag must ensure the
parameter server runs normally.

5 Conclusion

We introduce a novel secure computation framework for distributed machine
learning that achieves high accuracy and performance by combining distributed
machine learning with secret sharing. In contrast to previous state-of-the-art
frameworks, we improve the efficiency of more than 10× and maintain the re-
quired security in semi-honest. Besides, we propose a verifiable protocol against
servers-only malicious modifications based on information-theoretic MAC. We
evaluated our framework on linear regression, MLP, and CNN and achieve excel-
lent results both in accuracy and performance. What’s more, combining differ-
ential privacy with distributed machine learning is a promising solution against
inferring attacks, which can enhance our security as well. We leave it for future
work.
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A Proof of Correctness

A.1 Lemma 1

Proof. Suppose we have two secrets, s0 and s1, and we share both in Shamir’s
Secret Sharing scheme with two polynomial-functions

f(x) = a0 + a1 · x+ ...+ at−1 · xt−1 mod p

g(x) = b0 + b1 · x+ ...+ bt−1 · xt−1 mod p
(12)

where f(0) = a0 = s0, g(0) = b0 = s1 and p is a large prime.
In order to compute the shares, we can evaluate f(x) and g(x) at n different

points f(x0), f(x1), ..., f(xn−1) and g(x0), g(x1), ..., g(xn−1) respectively.
Then we will turn to getting the shares of s0+s1. We define a new polynomial-

function

h(x) = (a0 + b0) + (a1 + b1) · x+ ...+ (at−1 + bt−1) · xt−1 mod p (13)

Obviously, h(x) is a polynomial-function of degree t−1 with t cofficients and
h(0) = s0 +s1. On the one hand, h(xi) is the shares for s0 +s1, and on the other
hand, we can confirm

h(xi) = (a0 + b0) + (a1 + b1) · xi + ...+ (at−1 + bt−1) · xt−1i

= (a0 + a1 · xi + ...+ at−1 · xt−1i ) + (b0 + b1 · xi + ...+ bt−1 · xt−1i )

= f(xi) + g(xi) mod p, 0 ≤ i ≤ n− 1

(14)

So that the shares of s0 + s1 can be computed by adding the corresponding
shares of s0 and s1.

A.2 Lemma2

Proof. Suppose we have x0, x1, ..., xn−1 and a secret key α. We could the compute
the MAC of xi

δ(xi) = α · xi mod p, 0 ≤ i ≤ n− 1 (15)

Then we can also compute the MAC of xi’s sum:

δ(

n−1∑
i=0

xi) = α · (
n−1∑
i=0

xi) mod p (16)

Then it is easy to confirm

δ(

n−1∑
i=0

xi) = (α · x0) + (α · x1) + ...+ (α · xn−1) mod p

= δ(x0) + δ(x1) + ...+ δ(xn−1) mod p

=

n−1∑
i=0

δ(xi) mod p

(17)

For a more concrete proof, please refer to[12].
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B Accuracy and Performance for linear regression and
MLP

B.1 Linear regression
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Fig. 6. Experimental results of linear regression. (a) is for accuracy, (b) is for perfor-
mance.

B.2 MLP
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Fig. 7. Experimental results of MLP. (a) is for accuracy, (b) is for performance.
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