
Network Time with a Consensus on Clock

Handan Kılınç Alper
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Abstract

Proof-of-stake based protocols in synchronous communication models assume that all
parties possess common knowledge of the current round of the protocol. This model is
typically realized in real-world applications by relying on physical clocks of nodes that
advance to the next round based on a specific time interval since the previous round.
These clocks are adjusted by centralized systems such as Network Time Protocol (NTP)
to mitigate the impact of random drifts. On the other hand, an attack on these systems
(which has happened in the past) can cause corruption of blockchains that rely on it. So,
we are facing the dilemma of relying on the centralized solution to adjust our clocks or
risking the security of our decentralized protocols. In this paper, we propose a Generalized
Universal Composable (GUC) framework for the physical clock synchronization problem in
the decentralized system. Additionally, we present a straightforward yet practical protocol
to be implemented on a blockchain network that embodies our model. Our protocol
addresses the needs of parties running in a distributed system that rely on synchronized
physical clocks to maintain the accuracy and security, without relying on a centralized
system. Notably, our protocol introduces no additional communication overhead to the
underlying blockchain protocol.

1 Introduction

The measurement of time on computers is commonly based on the number of vibrations
occurring in crystal oscillators within their clocks. For instance, a crystal oscillator may
vibrate 32768 times per second, serving as the foundation for time calculation. However, these
vibrations are prone to fluctuations caused by environmental factors such as temperature,
pressure, and humidity. As a result, clock drifts occur, leading to inconsistencies between
a computer’s perception of time and the global standard. To address this issue, computer
clocks connected to the Internet often rely on Network Time Protocol (NTP) to establish
accurate time synchronization. By utilizing NTP, computers can maintain a cumulative drift
close to zero, ensuring precise time measurements. It helps to facilitate the secure execution
of protocols such as certificate validation.

Decentralized protocols, particularly proof-of-stake (PoS) based blockchain protocols, rely
on synchronized communication and the accuracy of physical clocks [13, 14, 26, 32, 23, 20].
In PoS protocols, parties initiate new rounds based on the measurement of time using their
computer clocks, typically synchronized with Network Time Protocol (NTP). Consequently,
the security of these protocols becomes dependent on the security of centralized NTP servers.
Unfortunately, the track record of NTP servers raises concerns due to various attacks and
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incidents [25, 31, 28]. For instance, in a notable incident, two critical NTP servers were delib-
erately set back in time, causing significant disruptions to external servers relying on it [4]. If
a similar attack were to occur in a PoS blockchain protocol, honest parties would halt block
production under the mistaken belief that their round has not yet arrived, while malicious
nodes could continue producing blocks, flooding the blockchain with maliciously-generated
blocks. While some clocks can synchronize with the Global Positioning System (GPS) as
an alternative to NTP, this approach also has its vulnerabilities. GPS synchronization re-
quires additional setup and offers improved accuracy compared to NTP, without reliance on
potentially compromised servers. However, GPS systems are susceptible to spoofing attacks,
such as signal delays [33, 19, 29, 18, 35]. Additionally, adverse weather conditions can cause
inaccuracies in GPS signal reception. These existing solutions highlight the potential security
vulnerabilities associated with relying on external systems to establish accurate local clocks
in decentralized protocols like blockchains. Such reliance contradicts the fundamental goal of
constructing fully decentralized systems and poses a significant security risk.

In this paper, we model the problem of synchronization of (physical) clocks in a decen-
tralized manner in the GUC model. In our model, parties possess local timers, representing
crystal oscillators, and construct local clocks that progress based on a certain number of
timer ticks. The frequency of timer ticks can be modified by the environment, introducing
the possibility of clock drift, where local clocks deviate from each other over time, even if they
were initially synchronized. To address this issue, we introduce a new functionality called the
consensus clock. The consensus clock functionality takes the local clocks of participating par-
ties as votes and then provides updated local clocks to all parties. These updated clocks are
designed to be sufficiently close to each other and to the votes cast by the parties. In this way,
the consensus clock functionality enables the decentralized network to align and synchronize
their clocks effectively. It is important to note that our objective is not to design a new
model for synchronous communication, which typically involves elaborate models [8, 20, 22].
Instead, we specifically address the synchronization of physical clocks, which have the ability
to measure time, while the global clock functionalities in synchronous communication models
rely on logical clocks that progress based on protocol events independent of actual time.

In more detail, our contributions are as follows:
• We construct a GUC model that captures the notion of consensus on clock and allows

parties in a decentralized network to align their clock with it. Our model caters to
scenarios where each party maintains a local clock constructed based on the ticks of
their local timer and aims to align this local clock with the other clocks in the network,
all without relying on a reference clock. We define a functionality which defines the rate
of timers globally and another functionality for local timers which does not necessarily
follow the global rate to capture the notion of drifted timers in the real world. Our
functionality called consensus on clock provides synchronization. It receives initial clocks
from parties as a vote and provides new clocks to them which are close to each other and
not drifted apart from their original clocks. Our model represents a novel contribution
as the first security model specifically tailored to the notion of consensus on clocks.

• We propose a basic clock synchronization protocol (BCSP) that enables parties to con-
struct closely aligned clocks through agreement on message timestamps during the pro-
tocol. In BCSP, parties record the clock information provided in the messages and order
them locally accordingly. At the end of the protocol, each party sets their new clock to
be the clock at a specified order. Despite potential variations in the local order of clocks
among different parties, we show that the difference between the new clocks is bounded
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by the maximum network delay and clock drift experienced during the protocol. BCSP
offers an effective solution for achieving clock synchronization among parties without
requiring additional communication beyond the agreed-upon message timestamps.

• We construct the Relative Time protocol on top of blockchain protocols that realizes
the consensus on clock functionality. Our protocol builds upon BCSP, where parties
select the median of the sorted clock information contained in the blocks. The assump-
tion of message agreement in BCSP is satisfied by the security guarantees provided
by the underlying blockchain protocol. In our protocol, parties periodically update
their clocks by running the relative time protocol, utilizing only the arrival time and
round of the blocks since the last update. By leveraging the consensus mechanism in-
herent in the blockchain, we achieve decentralized physical clock synchronization for
PoS-based blockchain protocols without imposing extra overhead on the network and
the blockchain itself. Our protocol is adaptable to a variety of blockchain protocols
[21, 12, 2, 11, 5] that align with our abstraction. Furthermore, our protocol can be
adopted by external distributed systems for clock synchronization simply by listening
to the blockchain network that utilizes our protocol. This allows these external systems
to synchronize their clocks with ours without actively participating in the blockchain
protocol.

1.1 Related Works

UC Clock Models: The network time model by Canetti et al. [10] is the first UC model
that defines clocks with the ability to measure time. The security of a local clock is defined
based upon the closeness of a reference clock. So, the ultimate goal in this model is to
obtain local clocks close enough to the reference clock. This type of clock model is useful
for the protocols accepting one clock as valid and expect from all other parties to follow this
clock. For example, the Public Key Infrastructure (PKI) limits the validity of certificates and
expects from all users to consider the validity of a certificate within the same duration. In
contrast, our model focuses on achieving close alignment between local clocks without relying
on a specific reference clock. The objective is to ensure that the clocks of different parties
are sufficiently synchronized with each other, rather than being closely aligned to a specific
external reference (e.g., a clock provided by NTP or GPS). This model is particularly suitable
for protocols, such as blockchain protocols, that do not require precise adherence to real-world
notions of time for security and completeness.

There are UC models [8, 20, 22] designed to emulate the synchronous communication.
The clock functionalities in these models are different from physical clocks since there is no
notion of time measurement. They maintain the round of a protocol based on events and
make sure that all parties are in the same or close rounds. In our case, however, we do
not aim to construct a model for synchronous communication even though there are some
name resemblance among clock notions. Instead, we model the physical clock notion to
keep the clocks of parties close enough when they drift apart. The feasibility of utilizing
our consensus clock functionality to achieve the UC-synchronization model [8, 20, 22] is an
intriguing question. However, exploring this possibility is beyond the scope of this paper and
could be considered as a potential avenue for future research.
PoS protocols: The security of some PoS blockchain protocols [21, 12, 2, 11, 5] is preserved
in the synchronous communication model however the only solution to preserve it in the real
world implementations to rely on parties’ physical clocks which are adjusted by centralized
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protocols such as NTP. Ouroboros Chronos [3] which is an improved version of Ouroboros
Genesis adds a mechanism that helps adjusting the physical clocks of parties without relying
on any external Internet service such as NTP as our relative time protocol. The synchroniza-
tion mechanism in Ouroboros Chronos is tailored for Ouroboros Genesis while our protocol is
more generic in this sense which can be constructed on top of coherent PoS protocols with our
generic abstraction. As such, our protocol does not modify the block generation mechanism
of the underlying PoS protocol and does not introduce any extra messages in the network.
Clock Synchronization Protocols: Clock synchronization protocols [13, 14, 26, 32, 23]
have been extensively studied in previous work as they are an important component in dis-
tributed systems. These protocols can be categorized into two types: reference-based and
distributed synchronization (consensus-based) protocols. The latter aim to achieve a com-
mon global time among distributed nodes. They are more robust against large networks
although they may converge slower than other methods. The key idea behind these algo-
rithms is to use a linear iteration, where each node updates its local estimate of the global
clock value based on information received from its neighbours. As a result, all nodes in the
network eventually converge to the same consensus clock.

Among the consensus-based protocols, [24] was the first to use the term ”consensus clock.”
In this protocol, nodes periodically broadcast their clock values and update them by combin-
ing received clocks using a confidence parameter. Simultaneously, nodes iteratively compare
results from the current and previous synchronization rounds to improve their skew com-
pensation parameter. However, this algorithm lacks analysis against Byzantine nodes, which
could hinder consensus convergence by sending incorrect clock values. ATS [30] is another
consensus-based protocol that requires nodes to send periodic clock values to estimate rela-
tive drift. Nodes then run a consensus algorithm for drift compensation. Similar to [24], this
protocol also lacks analysis against Byzantine nodes and does not support probabilistic con-
sensus mechanisms like the longest chain rule used in blockchains. SATS [16] addresses delay
and message manipulation attacks on ATS, but its adversarial model has limitations. In [17],
nodes differently reach a consensus on a maximum clock value for faster conversion. However,
the same problems present in previous protocols, such as lack of analysis against Byzantine
nodes, persist in this approach. Additionally, using a maximum clock value might not be
suitable in blockchain networks, as a malicious node could push the consensus clock too far
into the future, causing honest nodes to skip many rounds. To address deception attacks, [37]
introduces a Byzantine node detection mechanism to establish trusted links between nodes.
It deploys a specified consensus mechanism and its attack model is not general.

Despite extensive research on clock synchronization in distributed systems, no protocol
has been designed to directly deploy the consensus mechanism of a blockchain protocol for
clock synchronization. Beyond this, they are lack of the formal security model and security
analysis. In this paper, we close this gap by providing the first formal security model for
the consensus clock and constructing a secure protocol that can be integrated with minimal
changes to the node’s algorithm of the blockchain protocol.

1.2 Protocol Overview

In this section, we give a high level overview of our relative time protocol. Our protocol is
built upon a blockchain protocol which consists of sequential rounds. Each round is assigned
to some set of parties to produce blocks. In this blockchain protocol, each block has the round
information in it. We assume that parties running it have the clocks which have the difference
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at most δ when the blockchain protocol starts with a genesis block. Here, δ is the maximum
network delay. This difference can be simply satisfied by constructing a clock initially shows
0 just after receiving the genesis block. From that point, in every T -tick of their clock, they
start a new round and run the round as specified in the blockchain protocol. Then, they
update their local clock with the relative time protocol in the end of each epoch which is a
notion introduced by our protocol.

In more detail, epochs mark specific intervals in the blockchain protocol. Within each
epoch, parties actively participate in the blockchain protocol or just listen to the network.
When they receive a valid block, they construct a candidate clock for this block in which
round information r is embedded. Specifically, r is interpreted as the current clock value
of the block producer’s clock. Accordingly, they construct a candidate clock that currently
shows r. Although the candidate clocks may not precisely match the block producer’s clock
due to network delays, they are considered close enough. In the end of epoch, parties retrieve
the clocks associated with the finalized (agreed) blocks generated during that epoch. Then,
they sorts them and select the clock which shows the median clock value as their new clock.
Then, the new epoch starts.

We show that the difference between the new clocks of honest parties is bounded within
δ+ εmax at the beginning of each epoch (after the clock update). Here, εmax is the maximum
frequency error occurred between candidate clocks after their construction. We achieve this
bound because honest parties consider the clocks of the same finalized blocks when selecting
the median clock, resulting in their clocks being close to one another (See Theorem 3.1).

We also show that our protocol ensures that the difference between the new clock which
will be used in the next epoch and the original clock used during the epoch is no more than
2δ+εmax. This is due to the selection of the median clock and the assumption that more than
half of the finalized clocks are generated by honest parties. These facts make the new clock
range between the minimum and maximum clocks constructed from honest blocks. Since the
clocks of honest parties are already within a certain bound, the new clocks, which are close
to one of these honest clocks, remain close to the original clock used during the epoch. This
property ensures that honest parties never skip a round after the clock update because their
new clocks are close the the original clock. Thus, the security of the underlying blockchain
protocol is preserved.

One advantage of our protocol is that parties do not need to actively participate in the
block production mechanism of the blockchain protocol to obtain new clocks that are syn-
chronized with the rest of the parties. External parties running another protocol requiring
synchronized clocks can simply listen to the blockchain network to keep their clocks close to
the others.

Remark 1: Our bounds are influenced by the drift rate of clocks during an epoch, which
impacts the value of εmax. Once a candidate clock is constructed, it progresses based on
the local timer’s rate for each party. Consequently, it is affected by any possible drift that
occurs until the end of the epoch. As a result, even if two candidate clocks belonging to
different parties initially start with the same rate, they may drift apart during the epoch.
This deviation increases with the length of the epoch. In our study, we measured the clock
drifts of nodes running the Polkadot relay chain protocol BABE [6] in Section 5. Our clock
analysis revealed that an epoch length of 12 hours can cause a maximum frequency error of
0.75 seconds between two candidate clocks. Additionally, we examined the stability of these
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nodes’ timers, aiming to determine if it is feasible to establish a bound εmax that remains valid
throughout the epochs. Our analysis shows that even if the timers do not precisely follow the
same rate, they remain stable over a time interval. In other words, their frequency error does
not change significantly within this interval. Therefore, it is possible to fix a bound εmax as
the network parameter δ and determine a suitable round length for the blockchain protocol.

Remark 2: The interdependence between our relative time protocol and the underlying
blockchain protocol may initially appear to create a chicken and egg problem. On one hand,
our protocol relies on the security properties of the blockchain protocol, such as consensus
on finalized blocks and the presence of honest blocks. On the other hand, the security of the
blockchain protocol depends on the synchronization provided by our protocol. However, the
solution to this apparent dilemma is straightforward. The blockchain protocol maintains its
security as long as the synchronization between honest parties is ensured. In other words, an
honest party should not start a new round until it receives the honest block(s) generated in the
previous round. This assumption is crucial for maintaining the necessary security properties
of a blockchain protocol. Our relative time protocol addresses this requirement by bounding
the differences between the clocks of honest parties. Once this bound is satisfied within an
epoch, the security properties of the blockchain protocol satisfied during that epoch too. As
a result, at the end of the epoch, the candidate clocks are obtained from the blockchain
protocol have the necessary security properties for our relative time protocol. So, the same
bounds carry over to the next epoch with the new clocks selected from these candidate clocks.
Thus, the parties remain synchronized throughout the next epoch. We note that our protocol
assumes the initial clock differences between honest parties when the genesis block is released
are bounded by the network delay parameter δ. This ensures that the synchronization among
honest parties is already satisfied during the first epoch, effectively bootstrapping the security
for next epochs. By providing the necessary clock synchronization, our protocol enables the
underlying blockchain protocol to maintain its security guarantees, establishing a mutually
beneficial relationship between the two protocols.

2 Security Model

In this section, we introduce our new GUC-model for the consensus clock. In our model,
we have multiple interactive Turing machines (ITM)’s and each ITM has an inbox collecting
messages from other ITMs, adversary S or environment Z. Whenever an ITM is activated
by Z, the ITM instance (ITI) is created. We identify ITI’s with an identifier consisting of a
session identifier sid and the ITM identifier pid. A party Pi in the (G)UC model is an ITI
with the identifier (sidi, pidi). The environment Z activates all ITM’s and the adversary and
then creates ITIs. S is also activated whenever the ideal functionalities are invoked. S can
corrupt parties P1, P2, ..., Pn. If a party is corrupted, then its current state is shared with S.
See Appendix A for more detail about UC and GUC model.

2.1 Our Framework for Consensus of Clocks

In our model, we consider a decentralized network where each party has access to its own local
timer, which is akin to a computer clock in real-life scenarios. These local timers are designed
to tick based on a predefined global metric time. However, due to potential adversarial
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interruptions, the local timers may deviate from the expected metric time. Parties use local
timers to define local clocks of a protocol. In such an environment, we model how parties
synchronize their local clocks. Our model consists of the following functionalities:

Functionality GrefTimer

GrefTimer has a fixed rate to tick.

• (Registration) If a functionality F sends a message (Register, sid,F), GrefTimer adds (F , sid) to listF and sends
(Registered, sid,F) to F .

• (Progress in Time) In every tick according to the defined rate, GrefTimer sends (Tick, sid,S) and (Tick, sid,F) to
every F ∈ listF .

Figure 1: The global functionality GrefTimer

2.1.1 Reference Rate (GrefTimer):

GrefTimer defines a metric time. It can be considered as a global timer that ticks with respect
to the metric time (e.g., second). The functionalities, who want to be notified in every tick,
register with GrefTimer. Whenever GrefTimer ticks, it informs S and the registered functionalities.
The difference between GrefClock [10] and GrefTimer is that GrefTimer does not have any absolute
values related to time. The details are in Figure 1.

One may question whether the concept of a reference rate contradicts the distributed
system without a global clock. It does not, because a metric system for time is universally
defined based on a physical phenomenon (e.g., [1]). In real world, all physical clocks are
designed to follow a global definition of time although they have difficulties to follow it at
some point because of their nature.

We note that we do not aim to construct clocks that precisely follow this global rate.
This functionality is intended to be able to measure the real time. It is only accessed by
functionalities.

2.1.2 Local timer (GPtimer):

We define the global functionality GPtimer modelling a local timer that informs its owner P
whenever S orders to progress the timer. Thus, P gains a perception of time with respect
to S. P uses this information to construct its own clock is defined next. See Figure 2 for
the details of GPtimer. Remark that GPtimer ticks with a rate that may vary in time (as crystal
oscillators of clocks).

We note that we define GPtimer in the GUC model instead of the UC model to capture the
fact that the real world timers interact with arbitrary protocols.

Next, we define existing notions related to clocks which are constructed with respect to
local timers to label the time. Differently than timers, we define absolute values for clocks
which can be used to count locally the round of a protocol which progresses with time.

Definition 2.1 (Clock). A clock C` runs the algorithm (See Algorithm 1) initiated by the
party P` with the parameters: clock initial value c̄` and clock current value c`. The clock
outputs the clock value c` whenever GP`timer ticks.
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Functionality GPtimer

GPtimer is identified with its owner P = (sid, pid).

• (Functionality Registration) When GPtimer receives a message (Register,F , P ) from a functionality F , GPtimer
replies with (Registered,F , P ) and adds F to the list listF .

• (Ticking) When S sends an (Increase, P ) request, GPtimer sends the message (Tick, P ) to P . It also sends the
message (Tick,F , P ) to F where F ∈ listF .

Figure 2: The global functionality GPtimer

Algorithm 1 Clock(c̄`)
1: c` = c̄`
2: while GP`

timer → (Tick, P ) do
3: c` = c` + 1
4: output c`

We denote a clock as a null clock when it has not been initialized or assigned a specific
value. In our protocol, a null clock is represented by the notation C = null.

Definition 2.2 (Frequency). The frequency of a clock C` between c` = t and c` = u that we
denote by f`(u, t) is the number of ticks from c` = t till c` = u. So, f`(u, t) = t− u.

Definition 2.3 (Frequency Error). The frequency error of a clock C` between c` = t and
c` = u is ε`(u, t) = f`(u, t) − fref(u, t) where fref(u, t) is the number of ticks by GrefTimer

between c` = u to c` = t.

When ε`(u, t) is positive, it means that GP`timer is faster than GrefTimer. Otherwise, it means

that GP`timer is slower than GrefTimer. The frequency error shows the deviation from the correct
time.

We also define the frequency error of C` with respect to another clock Ck as ε`Bk(u`, t`) =
|f`(u`, t`)− fk(uk, tk)|. Since fref(u`, t`) = fref(uk, tk), ε`Bk(u`, t`) = |f`(u`, t`)− fk(uk, tk)| =
|f`(u`, t`)− fref(u`, t`)− f(uk, tk) + fref(uk, tk)| = |ε(u`, t`)− ε(uk, tk)|.

Definition 2.4 (Clock Difference). Given two clocks Ck and C`, the time difference of clocks
Ck − C` is defined as |ck − c`| where ck and c` are the clock values of Ck and C`, respectively,
when the difference is measured.

Definition 2.5 (Clock Stability). A clock Ck is T -stable if there exists ε1, ε2 such that
ε(ck, ck + T ) ∈ [ε1k, ε

2
k] for all ck ≥ c̄k.

In real-world applications, it is often assumed that computer clocks exhibit stability [27].
Stability refers to the property of a clock’s rate being consistent over time, meaning that it
does not change significantly within a given period. While stable clocks are desirable, it is
important to note that stability alone does not guarantee the accuracy of clocks.

We remark that the frequency error of two T -stable clocks Ck and Ck when Ck = ck and
when Ck = ck + nT is εkB` ≤ |nmax{(ε2k − ε1` ), (ε2` − ε1k)}|. This shows that even if clocks are
stable, they drift apart in time because they are not accurate.
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Functionality FΘ
Cclock

FΘ
Cclock is parametrized with Θ = (Θc,Θp). It maintains a set of ITI’s Pi = (pidi, sid) in Ph dynamically i.e., Ph is

initially empty and it is populated through registration.

• (Registration:) Upon receiving a message (register, Pi), FΘ
Cclock sends (Registered, Pi) to S and Pi. Then, FΘ

Cclock

sends (Register,FΘ
Cclock, Pi) to GPi

timer and receives back a message (Registered,FΘ
Cclock, Pi) from GPi

timer.

• (Consensus) Upon receiving a message (Voting, Pi,Ci) from each Pi ∈ Ph, FΘ
Cclock runs

ConsensusCheck({Ci}Pi∈Ph
)→ b and sends (Voting, b, {Pi,Ci}Pi∈Ph

) to S.

S replies with (NewClock, sid,FΘ
Cclock, {C̃j}(pidj ,sid)∈Ph

) where:

– |Cj − C̃j | ≤ Θc for all Cj 6= null if b = 1 and

– |C̃i − C̃j | ≤ Θp for all pairs Pi, Pj ∈ Ph.

In the end, FΘ
Cclock sends (Consensus, sid, Pj , b, C̃j) to each party Pj ∈ Ph.

Figure 3: The functionality FΘ
Cclock

2.1.3 Consensus on Clock (FΘ
Cclock)

We construct FΘ
Cclock in Figure 3 which helps parties to shorten the distance between their

clocks when they drift apart. We define FΘ
Cclock with the parameter Θ = (Θc,Θp) where Θc

is a parameter to determine if the consensus is possible and Θp is the parameter that defines
the maximum clock difference allowed in FΘ

Cclock. We denote the set of honest parties by Ph.
FΘ
Cclock works as follows:

(Registration:) This phase is executed by an honest party Pi that wants to join the
protocol. After FΘ

Cclock receives a registration message from Pi, it informs S about it. In

addition, it registers itself to Pi’s local timer functionality GPitimer to construct the clock of Pi
in later phases.

(Consensus): This phase starts by receiving all clocks of honest parties as a vote. Once
all the clocks have been received, the FΘ

Cclock functionality performs a consensus check to
determine if consensus is possible with these clocks.

The consensus check is implemented through the ConsensusCheck algorithm, which
takes the clocks as input and returns b ∈ {0, 1} indicating whether consensus is possible. The
purpose of the consensus check is to verify if it is feasible to construct a new clock C̄j for each
party Pj that satisfies certain criteria. Specifically, the check ensures that if there exists a
new clock C̄j which is sufficiently close to the new clocks of other parties (within a distance
of Θp), and that it remains within a certain distance Θc of the party’s original clock Cj (i.e.,
Cj − C̄j ≤ Θc) unless Cj = null. By performing this consensus check, FΘ

Cclock determines
whether the received clocks allow for the construction of new clocks that align closely with
each other while still maintaining a reasonable deviation from the original clocks.

After the consensus check, FΘ
Cclock sends all clocks of honest parties and b to S and S

returns new clocks for each party. These new clocks are within the distance of Θp and does
not deviate from the original clocks more than Θc if the consensus is possible i.e., b = 1. In
the end, FΘ

Cclock sends each new clock C̃i to its owner Pi and sends the value of b to indicate
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whether consensus was possible or not.
In summary, the goal of this functionality is to provide honest parties with clocks that

are close to their initial clocks and do not deviate significantly from them. The bound Θc

ensures that the new clocks do not drift too far from the initial clocks, which is important for
protocols relying on the output of FΘ

Cclock. It prevents situations where the new clocks show
significantly different times compared to the initial clocks, which could potentially disrupt
the normal execution of protocols. If a protocol does not have such concerns and allows for
larger clock deviations from the original clock, the value of Θc can be considered as infinite
(∞).

2.2 UC- Partially Synchronous Network Model

Our network model Fcom is similar to the partially synchronous network model [12, 21, 15] de-
ployed most of the PoS-blockchain protocol. Differently, our functionality accesses to GrefTimer

in order to have the notion of time. Now, we define the functionality Fcom which models a par-
tially synchronous network with the time delay δ. Here, δ represents number of δ-increment
message by GrefTimer.
Fδ

com: Each party Pi has access to its inbox populated by Fδcom. Fδcom first registers to GrefTimer

and creates a local timer to measure the real time. Whenever GrefTimer sends a message with
Tick, it increments it. When Pi sends a message, Fδcom sends it to S and starts to measure the
time until receiving message from S that says ‘send’ or until δ ticks passed since sending the
message to S. In either case, Fδcom puts it to the inbox of all parties. This model guarantees
that every honest message arrives to all parties at most δ ticks later than the time it is sent.

We note that the perception δ can be different for each party Pk. In other words, if a
message sent when a clock of Pk shows u and received when the clock shows t, then fk(u, t) ≤
δ + εk(u, t) since 0 ≤ fref(u, t) ≤ δ. In our analysis, we make the assumption that εk(u, t) is
very close to zero for the sake of clarity and simplicity. This assumption is reasonable because
the value of δ is typically small in real-world protocols, and the impact of the clock drift rate
on the overall time difference is negligible.

3 Basic Clock Synchronization Protocol

In this section, we describe the Basic Clock Synchronization Protocol (BCSP) within the
hybrid model GPtimer and Fδcom. BCSP is a protocol designed to synchronize clocks among
multiple parties. The protocol ensures that the newly obtained clocks maintaining a limited
distance from other newly acquired clocks. This distance bound depends on parameters such
as network delay and the frequency error of the clocks during the protocol execution. Our
relative time protocol, implemented on a blockchain, is based on the BCSP.

Consider m honest ITI’s P1, ..., Pm initiated with integer parameters n ≥ 1, 0 < a ≤ n
and an initial clock value c̄k for each party Pk given by Z. After the initiation, each party
Pk constructs a clock Ck that runs Clock(c̄k). In this protocol, whenever Z requests to Pk
to send a message, Pk obtains the current clock value ci ← Clock(c̄k) without any delay
after the request and sends a message Bi including ci with Fδcom. When an ITI P` receives a
message Bi, it constructs a clock Ci` that runs Clock(ci) After receiving n messages, each
party P` obtains the clock values c`h ← Ch` for all h ∈ [1, n]. It adds them to a list list` and
sorts it. In the end, it obtains ath clock value c`j of sorted list which is the output of a clock
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Cj` . In the end, P` outputs its new clock C̃` = Cj` .
The critical assumption in BCSP is that Fδcom relay exactly n messages during the protocol.

This means that all parties receive the same n messages in the end of the protocol. We have
this artificial assumption to have a simpler analysis. We later realize this assumption in our
protocol by relying on a consensus mechanism that agrees on n messages. The important
take away from BCSP as shown in our analysis is that even if the initial clock values are very
different from each other or some timestamps are not correct or arrival times of messages are
different for each party, all parties obtain a clock which are close to each other.

Theorem 3.1. Assume that εhkBh`(ch, c
k
h) ≤ εmax for all k, ` ∈ [1,m] and h ∈ [1, n]. Then

the clock difference of new clocks C̃k and C̃` in the end of BCSP for all k, ` ∈ [1,m] is at most
δ + εmax.

Proof. If a party Py received the message Bh without any delay and no frequency error
occurred on Py’s timer after receiving it, then Chy would show c̃h = ch+fref(ch, c̃h) in the end
of BCSP. Considering the network delay and the frequency error after the creation of Chy , we
can deduce that cyh = c̃h + δh)y + εy(ch, c

y
h). Therefore,

c̃h + εy(ch, c
y
h) ≤ cyh ≤ c̃h + δ + εy(ch, c

y
h) (1)

for all y ∈ [1,m] and h ∈ [1, n]. Here, δh)y is the network delay when forwarding Bh to Py.
Now, let’s analyse the clock differences of any two clocks C̃k and C̃` in the end of BCSP

for all k, ` ∈ [1,m]. Let’s assume that sort(listk)[a] = cki and sort(list`)[a] = c`j . So, we need

to upper bound |cki − ckj | to find out the clock differences of C̃k and C̃`. We have the following
cases:

1. ckj ≤ cki and c`i ≤ c`j : Using the the facts c`i − c`j ≤ 0, ckj − cki ≤ 0 and Equation (1), we

obtain |cki − c`j | ≤ δ + εmax.

2. cki ≤ ckj and c`j ≤ c`i : Using the the facts cki − ckj ≤ 0, c`j − c`i ≤ 0 and Equation (1), we

obtain |cki − c`j | ≤ δ + εmax.

3. ckj ≤ cki and c`j ≤ c`i : In this case there are n − a more elements in sort(listk) after cki
and n − a more elements in sort(list`) after ckj . Let’s denote the last n − a elements

of sort(listk) and sort(list`) by Ak and A`, respectively. c`i ∈ A` but cki /∈ Ak and
|Ak| = |A`|. Therefore, there must exit x such that ckx ∈ Ak but c`x /∈ A`. This implies
that ckj ≤ cki ≤ ckx and c`x ≤ c`j ≤ c`i . Then, we obtain

• if cki ≥ c`j , |cki − c`j | = cki − c`j ≤ ckx − c`x ≤ δ + εmax.

• if cki ≤ c`j , |cki − c`j | = c`j − cki ≤ c`i − cki ≤ δ + εmax.

4. cki ≤ ckj and c`i ≤ c`i : As in Case 3, we obtain |cki − c`j | ≤ δ + εmax.
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4 Realization of Consensus on Clock

In this section, we describe our relative time protocol for blockchain protocols that realizes
the functionality FΘ

Cclock. Before describing the protocol, we give some preliminary definitions
related to security of blockchain.

A blockchain protocol is an interactive protocol between parties to construct a blockchain.
Garay et al. [15] define some properties to obtain a secure blockchain protocol. In these defini-
tions, the blockchain protocol follows a clock that increments the rounds ri in the synchronous
communication model [8, 20, 22]. Below, we give the minimum properties that we need from
a blockchain protocol to deploy our relative time protocol that realizes FΘ

Cclock.

Definition 4.1 (Common Prefix (CP) Property [15]). The CP property with parameters
k ∈ N ensures that any blockchains Bi,Bj possessed by two honest parties at the onset of
rounds ri, rj where ri < rj satisfy that Bpk

i is the prefix of Bj where Bpk
i is the blockchain

without the last k blocks of Bi.

In other words, the CP property ensures that blocks which are k blocks before the last
block of an honest party’s blockchain is always prefix of the blockchain that is going to be
owned by an honest party. We call the blocks which is going to be the prefix of all future
honestly constructed blockchains finalized blocks and the blockchain including the finalized
blocks final blockchain.

We define an algorithm FinalBlocks(B, ru, rv) that retrieves all finalized blocks of B
generated between round ru and rv if they exist. If a blockchain protocol has the CP property,
FinalBlocks(B, ru, rv) obtains first Bpk and returns all blocks that are generated between
round ru and rv if the round of the last block of Bpk is greater than or equal to rv.

We modify the chain quality property (CQ) by Garay et al. and define the chain density
(CD) property. Our definition makes sure that any set of finalized blocks which has size
greater than or equal to scd includes more honest blocks.

Definition 4.2 (Chain Density (CD) Property). The CD property with parameters scd ∈ N
ensures that for all B possessed by an honest party and for all ru, rv where rv ≥ ru + scd if
FinalBlocks(B, ru, rv) outputs a set Bf 6= ∅ then more than half of the blocks in Bf are
generated by honest parties.

The next property is a critical property to have the liveness property on the blockchain
protocol. It guarantees a minimum rate of blockchain growth, which is essential for the
protocol to continue making progress and adding new blocks to the chain.

Definition 4.3 (Chain Growth (CG) property [15]). The CG property with parameter τ ∈
(0, 1] and scg ∈ N ensures that for all B possessed by an honest party at round r and for all
ru, rv ≤ r where rv ≥ ru + scg, the number of blocks in B generated for the rounds between
ru and rv is greater than or equal to τscg.

The General Structure of a Blockchain Protocol: We present a high-level blockchain
protocol, denoted as πH, which operates in the hybrid model with the functionality Fδcom.
This protocol serves as the underlying framework for running our relative time protocol. By
doing so, we highlight the minimal requirements that a blockchain protocol must fulfill in
order to accommodate our protocol.

The protocol πH, outlined in Algorithm 2, is structured into rounds. In each round, a set
of parties is selected as block producers who generate and transmit their respective blocks
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for that particular round. Each block includes the round number associated with it. Parties
determine the round of the protocol from their individual local physical clocks. Each round
takes T -clock ticks.

When a new party Pi joins the protocol, it first executes an initialization algorithm,
Initialization, to acquire the current protocol state. The blockchain state encompasses all
the necessary information (e.g., existing blocks) required for active participation in πH. If
the state corresponds to the genesis block B0, Pi constructs its initial clock Ci by executing
the function Clock(0) upon receiving the genesis block from Fδcom. Otherwise, Pi constructs
its clock based on the state information specific to the underlying blockchain protocol. After
joining the protocol, Pi periodically checks whether it is its turn to produce a block using
the algorithm IsMyRound in every T ticks of its local clock. Simultaneously, if Pi receives
a block, it updates its state using the algorithm UpdateState. It should be noted that the
specific algorithms Initialization, IsMyRound, UpdateState, and GenerateBlock are
tailored to the respective blockchain protocol. The inner workings of these algorithms are
unrelated to our relative time protocol and, thus, not elaborated upon in this context.

Clocks play a critical role in PoS blockchain protocols, as their security analysis relies on
the synchronization assumption that all honest parties receive the honest blocks generated
in the previous round when they start a new round. This assumption is crucial to prevent
network partitioning and ensure that honest parties eventually reach consensus. To satisfy
this assumption, it is important to ensure that the length of the round T in πH is longer than
δ. This ensures that even if all clocks progress synchronously, meaning Ci − Cj = 0 for all
parties Pi and Pj , an honest party has enough time to receive all the honest blocks from the
previous rounds before starting a new round.

It is evident that if parties use their clocks as described in Algorithm 3 throughout the
protocol without modifying it, they may develop vastly different perceptions of time, thereby
compromising the security of the blockchain protocol. Hence, we show next how parties
update their clocks using FΘ

Cclock to prevent excessive divergence among their clocks.

Algorithm 2 Pk(sid, pid) in πH

1: run Initialization(Pk)
2: state← Fδcom
3: if state = B0 then
4: let Ck run Clock(0)

5: registered = true

6: while Pk.registered = true do
7: c← Ck, r ← c

T
8: if c 6= null and IsMyRound(state) then
9: B ←GenerateBlock(state, r)
10: send (B,Pk) to Fδcom
11: if valid Bi received from Fδcom then
12: state← Update(state, Bi)

πH in the FΘ
Cclock-Hybrid Model: The deployment of the FΘ

Cclock functionality in the πH
blockchain protocol, as described in Algorithm 3, is a straightforward. If the current state of
the protocol is in the genesis state, parties construct their clocks as specified in πH. Otherwise,
they initialize their clocks to a null value. Once they have learned the state of the protocol,
parties register with the FΘ

Cclock functionality to obtain a new clock if they currently have a
null clock and to ensure their clocks remain synchronized with the rest of the network later
on. We introduce a new parameter, denoted as `e, which represents the length of the epoch
during which the clock remains unchanged and without any update. Whenever an epoch
e ends i.e., the IsNewEpoch algorithm returns true, parties send their current clocks to
the FΘ

Cclock functionality. Then, FΘ
Cclock sends new clocks indicating that the consensus on
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clock achieved in return. After receiving them, parties update their current clocks with the
provided values if the consensus on clocks achieved i.e., b = 1. Otherwise, they abort and do
not continue to run πH because the new clocks does not maintain the security of πH.

One critical issue in this process is determining the appropriate time to update the clocks.
If the interval between clock updates is too long, the clocks of honest parties may already
have deviated significantly, making it difficult to achieve consensus on the new clock values.
Therefore, it is crucial to select an appropriate interval that balances the need for clock
synchronization without introducing excessive delays that could compromise the security of
the protocol.

Algorithm 3 Pk(sid, pid) in πH in FΘ
Cclock-hybrid model

1: run Initialization(Pk)
2: state← Fδcom
3: if state = B0 then
4: let Ck run Clock(0)
5: e = 0, re = 0
6: else
7: Ck = null
8: e, re ← GetEpoch(state)

9: registered = true
10: send (Register, Pk) to FΘ

Cclock
11: init← state

12: while Pk.registered = true do
13: c← Ck, r ← c

T
14: if c 6= null and IsMyRound(state) then
15: B ←GenerateBlock(state, r)
16: send (B,Pk) to Fδcom
17: if valid Bi received from Fδcom then
18: state← Update(state, B)

19: if IsNewEpoch(state) then
20: send (Voting, Pk,Ck) to FΘ

Cclock

21: receive (Consensus, sid, b, C̃j) from FΘ
Cclock

22: if b = 0 then
23: Abort
24: Ck ← C̃k
25: e← e+ 1, re ← r

Lemma 4.1. Assume that πH is a secure blockchain protocol under the following synchro-
nization assumption: all honest parties receive the honest blocks generated in the previous
round when they start a new round. Then, πH in the FΘ

Cclock-hybrid model is secure given that
T ≥ δ + Θp + εmax and Θc < T and clocks of honest parties T -stable (Definition 2.5). Here,
εkB`(c, c + T ) ≤ εT for all Pk, P` and εmax = `eεT where `e is the epoch length in terms of
round.

Proof. πH in the FΘ
Cclock-hybrid model does not change the general structure of πH. The

only change is updating the local clocks time to time through clocks provided by FΘ
Cclock and

aborting if consensus on clock is not possible. Therefore, we need to make sure that these
changes do not change the behaviour of honest parties and preserves the synchronization
between honest parties so that πH in the FΘ

Cclock-hybrid model still preserves the security of
πH.

We show that the possible behaviour changes of an honest party in the FΘ
Cclock-hybrid

model different than the honest party running πH. One possible change of behaviour of an
honest party in πH in FΘ

Cclock-hybrid model is that either not receiving the blocks of previous
rounds before starting a new round because of a different perception of rounds between parties
or skipping some rounds. We now analyse they are not possible as long as T > δ+ Θp + εmax

and Θc < T .
Assume that a clock difference of two parties Pi and Pj at a round r is ∆ and Ci ≥ Cj in

any epoch. This means that Pi starts a new round r + 1 before Pj . When Pj sends a block
when starting the round r = c

T , the block arrives Pi at latest when Pj ’s clock shows rT + δ.
Since the difference between Pi’s and Pj ’s clocks is ∆, when Pi receives Pj ’s block, Ci shows
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rT + δ + ∆. We need to show that δ + ∆ < T in any round of an epoch to guarantee that Pi
receives the block before starting the round r + 1.

After receiving the genesis block in πH in the FΘ
Cclock-hybrid model, each party constructs

their clocks starting from 0. Because of the network delay, the difference between their clocks
is at most δ when they construct their initial clocks. Then, they do not touch their clocks till
the next epoch. Given that the clocks are stable, the clock difference of a clock Ck and C` at a
round r in epoch e = 0 is at most ∆0 = δ+εkB`(0, rT ) where εkB`(0, rT ) ≤ rεT ≤ neεT ≤ εmax.
Since δ + ∆0 < T , even if clocks drift apart during the epoch, each honest block arrives to
other honest parties before they move to the next round.

Now we look at the epochs after the first epoch e ≥ 1 which starts at round ce
T and ends at

round ce+1

T . In the end of each epoch, parties update their clocks with the clocks provided by
FΘ
Cclock. The clocks given by FΘ

Cclock are within the distance Θp. Therefore, during the other
epochs, the difference of clocks Ck and Cj at any round r where ce

T ≤ r < ce+1

T is at most
∆e ≤ Θp + εkB`(ce, rT ) ≤ Θp + εmax. Therefore, parties maintain the fact that δ + ∆e < T
during an epoch.

We have shown that maintaining the clock with FΘ
Cclock does not break the assumption

that parties starts a new round after receiving all blocks of previous rounds. Now, we need to
show that an honest party never skips a round due to the clock change i.e., it checks for every
round whether it is its round via IsMyRound. In more detail, when starting a new epoch,
since each honest party deploys a new clock, there is a possibility that a party misses a round
because the new clock indicates a round in future according to the old clock. However, FΘ

Cclock

ensures that the difference between the old and new clocks is not more than Θc. Therefore,
if a party Pk’s old clock shows ck, where rT ≤ ck < (r + 1)T , when an epoch changes, the
new clock that Pk obtains from FΘ

Cclock shows c̃k, where rT −Θc ≤ c̃k < (r+ 1)T + Θc. Since
Θc < T , it follows that (r − 1)T < c̃k < (r + 2)T . Consequently, the new clock indicates a
round r′, where r − 1 ≤ r′ ≤ r + 1. As a result, honest parties do not skip any rounds after
the clock update, ensuring that they consistently check for each round using the IsMyRound
algorithm 1.

As it can be seen above analysis, the consensus on clock is always possible because the
new epoch starts before the clocks are not drifted apart a lot. Therefore, there exists a new
clock for each party which is close to the given clock and close to other new clocks of parties.
Specifically, FΘ

Cclock guarantees that the difference between new clocks of parties is at most
Θp in the beginning of each epoch. Therefore, parties never aborts.

We next replace FΘ
Cclock with our relative time protocol and show that πH running the

relative time protocol to update the clocks realizes πH in the FΘ
Cclock-hybrid model. Thus, it

inherits the security of πH in the FΘ
Cclock-hybrid model.

Relative Time Protocol Algorithm 4 demonstrates the integration of our relative time
protocol into φ. The gray lines represent the existing structure of the blockchain protocol
(Algorithm 3), while the black lines represent the additional steps introduced by our relative
time protocol. Therefore, parties do not need to modify the generic structure of the blockchain
protocol; they only need to execute extra steps to update their clocks. In more detail, after
running Initialization, party Pk follows these steps: If the current state is not the genesis
state, Pk sets its clock Ck to null. This null clock converges later to the consensus clock.

1If r′ = r or r′ = r − 1, Pk may recheck if r′ is its round and may equivocate in r′. Some PoS-blockchain
does not allow this. If this is an issue in the blockchain protocol design, then this can be prevented by checking
whether a block already is published for this round after the clock update.
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Algorithm 4 Pk(sid, pid) in πH running the relative time protocol

1: run Initialization(Pk)
2: state← Fδcom
3: if state = B0 then
4: let Ck run Clock(0)
5: e, re = 0
6: else
7: Ck = null
8: e, re ← GetEpoch(state)

9: registered = true
10: init← state

11: while Pk.registered = true do
12: c← Ck, r ← c

T
13: if c 6= null and IsMyRound(state) then
14: B ←GenerateBlock(state, c

T
)

15: send (B,Pk) to Fδcom
16: if valid Bi received from Fδcom then
17: r′ ← Round(Bi)
18: let Cik run Clock(r′T )
19: state← Update(state, B)

20: if IsNewEpoch(re, state) then
21: FinalBlocks(B, re, r)→ Bf
22: for all Bi ∈ Bf do
23: list = {cik ← Cik}
24: cjk ←Median(list)
25: Ck ← Cjk
26: e = e+ 1, re = r

Otherwise, Pk constructs a clock Ck that runs Clock(0) and sets epoch = 0. Regardless of
the state, Pk continues with the protocol as follows:

When Pk receives a valid block B with round r′ from Fδcom, it constructs a clock Cik that
runs Clock(ci) where ci = r′T . We note that Cik is a very close approximation of the clock
of the block producer of B if the block producer is honest i.e, the block producer adds the
correct round information to B.

At the end of each round, Pk checks if a new epoch starts by using the IsNewEpoch
algorithm. IsNewEpoch returns true in every `e rounds if Pk joined to the protocol at the
first round re of the current epoch e. If IsNewEpoch returns true, Pk obtains all candidate
clocks constructed between rounds re and re+ scd where scd ≤ `e. Then, similar to the BCSP
in Section 3, Pk obtains the clock values of these clocks and sorts them. Finally, Pk selects
the median clock value cj→k from the sorted clock values and sets its new clock to Cj→k,
which outputs cj→k.

We next show that πH with the relative time protocol (Algorithm 4) and πH in the FΘ
Cclock

hybrid model are indistinguishable by Z where Θp = δ + εmax and Θc = Θp + δ. This means
that a blockchain protocol πH can deploy the relative time protocol, maintaining the same
security properties as shown in Lemma 4.1. Thus, any blockchain protocol having the similar
structure of πH can modify the nodes’ algorithm as in Algorithm 4 and set T ≥ δ+Θp+εmax =
2δ + 2εmax, then achieve the synchronization between nodes without relying on centralized
clock adjustment mechanisms.

Theorem 4.2. Assuming that πH has the common prefix property with the parameter k, the
chain density property with the parameter scd, the chain growth property with the parameters
τ and scg ≤ `e−scd, τ(`e−scd) ≥ k and clocks are T -stable, πH with the relative time protocol
realizes πH in the FΘ

Cclock-hybrid model where Θp = δ+ εmax and Θc = Θp + δ except with the
probability pcp + pcd + pcg which are the probability of breaking CP, CD and CG properties in
πH, respectively. Here, εkB`(c, c+ T ) ≤ εT for all Pk, P` and εmax = `eεT .

Proof Sketch: The proof of Theorem 4.2 is in Appendix B. Here, we provide a high level
idea of our security proof. We show that if the blockchain preserves CD, CP and CG properties
during an epoch of πH with the relative time algorithm, the relative time algorithm generates
clocks for honest parties which are within the bound Θp and the difference between the new
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clock and the clock used during the epoch is not more than Θc as πH in the FΘ
Cclock-hybrid

model.
During the first epoch (e = 0), parties in πH with the relative time protocol and πH in the

FΘ
Cclock-hybrid model are identical. So, CP, CD and CG properties are satisfied in πH with

the relative time protocol during the initial epoch. Given this fact, we can ensure that all
blocks that are constructed within the first scd rounds of the epoch are finalized because when
the new epoch starts the blockchain has already extended τ(`e − scd) ≥ k blocks after the
round scd. In this way, we make sure that all honest parties agree on the same set of finalized
blocks in the end of the first epoch thanks to the CP and CG property. This allows all honest
parties to determine the median clock value by examining the clocks associated with these
same blocks. Therefore, we can leverage the result of Theorem 3.1 which guarantees bounded
clock differences between honest parties. The CD property ensures that more than half of
the blocks used in the median algorithm are contributed by honest parties. So, the output of
the median clock value falls between the minimum and maximum values of the clock values
of honest clocks. Given that an honest party’s clock has been already δ-close to other honest
parties’ clock in the beginning of the first epoch 0, the resulted new clock in the end of e = 0
does not drift apart from the original clock used during e = 0. Therefore, in the end, all
honest parties obtain clocks as if FΘ

Cclock provides them. Now, when e = 1, parties in πH with
the relative time protocol and πH in the FΘ

Cclock-hybrid model are identical. In next epochs
e ≥ 1, parties in both πH with the relative time protocol and πH in the FΘ

Cclock-hybrid model
remain identical. Using the same reasoning as in epoch = 0, we can show that honest parties
obtain clocks that closely resemble those provided by FΘ

Cclock at the end of each epoch.

5 Conclusion

In this paper, we formally designed a security framework in the GUC model to capture
physical clock synchronization in a distributed system without any reference clock. Our
model is the first GUC model that captures the notion of consensus on clock. To achieve
clock synchronization, we introduced the relative time protocol, a synchronization mechanism
designed to work on top of a blockchain protocol. Leveraging the regular messaging process
in the blockchain protocol, our protocol ensures consensus among honest parties’ clocks,
preventing them from diverging significantly and maintaining the security of the underlying
blockchain protocol. It guarantees that new clocks are not significantly different from the
old clocks, ensuring that all parties participate in every round as required by the blockchain
protocol. Furthermore, our synchronization mechanism is not limited to block producers
within the blockchain protocol. External parties running different protocols can utilize our
protocol to synchronize their clocks without actively participating in the blockchain. This
flexibility allows for broader applications of our protocol in various distributed systems.

We describe shortly how a blockchain protocol following the general structure in Algorithm
2 deploy our relative time protocol. First, we need a formal analysis for CP, CD and CG
properties of the respective blockchain protocol and obtain the parameters k for CP, scd for
CD and scg and τ for CG properties. Then set the epoch length `e ≥ scd + k

τ . Assuming that
the maximum networks delay δ assumption is set for it, we next need to set the parameter
εmax to determine the round duration of the blockchain protocol that will deploy the relative
time protocol. Once εmax is set, then the round duration should be set T ≥ 2δ+ 2εmax. After
this, the blockchain protocol can deploy the relative time protocol as described in Algorithm
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4 securely. We next analyse whether determining εmax is feasible in real world clocks.
Frequency error of real-world clocks: The frequency error of real world clocks is typically
measured in terms of part-per-million (PPM), which represents the ratio of the difference in
frequency to the ideal frequency multiplied by one million. For example, a clock with a
frequency error of 10−8 PPM means that its tick rate deviates from the ideal tick rate by one
part in ten million. This corresponds to an error of approximately 1.5 nanoseconds per day.
This level of accuracy is achieved by high-precision clocks. On the other hand, more common
clocks may have frequency errors in the range of 1-20 ppm. This means that their actual tick
rates can deviate by up to 20 parts in one million from the ideal tick rate. Consequently,
the error in these clocks can range from tens of microseconds to hundreds of microseconds
per day. Even though the frequency error in all clocks is inevitable, they are mostly stable
[34, 27]. It means that their frequency error ranges between min- ppm to max-ppm.

Figure 4: Clock frequency error data.
The dashed line is the standard de-
viation and the line is the median.
Each box shows the distribution of the
data based on five numbers: maximum,
third quartile, median, first quartile
and minimum in order. The circles are
outliers.

To analyze the frequency error and stability of
computer clocks, we conducted an extensive exper-
iment involving 21 different computer clocks over
a period of five months. During this experiment,
these computers were actively running the Polka-
dot relay chain protocol BABE, allowing us to ob-
serve the potential impact of CPU load on clock
performance. To collect the necessary data, we de-
ployed the NTP daemon (npdp), which periodically
records the drift data of the system clock in terms
of parts per million (PPM) and stores it in the
file /var/lib/ntp/ntp.drift. The analysis of the
data, as shown in Figure 4, revealed that the fre-
quency error of the system clocks exhibited stable
behavior over time. However, the frequency error
was not close to zero, indicating that the system
clocks were stable but not accurate. The maximum
frequency error observed between these clocks was
ε19.12 = 20.22− 2.82 = 17.4 ppm. Considering that
one epoch consists of at most `e rounds, which cor-
responds to `eT seconds, we can set the maximum
allowable frequency error as `eT × 17.4 × 10−6 for
the clocks used in our experiment. For instance, if `eT is 12 hours, the maximum frequency
error in an epoch would be (12× 60× 60)× 20× 10−6 ≈ 0.75 seconds.
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A Preliminaries

A.1 Universally Composable (UC) Model:

The UC model consists of an ideal functionality that defines the execution of a protocol in an
ideal world where there is a trusted entity. The real-world execution of a protocol (without
a trusted entity) is called UC-secure if running the protocol with the ideal functionality F is
indistinguishable by any external environment Z from the protocol running in the real-world.

A protocol π is defined with distributed interactive Turing machines (ITM). Each ITM
has an inbox collecting messages from other ITMs, adversary A or environment Z. Whenever
an ITM is activated by Z, the ITM instance (ITI) is created. We identify ITI’s with an
identifier consisting of a session identifier sid and the ITM identifier pid. A party P in UC
model is an ITI with the identifier (sid, pid).
π in the Real World: Z initiates all or some ITM’s of π and the adversary A to execute
an instance of π with the input z ∈ {0, 1}∗ and the security parameter κ. The output of a
protocol execution in the real world is denoted by EXEC(κ, z)π,A,Z ∈ {0, 1}. Let EXECπ,A,Z
denote the ensemble {EXEC(κ, z)π,A,Z}z∈{0,1}∗ .
π in the Ideal World: The ideal world consists of an incorruptible ITM F which executes π in
an ideal way. The adversary S (called simulator) in the ideal world has ITMs which forward
all messages provided by Z to F . These ITMs can be considered corrupted parties and are
represented as F . The output of π in the ideal world is denoted by EXEC(κ, z)F ,S,Z ∈ {0, 1}.
Let EXECF ,S,Z denote the ensemble {EXEC(κ, z)F ,S,Z}z∈{0,1}∗ .
Z outputs whatever the protocol in the real world or ideal world outputs. We refer to

[7, 8] for further details about the UC-model.

Definition A.1. (UC-security of π) Let π be the real-world protocol and F be the ideal-world
functionality of π. We say that π UC-realizes F (π is UC-secure) if for all PPT adversaries
A in the real world, there exists a PPT simulator S such that for any environment Z,
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EXECπ,A,Z ≈ EXECF ,S,Z

π in the Hybrid World: In the hybrid world, the parties in the real world interact with some
ideal functionalities. We say that a protocol π in hybrid world UC-realizes F when π consists
of some ideal functionalities.

Generalized UC model [9] (GUC) formalizes the global setup in a UC-model. In GUC
model, Z can interact with arbitrary protocols and ideal functionalities F can interact with
GUC functionalities G.

B Security Analysis

Theorem B.1. Assuming that underlying blockchain protocol πH has the common prefix
property with the parameter k, the chain density property with the parameter scd, the chain
growth property with the parameters τ and scg ≤ `e − scd, τ(`e − scd) ≥ k and clocks are
T -stable, πH with the relative time protocol realizes πH in the FΘ

Cclock-hybrid model where
Θp = δ + εmax and Θc = Θp + δ except with the probability pcp + pcd + pcg which are the
probability of breaking CP, CD and CG properties in πH, respectively.

Here, εkB`(c, c+ T ) ≤ εT for all Pk, P` and εmax = `eεT .

Proof. In order to prove the theorem, we construct a simulator S where S emulates Fδcom in
πH with the relative time protocol and simulates the adversary in πH in the FΘ

Cclock hybrid
model. It first registers GrefTimer to emulate Fδcom . The simulation is straightforward. As soon
as, Z initiates a party Pi, S simulates Pi in πH with the relative time protocol. Whenever
Pi in πH in the FΘ

Cclock-hybrid model sends message with Fδcom, Fδcom contacts with S and S
relays it to A. Then S waits until A permits the message to move the inbox of the other
parties. If the permission is not received after δ consecutive ticks by GrefTimer, S moves the
block to the inbox of honest parties in πH with relative time protocol as Fδcom in the πH in
the FΘ

Cclock-hybrid model. If permission is received S informs Fδcom in πH in the FΘ
Cclock-hybrid

model. In either case, it creates a candidate clock as described in line 18 according to the
arrival time of a block. When S receives clocks Cj ’s from FΘ

Cclock, S finds the median clocks as
described in the relative time protocol and updates the clocks of honest parties accordingly. S
checks if the new clocks satisfies the conditions expected by the FΘ

Cclock. If they do not satisfy,
it aborts. Otherwise, it sends the updated clocks of honest parties to FΘ

Cclock if . Then, S
outputs the clocks of honest parties in πH with the relative time protocol. The output of an
honest party in the real world and the honest party in the ideal world are not the same if S
aborts. S aborts if

1. the difference between new clocks provided by S is more than Θp.
2. the difference between new clocks and the old clocks is more than Θc

3. one of the new clocks of honest parties is null.
Now, we analyse the probability of having such bad events in our simulation in any epoch.
(1. Case): If the CG property satisfied in an epoch, the chain grows τ(`e−scd) blocks after

the first scd rounds of the epoch. If CP property is satisfied too, we can guarantee that the
blocks generated during the first scd rounds in an epoch are finalized because τ(`e− scd) ≥ k.
Thus, all honest parties obtain clocks of the same blocks during this epoch before updating
their clocks for the new epoch. This means that parties satisfy the assumption of BCSP
protocol i.e., all clocks built during BCSP constructed based on the same message for each
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honest party. Thus, we can use the result of Theorem 3.1 and conclude that the difference
between the new clocks of honest parties in πH with the relative time protocol is at most
δ + εmax i.e., for all Pi, Pj ∈ Ph, Cj − Ci ≤ δ + εmax just after running the relative time
protocol.

(2. Case) If parties preserve the synchronization during an epoch meaning that the first
case is satisfied, πH with the relative time protocol preserves the security in that epoch so it
has the CD-property. It means that majority of the blocks (at least bn2 c+ 1 finalized blocks
in the epoch) used in Line 22 are honest ones except with the probability pcd.

We now show the difference between the new clock Ci)k and the old clock Ck is at most
Θc assuming that bn2 c+ 1 of the finalized blocks during the simulation of an epoch were sent
by honest parties. We first assume that the block producer of the block Bi is an honest party
P`. If it is the case, 0 ≤ C`−Ci)k ≤ δ. Since we know that synchronization between clocks of
honest parties satisfied, Ck−C` ≤ Θp during the epoch. Therefore, Ck−Ci)k ≤ Ck−C`+ δ ≤
Θp + δ ≤ Θc. Now, we assume that Bi is generated by a malicious party. Since the clock
value of Ci)k is the median value and majority of the clocks constructed in an epoch based
on hones blocks, then there exist Cx)k,Cy )k where Bx and By are generated by honest parties
and Cx)k ≤ Ci)k ≤ Cy )k. Therefore, because of the same reasoning in the case of Bi is an
honest block, we can conclude that Ck − Cx)k ≤ Θp + δ ≤ Θc and Ck − Cy )j ≤ Θp + δ ≤ Θc.
We know that Cx)k ≤ Ci)k ≤ Cy )k, so Ck − Ci)k ≤ Θp + δ.

(3. Case): IsNewEpoch always returns true if all clocks of the blocks are constructed
during the epoch. Therefore, the parties who have a null clock obtain their new clocks from
the same candidate clocks as others and they cannot be null.

We have shown that clocks sent by S is as expected by FΘ
Cclock, if CD, CP, CG properties

are satisfied during an epoch. Now, we need to show that it is the case for all epochs. We
know that the security properties of πH maintain in πH in the FΘ

Cclock-hybrid model as long
as T ≥ δ+ Θp+ 2εmax and Θc < T . During epoch = 0, parties are identical in both protocols.
Therefore, πH with the relative time protocol maintains the same security properties as in πH
during epoch = 0. Given this, the clocks sent by S preserves the conditions defined in FΘ

Cclock

in the end of epoch = 0. Now, parties during epoch = 1 are identical in both protocols. From
the same reasoning, the CD and CP properties are preserved next epochs given that they are
preserved in the previous epoch.
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