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Abstract

We initiate the systematic study of probabilistic proofs in relativized worlds. The goal is
to understand, for a given oracle, if there exist “non-trivial” probabilistic proofs for checking
deterministic or nondeterministic computations that make queries to the oracle.

This question is intimately related to a recent line of work that builds cryptographic prim-
itives (e.g., hash functions) via constructions that are “friendly” to known probabilistic proofs.
This improves the efficiency of probabilistic proofs for computations calling these primitives.

We prove that “non-trivial” probabilistic proofs relative to several natural oracles do not
exist. Our results provide strong complexity-theoretic evidence that certain functionalities can-
not be treated as black boxes, and thus investing effort to instantiate these functionalities via
constructions tailored to known probabilistic proofs may be inherent.
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1 Introduction

The study of relativized complexity classes originally aspired to shed light on the structural relation-
ships between unrelativized complexity classes. However, it was soon realized that many interesting
complexity classes have contradictory relativization results. For instance, Baker et al. [BGS75]
showed that there exist oracles A and B such that PA = NPA and PB 6= NPB.

Subsequent works sought to circumvent this difficulty by considering relativized worlds where
the oracle is sampled from a “natural” distribution, and thereby avoid specially-crafted oracles
that can force an equality/inequality on the complexity classes being compared. For instance,
Bennett and Gill [BG81] proved that, with probability 1 over a random oracle R, it holds that
PR 6= NPR 6= co-NPR and PR = BPPR. Since these relativization results agreed with what
people believed to be true in the unrelativized case, Bennett and Gill proposed the Random Oracle
Hypothesis, which states that structural relationships between complexity classes that hold with
probability 1 over a random oracle also hold in the unrelativized case. However, this hypothesis
was later disproved by Chang et al. [CCG+94], who showed that, with probability 1 over a random
oracle R, IPR 6= PSPACER. (We know that, without oracles, IP = PSPACE [LFKN92, Sha92].)

These works indicate that, in general, relativization results are not helpful for understanding the
relationships between unrelativized complexity classes. At best they provide us with relativization
barriers, which nowadays are not considered so strong since we know of non-relativizing techniques.

1.1 New motivation: the efficiency of probabilistic proofs

We revisit relativization with a new motivation: the efficiency of probabilistic proofs. Superficially,
relativization and probabilistic proofs seem unrelated. Yet they are deeply connected, as we explain.

Probabilistic proofs such as interactive proofs [GMR89] and probabilistically checkable proofs
[BFLS91] have played important roles in the study of hardness of approximation since the seminal
work of [FGL+91]. In recent years, they became the subject of intense study due to their application
to constructing highly-efficient cryptographic proofs (such as succinct arguments), and a major
research goal today is to improve the efficiency of probabilistic proofs. We now illustrate, via an
example, how relativization results tell us important facts about the efficiency of probabilistic proofs.

Example 1.1. Let H = {Hs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ be a family of “hash functions” (the
precise security property in this discussion is unimportant), and consider the following NP language:

Ls = {(n, y) ∈ N× {0, 1}|s| | ∃x ∈ {0, 1}|s| s.t. Hn
s (x) = y} .

The efficiency measures (proof length, randomness complexity, query complexity, and others) of a
PCP for the language Ls typically depend on the size of an arithmetic circuit that iteratively applies
Hs, for n times, to a candidate witness x and checks if the result is y. The size of such a circuit is
Ω(n |Hs|), i.e., it depends on the size of a circuit for expressing the computation of Hs. Since there
are many NP languages of interest to practitioners that involve cryptographic computations such
as hash functions, researchers have been designing specialized families of hash functions that can be
represented via small arithmetic circuits [AD18, ACG+19, GKK+19, AABS+19, AGP+19, GLR+19].

We ask: is optimizing the arithmetic circuit complexity of hash functions necessary?
We now explain why the answer to this question is connected to relativization statements about

probabilistic proofs. Informally, suppose that for any family of hash functionsH it holds that NPH ⊆
PCPH. In other words, every language that can be decided by a nondeterministic polynomial-time
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machine that makes oracle calls to a hash function has a PCP verifier that may make oracle calls
to the same hash function. Now the “oracle language” L = {Ls}s∈{0,1}∗ , which is in the relativized
complexity class NPH, can be decided via a computation that involves n calls to the hash function
but does not depend on the complexity of the hash function itself (as this computation happens
inside the oracle). Hence, since we assumed that NPH ⊆ PCPH, we can obtain a probabilistic proof
for L whose efficiency does not depend on the complexity of the hash function (which is wonderful).

In sum, probabilistic proofs that “relativize with respect to hash functions” obviate the need to
design hash functions with small complexity and, conversely, negative results about such relativiza-
tions provide strong evidence that efforts to design “PCP-friendly” hash functions are inherent.

The above example illustrates a general connection. On the one hand, constructing probabilisitic
proofs in relativized worlds could provide drastic efficiency improvements to probabilistic proofs.
On the other hand, ruling out probabilistic proofs in relativized worlds would provide a complexity-
theoretic justification for why practitioners may be “stuck” with the task of designing “PCP-friendly”
realizations of various functionalities (hash functions, signatures, encryption, and so on).

1.2 Our question: are there PCPs for computations in relativized worlds?

We initiate the systematic study of probabilistic proofs for relativized computations.
In this work an oracle is a collection A = {An}n∈N where each An is a distribution over functions

on n-bit inputs. A sample from A is a function A : {0, 1}∗ → {0, 1}∗ obtained by sampling a function
fn from each An and then setting A to equal fn for n-bit inputs. (See Section 2.1 for definitions.)

We wish to understand for what oracles A there are probabilistically checkable proofs (PCPs)
in a relativized world where all machines have oracle access to a sample from A. Below we make
this question more precise, distinguishing between the case of PCPs for relativized nondetermin-
istic computations (“do PCPs provide any savings in witness length?”) and the case of PCPs for
relativized deterministic computations (“do PCPs provide any savings in computation length?”).

The complexity classes that we study are the natural relativized extensions of DTIME, NTIME,
and PCP. Note that complexity classes relative to an oracle A are sets of oracle languages (see
Definition 2.5) rather than sets of languages, because the sample from A affects whether a particular
instance is in the language or not. The informal definitions below are made precise in Section 2.4.

DTIME(t(n))A
oracle languages that are decidable by a deterministic machine that runs
in time O(t(n)) and has oracle access to a sample from A

NTIME(t(n))A
oracle languages that are decidable by a nondeterministic machine that
runs in time O(t(n)) and has oracle access to a sample from A

PCP(t(n), q(n))A
oracle languages that are decidable by a PCP verifier that runs in time
O(t(n)), makes O(q(n)) queries to a proof string, and has oracle access
to a sample from A

We introduce two incomparable questions, which concern the (im)possibility of “non-trivial”
PCPs for relativized nondeterministic computations and for relativized deterministic computations.

1. PCPs for NTIME. For every oracle A it holds that NTIME(t(n))A ⊆ PCP(t(n), t(n))A

because a PCP verifier can read in full a witness provided in the PCP proof, and then run the
nondeterministic decider on the witness. We ask: for what oracles A can we have any non-trivial
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improvement on this trivial inclusion? Namely, we consider PCP verifiers that may make o(t(n))
queries to the PCP proof, which in general prevents the PCP verifier from reading a witness
from the PCP proof. We additionally allow the PCP verifier to incur a polynomial blow-up in
running time: it may run in time poly(t(n)), and in particular can make poly(t(n)) queries to
the sample from A. (The queries to the PCP proof are still o(t(n)).) This amounts to asking:

Given an oracle A, is it the case that NTIME(t(n))A ⊆ PCP(poly(t(n)), o(t(n)))A?

We will say that an oracle A separates NTIME and PCP if the answer to this question is negative.

2. PCPs for DTIME. For every oracle A it holds that DTIME(t(n))A ⊆ PCP(t(n), 0)A because
a PCP verifier can simply run the deterministic decider. We similarly ask: for what oracles A
can we have any non-trivial improvement on this trivial inclusion? Namely, we consider PCP
verifiers that run in time o(t(n)), which in general prevents a PCP verifier from simply running
the deterministic decider. We additionally allow the PCP verifier to ask any number of queries
to the proof or to the sample from A (as bounded by its running time). This amounts to asking:

Given an oracle A, is it the case that DTIME(t(n))A ⊆ PCP(o(t(n)), o(t(n)))A?

We will say that an oracle A separates DTIME and PCP if the answer to this question is negative.

What is known? Recall that, for unrelativized complexity classes, we have excellent PCPs. All
nondeterministic computations have a constant-query PCP verifier that runs in polylogarithmic
time: NTIME(t(n)) ⊆ PCP(poly(n, log t(n)), O(1)) [Din07, BS08, Mie09]. In particular, PCPs
simultaneously provide exponential savings in witness length and in computation length.

However, for relativized complexity classes, known relativization results tell us very little. The
main relevant prior work is by Hartmanis et al. [HCC+92], who claim that, with probability 1 over
a random function R : {0, 1}∗ → {0, 1}, NPR 6⊆ PCP(poly(n), log n)R. This provides a negative
result for the special case where A is a “random oracle”, t(n) is polynomially bounded, and the PCP
verifier makes O(log n) queries to the PCP proof. (In Section 1.4 we discuss other related work.)

However, even for the case of a random oracle, our goal is to rule out any non-trivial PCP
for any nondeterministic computation (ruling out any savings in witness length), and also for any
deterministic computation (ruling out any savings in computation length, even if there is no witness).

More generally, we are interested to answer these questions for oracles beyond random oracles.
Some intuition. If the PCP verifier could “learn” the oracle in a small number of queries, then we
may be able to rely on known techniques to construct PCPs for unrelativized computations because
each oracle call could be replaced by a subroutine that simulates the learned oracle. Conversely, if
the oracle is “hard” to learn, then known techniques do not seem to apply because it is not clear
how they could deal with oracle calls, and so we may expect that non-trivial PCPs in this case are
impossible. Our goal will be to show that, for hard-enough oracles, non-trivial PCPs are indeed
impossible (regardless of the techniques that could be used to construct the PCPs).
Beyond PCPs. There are several models of probabilistic proofs beyond PCPs, such as interactive
proofs (IPs) [GMR89], interactive PCPs (IPCPs) [KR08], and interactive oracle proofs (IOPs)
[BCS16, RRR16]. One may ask: why do we focus only on PCPs in our presentation? The answer is
that, for the goals of this paper, the PCP model is equivalent to the IOP model (see Remark 1.6),
and the IOP model subsumes the other models as special cases. So, for the goals of this paper, it
suffices to study PCPs. All results in Section 1.3 directly translate to IPs, IPCPs, and IOPs.
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1.3 Our results

We prove that, for several oracles of cryptographic interest, non-trivial PCPs for relativized com-
putations do not exist — this holds both for deterministic computations (DTIME) and for nonde-
terministic computations (NTIME). Moreover, we establish several structural results about “hard
oracles” for PCPs. These initial results provide us with valuable insights into the efficiency limita-
tions of PCPs, and provide a useful starting point for further investigations into this new direction.

We now summarize our results in more detail.
(1) Random functions. We begin with the oracle that intuition suggests is the “hardest” oracle
for PCPs because it is “maximally unlearnable”, the random oracle. Namely, we consider the oracle
R = {Rn}n∈N where each Rn is the uniform distribution over all functions Rn : {0, 1}n → {0, 1}.1
Our first result shows that the intuition is correct, i.e., we prove that the oracle R separates DTIME
and PCP and also separates NTIME and PCP.

Theorem 1.2 (informal). Let R be the random oracle. For any t : N→ N,

DTIME(t)R 6⊆ PCP(o(t), o(t))R and NTIME(t)R 6⊆ PCP(poly(t), o(t))R .

The above theorem tells us that we cannot, in general, expect to construct PCPs for crypto-
graphic computations that involve random oracles, such as Fiat–Shamir signatures [FS86]. The
natural alternative would be to somehow instantiate the random oracle, and incur, within the PCP,
the cost of the hash function used in place of the random oracle. This is indeed what Valiant [Val08]
did in his construction of incrementally verifiable computation (IVC): Valiant needed to construct a
PCP for the computation of a SNARK verifier that uses random oracles and, lacking suitable PCPs
for this relativized computation, considered instead the SNARK verifier obtained by instantiating
the random oracle. Our Theorem 1.2 rules out PCPs for computations that use random oracles,
and in particular gives strong evidence that Valiant’s approach was in some sense justified.

One may argue that, while they give us useful insights, random oracles do not tell us much
about other oracles because they are too special in that they have no structure. We now consider
two oracles with structure: one with group structure and another with low-degree structure.

(2) Random generic groups. Many group-based cryptographic primitives are stated (and some-
times also analyzed) with respect to a generic group. This means that the primitive relies only on
the fact that a certain prime-order group is available but does not rely on whether the group is
instantiated, say, with a multiplicative subgroup of a finite field or an elliptic curve group. This
motivates the question of whether there are PCPs with respect to a random (generic) group oracle,
which is the oracle O = {On}n∈N where each On is a random presentation of a group of order n.
We prove that the answer is negative, i.e., that the oracle O separates DTIME and PCP, and also
separates NTIME and PCP.

Theorem 1.3 (informal). Let O be the random group oracle. For any t : N→ N,

DTIME(t)O 6⊆ PCP(o(t), o(t))O and NTIME(t)O 6⊆ PCP(poly(t), o(t))O .

The above theorem tells us that, in general, the representation of a group matters to a PCP. For
example, if we return to the iterative hash computation of Example 1.1 and set the hash function to

1More generally, we consider the uniform distribution over functions Rn : {0, 1}n → {0, 1}`(n) for some `(n).
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be the Pedersen hash function (a function that is collision resistant over any group where extracting
discrete logarithms is hard), we should pick a group tailored to the PCP at hand. This is consistent
with the fact that applied cryptographers working with probabilistic proofs have had to carefully
design group instantiations for such computations. E.g., Jubjub [ZCa17] is an elliptic curve in the
Zcash cryptocurrency that is used to instantiate a Pedersen hash function in a way that is “friendly”
to probabilistic proofs. Our theorem provides strong evidence that these efforts are necessary.
(3) Random low-degree functions. Probabilistic proofs are typically achieved by relying on low-
degree functions that encode information associated to the computation being checked. This fact
extends to relativized complexity classes in the sense that results such as IP = PSPACE algebrize
with respect to every oracle [AW09]. In the language of this paper, this means that for every oracle
A, it holds that PSPACEA ⊆ IPÂ where Â is the low-degree extension of A (each sample in A is
replaced with some low-degree extension of it).

However in this paper we are interested in understanding relativization results, not algebriza-
tion results, and the above discussion raises the question of what happens when we compare
DTIME/NTIME and PCP in a relativized world where the oracle is a random low-degree func-
tion. Namely, we consider the oracle P = {Pn}n∈N where Pn is the uniform distribution over all
low-degree polynomials on n variables (for given field and degree parameters). Note that P can be
viewed as a low-degree extension of the random oracle R.

We prove that low-degree structure remains hard for probabilistic proofs, i.e., we prove that P
separates DTIME and PCP, and also separates NTIME and PCP.

Theorem 1.4 (informal). Let P be the random low-degree oracle over q-size fields. For any t : N→ N,

DTIME(t)P 6⊆ PCP(o(t
log q

q−1 ), o(t
log q

q−1 ))P and NTIME(t)P 6⊆ PCP(poly(t), o(t))P .

We point out here that it is still open whether DTIME(t)P is in PCP(o(t), o(t))P .
Interlude on separation types. We have so far considered relativized complexity classes in
which a single machine is granted oracle access to a sample A : {0, 1}∗ → {0, 1}∗ from the oracle
A, and is required to “work” for the language defined by A with probability 1 over the choice of A.
For example, DTIME(t)A is the class of all oracle languages L = {LA}A∈A for which there exists a
deterministic machine M , which runs in time O(t(n)), such that

Pr
A←A

[
MA decides the language LA

]
= 1 .

We use analogous definitions for NTIME and PCP, as discussed in Section 2.4. We consider these
definitions to be the natural ones to use for the goals of this paper. We sometimes refer to separations
between these complexity classes as uniform separations, to distinguish them from those below.

We could alternatively study separations where all machines are allowed to non-uniformly depend
on A, thereby granting all machines more power. In this direction, there are two natural definitions.

• Somewhere separation. We say that A provides a somewhere separation for DTIME and PCP if
there exists A ∈ A such that DTIME(t)A 6⊆ PCP(o(t), o(t))A. And similarly for NTIME.

• Almost-everywhere separation. We say that A provides an almost-everywhere separation for
DTIME and PCP if DTIME(t)A 6⊆ PCP(o(t), o(t))A holds with probability 1 over a random
choice of sample A ← A. (Note that this leaves open the possibility that there is no separation
for a set of functions of measure 0 in A.) And similarly for NTIME.
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An almost-everywhere separation is, in general, strictly stronger than an a somewhere separation.
However, the relation between these and uniform separations is not a priori clear.

We provide clarity on this comparison: in Section 4 we prove that uniform separations are
equivalent to somewhere separations, at least when comparing DTIME/NTIME and PCP. Namely,
we prove that, for any oracle A, DTIME(t)A 6⊆ PCP(o(t), o(t))A if and only if there exists a function
A in A such that DTIME(t)A 6⊆ PCP(o(t), o(t))A. And similarly for NTIME.
Almost-everywhere separation for random functions. For the random oracleR, we strengthen
the separations in Theorem 1.2 to almost-everywhere separations (via a different, longer proof). We
learn that the random oracle R is particularly “hard” for PCPs.

Theorem 1.5 (informal). Let R be the random oracle. For any t : N→ N,

Pr
R←R

[
DTIME(t)R 6⊆ PCP(o(t), o(t))R

]
= 1 and Pr

R←R

[
NTIME(t)R 6⊆ PCP(poly(t), o(t))R

]
= 1 .

The above theorem also directly improves on the classical work of Hartmanis et al. [HCC+92],
who showed that PrR←R[ NPR 6⊆ PCP(poly(n), log n)R ] = 1. The improvement is that our result
rules out any non-trivial PCP for any nondeterministic computation, and also rules out any non-
trivial PCP for any deterministic computation.

We prove Theorem 1.5 by building on techniques of Chang et al. [CCG+94] that were used to
prove that PrR←R[ IPR 6= PSPACER ] = 1. These techniques rely on the fact that every function R
in R has many other functions in R that are close to it in all but finitely many points.

We do not know how to extend these techniques to oracles such as the random group oracle O or
the random low-degree oracle P, because in these cases any two samples are far from one another.
In this light, we view the techniques that we use to prove Theorems 1.2 to 1.4 as more flexible.
Moreover, we consider the separations proved in these theorems as sufficient for our motivations.
Structural results: beyond R, O, P. Our results thus far concern separations for specific ora-
cles of interest. There are other oracles of interest that demand understanding (e.g., pseudorandom
functions) and, more generally, the study of separations could benefit from general statements. In
Section 3 we prove several useful structural results about oracles that are “hard” for PCPs.

1. Robustness. We prove that the separating property is “robust” with respect to small perturba-
tions. In more detail, we prove that for every oracle A that separates DTIME/NTIME and PCP
there exists a distance function ε such that any other oracle that is ε-close to A also separates
DTIME/NTIME and PCP. This statement can also be viewed as telling us that the set of
separating oracles is open with respect to statistical distance (see Definition 2.2).

We can apply the above result to any of the separations that we have proved. For example, if
apply it to Theorem 1.2 then we learn that all oracles that are “almost” uniformly random (close
enough to the random oracle R) separate DTIME/NTIME and PCP. In fact, in Lemma 9.1,
we use additional techniques to quantify (a bound on) this distance threshold, proving that all
oracles that are 1

3e -close to uniformly random separate NTIME and PCP.

2. Monotonicity. We prove that the separating property is “monotone” in that, for every oracle
A that separates DTIME/NTIME and PCP, if another oracle B contains A as a marginal
distribution then B also separates DTIME/NTIME and PCP. I.e., B inherits the hardness of A.
We rely on monotonicity in the proof of Theorem 1.4, where we reduce the problem of showing
separation for random low-degree polynomials to the problem of showing separation for random
multilinear polynomials (which we then solve).
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3. Conditioning. We prove that the separating property is preserved by (finite) conditioning.
Namely, given an oracle A and a function f : D → {0, 1}∗ over a finite domain D, we denote by
AD,f the oracle where samples are conditioned to equal f on D. We prove that if A separates
DTIME/NTIME and PCP then AD,f also separates DTIME/NTIME and PCP.

We rely on conditioning to prove the equivalence in Section 4 (between different separation types).

Remark 1.6 (beyond PCPs). Research in the last few years has shown that using known PCPs is
not the best choice for constructing efficient succinct arguments. Instead, it is better to construct
succinct arguments from IOPs [BCS16, RRR16], which are a multi-round generalization of PCPs
that enables significant improvements in asymptotic and concrete efficiency [BCGV16, BCG+17,
BCF+17, BBC+17, BBHR18, BBHR19, BCR+19, BCG+19, RR19]. So the reader may rightfully
ask: why did we prove all of our results for PCPs instead of IOPs, if these latter are more powerful?

The answer is that all of our results extend, in a generic way, to IOPs as well. This is because
our results about PCPs only consider the PCP verifier’s time complexity and query complexity,
and IOPs do not provide any benefits over PCPs when only considering these complexity measures.
Indeed, any IOP can be “unrolled” into a PCP, possibly of exponentially larger size, while preserving
the verifier’s time complexity and query complexity, regardless of oracle. In particular, for every
oracle A, the complexity class IOP(T, q)A (oracle languages for A decidable by an IOP verifier
with time complexity T and query complexity q) equals the complexity class PCP(T, q)A (oracle
languages for A decidable by a PCP verifier with time complexity T and query complexity q).

Finally, we additionally obtain analogous impossibility results for interactive proofs (IPs) [GMR89]
and interactive PCPs (IPCPs) [KR08], as both are special cases of IOPs.

1.4 Related work

NP vs. PCP in relativized worlds. Fortnow [For94] uses diagonalization to obtain a function
R : {0, 1}∗ → {0, 1} such that, for every k ∈ N, NPR 6⊆ PCP(poly(n), nk)R. Hartmanis et al.
[HCC+92] report a stronger result: with probability 1 over a random function R : {0, 1}∗ → {0, 1},
NPR 6⊆ PCP(poly(n), log n)R. We do not know of a version of [HCC+92] that contains a proof of
this result, so we cannot comment on the techniques used to prove it. As already discussed, our
Theorem 1.5 strengthens this latter result to hold for any non-trivial PCP.
Barriers for relativization and others. PCP constructions involve the use of non-relativizing
techniques. A line of works [For94, AIV92, AW09, IKK09, AB18] has developed frameworks that
seek to capture the class of such techniques, along with other non-relativizing ones, within formal
models, in order to prove barriers for these techniques (e.g., to show that they do not suffice to
resolve the P vs. NP question or other difficult questions in complexity theory).

The emphasis and techniques in this work are complementary to the foregoing line of works.
Our emphasis is on establishing impossibility results for PCPs regardless of techniques used, as

opposed to proving barriers for the PCP techniques that are known today.
Moreover, the axiomatic approaches employed in some of the works cited above cannot be

used to even formulate questions that involve PCP verifiers with specific running times or query
complexities. E.g., they rely on Cobham’s axiomatization of the notion of polynomial time [Cob65],
so cannot express exact running times. This means that we would not be able to phrase questions
about non-trivial PCPs (as we do in Section 1.2).
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1.5 Open problems

The separations that we prove in this paper are for “information-theoretic” oracles A. What can be
said about hard “cryptographic” oracles A? E.g., if A is a pseudo-random function, then must it be
the case that A separates DTIME/NTIME and PCP? What about if A is a decryption oracle?

More generally, the holy grail in this research direction would be to distill a crisp, and opera-
tionally useful, criterion that gives sufficient and necessary condition for an oracle A that separates
DTIME/NTIME and PCP.
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2 Definitions

We often consider functions from natural numbers to natural numbers, and we implicitly assume
that they are time-constructible. Recall that f : N → N is time-constructible if there is a machine
M such that, for all n ∈ N, M(1n) outputs the binary representation of f(n) ∈ N in O(f(n)) time.
Note that if f is time-constructible then f(n) ∈ Ω(n).

2.1 Oracles

An oracle is a collection of distributions over functions, with one distribution per input length.

Definition 2.1. An oracle with output length ` : N → N (with `(n) > 0 for every n ∈ N) is a
collection A = {An}n∈N where each An is a distribution over functions f : {0, 1}n → {0, 1}`(n).

We can obtain a sample A : {0, 1}∗ → {0, 1}∗ from A by sampling a function fn from each An
and then setting A to equal fn for inputs of size n. We write “A← A” to denote that A is a sample
that follows this distribution, and “A ∈ A” to denote that A is in the support of this distribution.
We denote by supp(A) the support of A. (In particular, the oracles that we consider are product
distributions across input sizes. We leave the study of a more general definition to other work.)

An oracle A induces a corresponding probability measure µA over the space of functions from
binary strings to binary strings: given a subset S ⊆ {0, 1}∗ and a set X of functions from S to
{0, 1}∗, µA(X) is the probability that the restriction to S of a sample A from A belongs to X.

Definition 2.2. Two oracles A = {An}n∈N and B = {Bn}n∈N have (statistical) distance ε : N→ N
if, for every n ∈ N, the statistical distance between the distributions An and Bn is at most ε(n).

We write “g ← A≤n” to denote that g is a function on
⋃

1≤i≤n{0, 1}i that is sampled from the
distribution A≤n := A1 × · · · × An. We write “g ∈ A≤n” to denote that g is in the support of this
distribution, and denote by supp(A≤n) the support of A≤n.

Definition 2.3. An oracle B contains an oracle A if for all n ∈ N it holds that µB(supp(A≤n)) > 0
and, for every f ∈ supp(A≤n), µB(f) = µB(supp(A≤n)) · µA(f).

The definition below provides an operation to condition an oracle to take known values.

Definition 2.4. Fix a subset D ⊆ {0, 1}∗ and function f : D → {0, 1}∗.

• Given a function A : {0, 1}∗ → {0, 1}∗, we define AD,f : {0, 1}∗ → {0, 1}∗ to be the function
obtained by setting the values of A on D to f :

AD,f =

{
f(x) if x ∈ D
A(x) if x 6∈ D

.

• Given an oracle A = {An}n∈N (such that there exists some A ∈ supp(A) agreeing with f on D),
we define AD,f = {AD,fn }n∈N to be the oracle where samples are conditioned to equal f on D. In
more detail, each distribution AD,fn equals the distribution An conditioned on the event that the
sampled function agrees with f on D ∩ {0, 1}n.

11



2.2 Languages and oracle languages

A language L is a subset of {0, 1}∗. We denote by L(x) the bit that specifies whether a string
x ∈ {0, 1}∗ is in L (L(x) = 1) or not (L(x) = 0).

We also consider oracle languages because we study relativized complexity classes.

Definition 2.5. Let U := {F : {0, 1}∗ → {0, 1}∗} be the set of all functions on binary strings. An
oracle language L is a collection of languages indexed by functions F ∈ U , namely, L = {LF }F∈U
where each LF is a subset of {0, 1}∗.

A language L can be viewed as a special case of an oracle language {LF }F∈U where each LF = L.

Definition 2.6. For ` : N→ N, an oracle language L = {LF }F∈U is `-bounded if, for all functions
F ∈ U and inputs x ∈ {0, 1}∗, whether x ∈ LF only depends on F ’s values at locations of size at
most `(|x|). Namely, LF (x) = LF ′(x) for every F ′ that agrees with F on the set

⋃
1≤i≤`(|x|){0, 1}i.

2.3 Machines that query oracles

We consider several notions of (Turing) machines that query oracles, as defined below. Informally,
an oracle machine is given black-box access to a function A : {0, 1}∗ → {0, 1}∗, which the machine
can query, any number of times, at any input of its choice. Each query costs the machine a single
computational step, regardless of the function A. In more detail, we consider the following definition.

Definition 2.7. An oracle machine M is a machine that has two special tapes called oracle query
tape and oracle answer tape, and two special states called Query and Answer. The special tapes
are in addition to the machine’s regular read/write tapes (of which there can be one or multiple)
and the special states are in addition to the machine’s regular start, accept, reject, and other states.
We denote by MA(x) the output of M on input x ∈ {0, 1}∗ and with access to oracle A : {0, 1}∗ →
{0, 1}∗, which is computed as follows. The input x is written in a designated read/write tape, and
execution proceeds as normal except if the machine enters the Query state. Let y ∈ {0, 1}∗ be the
contents of the oracle query tape when this happens. In the following step, the contents of the oracle
answer tape are replaced with A(y) ∈ {0, 1}∗, and the machine enters the Answer state.

Definition 2.7 considers deterministic oracle machines. In Section 2.4 we use these machines to
extend the notion of languages decidable in deterministic bounded time to work with oracles.

We also use nondeterministic oracle machines, which are defined similarly as above except that
they can, in any computational step, choose to make a nondeterministic choice as in the standard
definition of a nondeterministic machine. In Section 2.4 we use these machines to extend the notion
of languages decidable in nondeterministic bounded time to work with oracles.

We also use probabilistic oracle machines that use randomness and can make queries to a proof
string π ∈ {0, 1}∗ (in addition to the oracle A). These machines are defined similarly as above
except that they can, in any computational step, receive a bit of randomness, or query a location
of the proof string π via two dedicated tapes (a proof query tape and a proof answer tape). In
Section 2.4 we use these machines to extend the notion of probabilistic proofs to work with oracles.

Throughout this paper we call oracle machines simply “machines”, as it will be clear from context
when we are referring to an oracle machine (of one of the foregoing types).

Remark 2.8. Oracle machines are often defined with one special tape, instead of two as in Def-
inition 2.7. The machine writes its query to the oracle in this one tape, and in the following step
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the tape’s contents are replaced with the oracle’s answer. Note that, with one oracle tape, the
machine has to write each query “from scratch” because the prior query was deleted. This difference
is not significant, because writing each query from scratch is at most quadratically slower than not
having to do that (due to having two oracle tapes). However, this difference matters when studying
questions that are sensitive to such costs. Thus in this paper we use machines with two oracle tapes.

2.4 Complexity classes with oracles

We define, for a given oracle A, the complexity classes DTIME(t)A, NTIME(t)A, and PCP(t, q)A.
Deterministic time. A deterministic machine M is a D-decider for a language L if for every
x ∈ {0, 1}∗ it holds that M(x) = L(x). The complexity class DTIME(t) consists of all languages L
for which there exists a deterministic machine M that runs in time O(t(n)) and is a D-decider for
L. We now provide a definition that considers the more general case of oracle languages that are
decidable by deterministic machines with access to an oracle.

Definition 2.9. Let A = {An}n∈N be an oracle and let t : N→ N be a function. DTIME(t)A is the
class of all oracle languages L = {LA}A∈A for which there exists a deterministic machine M , which
runs in time O(t(n)), such that

Pr
A←A

[
MA is a D-decider for LA

]
= 1 .

Nondeterministic time. A nondeterministic machine M is a ND-decider for a language L if
for every x ∈ {0, 1}∗ it holds that M(x) = L(x). The complexity class NTIME(t) consists of all
languages L for which there exists a nondeterministic machine M that runs in time O(t(n)) and
is a ND-decider for L. We now provide a definition that considers the more general case of oracle
languages that are decidable by nondeterministic machines with access to an oracle.

Definition 2.10. Let A = {An}n∈N be an oracle and let t : N → N be a function. NTIME(t)A is
the class of all oracle languages L = {LA}A∈A for which there exists a nondeterministic machine
M , which runs in time O(t(n)), such that

Pr
A←A

[
MA is a ND-decider for LA

]
= 1 .

Probabilistic proofs. A probabilistic machine M is a PCP-verifier for a language L if: for every
x ∈ L there exists π ∈ {0, 1}∗ such that Pr[Mπ(x) = 1] ≥ 2/3; for every x 6∈ L and π ∈ {0, 1}∗
it holds that Pr[Mπ(x) = 0] ≥ 2/3. The complexity class PCP(t, q) consists of all languages L for
which there exists a probabilistic machine M that runs in time O(t(n)), makes O(q(n)) queries to
the proof string, and is a PCP-verifier for L. Below we consider the more general case of oracle
languages that are decidable by probabilistic machines with access to an oracle.

Definition 2.11. Let A = {An}n∈N be an oracle and let t, q : N → N be functions. PCP(t, q)A is
the class of all oracle languages L = {LA}A∈A for which the there exists a probabilistic machine M ,
which runs in time O(t(n)) and makes O(q(n)) queries to the proof string, such that

Pr
A←A

[
MA is a PCP-verifier for LA

]
= 1 .
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Given an oracle language L = {LA}A∈A and machine M , we say that M succeeds on input
x ∈ {0, 1}∗ and function A ∈ A for L if the following holds: if x ∈ LA then Pr[MA,π(x) = 1] ≥ 2

3 for
some proof π; else if x 6∈ LA then Pr[MA,π(x) = 1] ≤ 1

3 for every proof π. Otherwise, we say thatM
fails on input x ∈ {0, 1}∗ and function A ∈ A for L (that is, if x ∈ LA then Pr[MA,π(x) = 1] < 2

3
for every proof π; else if x 6∈ LA then Pr[MA,π(x) = 1] > 1

3 for some proof π).

We conclude this section with several technical remarks.

Remark 2.12 (bounded oracle languages). For every oracle A and oracle language L in the com-
plexity class DTIME(t)A, NTIME(t)A, or PCP(t, q)A, there exists a O(t)-bounded oracle language
L∗ such that for every oracle A ∈ A it holds that LA = L∗A. The language L∗ is naturally defined
by L’s DTIMEA decider, NTIMEA decider, or PCPA verifier. In particular, we can assume without
loss of generality that oracle languages in these complexity classes are O(t)-bounded.

Remark 2.13 (index overA instead of U). We sometimes define an oracle language L in DTIME(t)A

or in NTIME(t)A only for functions in (the support of) an oracle A. In this case it is understood
that LF is defined by the DTIMEA or NTIMEA decider of {LA}A∈A for all functions F ∈ U \ A.

Remark 2.14 (relativized classes for a single function). Definitions 2.9 to 2.11 capture, as a special
case, relativized classes where the oracle is a single function A : {0, 1}∗ → {0, 1}∗ rather than a
distribution over functions (let A be the oracle that puts all the probability mass on A). In this
case the relativized classes can be “collapsed” to sets of languages rather than sets of oracle languages.
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3 Structural properties of separation

We prove structural properties about the non-containments DTIME(t)A 6⊆ PCP(T, q)A (Theo-
rem 3.1) and NTIME(t)A 6⊆ PCP(T, q)A (Theorem 3.2). We use these in later sections.

Theorem 3.1 (DTIME & PCP). Let t, T : N→ N be time bound functions and q : N→ N a query
bound function. Let A be an oracle such that DTIME(t)A 6⊆ PCP(T, q)A. Then the following holds.

(1) Robustness: there exists a positive function ε : N→ R (ε(n) > 0 for every n ∈ N) such that, for
every oracle B that is ε-close to A, it also holds that DTIME(t)B 6⊆ PCP(T, q)B.

(2) Monotonicity: for every oracle B that contains A, it also holds that DTIME(t)B 6⊆ PCP(T, q)B.

(3) Conditioning: for every function f : D → {0, 1}∗, it also holds that DTIME(t)A
D,f 6⊆ PCP(T, q)A

D,f .

Theorem 3.2 (NTIME & PCP). Theorem 3.1 also holds with NTIME(t) in place of DTIME(t).

The above theorems are direct corollaries of general properties that we prove, as we now explain.
For the rest of this section we fix: (a) an oracle language L that is `-bounded for some ` : N→ N;

(b) a time bound function T : N→ N; (c) a query bound function q : N→ N; (d) an oracle A.
We shall provide an equivalent formulation for the condition “L 6∈ PCP(T, q)A ” (Claim 3.5),

and then use it to derive several general properties about this condition: robustness (Lemma 3.6),
monotonicity (Lemma 3.7), and conditioning (Lemma 3.8).

By taking L to be an oracle language in either DTIME(t)A or NTIME(t)A (which implies that
the oracle language is O(t)-bounded), we can then derive the corresponding property in Theorem 3.1
or Theorem 3.2 respectively. We are left to state and prove the claim and lemmas mentioned above.

Definition 3.3. We denote by MT,q the set of probabilistic oracle machines that, on inputs of length
n, read O(q(n)) proof bits and run in O(T (n)) time.

Definition 3.4. For every n ∈ N, we define s(n) := max{`(n), 2T (n)} and Sn :=
⋃

1≤i≤s(n){0, 1}i.

Claim 3.5. The following two conditions are equivalent:

(1) L 6∈ PCP(T, q)A.

(2) For every machine M ∈ MT,q there exist an input x ∈ {0, 1}∗ and function f : S|x| → {0, 1}∗
with µA(f) > 0 such that, for every function F : {0, 1}∗ → {0, 1}∗ that agrees with f on S|x|,
M fails on input x and function F for L. (The function F need not be in supp(A).)

Proof. We separately consider the two directions.
(1) ⇒ (2). If L 6∈ PCP(T, q)A, then for every M ∈MT,q there exists a function F ∈ supp(A)

such that MF fails to verify LF on some input x. Consider the function f : S|x| → {0, 1}∗ obtained
by restricting F to S|x|. Since the running time of MF on input x is at most O(T (|x|)), it cannot
distinguish between having access to the function F and access to any other function F ′ that agrees
with f . Moreover, since L is `-bounded, LF (x) = LF ′(x) for every F ′ that agrees with f . Therefore,
MF ′(x) fails for every F ′ that agrees with f . The set of all such oracles has positive measure in A
(i.e., µA(f) > 0), because any finite prefix of any function in A has positive measure.

(2) ⇒ (1). The condition directly implies that, for every M ∈MT,q, MA is not a PCP-verifier
for LA for a set of functions A with positive measure in A. Therefore L 6∈ PCP(T, q)A.
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Lemma 3.6 (robustness). If L 6∈ PCP(T, q)A, then there exists a positive function ε : N → R
(ε(n) > 0 for every n ∈ N) such that, for every oracle B that is ε-close to A, L 6∈ PCP(T, q)B.

Proof. For every n ∈ N, define Xn := {f : Sn → {0, 1}∗ | µA(f) > 0} to be the set of all functions
over Sn that have positive measure in A. We define the distance function as ε(n) := minf∈Xn µA(f).

By Claim 3.5, from L 6∈ PCP(T, q)A we deduce that for any M ∈MT,q there exists an input x
and function f : S|x| → {0, 1}∗ with µA(f) > 0 such that, for every function F : {0, 1}∗ → {0, 1}∗
that agrees with f on S|x|, M fails on input x and function F for L. Since the oracle B is ε-close
to A we deduce, from the definition of ε, that µB(f) > 0 as well.

Since the above holds for every M ∈MT,q, by Claim 3.5 we conclude that L 6∈ PCP(T, q)B.

Lemma 3.7 (monotonicity). If L 6∈ PCP(T, q)A, then, for every oracle B that contains A, it holds
that L 6∈ PCP(T, q)B.

Proof. From Claim 3.5, since L 6∈ PCP(T, q)A, we know that for every M ∈ MT,q there exists an
input x and function f : S|x| → {0, 1}∗ with µA(f) > 0 such that, for every function F : {0, 1}∗ →
{0, 1}∗ that agrees with f on S|x|, M fails on input x and function F for L. Due to containment
(Definition 2.3), since f ∈ supp(A≤s(|x|)), we deduce that

µB(f) = µB
(
supp(A≤s(|x|))

)
· µA(f) > 0 .

Since the above holds for every M ∈MT,q, by Claim 3.5 we conclude that L 6∈ PCP(T, q)B.

Lemma 3.8 (conditioning). Let I ⊆ N be finite, and set D :=
⋃
i∈I{0, 1}i. If L 6∈ PCP(T, q)A, then

there exists a function g : D → {0, 1}∗ such that, letting Lg := {LgF }F∈U where each LgF := LFD,g ,
for every f : D → {0, 1}∗ in the support of A it holds that Lg 6∈ PCP(T, q)A

D,f .

Proof. Consider the following set of functions over D:

GD,A := {g : D → {0, 1}∗ | ∃A ∈ supp(A) that agrees with g on D} .

First, we argue that, since L 6∈ PCP(T, q)A, there exists g ∈ GD,A such that L 6∈ PCP(T, q)A
D,g .

Suppose by way of contradiction that L ∈ PCP(T, q)A
D,g for every g ∈ GD,A. Then every oracle

AD,g has a PCP-verifier Mg ∈ MT,q for L. We use the PCP-verifiers {Mg}g∈GD,A to construct
a PCP-verifier M that shows that L ∈ PCP(T, q)A (a contradiction): MA,π(x) first queries all
locations in D to identify which g ∈ GD,A is consistent with A; then it rules according to MA,π

g (x).
By construction, the machine M is in MT,q because querying all locations in D takes a constant
amount of time and involves a constant number of queries. (The size of D is a finite constant.)

Next, we use L 6∈ PCP(T, q)A
D,g to argue that Lg 6∈ PCP(T, q)A

D,f . By definition of Lg, for every
F ∈ supp(AD,g) we have LF = Lg

FD,f . Moreover, since D is the union of binary strings of certain
lengths, there is a bijection between functions F ∈ supp(AD,g) and functions FD,f ∈ supp(AD,f ),
and µAD,g(F ) = µAD,f (FD,f ). This means that if the oracle AD,f has a PCP-verifier Mf ∈ MT,q

for Lg, then we can construct a machine Mg that, relative to the oracle AD,g, is a PCP-verifier for
L: MA,π

g (x) runs Mf (x) except that Mg answers any query y ∈ D from Mf with f(y) instead of
A(y). One can verify that Mg ∈MT,q, which means that L ∈ PCP(T, q)A

D,g , a contradiction.
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4 Uniform separation is equivalent to somewhere separation

We prove that uniform separations are equivalent to somewhere separations, both when comparing
DTIME and PCP and also when comparing NTIME and PCP. This equivalence relies on structural
properties described in Section 3.

Theorem 4.1 (equivalence of uniform and somewhere). Let t, T : N → N be time bound functions
and q : N→ N a query bound function. For every oracle A the following equivalences hold.

• DTIME(t)A 6⊆ PCP(T, q)A if and only if ∃A ∈ supp(A) such that DTIME(t)A 6⊆ PCP(T, q)A.

• NTIME(t)A 6⊆ PCP(T, q)A if and only if ∃A ∈ supp(A) such that NTIME(t)A 6⊆ PCP(T, q)A.

The “if directions” are proved in Lemma 4.2, and the “only if directions” are proved in Lemma 4.3.

Lemma 4.2 (somewhere to uniform).
• If ∃A ∈ supp(A) such that DTIME(t)A 6⊆ PCP(T, q)A, then DTIME(t)A 6⊆ PCP(T, q)A.
• If ∃A ∈ supp(A) such that NTIME(t)A 6⊆ PCP(T, q)A, then NTIME(t)A 6⊆ PCP(T, q)A.

Proof. We argue the first bullet point. Let LA be a language in DTIME(t)A but not in PCP(T, q)A.
LetMA be a deterministic machine that decides LA, when given oracle access to A, in time O(t(n)).

We use the deterministic machine MA to define an oracle language L = {LF }F∈U where

LF :=
{
x

∣∣MF
A (x) = 1

}
.

By definition, L is decidable by the deterministic machine MA, and in particular is in DTIME(t)A.
Note that L is O(t)-bounded (see Remark 2.12).

Next, we argue that L is not in PCP(T, q)A. Since L 6∈ PCP(T, q)A, by Claim 3.5 (invoked for
A) we know that for every M ∈MT,q there exists an input x and function f : S|x| → {0, 1}∗ with
µA(f) > 0 such that, for every function F : {0, 1}∗ → {0, 1}∗ that agrees with f on S|x|, MF fails
to decide the input x for the language LF (i.e., MF (x) 6= LF (x)). The set of all oracles that agree
with f has positive measure in A, because A ∈ supp(A) and the finite prefix of a function in A has
positive measure in the distribution. Thus, again relying on Claim 3.5 (this time invoked for A),
we conclude that L 6∈ PCP(T, q)A.

For the second bullet point, an analogous argument holds if we replace DTIME(t) with NTIME(t).
The only difference is that the machine is nondeterministic rather than deterministic.

Lemma 4.3 (uniform to somewhere).
• If DTIME(t)A 6⊆ PCP(T, q)A, then ∃A ∈ supp(A) such that DTIME(t)A 6⊆ PCP(T, q)A.
• If NTIME(t)A 6⊆ PCP(T, q)A, then ∃A ∈ supp(A) such that NTIME(t)A 6⊆ PCP(T, q)A.

Proof. We argue the first bullet point. Let L = {LF }F∈U be an oracle language that is complete for
DTIME(t)A. We use diagonalization to find a function A ∈ supp(A) such that LA 6∈ PCP(T, q)A.

Consider an ordering of the machines MT,q = {M1,M2, . . . } (this set is countable). We initialize
A to be an arbitrary function in supp(A). At each step i, we modify the function A to agree with
some function fi : Di → {0, 1}∗, where Di is the union of binary strings of some bounded length.
We prove inductively that after step i, none of the machines M1, . . . ,Mi is a PCP-verifier for LA.
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• Step i = 1. Since L 6∈ PCP(T, q)A, by Claim 3.5, for M1 there exist an input x1 and function
f1 : S|x1| → {0, 1}∗ such that, for every function F : {0, 1}∗ → {0, 1}∗ that agrees with f1 on S|x1|,
MF

1 is not a PCP-verifier for LF . Define D1 := S|x1|, and modify A by setting A|D1 := f1.

After step 1, we know that MA
1 is not a PCP-verifier for LA.

• Step i = 2. The oracle language L is not in PCP(T, q)A
D1,f1 because: (a) DTIME(t)A 6⊆

PCP(T, q)A implies, via Theorem 3.1, that DTIME(t)A
D1,f1 6⊆ PCP(T, q)A

D1,f1 ; and moreover
(b) L is complete for DTIME(t)A, and thus also for DTIME(t)A

D1,f1 (see Claim 4.4 below).

Next, since L 6∈ PCP(T, q)A
D1,f1 , by Claim 3.5, we deduce that forM2 there exists an input x2 and

function f2 : S|x2| → {0, 1}∗ with µAD1,f1 (f2) > 0 such that for every function F : {0, 1}∗ → {0, 1}∗
that agrees with f2 on S|x2|, M

F
2 is not a PCP-verifier for LF . Define D2 := S|x2|, and modify A

by setting A|D2 := f2. By construction, f1 and f2 agree on D1 ∩ D2 = D1, and A agrees with
both f1 and f2 on D1 ∩D2.

After step 2, neither MA
1 nor MA

2 is a PCP-verifier for LA.

• General case. At any step i > 2, we repeat the same as above for the oracle A∪
i−1
k=1Dk,∪i−1

k=1fk .

The function A obtained via the above (infinite) procedure is in supp(A) because, for all n ∈ N,
A|{0,1}n ∈ supp(An). By construction of A, no machine in MT,q is a PCP-verifier for the language
LA, which means that LA 6∈ PCP(T, q)A. Moreover, LA ∈ DTIME(t)A, as we argue next.

Suppose by way of contradiction that LA 6∈ DTIME(t)A, which means that for every DTIME(t)
decider M there exists an input x such that MA(x) 6= LA(x). Since L is `-bounded and M runs
in time c · t(n) for some c > 0, we know that LA′(x) 6= MA′(x) for every A′ that agrees with A
on the set

⋃
1≤i≤max{`(|x|),c·t(|x|)}{0, 1}i. This implies (via an argument analogous to the proof of

Claim 3.5) that M is not a DTIME(t) decider of L for A. Since M was an arbitrary DTIME(t)
decider, we deduce that L 6∈ DTIME(t)A, a contradiction. So it must be that LA ∈ DTIME(t)A.

We conclude that, for the function A ∈ supp(A), it holds that DTIME(t)A 6⊆ PCP(T, q)A.
For the second bullet point, an analogous argument holds if we replace DTIME(t) with NTIME(t).

The only difference is that machines are nondeterministic rather than deterministic.

Claim 4.4. For every finite D ⊆ {0, 1}∗ and function f : D → {0, 1}∗ (such that there exists some
A ∈ supp(A) agreeing with f on D), if L is complete for DTIME(t)A, then L is complete for
DTIME(t)A

D,f . The analogous statement holds for NTIME(t).

Proof. First, for every oracle language L′ = {L′F }F∈U in DTIME(t)A
D,f there exists an oracle

language L′′ = {L′′F }F∈U in DTIME(t)A such that for every A ∈ AD,f it holds that L′A = L′′A.
Indeed, letting M be a decider that puts L′ in DTIME(t)A

D,f , we define L′′F := {x |MF (x) = 1}.
Next, since L′′ can be reduced to L for A ∈ A, L′ can be reduced to L for A ∈ AD,f . Since L′

was arbitrary in DTIME(t)A
D,f , we conclude that L is also complete for DTIME(t)A

D,f .
An analogous argument holds if we replace DTIME(t) with NTIME(t).
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5 Separations for random functions

We define the notion of a random oracle and then state our separation results for it.

Definition 5.1. A random oracle with output length ` : N→ N is the oracle R = {Rn}n∈N where
each Rn is the uniform distribution over functions f : {0, 1}n → {0, 1}`(n).

The probability measure of R is uniform, in the sense that, for any choice of distinct bi-
nary strings x1, . . . , xm of lengths n1, . . . , nm and choice of binary strings b1, . . . , bm of lengths
`(n1), . . . , `(nm), the set S := {A |A(x1) = b1, . . . , A(xm) = bm} has measure µR(S) = 1/(Πm

i=12
`(ni)).

Theorem 5.2. Let R be the random oracle with output length ` : N→ N.

1. For any function t : N→ N,

NTIME(t)R 6⊆ PCP(poly(t), o(t))R .

2. For any function t : N→ N,

DTIME(t)R 6⊆ PCP(o(t), o(t))R .

Remark 5.3. In Section 8 we prove a stronger (almost-everywhere) separation result. We provide
a standalone proof of Theorem 5.2 because the techniques used to prove it can be modified to apply
to other oracles. We do not know how to prove stronger separations for other oracles.

5.1 Proof of Part 1 of Theorem 5.2

We exhibit an oracle language L that is in NTIME(t)R but not in PCP(poly(t), o(t))R.
Oracle language. Let uk,i denote the dlog ke-bit string that represents the index i ∈ [k]. The
oracle language L = {LR}R∈R is defined as follows:

LR :=

0n

∣∣∣∣∣∣∣∣∣ ∃w ∈ {0, 1}
t(n) s.t.

R(w‖ut(n),1)1 = 0

R(w‖ut(n),2)1 = 0
...

R(w‖ut(n),t(n))1 = 0

 .

Note that LR does not contain any string that is not all-zeros. Strings of the form 0n may or may
not be in LR, depending on the answers from R.
In NTIME. We argue that L is in NTIME(t)R. Consider the nondeterministic machine that, for
inputs of the form 0n, expects as nondeterministic witness a string w ∈ {0, 1}t(n) and checks, via t(n)
calls to R, if R returns a string whose first bit is zero on input w‖ut(n),i for every i ∈ {1, . . . , t(n)}.
The machine rejects any input not of the form 0n. This machine, for any given R, decides the
language LR on every input. The machine’s running time is O(t(n)): writing the first query costs
O(t(n)) steps and updating the query tape with each new subsequent query costs O(1) steps.
Not in PCP. We argue that L is not in PCP(poly(t), o(t))R. Suppose by way of contradiction
that L has a PCP-verifier M ∈ Mpoly(t),o(t), and denote by T (n) the running time of M on input
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of size n. For every n ∈ N, define the domain Sn :=
⋃

1≤i≤T (n){0, 1}i and the following set Xn of
functions over Sn:

Xn =

f : Sn → {0, 1}∗
∣∣∣∣∣∣
∃ !w ∈ {0, 1}t(n) such that both conditions below hold
• ∀i ∈ [t], f(x‖ut,i) = 01`(t+dlog te)−1

• ∀y 6∈ {w‖ut,j}j∈[t], f(y) = 1`(|y|)

 .

Note that, for every n ∈ N, every function f ∈ Xn has measure µR({f}) > 0.
We also use 1 to denote the all-one function that on an input z ∈ {0, 1}∗ returns 1`(|z|).
We derive a contradiction from the following two (contradicting) statements.

• Lemma 5.4: For every n ∈ N and function R agreeing with some f ∈ Xn there exists a proof π
such thatM1,π(0n) queries 1 at some “witness location” w‖ut(n),i of R with probability at least 1

3 .

• Lemma 5.5: For every n ∈ N there exists a function R agreeing with some f ∈ Xn such that
for any proof π it holds that M1,π(0n) queries 1 at some “witness location” w‖ut(n),i of R with
probability only o(1).

We are left to prove the lemmas. We abbreviate t(n) with t as the choice of n is clear from context.

Lemma 5.4. If M ∈ Mpoly(t),o(t) is a PCP-verifier for L, then for every n ∈ N and function R
agreeing with some f ∈ Xn there exists a proof π s.t.

Pr
r

[
M1,π(0n; r) queries 1 at some w‖ut,i s.t. R(w‖ut,i)1 = 0

]
>

1

3
.

Proof. By definition of Xn, 0n ∈ LR for any R agreeing with some f ∈ Xn. Therefore, for every
such R, there exists a proof π such that MR,π(0n) accepts with probability at least 2

3 . We also note
that since MR,π(0n) has running time T (n), it cannot make oracle queries outside the set Sn.

We now argue that for every R agreeing with some f ∈ Xn there exists a proof π such that

Pr
r

[
MR,π(0n; r) queries R at some w‖ut,i s.t. R(w‖ut,i) = 0

]
>

1

3
. (1)

Suppose Equation (1) does not hold. Then more than 2
3 of the time MR,π(0n; r) does not query

the witness bits. If we change R slightly by flipping the first bit of R(w‖ut,i) from 0 to 1, and
denote the new oracle by Ri, then 0n 6∈ LRi . However, the machine MRi,π(0n; r) cannot detect the
change in more than 2

3 of the time. So MRi,π(0n; r) accepts with probability at least 1
3 . Moreover,

MR′i,π(0n; r) makes the same mistake for any function R′i that agrees with Ri on Sn. This conclusion
contradicts the fact that M verifies LR′i on 0n for all such functions R′i. So Equation (1) holds.

Furthermore, if w‖ut,i is the first query made byMR,π(0n; r) such thatR(w‖ut,i) = 01`(t+dlog te)−1,
then M1,π(0n; r) would also make the query w‖ut,i. This is because M has the same view in the
two cases at the time it makes the query w‖ut,i. The lemma follows.

Lemma 5.5. If M ∈ Mpoly(t),o(t) is a PCP-verifier for L, then for every n ∈ N there exists R
agreeing with some f ∈ Xn such that for every proof π ∈ {0, 1}∗,

Pr
r

[
M1,π(0n; r) queries 1 at some w‖ut,i s.t. R(w‖ut,i)1 = 0

]
∈ o(1) .
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Proof. For the sake of contradiction, suppose there exists some n ∈ N such that for every R agreeing
with some f ∈ Xn there exists a proof π for which the above probability is Ω(1). Then, by averaging,
there exists some randomness r∗ such that, for a Ω(1)-fraction of the functions R agreeing with some
f ∈ Xn, there exists a proof π such that M1,π(0n; r∗) queries some w‖ut,i s.t. R(w‖ut,i)1 = 0. So
across all possible proofs, M1,·(0n; r∗) need to make at least Ω(|Xn|) = Ω(2t) distinct queries.

However, since the randomness is fixed and M is in Mpoly(t),o(t), M1,·(0n; r∗) can only make at
most 2o(t) ·poly(t) distinct queries, which leads to a contradiction because Ω(2t)� 2o(t) ·poly(t).

5.2 Proof of Part 2 of Theorem 5.2

We exhibit an oracle language L that is in DTIME(t)R but not in PCP(o(t), o(t))R.
Oracle language. Let uk,i denote the dlog ke-bit string that represents the index i ∈ [k]. For
convenience we use t∗(n) to denote t(n)/n. The language L = {LR}R∈R is then defined as follows:

LR := {(x, y) ∈ {0, 1}n × {0, 1}n |FR,n(x) = y} ,

where FR,n(x) is the n-bit string whose i-th bit is
⊕

j∈{(i−1)·t∗(n)+1,...,i·t∗(n)}R(x‖ut(n),j)1, for i ∈ [n].

In DTIME. We argue that the language LR is in DTIME(t)R for every R ∈ R. Consider the
deterministic machine that on input (x, y): (a) copies x to the query tape; (b) for every i ∈ [n], calls
R on inputs {x‖ut(n),j}j∈{(i−1)·t∗(n)+1,...,i·t∗(n)} to get zi := FR,n(x)i; (c) accepts if y = z. Copying x
takes time O(n), querying all bits of the form x‖ut(n),j takes O(t(n)) time, computing z takes time
O(t(n)), and comparing z and y takes time O(n). So the running time of the machine is O(t(n)).
Not in PCP. We argue that L is not in PCP(o(t), o(t))R.

• Consider any R ∈ R and input x ∈ {0, 1}n. We know that by definition (x, FR,n(x)) ∈ LR.

• Let ek,j denote the k-bit string that has 1 in the j-th coordinate and 0 eeverywhere else. For
every x ∈ {0, 1}n and j ∈ {1, . . . , t(n)}, define the oracle R(x,j) to be

R(x,j)(z) :=

{
R(z)⊕ e|z|,1 if z = x‖ut(n),j
R(z) otherwise

.

Therefore for every x ∈ {0, 1}n and j ∈ {1, . . . , t(n)} (x, FR,n(x)) 6∈ LR(x,j) .

We argue that any PCP-verifier M for L must have running time Ω(t(n)).

• SinceM is a PCP-verifier for L, for every x ∈ {0, 1}n there exists a proof π such thatMR,π(x, FR,n(x))
accepts with probability at least 2

3 . Then, via Lemma 5.6 below, we deduce that there exists a
randomness r such that MR,π(x, FR,n(x); r) makes at least t(n)

3 queries of the form x‖ut(n),j for
some j ∈ {1, . . . , t(n)}.

• We conclude that the running time of MR,π(x, FR,n(x); r) is at least t(n)
3 ∈ Ω(t(n)).

We have shown that any PCP-verifier for L has running time in Ω(t(n)), and so L 6∈ PCP(o(t), o(t))R.

Lemma 5.6. If M is a PCP-verifier for L then, for every oracle R ∈ R, n ∈ N, and x ∈ {0, 1}n,
there exists a proof π and randomness r such that MR,π(x, FR,n(x); r) makes at least t(n)

3 queries of
the form x‖ut(n),j where j ∈ {1, . . . , t(n)}.
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Proof. Since M is a PCP-verifier for L so for every R ∈ R, n ∈ N, and x ∈ {0, 1}n there exists
a proof π such that MR,π(x, FR,n(x)) accepts with probability at least 2

3 . Additionally we know
that for any j ∈ {1, . . . , t(n)} (x, FR,n(x)) 6∈ LR(x,j) . So MR(x,j),π(x, FR,n(x)) should accept with
probability at most 1

3 . This implies that for at least 1
3 fraction of randomness r, MR,π(x, FR,n(x); r)

queries x‖ut(n),j . By averaging over all randomness r, there exists r∗ such thatMR,π(x, FR,n(x); r∗)

makes t(n)
3 distinct queries of the form x‖ut(n),j where j ∈ {1, . . . , t(n)}.
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6 Separation for random low-degree functions

We define the notion of a random low-degree oracle and then state our separation result for it.

Definition 6.1. Let q be a prime power, Fq the finite field of size q, and d ∈ N a degree bound.
The random oracle over Fq with degree d is the oracle P[q, d] = {Pn}n∈N where each Pn is
the uniform distribution over polynomials f : Fnq → Fq of degree at most d in each variable. (In
particular, P[2, 1] equals the random oracle R from Definition 5.1.)

Theorem 6.2. Let q ∈ N be a prime power and d ∈ N a degree bound.

1. For any function t : N→ N,

NTIME(t)P[q,d] 6⊆ PCP(poly(t), o(t))P[q,d] .

2. For any function t : N→ N,

DTIME(t)P[q,d] 6⊆ PCP(o(t
log2

q
q−1 ), o(t

log2
q

q−1 ))P[q,d] .

Proof. We first focus on the special case of d = 1, i.e., the case of random multilinear polynomials.
We show in Lemma 6.3 that P[q, 1] separates NTIME/DTIME and PCP. Next, we simply observe
that for any prime power q and degree d, the oracle P[q, d] contains the multilinear oracle P[q, 1].
Therefore, by Theorems 3.1 and 3.2, P[q, d] also separates NTIME/DTIME and PCP.

Lemma 6.3. Let q ∈ N be a prime power.

1. For any function t : N→ N,

NTIME(t)P[q,1] 6⊆ PCP(poly(t), o(t))P[q,1] .

2. For any function t : N→ N,

DTIME(t)P[q,1] 6⊆ PCP(o(t
log2

q
q−1 ), o(t

log2
q

q−1 ))P[q,1] .

6.1 Proof of Part 1 of Lemma 6.3

We exhibit an oracle language L that is in NTIME(t)P[q,1] but not in PCP(poly(t), o(t))P[q,1].
Oracle language. Let ek,i denote the vector in Fkq that has 1 in the i-th coordinate and 0
everywhere else. Let L = {LP }P∈P[q,1] be the oracle language where

LP :=

0n

∣∣∣∣∣∣∣∣∣ ∃w ∈ Ft(n)q s.t. P (w) = 1 and

P (w + et(n),1) = 0

P (w + et(n),2) = 0
...

P (w + et(n),t(n)) = 0

 .

In NTIME. We argue that L is in NTIME(t)P[q,1]. Consider the nondeterministic machine that,
for inputs of the form 0n, expects as nondeterministic witness a string w ∈ {0, 1}t(n) and checks,
via t(n) + 1 calls to P , if P returns 1 on input w and zero on input w + et(n),i for every i ∈ [t(n)].
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The machine rejects any input not of the form 0n. This machine, for any given P , decides the
language LP on every input. The machine’s running time is O(t(n)): writing the first query costs
time O(t(n)) and updating the query tape with each new subsequent query costs time O(1).
Not in PCP. Suppose by way of contradiction that M ∈Mpoly(t),o(t) is a PCP-verifier for L. Use
T (n) to denote the running time of M on input of size n. For every n ∈ N, we define the following
set of functions over the domain ST (n) = {Fiq | i ≤ T (n)}.

XT (n) =

{
f : ST (n) → Fq

∣∣∣∣∣ ∀x ∈ Ft(n)q , f(x) =
∏t(n)
i=1 (bi − xi) where b ∈ Ft(n)q

∀x ∈ ST (n) \ F
t(n)
q , f(x) = 0

}
.

Note for every n ∈ N, every function f ∈ XT (n) has its measure µP[q,1]({f}) > 0.
We also use 0 to denote the all zero function.
We derive a contradiction from the following two steps. First in Claim 6.4, we show that for

every n ∈ N and oracle polynomial P agreeing with some f ∈ XT (n) there exists some proof π
such that the PCP-verifier M0,π queries 0 at some x satisfying P (x) 6= 0 with probability at least
1
3 . Next, in Claim 6.5, we show that there exists some oracle polynomial P agreeing with some
f ∈ XT (n) such that for any proof π ∈ {0, 1}∗, the PCP-verifier M0,π queries P at some x satisfying
P (x) 6= 0 with probability only o(1). These two statements are in contradiction. Thus L does not
have a PCP-verifier. Therefore P[q, 1] separates NTIME and PCP.

In the proofs of the two claims we abbreviate t(n) with t whenever the choice of n is clear from
the context.

Claim 6.4. If M is a PCP-verifier for L with running time T (n), then for every n ∈ N and oracle
polynomial P agreeing with some f ∈ XT (n), there exists π s.t.

Pr
r

[M0,π(0n; r) queries 0 at some y ∈ Ft(n)q s.t. P (y) 6= 0] >
1

3
.

Proof. We first observe that for every function f(x) =
∏t(n)
i=1 (bi − xi) in XT (n), the element y =

(b1−1)‖ . . . ‖(bt(n)−1) ∈ Ft(n)q satisfies f(y) = 1 and f(y+et(n),i) = 0 for every i ∈ [t(n)]. Therefore
for every P agreeing with f over Ft(n)q , 0n ∈ LP . As a result, for every such P , there exists some
proof π ∈ {0, 1}∗ such that MP,π(0n) accepts with probability at least 2

3 . We also note that since
MP,π(0n) has running time T (n), M cannot make oracle queries outside the set ST (n).

For every P agreeing with some f ∈ XT (n), use πP to denote the accepting proof for P . We
additionally note that for every oracle P ′ agreeing with 0 over ST (n), it holds that 0n 6∈ LP ′ . So for
any πP , MP ′,πP (0n) accepts with probability at most 1

3 .
This implies that

Pr
r

[MP,πP (0n; r) queries P at x s.t. P (x) 6= 0(x) = 0] ≥ 1

3
. (2)

Let y be the first oracle query made by MP,πP (0n; r) such that P (y) 6= 0(y) = 0. If we replace
P with 0, M0,πP (0n; r) would still make the oracle query y. We deduce that

Pr
r

[M0,πP (0n; r) queries 0 at x s.t. P (x) 6= 0(x) = 0] ≥ 1

3
.
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Claim 6.5. If M ∈ Mpoly(t),o(t) is a PCP-verifier for L with running time T (n) , there exists P
agreeing with some f ∈ XT (n) s.t. for all π ∈ {0, 1}∗,

Pr
r

[M0,π(0n; r) queries 0 at x s.t. P (x) 6= 0] ∈ o (1) .

Proof. Suppose for every P agreeing with some f ∈ XT (n) there exists a proof π that the afore-
mentioned probability is Ω(1). Then, by an averaging argument, there exists some randomness r∗

such that for Ω (1) fraction of oracles P agreeing with some f ∈ Xn, there exists π s.t. M0,π(0n; r∗)

queries some x s.t. P (x) 6= 0. Additionally, for any x ∈ Ft(n)q , there are exactly (q−1)t(n) multilinear
functions f ∈ Xn such that f(x) 6= 0. So across all possible proofs, M0,·(0n; r∗) need to make at
least Ω(|Xn| /(q − 1)t) = Ω((q/(q − 1))t) distinct queries.

However, since the randomness is fixed to be r∗ and M is in Mpoly(t),o(t), M0,·(0n; r∗) can make
at most 2o(t) · poly(t) distinct queries. However, Ω((q/(q − 1))t) � 2o(t) · poly(t), so we derive a
contradiction.

6.2 Proof of Part 2 of Lemma 6.3

We exhibit an oracle language L that is in DTIME(t)P[q,1] but not in PCP(o(t
log2

q
q−1 ), o(t

log2
q

q−1 ))P[q,1].
Oracle language. Let L = {LP }P∈P[q,1] be the oracle language where

LP :=
{

0n
∣∣∣ ∀ y ∈ Flog2 t(n)

q , P (y) = P (y‖0)
}

.

In DTIME. We argue that L is in DTIME(t)P[q,1]. Consider the deterministic machine that
on input 0n: (a) for each y ∈ {0, 1}log2 t(n), queries the oracle P at y and y‖0, and reject if
P (y) 6= P (y‖0) (here 0 and 1 are elements in Fq); (b) in the end accepts if has not rejected.
Making all the oracle queries takes amortized Oq(t(n)) time. So the running time of the machine is
in Oq(t(n)).

Not in PCP. We argue that any PCP-verifier for L must have running time Ω(t(n)
log2

q
q−1 ), and

thus prove that L is not in PCP(o(t
log2

q
q−1 ), o(t

log2
q

q−1 ))P[q,1]. Let M be a PCP-verifer for L.

• For every n ∈ N, we define the following set of functions.

Xn =

{
f : F∗q → Fq

∣∣∣∣∣ ∀x ∈ Flog2 t(n)
q , f(x) =

∏log2 t(n)
i=1 (bi − xi) where b ∈ Flog2 t(n)

q

∀z 6∈ Flog2 t(n)
q , f(z) = 0

}
.

For every P such that 0n ∈ LP , consider the modified oracle P (f) := P + f for some f ∈ Xn.
Then 0n 6∈ LP (f) because there exists x ∈ Flog2 t(n)

q such that P (f)(x) = P (x) + f(x) 6= P (x‖0) =
P (f)(x‖0).

• SinceM is a PCP-verifier for L, for every n ∈ N and every P such that 0n ∈ LP there exists some
proof π such that MP,π(0n) accepts with probability at least 2

3 . Then, via Lemma 6.6 below, we
deduce that for every n there exists a randomness r such that MP,π(0n) queries P at at least
Ω((q/(q − 1))log2 t(n)) different y ∈ Flog2 t(n)

q .

• Writing down Ω((q/(q − 1))log2 t(n)) distinct y ∈ Flog2 t(n)
q takes amortized Ωq((q/(q − 1))log2 t(n))

time. So the running time ofMP,π(0n; r) is at least Ωq((q/(q−1))log2 t(n)) = Ωq

(
t(n)log2(q/(q−1))

)
.
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Lemma 6.6. If M is a PCP-verifier for L then, for every large enough n ∈ N and every P such
that 0n ∈ LP , there exists a proof π and randomness r such that MP,π(0n; r) queries P at at least
Ω((q/(q − 1))log2 t(n)) different y ∈ Flog2 t(n)

q .

Proof. Since M is a PCP-verifier for L, for every such P satisfying 0n ∈ LP , there exists a proof π
such thatMP,π(0n) accepts with probability at least 2

3 . If we change P to some P (f) where f ∈ Xn,
then 0n 6∈ LP (f) . So MP (f),π(0n) should accept with probability at most 1

3 . This implies that for
at least 1

3 fraction of randomness r, MP,π(0n; r) queries P at some y such that P (f)(y) 6= P (y) (in
other words f(y) 6= 0).

By considering all f ∈ Xn and averaging over all randomness r, there exists r∗ such that for
1
3 fraction of f ∈ Xn M

P,π(0n; r∗) queries P at some y such that f(y) 6= 0. Additionally, for any
y ∈ Flog2 t(n)

q , there are exactly (q− 1)log2 t(n) functions f ∈ Xn such that f(y) 6= 0. So MP,π(0n; r∗)

need to make at least 1
3 |Xn| /(q − 1)log2 t(n) = Ω((q/(q − 1))log2 t(n)) different queries in Flog2 t(n)

q .
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7 Separation for random groups

The notion of a random group oracle is modeled after the generic group model [Nec94, Sho97, BL96,
MW98, Mau05]. We provide definitions, and then state our separation result for random groups.

Definition 7.1 (groups and their representations). An abelian group of order p is a pair G =
(S,+) where S is a set of size p and +: S × S → S is a function that satisfies the axioms of a
group operation. We denote by 0 the identity of G. A representation of G is an injective function
σ : S → {0, 1}dlog2 pe, and its inverse σ−1 : {0, 1}dlog2 pe → S maps each image σ(g) ∈ {0, 1}dlog2 pe to
its pre-image g ∈ S and each string s ∈ {0, 1}dlog2 pe \ σ(S) to the identity 0 ∈ S.

Definition 7.2 (group oracles). Let G be a group of order p, and σ a representation of G. The
group oracle corresponding to (G, σ) is the function O : {0, 1}4dlog2 pe → {0, 1}dlog2 pe such that
O(γ, δ, a, b) = σ(γ · σ−1(a)+δ · σ−1(b)). Note that O(0dlog2 pe, 0dlog2 pe, a, b) = σ(0).

Definition 7.3. The random (generic) group oracle is the oracle O = {Op}p∈PRIMES where
each Op is the uniform distribution over all group oracles for groups of size p. Namely, a sample
from Op is obtained as follows: sample a random representation σp of Gp (the group of prime order
p), and output the group oracle O : {0, 1}4dlog2 pe → {0, 1}dlog2 pe corresponding to (Gp, σp).2

Theorem 7.4. Let O be the random group oracle.

1. For any function t : N→ N,

NTIME(t)O 6⊆ PCP(poly(t), o(t))O .

2. For any function t : N→ N,

DTIME(t)O 6⊆ PCP(o(t), o(t))O .

7.1 Proof of Part 1 of Theorem 7.4

We exhibit an oracle language L that is in NTIME(t)O but not in PCP(poly(t), o(t))O.
Oracle language. Let p(n) be the largest prime number smaller than 2t(n), so we know that
p(n) ∈ [2t(n)−1, 2t(n)). Let ek,i denote the k-bit string that has 1 in the i-th entry and 0 everywhere
else. Define the set Sn := {x ∈ {0, 1}t(n) | 0 ≤ x < p(n) − 1}. Let L = {LO}O∈O be the oracle
language where

LO :=
{

0n
∣∣∣ ∃w ∈ Sn s.t. σ−1p(n)(w) + σ−1p(n)(w ⊕ et(n),t(n)) = 0

}
.

In NTIME. We argue that L is in NTIME(t)O. Consider the nondeterministic machine that, for
inputs of the form 0n, expects as nondeterministic witness a string w ∈ Sn and checks, via O(1) calls

2The definition of an oracle given here is convenient for this section but does not syntactically match the one in
Definition 2.1. This is an unimportant technicality because we are implicitly using the oracle O∗ = {O∗5n}n∈N defined
as follows: O∗n is the distribution over functions O∗ : {0, 1}5n → {0, 1}n such that, for every p ∈ {0, . . . , 2n − 1} ∼=
{0, 1}n, if p is a prime in [2n−1, 2n) then O∗(p, γ, δ, a, b) is distributed identically to Op(γ, δ, a, b) for a sample Op ← Op,
and otherwise (p is not a prime or is not in [2n−1, 2n)) then O∗(p, γ, δ, a, b) always equals 0n.
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to O, if σ−1p(n)(w) + σ−1p(n)(w ⊕ et(n),t(n)) = 0. This machine, for any given O, decides the language
LO on every input. The running time is O(t(n)).
Not in PCP. We argue that L is not in PCP(poly(t), o(t))O. Consider an oracle O such that
0n 6∈ LO. We show that, for any PCP-verifier M ∈ Mpoly(t),o(t), if MO succeeds on 0n then we
can construct another oracle O′ for which MO′ fails on 0n (see Lemma 7.5 below). Therefore there
exists some Õ for which M Õ fails on 0n. Additionally, the oracle language L is by definition O(t)-
bounded and the running time of M is T (n) ∈ poly(t(n)). Since M Õ fails on 0n, for every function
F that agrees with Õ on

⋃
1≤i≤T (n){0, 1}i, MF also fails on 0n. So by Claim 3.5 we conclude that

L 6∈ PCP(poly(t), o(t))O. We are left to prove the lemma below.

Lemma 7.5. For every PCP-verifier M ∈Mpoly(t),o(t) and function O ∈ O such that 0n 6∈ LO, if
MO succeeds on 0n then there exists a function O′ ∈ O for which MO′ fails on 0n.

Proof. Define the set of pairs of strings

I(O) := {(u, v) ∈ Sn × Sn | σ−1p(n)(u) + σ−1p(n)(v ⊕ et(n),t(n)) = 0} .

Note that if we use O(u,v) to denote the oracle identical to O except that its permutation function
for the group of order p(n) is the following one:

σ
(u,v)
p(n) (g) :=


u if σp(n)(g) = v

v if σp(n)(g) = u

σp(n)(g) otherwise
.

For every (u, v) ∈ I(O), we have (σ
(u,v)
p(n) )−1(v) + (σ

(u,v)
p(n) )−1(v ⊕ et(n),t(n)) = 0. So 0n ∈ LO(u,v) .

We say that a machine queries O ∈ O at some string a ∈ {0, 1}t(n) if the machine queries
Op(n)(γ, δ, a, b) or Op(n)(γ, δ, b, a) for some integers γ, δ and b ∈ {0, 1}t(n).

Consider the pairs of strings (u, v) ∈ I(O) for which MO queries all of (u, v) with “low” proba-
bility:

Q?(O) :=

(u, v) ∈ I(O)

∣∣∣∣∣∣ for a ∈ {u, v},
∑

π∈{0,1}∗
Pr
r

[
MO,π(0n; r) queries O at a
or gets back a from O

]
<

1

6

 .

We argue that |Q?(O)| > 0, and for every (u, v) ∈ Q?(O) it holds that MO(u,v) fails on 0n.
Consider the set of strings a ∈ Sn that MO queries with “high” probability:

Qc(O) :=

a ∈ Sn
∣∣∣∣∣∣
∑

π∈{0,1}∗
Pr
r

[
MO,π(0n; r) queries O at a
or gets back a from O

]
≥ 1

6

 .

Observe that
|Qc(O)| ≤

(
c · t(n)

)
·
(

2o(t(n)) · poly(t(n))
)

= 2o(t(n)) . (3)

This is because, in any given execution, M can make at most poly(t(n)) queries to O (also can get
at most poly(t(n)) symbols from O) and o(t(n)) queries to the given proof string, which means that∑

a∈Sn

∑
π∈{0,1}∗

Pr
r

[
MO,π(0n; r) queries O at a
or gets back a from O

]
≤ 2o(t(n))poly(t(n)) .
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We deduce that |Q?(O)| is large:

|Q?(O)| ≥ (p(n)− 3)− 2 · 2|Qc(O)| = 2t(n) − 2o(t(n)) .

Next, for every (u, v) ∈ Q?(O), it holds that

∀π ∈ {0, 1}∗, for a ∈ {u, v}, Pr
r

[
MO,π(0n; r) queries O at a
or gets back a from O

]
<

1

6
.

Therefore,

∀π ∈ {0, 1}∗, Pr
r

[MO,π(0n; r) queries O at u or v]

≤
∑

a∈{u,v}

Pr
r

[
MO,π(0n; r) queries O at a
or gets back a from O

]
< 2 · 1

6
=

1

3
.

This means that for every (u, v) ∈ Q?(O) it holds that M cannot distinguish between O and O(u,v)

with probability greater than or equal to 1
3 .

We know that MO succeeds on 0n, namely, for every proof string π it holds that MO,π(0n)
accepts with probability no more than 1/3. We also know that for every (u, v) ∈ I(O) it holds that
0n is in LO(u,v) . But the foregoing argument tells us that for every (u, v) ∈ Q?(O) it holds that for
every proof string π we have that MO(u,v),π(0n) accepts with probability less than 1/3 + 1/3 = 2/3.
We deduce that, for every (u, v) ∈ Q?(O), MO(u,v) fails on 0n.

7.2 Proof of Part 2 of Theorem 7.4

We exhibit an oracle language L that is in DTIME(t)O but not in PCP(o(t), o(t))O.
Oracle language. Let uk,i denote the dlog ke-bit string that represents the index i ∈ [k]. Let
t∗(n) := t(n)/n. Let p(n) denote the largest prime in the interval [2n−1t(n), 2nt(n)). The oracle
language L = {LO}O∈O is defined as follows:

LO := {(x, y) ∈ {0, 1}n × {0, 1}n |FO,n(x) = y} ,

where FO,n(x) is the n-bit string whose i-th bit is⊕
j∈{(i−1)·t∗(n)+1,...,i·t∗(n)}

O
(
1, 1, x‖ut(n),j , x‖ut(n),j

)
1
,

for i ∈ {1, . . . , n}.
In DTIME. We argue that L is in DTIME(t)O. Consider the deterministic machine that on input
(x, y): (a) copies x to the query tape; (b) for every i ∈ {1, . . . , n}, calls O on inputs

{(1, 1, x‖ut(n),j , x‖ut(n),j)}j∈{(i−1)·t∗(n)+1,...,i·t∗(n)}

to get zj := FO(x)i; (c) accepts if y = z. Making the oracle queries takes O(t(n)) time, computing z
takes O(t(n)) time, and comparing y and z takes O(t(n)) time. So the running time of the machine
is O(t(n)).
Not in PCP. We argue that L is not in PCP(o(t), o(t))O. We begin with some notations and
definitions.
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• Let ek,j denote the k-bit string that has 1 in the j-th coordinate and 0 everywhere else. Use σp(n)
to denote the representation of O’s order p(n) group. For every j ∈ {1, . . . , t(n)}, define two
group elements

g(j) := σ−1p(n)(0
n‖ut(n),j) + σ−1p(n)(0

n‖ut(n),j), and

h(j) := σ−1p(n)

(
σp(n)(g

(j))⊕ edlog p(n)e,1
)
.

• For every n ∈ N, define the set of oracles

Xn =
{
O ∈ O

∣∣∣ ∀ distinct j, j′ ∈ [t(n)], σp(n)(g
(j)) 6= σp(n)(h

(j′))
}

.

• Define the oracle O(j) to be identical to O except the representation σp(n) of O is changed to

σ
(j)
p(n)(g) =


σp(n)(g

(j)) if g = h(j)

σp(n)(h
(j)) if g = g(j)

σp(n)(g) otherwise
.

Therefore for every x ∈ {0, 1}n and j ∈ {1, . . . , t(n)} (x, FO,n(x)) 6∈ LO(j) .

We argue that any PCP-verifier M for L must have running time Ω(t(n)).

• Since M is a PCP-verifier for L, for every n ∈ N and every O ∈ Xn there exists a proof π such
that MO,π(0n, FO,n(0n)) accepts with probability at least 2

3 . Then, via Lemma 7.6 below, we
deduce that there exists a randomness r such that MO,π(0n, FO,n(0n); r) queries O at at least
t(n)
3 different strings.

• Therefore the running time of MO,π(0n, FO,n(0n); r) is at least t(n)
3 ∈ Ω(t(n)).

We have shown that any PCP-verifier for L has running time in Ω(t(n)), and so L 6∈ PCP(o(t), o(t))O.

Lemma 7.6. If M is a PCP-verifier for L then, for every n ∈ N and every O ∈ Xn, there exists a
proof π and randomness r such thatMO,π(0n, FO,n(0n); r) queries O at at least t(n)3 different strings.

Proof. Since M is a PCP-verifier for L, for every n, (0n, FO,n(0n)) ∈ LO for every O ∈ Xn. So
for every O ∈ Xn there exists a proof π such that MO,π(0n, FO,n(0n)) accepts with probability
at least 2

3 . If we change O to obtain O(j), then FO(j)(0n) 6= FO(0n). So MO(j),π(0n, FO,n(0n))
should accept with probability at most 1

3 . This implies that for at least 1
3 fraction of randomness r,

MO,π(0n, FO,n(0n); r) queries σp(n)(g(j)) or σp(n)(h(j)). By averaging over all j ∈ [t(n)], there exists
r∗ such that MO,π(0n, FO,n(0n); r∗) queries O at σp(n)(g(j)) or σp(n)(h(j)) for at least t(n)

3 different
j ∈ [t(n)]. Further more, by definition of Xn, for any two distinct indices j, j′ ∈ [t(n)] the four group
elements σp(n)(g(j)), σp(n)(h(j)), σp(n)(g(j

′)), and σp(n)(h(j
′)) are distinct. So MO,π(0n, FO,n(0n); r∗)

queries O at at least t(n)
3 distinct strings.
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8 Almost-everywhere separation for random functions

We strengthen the separation for random functions in Theorem 5.2. The difference is that now the
choice of machine M , which is the candidate PCP-verifier for LR, depends on the sample R.

Theorem 8.1. Let R be a random oracle with output length ` : N→ N.

1. For any function t : N→ N,

Pr
R←R

[
NTIME(t)R 6⊆ PCP(poly(t), o(t))R

]
= 1 .

2. For any function t : N→ N,

Pr
R←R

[
DTIME(t)R 6⊆ PCP(o(t), o(t))R

]
= 1 .

8.1 Proof of Part 1 of Theorem 8.1

We prove the statement by arguing that, for every oracle R in a certain set of measure 1 (derived
below), there exists a language LR that is in NTIME(t)R but not in PCP(poly(t), o(t))R.

We first define the language LR ⊆ {0, 1}∗ for any R ∈ R. Let uk,i denote the dlog ke-bit string
that represents the index i ∈ [k]. The language LR is defined as follows:

LR :=

0n

∣∣∣∣∣∣∣∣∣ ∃w ∈ {0, 1}
t(n) s.t.

R(w‖ut(n),1)1 = 0

R(w‖ut(n),2)1 = 0
...

R(w‖ut(n),t(n))1 = 0

 .

The language LR is in NTIME(t)R for every R ∈ R (via the same argument as in Section 5.1). We
are left to argue that LR is not in PCP(poly(t), o(t))R for R in a certain set of measure 1. For this,
we state a lemma (which we prove later on below), and then conclude the proof of the theorem.

Lemma 8.2. For every M ∈Mpoly(t),o(t), PrR←R
[
MR is a PCP-verifier for LR

]
= 0.

Let SM be the set of oracles R ∈ R for which MR is a PCP-verifier for LR. Lemma 8.2 tells
us that SM has measure zero, that is, µR(SM ) = 0. Since the set Mpoly(t),o(t) is countable (it is
a subset of the countable set of all machines) and measures are countably sub-additive, we deduce
that

µR

 ⋃
M∈Mpoly(t),o(t)

SM

 ≤ ∑
M∈Mpoly(t),o(t)

µR(SM ) = 0 .

We conclude that

Pr
R←R

[
∃M ∈Mpoly(t),o(t) s.t. MR is a PCP-verifier for LR

]
= 0 ,

which shows that LR is not in PCP(poly(t), o(t))R for all R in a set of measure 1.
This completes the proof, and so we are only left with proving Lemma 8.2.

Before proving Lemma 8.2, we define two disjoint sets of oracles, Sn,0 and Sn,1, and then prove
certain properties about them (see Lemmas 8.5 to 8.7 below).

31



Definition 8.3. For every n ∈ N, function R ∈ Rn, and string w ∈ {0, 1}t(n), we define the
function F[R,w] : {0, 1}∗ → {0, 1}∗ to be

F[R,w](z)j :=

{
0 if j = 1 and z = w‖ut(n),i for some i ∈ [t(n)]

R(z)j otherwise
.

Moreover, given S ⊆ Rn, we define F[S, {0, 1}t(n)] to be the set {F[R,w] |R ∈ S , w ∈ {0, 1}t(n)}.

Definition 8.4. For every n ∈ N, Sn,0 is the set of functions R ∈ Rn for which 0n 6∈ LR, that is,
for which for every w ∈ {0, 1}t(n) there exists an index i ∈ [t(n)] such that R(w‖ut(n),i)1 6= 0. Also,
Sn,1 equals the set F[Sn,0, {0, 1}t(n)], which is disjoint from Sn,0 (since 0n ∈ LR for every R ∈ Sn,1).

Lemma 8.5. For every subset S ⊆ Sn,0, we have µR(S) ≤ µR(F[S, {0, 1}t(n)]).

Proof. Each R ∈ S yields 2t(n) distinct functions F[R,w] as w ranges over {0, 1}t(n). On the other
hand, each R′ ∈ F[S, {0, 1}t(n)] has at most 2t(n) − 1 “pre-images” in S: there exists precisely one
w such that R(w‖ut(n),i)1 = 0 for all i ∈ {1, . . . , t(n)}. So if R′ = F[R,w], R and R′ can only be
different in the first bit at locations of the form w‖ut(n),i for i ∈ {1, . . . , t(n)}. There are 2t(n) − 1
different assignments to the first bits at w‖ut(n),i each of which gives rise to a preimage of R′ in S
(we exclude the all-zero assignment). We deduce that 2t(n)µR(S) ≤

(
2t(n) − 1

)
µR(F[S, {0, 1}t(n)]),

and so µR(S) ≤ µR(F[S, {0, 1}t(n)]).

Lemma 8.6. limn→∞ µR(Sn,0) = 1/e.

Proof. For any n ∈ N the measure of Sn,0 in R is µR(Sn,0) = (1− 1
2t(n) )2

t(n) . Therefore:

lim
n→∞

µR(Sn,0) = lim
N→∞

(
1− 1

N

)N
= lim

N→∞
eN(1− 1

N ) = lim
N→∞

e(1−
1
N )
′
/( 1

N )
′

= 1/e .

Lemma 8.7. For every function R ∈ Sn,0, ifMR succeeds on 0n then there are at least 2t(n)−2o(t(n))

strings w ∈ {0, 1}t(n) for which MF[R,w] fails on 0n. (Note that F[R,w] ∈ Sn,1.)

Proof. Fix a constant c > 0 to be determined later. Consider the set of strings w ∈ {0, 1}t(n) for
which MR queries all of {w‖ut(n),1, . . . , w‖ut(n),t(n)} with “low” probability:

Q?(R) :=

w ∈ {0, 1}t(n)
∣∣∣∣∣∣ ∀ i ∈ [t(n)] ,

∑
π∈{0,1}∗

Pr
r

[MR,π(0n; r) queries R at w‖ut(n),i] <
1

c · t(n)

 .

We argue that |Q?(R)| is large, and for every w ∈ Q?(R) it holds that MF[R,w] fails on 0n.
Consider the set of strings w ∈ {0, 1}t(n) that MR queries with “high” probability:

Qc(R) :=

w‖u ∈ {0, 1}t(n)+dlog t(n)e
∣∣∣∣∣∣
∑

π∈{0,1}∗
Pr
r

[MR,π(0n; r) queries R at w‖u ] ≥ 1

c · t(n)

 .

Observe that
|Qc(R)| ≤

(
c · t(n)

)
·
(

2o(t(n)) · poly(t(n))
)

= 2o(t(n)) . (4)
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This is because, in any given execution, M can make at most poly(t(n)) queries to R and o(t(n))
queries to the given proof string, which means that∑

w‖u∈{0,1}t(n)+dlog t(n)e

∑
π∈{0,1}∗

Pr
r

[MR,π(0n; r) queries R at w‖u] ≤ 2o(t(n))poly(t(n)) .

We deduce, via Equation (5), that |Q?(R)| is large:

|Q?(R)| ≥ 2t(n) − t(n)|Qc(R)| = 2t(n) − 2o(t(n)) .

Next, for every w ∈ Q?(R) it holds that

∀π ∈ {0, 1}∗, ∀ i ∈ [t(n)], Pr
r

[MR,π(0n; r) queries R at w‖ut(n),i] <
1

c · t(n)
.

Therefore,

∀π ∈ {0, 1}∗, Pr
r

[MR,π(0n; r) queries R at any w‖ut(n),i]

≤
∑

i∈[t(n)]

Pr
r

[MR,π(0n; r) queries R at w‖ut(n),i]

< t(n) · 1

c · t(n)
=

1

c
.

This means that for every w ∈ Q?(R) it holds that M cannot distinguish between R and R′ :=
F[R,w] with probability greater than 1/c (the probability is over M ’s randomness r).

We know that MR succeeds on 0n, namely, for every proof string π it holds that MR,π(0n)
accepts with probability less than 1/3. We also know that for every w ∈ {0, 1}t(n) it holds that 0n

is in LF[R,w]. But the foregoing argument tells us that for every w ∈ Q?(R) it holds that for every
proof string π we have that MF[R,w],π(0n) accepts with probability less than 1/3 + 1/c.

Choosing c ≥ 3, we deduce that, for every w ∈ Q?(R), MF[R,w] fails on 0n.

Proof of Lemma 8.2. Fix M ∈ Mpoly(t),o(t). It suffices to show that, for some ε ∈ [0, 1) and every
n ∈ N, MR succeeds on input 0n for at most an ε-fraction of oracles R. Indeed, this fact would
imply that:

Pr
R←R

[
MR is a PCP-verifier for LR

]
≤ Pr
R←R

[
∀n ∈ N, MR succeeds on 0n

]
=
∏
n∈N

Pr
R←R

[
MR succeeds on 0n

∣∣MR succeeds on 0i for all i < n
]

=
∏
n∈N

Pr
R←R

[
MR succeeds on 0n

]
≤ lim
n→∞

εn = 0 ,

as claimed. Above “succeeds” on input 0n means that if 0n ∈ LR then there exists a proof string
π such that MR,π(0n) accepts with probability at least 2/3, and if 0n 6∈ LR then for every proof
string π it holds that MR,π(0n) rejects with probability at least 2/3.

33



We are left to argue that MR succeeds on input 0n for at most an ε-fraction of oracles R.
Consider the following sets of oracles:

Un,all :=
{
R ∈ R |MR fails on 0n

}
,

Un,0 :=
{
R ∈ Sn,0 |MR fails on 0n

}
,

Un,1 :=
{
R′ ∈ Sn,1 |MR′ fails on 0n

}
.

Note that Un,0 ∪ Un,1 ⊆ Un,all. Also, Un,0 and Un,1 are disjoint, because Sn,0 and Sn,1 are disjoint.
We want to prove that µR(Un,all) > 1− ε. We do so as follows:

µR(Un,all) ≥ µR(Un,0) + µR(Un,1)

≥
(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+ µR(Un,1)

≥[a]

(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+

2t(n) − 2o(t(n))

2t(n)
· µR

(
F[Sn,0 \ Un,0, {0, 1}t(n)]

)
≥[b]

(
µR(Sn,0)− µR(Sn,0 \ Un,0)

)
+

2t(n) − 2o(t(n))

2t(n)
· µR(Sn,0 \ Un,0)

= µR(Sn,0)−
2o(t(n))

2t(n)
· µR(Sn,0 \ Un,0)

≥ µR(Sn,0)−
2o(t(n))

2t(n)
· µR(Sn,0)

=

(
1− 2o(t(n))

2t(n)

)
· µR(Sn,0) .

Above, the third inequality (labeled [a]) follows from Lemma 8.7; the fourth inequality (labeled [b])
follows from Lemma 8.5 applied to the set Sn,0 \ Un,0.

Finally, by Lemma 8.6 we know that limn→∞ µR(Sn,0) = 1/e > 1/3, so if we set ε := 2/3 then
the above expression is greater than 1− ε for large enough n.

8.2 Proof of Part 2 of Theorem 8.1

We prove the statement by arguing that, for every oracle R in a certain set of measure 1 (derived
below), there exists a language LR that is in DTIME(t)R but not in PCP(o(t), o(t))R.

We first define the language LR ⊆ {0, 1}∗ for any R ∈ R.
Let uk,i denote the dlog ke-bit string that represents the index i ∈ [k]. For convenience we

use t∗(n) to denote t(n)/n. For every n ∈ N and x ∈ {0, 1}n, we define FR,n(x) to be the n-bit
string whose i-th bit is

⊕
j∈{(i−1)·t∗(n)+1,...,i·t∗(n)}R(x‖ut(n),j)1, for i ∈ [n]. The language LR is then

defined as follows:
LR := {(x, y) ∈ {0, 1}n × {0, 1}n |FR,n(x) = y} .

We already showed that the language LR is in DTIME(t)R in Section 5.2.
We are left to argue that LR is not in PCP(o(t), o(t))R for R in a certain set of measure 1. For

this, we state a lemma (which we prove later on below), and then conclude the proof of the theorem.

Lemma 8.8. For every M ∈Mo(t),o(t), PrR←R
[
MR is a PCP-verifier for LR

]
= 0.
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Using the same arguement as in the proof of Theorem 8.1, we conclude that

Pr
R←R

[
∃M ∈Mo(t),o(t) s.t. MR is a PCP-verifier for LR

]
= 0 ,

which shows that LR is not in PCP(o(t), o(t))R for all R in a set of measure 1.
This completes the proof, and so we are only left with proving Lemma 8.8.

Before proving Lemma 8.8, we define 2n pairwise disjoint subsets of oracles {Sn,y}y∈{0,1}n and
then prove certain properties about them (see Lemmas 8.11 and 8.12 below).

Definition 8.9. For every n ∈ N and y ∈ {0, 1}n, Sn,y is the set of functions R ∈ Rn for which
(0n, y) ∈ LR, that is, for which FR,n(0n) = y. Note that the sets {Sn,y}y∈{0,1}n are pairwise disjoint.

Definition 8.10. For every n ∈ N, function R ∈ Rn, and indices i ∈ [n] and j ∈ [t∗(n)], we define
the function F[R, i, j] : {0, 1}∗ → {0, 1}∗ to be

F[R, i, j](z)k :=

{
1−R(z)k if k = 1 and z = 0n‖ut(n),(i−1)·t∗(n)+j
R(z)k otherwise

.

Moreover, given S ⊆ Rn, we define F[S, i, j] to be the set {F[R, i, j] |R ∈ S}.

Lemma 8.11. For every R ∈ Sn,y, i ∈ [n], and j ∈ [t∗(n)]: (a) F[R, i, j] 6∈ Sn,y; and (b) the number
of preimages of R under the maps {F[·, i, j]}i∈[n],j∈[t∗(n)] is t(n).

Proof. For the first part, flipping the first bit of R(0n‖ut(n),(i−1)t∗(n)+j) results in FR,n(0n)i 6=
FF[R,i,j],n(0n)i. For the second part, for each choice of i ∈ [n], j ∈ [t∗(n)], we flip the first bit of
R(0n‖ut(n),(i−1)·t∗(n)+j) to obtain F[R, i, j]. We further observe that by definition F[F[R, i, j], i, j] =
R, so F[R, i, j] is the preimage of R under the map F[·, i, j]. Therefore {F[R, i, j]}i∈[n],j∈[t∗(n)] are
exactly the n · t∗(n) = t(n) preimages of R under the maps {F[·, i, j]}i∈[n],j∈[t∗(n)].

Lemma 8.12. For every function R ∈ Sn,y, if MR succeeds on (0n, y) then there are at least
t(n)− o(t(n)) pairs (i, j)i∈[n],j∈[t∗(n)] for which MF[R,i,j] fails on (0n, y).

Proof. Fix a constant c > 0. Let π be the proof such that Prr[M
R,π(0n, y; r)] ≥ 2

3 . Consider the
set of t(n) queries

Q :=
{

0n‖ut(n),(i−1)t∗(n)+j
}
i∈[n], j∈[t∗(n)] .

Define the subset of Q which MR,π queries with “low” probability:

Q?(R) :=

{
s ∈ Q

∣∣∣∣ Pr
r

[MR,π(0n; r) queries R at s] <
1

c

}
.

We argue that |Q?(R)| is large, and for every s ∈ Q?(R), letting s = 0n‖ut(n),(i−1)t∗(n)+j , it holds
that MF[R,i,j],π fails on (0n, y).

Consider the set of strings s ∈ Q that MR queries with “high” probability:

Qc(R) :=

{
s ∈ Q

∣∣∣∣ Pr
r

[MR,π(0n; r) queries R at s ] ≥ 1

c

}
.

Observe that
|Qc(R)| ≤ c · o(t(n)) ∈ o(t(n)) . (5)
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This is because, in any given execution, M can make at most o(t(n)) queries to R which means that∑
s∈Q

Pr
r

[MR,π(0n; r) queries R at s] ≤ o(t(n)) .

We deduce, via Equation (5), that |Q?(R)| is large:

|Q?(R)| ≥ t(n)− |Qc(R)| = t(n)− o(t(n)) .

Next, for every s ∈ Q?(R) it holds that

Pr
r

[MR,π(0n; r) queries R at s] <
1

c
.

This means that for every s ∈ Q?(R), letting s = 0n‖ut(n),(i−1)t∗(n)+j , it holds that M cannot
distinguish between R and R′ := F[R, i, j] with probability greater than 1/c (the probability is over
M ’s randomness r).

We know that MR,π succeeds on (0n, y), namely, MR,π(0n) accepts with probability at least
1/3. We also know that for every (i, j) ∈ [n] × [t∗(n)] it holds that (0n, y) 6∈ LF[R,i,j] (Part a of
Lemma 8.11). But the foregoing argument tells us that for every 0n‖ut(n),(i−1)t∗(n)+j ∈ Q?(R) it
holds that MF[R,i,j],π(0n) accepts with probability greater than 1/3 + 1/c.

Choosing c ≥ 3, we deduce that, for every 0n‖ut(n),(i−1)t∗(n)+j ∈ Q?(R), MF[R,i,j] fails on
(0n, y).

Proof of Lemma 8.8. Fix M ∈ Mo(t),o(t). It suffices to show that, for some ε ∈ [0, 1) and every
n ∈ N, MR succeeds on inputs {(0n, y)}y∈{0,1}n for at most an ε-fraction of oracles R. Indeed, this
fact would imply that:

Pr
R←R

[
MR is a PCP-verifier for LR

]
≤ Pr
R←R

[
∀n ∈ N, MR succeeds on {(0n, y)}y∈{0,1}n

]
=
∏
n∈N

Pr
R←R

[
MR succeeds on {(0n, y)}y∈{0,1}n

∣∣MR succeeds on {(0i, y)}y∈{0,1}i for all i < n
]

=
∏
n∈N

Pr
R←R

[
MR succeeds on {(0n, y)}y∈{0,1}n

]
≤ lim
n→∞

εn = 0 ,

as claimed. Above “succeeds” on input (0n, y) means that if (0n, y) ∈ LR then there exists a proof
string π such that MR,π(0n, y) accepts with probability at least 2/3, and if (0n, y) 6∈ LR then for
every proof string π it holds that MR,π(0n, y) rejects with probability at least 2/3.

We are left to argue that MR succeeds on inputs {(0n, y)}y∈{0,1}n for at most an ε-fraction of
oracles R. Consider the following sets of oracles:

Un,all :=
{
R ∈ R |MR fails on (0n, y) for some y ∈ {0, 1}n

}
,

Uy,all :=
{
R ∈ Sn,y |MR fails on (0n, y′) for some y′ ∈ {0, 1}n

}
,

Uy,y :=
{
R ∈ Sn,y |MR fails on (0n, y)

}
.
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We want to prove that µR(Un,all) > 1− ε = 1/3. We do so as follows:

µR(Un,all) =
∑

y∈{0,1}n
µR(Uy,all)

≥[a]
1

t(n)
·
∑

y∈{0,1}n
µR(Sn,y \ Uy,y) · (t(n)− o(t(n)))

≥
∑

y∈{0,1}n
µR(Sn,y \ Uy,all) ·

t(n)− o(t(n))

t(n)

= (1− µR(Un,all)) ·
t(n)− o(t(n))

t(n)

≥ t(n)− o(t(n))

2t(n)
>

1

3
.

In the inequality labeled [a], the 1
t(n) term comes from Part b of Lemma 8.11 that each R ∈ Rn has

t(n) preimages under the maps {F[·, i, j]}i∈[n],j∈[t∗(n)]; the term µR(Sn,y \ Uy,y) · (t(n)− o(t(n))) is
the measure of all R′ ∈ ∪i,jF[Sn,y, i, j] for which MR′,π(0n, y) fails (Lemma 8.12).
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9 Separation for almost random functions

We strengthen the robustness of separation (see Theorem 3.2) for the random oracle R, by using
the stronger separation result from Section 8. Namely, we derive an explicit distance threshold such
that all oracles that are closer to R than this threshold separate NTIME and PCP.

Lemma 9.1. For any ν ∈ [0, 1
3e), if an oracle A is ν-close to the random oracle R, then

NTIME(t)A 6⊆ PCP(poly(t), o(t))A .

Proof. Define Sn,0 and Sn,1 with respect to R (see Definition 8.4). Let V denote the set of all values
that A and R can take. If the statistical distance between A and R is at most ν, then by definition

max
W⊆V

|µR(W )− µA(W )| ≤ ν .

Setting W := Sn,0, we obtain |µR(Sn,0)− µA(Sn,0)| ≤ ν, and so µA(Sn,0) ≥ µR(Sn,0) − ν. Define
S′n,0 = {f ∈ Sn,0 | µA(f) > 0}. By definition of S′n,0, µA(S′n,0) = µA(Sn,0). Apply the definition of
statistical distance toW := S′n,0 to get

∣∣µR(S′n,0)− µA(S′n,0)
∣∣ ≤ ν. Hence µR(S′n,0) ≥ µR(Sn,0)−2ν.

We deduce that

Pr
A←Sn,0

[
∀π Pr

r
[MA,π(0n; r) = 1] ≤ 1

3

]
= 1⇒ Pr

R←Sn,0

[
∀π Pr

r
[MR,π(0n; r) = 1] ≤ 1

3

]
≥ µR(Sn,0)− 2ν

µR(Sn,0)
.

In this case, by Lemma 8.7,

Pr
R←Sn,1

[
∀π Pr

r
[MR,π(0n; r) = 1] <

2

3

]
≥ µR(Sn,0)− 2ν

µR(Sn,0)
·

(
1− 2o(t)

2t

)
.

Define S′n,1 := {f ∈ Sn,1 | ∀π Prr[M
f,π(0n; r) = 1] < 2

3} and observe that

µR(S′n,1) ≥
µR(Sn,1)

µR(Sn,0)
(µR(Sn,0)− 2ν)

(
1− 2o(t)

2t

)
. (6)

If the right-hand side of Equation (6) is greater than ν, we can deduce that µA(S′n,1) > 0 and thus

Pr
A←Sn,1

[
∃π Pr

r
[MA,π(0n; r) = 1] ≥ 2

3

]
< 1 .

We now argue that this is the case for any ν ∈ [0, 1
3e) and for large enough n. Write ν as ν = 1

3e − δ.
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By Lemma 8.6, for large enough n, µR(Sn,0) ≥ 1
e −

δ
2 . Therefore,

µR(Sn,1)

µR(Sn,0)
(µR(Sn,0)− 2ν)

(
1− 2o(t)

2t

)
− ν

> (µR(Sn,0)− 2ν)

(
1− 2o(t)

2t

)
− ν (by Lemma 8.5)

= µR(Sn,0)

(
1− 2o(t)

2t

)
−

(
3− 2

2o(t)

2t

)
ν

≥
(

1

e
− δ

2

)(
1− 2o(t)

2t

)
−

(
3− 2

2o(t)

2t

)(
1

3e
− δ
)

=

(
1

6e
− 3

2
δ

)
2o(t)

2t
+

5

2
δ .

If δ ≤ 1
9e , the last expression is strictly positive. If instead δ > 1

9e , then for n large enough it holds
that 2o(t)

2t ≤
5δ/2

3δ/2−1/6e , and in this case the last expression is non-negative.
We have shown that for any ν ∈ [0, 1

3e), if A and R are ν-close, then

Pr
A←Sn,0

[
∀π Pr

r
[MA,π(0n; r) = 1] ≤ 1

3

]
= 1⇒ Pr

A←Sn,1

[
∃π Pr

r
[MA,π(0n; r) = 1] ≥ 2

3

]
< 1 .

Since W0n,0 = Sn,0 and W0n,1 ⊇ Sn,1, we deduce that

Pr
A←W0n,0

[
∀π Pr

r
[MA,π(0n; r) = 1] ≤ 1

3

]
= 1⇒ Pr

A←W0n,1

[
∃π Pr

r
[MA,π(0n; r) = 1] ≥ 2

3

]
< 1 .

We conclude that A fools Mt.
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