
Remove Some Noise: On Pre-processing of
Side-channel Measurements with Autoencoders

Lichao Wu and Stjepan Picek

Delft University of Technology, The Netherlands
l.wu-4@tudelft.nl, s.picek@tudelft.nl

Abstract. In the profiled side-channel analysis, deep learning-based techniques proved
to be very successful even when attacking targets protected with countermeasures.
Still, there is no guarantee that deep learning attacks will always succeed. Various
countermeasures make attacks significantly more complicated, and those counter-
measures can be further combined to make the attacks even more challenging. An
intuitive solution to improve the performance of attacks would be to reduce the effect
of countermeasures.
In this paper, we investigate whether we can consider certain types of hiding coun-
termeasures as noise and then use a deep learning technique called the denoising
autoencoder to remove that noise. We conduct a detailed analysis of five different
types of noise and countermeasures either separately or combined and show that in
all scenarios, denoising autoencoder improves the attack performance significantly.
Keywords: Side-channel analysis, Deep learning, Noise, Countermeasures, Denoising
autoencoder

1 Introduction
Side-channel analysis (SCA) is a threat exploiting weaknesses in physical implementations
of cryptographic algorithms rather than the algorithms themselves [MOP06]. During the
execution of an algorithm, leakages like electromagnetic (EM) radiation [QS01] or power
dissipation [KJJ99] can happen. Side-channel analysis can be divided into 1) direct attacks
like single power analysis (SPA) and differential power analysis (DPA) [KJJ99], and 2)
profiled attacks like template attack (TA) [CRR02] and supervised machine learning-based
attacks [MPP16, PSK+18, CDP17, KPH+19]. In recent years, machine learning-based
approaches and especially deep learning-based approaches proved to be a powerful option
when conducting profiled SCA. While such attack methods actively threaten the security
of cryptographic devices, there are still severe limitations. More precisely, attack methods
commonly rely on the correlation characteristics of the signal, i.e., signal patterns that are
related to the data being processed. Once the correlation degrades, attacks become less
effective or even useless [BCO04].

In some cases, the low signal-to-noise ratio of the leakage increases the difficulty
of identifying these patterns. Additionally, there are various countermeasures in both
hardware and software that make the attacks more difficult. The countermeasures can be
divided into two categories: masking and hiding. Masking splits the sensitive intermediate
values into different shares to decrease the key dependency [CJRR99,BDF+17]. Hiding, on
the other hand, aims at reducing the side-channel information by adding randomness to
the leakage signals or by making it constant. There are several approaches to hiding. For
example, the direct addition of noise [CCD00] or the design of dual-rail logic styles [TV03]
are frequently considered options. Exploiting time-randomization is another alternative,
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e.g., by using Random Delay Interrupts (RDIs) [CK09] implemented in software and clock
jitters in hardware. Still, the countermeasures (especially the hiding ones) are not without
weaknesses. Regardless of what hiding approaches are used, we can treat their effects as
noise due to their randomness. In other words, the ground truth of the traces always exists.
If we can find a way to remove the noise (denoise) from the traces and recover the ground
truth of the leakage, then the reconstructed traces could become more vulnerable to SCA.

While considering the countermeasures as noise and then removing that noise sounds like
an intuitive approach, this is not an easy problem. The noise (both from the environment
and countermeasures) is a part of a signal, and those two components cannot entirely be
separated if we do not know their characterizations. Additionally, in realistic settings,
we must consider the portability and the differences among various devices [BCH+19].
The combination of all these factors makes this problem very complicated, and to the
best of our knowledge, there are no universal approaches on how to remove the effects of
environmental noise and countermeasures.

Common approaches to remove/reduce noise are to use low-pass filters [WLL+18],
conduct trace alignments [TGWC18], and various feature engineering methods [ZZY+15,
PHJB19]. More recently, the SCA community started using deep learning techniques that
make implicit feature selection and fight countermeasures [CDP17,KPH+19, ZBHV19].
While such techniques are useful, they are usually aimed against a single source of the
noise. In cases when they can handle more sources of noise, they lack the interpretability
of results. More precisely, in such cases, it is not clear at what point noise removal stops
and attack starts (or even if there is such a distinction). We emphasize that being able to
reduce the noise comprehensively could bring several advantages, like 1) understanding the
attack techniques better, 2) understanding the noise better, and consequently, (hopefully)
being able to design stronger countermeasures, and 3) ability to mount stronger/simpler
attacks as there is no noise to consider.

In this paper, we propose a new approach to remove several common hiding counter-
measures with a denoising autoencoder. Although the denoising autoencoder proved to be
successful in removing the noise from an image [Gon16], as far as we are aware, this tech-
nique has not been applied to the side-channel domain to reduce the noise/countermeasures
effect. We demonstrate the effectiveness of a convolutional denoising autoencoder in dealing
with different types of noise and countermeasures separately, i.e., white noise, desynchro-
nization, RDIs, clock jitters, and shuffling. Then, we make the problem more realistic
by combining various types of noise and countermeasures with the traces and trying to
denoise it with the same machine learning models. The results show that the denoising
autoencoder is surprisingly efficient in removing the noise and countermeasures in all inves-
tigated situations. We emphasize that denoising autoencoder is not a technique to conduct
the profiled attack, but to pre-process the measurements so that any attack strategy can be
applied. Our approach is particularly powerful when considering the white-box scenarios,
but we also discuss how one can use denoising autoencoders in black-box settings.

1.1 Related Work
The analysis of the leakage traces in the profiled SCA scenario can be seen as a classification
problem where the goal of an attacker is to classify those traces based on the related
data (i.e., the encryption key). The most powerful attack from the information-theoretic
point of view is the template attack (TA) [CRR02]. Still, this attack can reach its full
potential only if the attacker has an unbounded number of traces, and the noise follows
the Gaussian distribution [LPB+15]. More recently, various machine learning techniques
emerged as preferred options for cases where 1) the number of traces is either limited or
very high, 2) the number of features is very high, 3) countermeasures are implemented,
and 4) we cannot make assumptions about data distribution. First, the side-channel
community showed the most interest in techniques like random forest [LMBM13,HPGM16]
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and support vector machines [HZ12, PHJ+17]. More recently, multilayer perceptron
(MLP) [GHO15, PHJ+19] and convolutional neural networks (CNN) [MPP16, CDP17,
KPH+19] emerged as the most potent approaches. Convolutional neural networks were
demonstrated to be capable of coping with the random delay countermeasure due to their
spatial invariance property [CDP17,KPH+19]. At the same time, the fully-connected
layers in multilayer perceptron and convolutional neural networks are effective against
masking countermeasures as they produce the effect of a higher-order attack (combining
features) [BPS+18,KPH+19]. As far as we are aware, the only application of autoencoders
for profiled SCA is made by Maghrebi et al., but there, the authors use it for classification
and report a poor performance when compared to CNNs [MPP16].

1.2 Our Contributions
We consider how to denoise the side-channel traces with convolutional autoencoder (CAE),
which to the best of our knowledge, has not been explored before in the side-channel domain.
More precisely, we introduce a novel approach to remove the effect of countermeasures,
and we propose:

1. A convolutional autoencoder architecture, which requires a limited number of traces
to train and can denoise/remove the effect of various hiding countermeasures.

2. A methodology to recover the ground truth of the traces.
3. A technique to denoise measurements in black-box settings, where we use traces

processed with other denoising techniques as a reference “clean” measurements to be
used with denoising autoencoder.

4. A benchmark of the attack performance for popular denoising/signal processing
techniques used in the side-channel domain.

To conduct experimental analysis, we consider five separate sources of noise or their
combination. We investigate the performance of template attack, multilayer perceptron,
and convolutional neural networks for the classification task (SCA attack) before and after
the noise removal. Finally, we experiment with different datasets, having either fixed or
random keys, to show the universality of our approach.

2 Background
Let k∗ denote the fixed secret cryptographic key (byte), k any possible key hypothesis,
and p plaintext. To guess the secret key, the attacker first needs to choose a leakage model
Y (p, k) (or Y when there is no ambiguity) depending on the key guess k and some known
text p, which relates to the deterministic part of the leakage. The size of the keyspace
equals |K|. For profiled attacks, the number of acquired traces in the profiling phase
equals N , while the number of traces in the testing phase equals T . For the autoencoder,
we denote its input as X . The encoder part of an autoencoder is denoted as φ and the
decoder part as ψ. Its latent space is denoted as F . As for the training data, we refer to
protected traces (with noise and countermeasures) as noisy traces while the unprotected
traces are denoted as clean traces.

2.1 Profiled Side-channel Analysis
The profiled side-channel attacks represent the most powerful category of SCAs as we
assume an attacker with access to an open (keys can be chosen/or are known by the attacker)
clone device. Then, the attacker can use that clone device to obtain N measurements
from it and construct a characterization model of the device’s behavior. When launching
an attack, the attacker then collects a few (T ) traces from the attack device where the
secret key is not known. By comparing the attack traces with the characterized model, the
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secret key can be revealed. Ideally, the secret key can be obtained with a single trace from
the attack device (T = 1). Single trace attack is difficult in practice due to the effect of
the noise, countermeasures, and a finite number of traces in the profiling phase (while we
assume the attacker is not bounded in his power and he can collect any number of traces,
that number represent a small fraction of all possible measurements).

Template Attack Template attack uses Bayes theorem to obtain predictions, dealing
with multivariate probability distributions as the leakage over consecutive time samples
is not independent [CRR02]. In the state-of-the-art, template attack relies mostly on a
normal distribution. It consists of two phases: the offline phase during which the templates
are built, and the online phase where the matching between the templates and unseen
power leakage happens.

2.2 Neural Networks
A neural network is an interconnected assembly of simple processing elements, units or
nodes, whose functionality is based on the biological process occurring in the brain [Gur14].
In general, a neural network consists of three blocks: an input layer, one or more hidden
layers, and an output layer, whose processing ability is represented by the strength (weight)
of the inter-unit connections, learning from a set of training patterns from the input layer.
In the supervised machine learning paradigm, neural networks work in two phases: training
and testing. In the training phrases, the goal is to learn a function f , s.t. f : X → Y , given
a training set of N pairs (xi, yi). Here, for each example (trace) x, there is a corresponding
label y, where y ∈ Y. Once the function f is obtained, the testing phase starts with the
goal to predict the labels for new, previously unseen examples.

Multilayer Perceptron The multilayer perceptron (MLP) [GD98] is a feed-forward neural
network that maps sets of inputs onto sets of appropriate outputs. MLP consists of
multiple layers of nodes in a directed graph, where each layer is fully connected to the
next one, and training of the network is done with the backpropagation algorithm.

Convolutional Neural Networks CNN commonly consists of three types of layers: con-
volutional layers, pooling layers, and fully-connected layers. Each layer of a network
transforms one volume of activation functions to another through a differentiable function.
Convolution layer computes the output of neurons that are connected to local regions in
the input, each computing a dot product between their weights and a small region they are
connected to in the input volume. Pooling decrease the number of extracted features by
performing a down-sampling operation along the spatial dimensions. The fully-connected
layer computes either the hidden activations or the class scores. To avoid the overfitting,
batch normalization layer, which normalizes the input layer by adjusting and scaling the
activations is commonly added to the network.

2.3 Guessing Entropy
To assess the performance of the attacker, one uses a metric denoting the number of
measurements required to obtain the secret key. A typical example of such a metric is
guessing entropy (GE) [SMY09]. GE represents the average number of key candidates an
adversary needs to test to reveal the secret key after conducting a side-channel analysis.
In particular, given T amount of samples in the attacking phase, an attack outputs a key
guessing vector g = [g1, g2, ..., g|K|] in decreasing order of probability. Then, guessing
entropy is the average position of k∗ in g over several experiments.
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2.4 The ASCAD Dataset

The ASCAD dataset was introduced by Prouff et al. to provide a benchmark to evaluate
machine learning techniques in the context of side-channel attacks [BPS+18]. An AT-
Mega8515 device was used to record the emitted EM radiation during the execution of a
software AES implementation protected by known masks. All traces were captured with a
sensor attached to an oscilloscope sampling at 2 GS/s.

There are two datasets recorded in different conditions: fixed key encryption and
random key encryption. For the data with fixed key encryption, the dataset provided
separate HDF5 files with different synchronization level: the traces in the ASCAD.h5 file
are time-aligned in a prepossessing step, whereas the traces in ASCAD_desync50.h5 and
ASCAD_desync100.h5 have been shifted with a maximum jitters window of respectively
50 and 100 samples [BPS+18]. Each file contains 60 000 EM traces (50 000 training /
cross-validation traces and 10 000 test traces). Each trace consists of 700 points of interest
(POI). For the data with random key encryption, there are 200 000 traces in the profiling
dataset that is provided to train the (deep) neural network models. A 100 000 traces attack
dataset is used to check the performance of the trained models after the profiling phase. A
window of 1 400 points of interest is extracted around the leaking spot. Throughout the
paper, we use the raw traces and the pre-selected window of relevant samples per trace
corresponding to masked S-box for i = 3. As a leakage model, we use the unprotected
S-box output, i.e.:

Y (i) = S-box[(p[i]⊕ k[i])]. (1)

3 Denoising with Convolutional Autoencoder

3.1 Autoencoders

Autoencoders were first introduced in the 1980s by Hinton and the PDP group [RHW85] to
address the problem of “backpropagation without a teacher”. Unlike other neural network
architectures that map the relationship between the inputs and the labels, an autoencoder
transforms inputs into outputs with the least possible amount of distortion [Bal12]. Benefits
from its unsupervised learning characteristic, an autoencoder is applicable in settings like
data compression [TSCH17], anomaly detection [AC15], and image recovery [Gon16].

An autoencoder consists of two parts: encoder (φ) and decoder (ψ). The goal of the
encoder is to transfer the input to its latent space F , i.e., φ : X → F . The decoder, on the
other hand, reconstructs the input from the latent space, which is equivalent to ψ : F → X .
When training an autoencoder, the goal is to minimize the distortion when transferring
the input to the output (Eq. (2)), i.e., the most representative input features are forced to
be kept in the smallest layer in the network:

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2. (2)

When applying the autoencoder for the denoising purpose, the input and output are not
identical but represented by noisy-clean data pairs. A similar idea can also be applied to
remove the countermeasures from the leakage traces. A well-trained denoising autoencoder
can keep the most representative information (i.e., leakage trace value) in its bottleneck
while neglecting the less important features such as random noise. Since the original trace
(without noise) can be recovered by feeding noisy traces to the input of the autoencoder,
one can expect that the attack efficiency will be dramatically improved with the recovered
traces.
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Figure 1: Denoising strategy.

3.2 Denoising Strategy
As discussed in Section 3.1, noisy-clean trace pairs are required to train a denoising
autoencoder. Inspired by the profiled side-channel analysis method, we devise an ideal
denoising strategy shown in Figure 1.

We assume an attacker with full control of a device (Device A). Specifically, he can
enable/disable the implemented countermeasures. To attack the real devices with counter-
measures enabled (Device B), he first acquires traces with and without countermeasures
from Device A to build the training sets. Then the attacker uses these traces to train
the denoising autoencoder. Once the training process is finished, the trained model can
be used to pre-process the leakage traces obtained from Device B. Finally, with “clean”
(or, at least, cleaner) traces reconstructed by the denoising autoencoder, an attacker
can eventually retrieve the secret information with less effort. Still, for practical attack
scenarios, the biggest challenge for this strategy is how to obtain clean traces:

1. White-box setting. When considering software implementations, an attacker
might have a device on which he can modify the code, and then he can turn off the
countermeasures. For hardware implementations, the scenario is more complicated.
Let us consider a cryptographic core on a SoC: an attacker might be able to turn off
countermeasures by setting cryptographic core control registers, if he has run-time
control on the main processor of the SoC. For signature schemes, sometimes the
verification procedure on the public key does not include countermeasures while the
signature generation does. This means that verification can be used for learning.
Finally, during EMVCo and Common Criteria evaluations, it is common to be able
to turn off some (or all) countermeasures.

2. Black-box setting. Here, the attacker is not able to obtain clean measurements,
but he can apply other denoising techniques like averaging or spectral analysis to
reduce the influence of noise or countermeasures. Then, he can use noisy/less noisy
pairs to train a denoising autoencoder. While this approach is not realistic for all
countermeasures, we show it works for several of them. We see that even if we train
autoencoder for different types of noise at the same time, it is successful when applied
to settings that do not use all the noise types.

The application of denoising autoencoders is intuitive if we consider the white-box
setting. Still, we also see its potential in the black-box setting. Let us consider the case
of Gaussian noise. There, with traditional techniques like averaging, we would reduce
the initial pool of traces to obtain averaged measurements. Depending on the number of
traces in the averaging process, the final set of traces may not be enough for a successful
attack. Now, let us consider denoising autoencoders. Our experiments show it works well
even when trained with a small number of traces, e.g., 10 000 traces. This means that we
can use different techniques to clean the traces and then, use such obtained measurements
for the denoising autoencoder. Later, we can use the autoencoder with the initial pool of
traces, first to denoise them, and then to attack. As such, the denoised traces processed
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by the denoising autoencoder turn an impossible attack (from the perspective of guessing
entropy with a limited number of traces) into a reality. From the attacker perspective, he
can invest more effort to acquire limited numbers of clean traces and train a denoising
autoencoder. Once the model is trained, the attacker can launch an attack with (in theory)
an unlimited number of denoised traces obtained from denoising autoencoder. What is
more, densoising autoencoder serves well as a generic denoiser technique.

3.3 Convolutional Autoencoder Architecture
An autoencoder can be implemented with different neural network architectures. The
most common examples are the MLP-based autoencoder and convolutional autoencoder
(CAE). We tested different MLP and CNN architectures and then selected the model
that has the best performance in denoising all types of noise and countermeasures. As a
result, we use the convolution layer as the basic element for denoising. To maximize the
denoising ability of the proposed architecture, we tune the hyperparameters by evaluating
the CAE performance toward different types of noise, and we select the one that has
the best performance on average for all noise types1. The tuning range and selected
hyperparameters are shown in Table 1. Specifically, the SeLU activation function is used
to avoid vanishing and exploding gradient problems [KUMH17]. He Uniform, on the
other hand, can improve the initialization of the weight [HZRS15].

Table 1: CAE hyperparameter tuning.
Hyperparameter Range Selected
Optimizer Adam, RMSProb, SGD Adam
Weight initialization Uniform distribution, He uniform He uniform
Activation function Tanh, ReLU, SeLU SeLU
Learning Rate 1e-5, 5e-5, 1e-4, 5e-4 1e-4
Batch size 32, 64, 128, 256 128
Epochs 30, 50, 70, 100, 200 100

Training sets 1 000, 5 000, 10 000, 20 000 10 000
Validation sets 2 000, 5 000 5 000

In terms of the autoencoder architecture, we observed that when dealing with trace
desynchronization, an autoencoder with a shallow architecture can denoise the traces
successfully. Still, when introducing other types of noise into the traces while keeping the
same hyperparameters, such autoencoders cannot recover the ground truth of the traces.
Consequently, we decided to increase the depth of the autoencoder to ensure it will be
suitable for different types of noise.

The size of the latent representation in the middle of the autoencoder is a critical
parameter that should be fine-tuned. One should be aware that although the autoencoder
can reconstruct the input, some information from the input is lost. For the denoising
purpose, we aim at maximizing the removal of noise while minimizing the loss of useful
information. By choosing a smaller size of the bottleneck, the signal quality will be
degraded. In contrast, a larger size of bottleneck may introduce less critical features
to the output. To better control the size of the latent space, we flatten the output of
the convolutional blocks and introduce a fully-connected layer as the middle layer in our
proposed architecture.

The details on the CAE architecture used in this paper are given in Table 2. The
convolution block (denoted Convblock) usually consists of three parts: convolution layer,

1We consider all sources of noise or countermeasures equally important and thus, we do not give
preference toward any. In case that one aims to explore the behavior of a denoising autoencoder against
only one type of noise, more tuning is possible, which will result in better performance when denoising
that type of noise.
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activation layer (function), and max pooling layer. As we noticed that an autoencoder
implemented in this manner suffers from overfitting and poor performance in denoising
the validation traces, we add the batch normalization layer to each convolution block.

Note that the size of the latent space is controlled by the number of neurons in the
fully-connected layer. To ensure the CAE output has the same shape with the training
sets, we develop the following equation to calculate the needed size of the fully-connected
layer Slatent:

Slatent = Sclean∏n
i=1 Spool,i

∗Nfilter0. (3)

Sclean is the size of the target clean traces, Spool,i represents the ith non-zero pooling stride
of the decoder, and Nfilter0 represents the number of the filters of the first Deconvolution
block. Note, one can vary the size of the latent space for different cases by changing the
size of the pooling layer as well as the number of filters.

Table 2: CAE architecture.
Block/Layer Filter size Filter number Pooling stride
Conv block * 5 2 256 0
Conv block 2 256 5
Conv block * 2 2 128 0
Conv block 2 128 2
Conv block * 2 2 64 0
Conv block 2 64 2

Flatten - - -
Fully-connected - - -
Reshape - - -

Deconv block 2 64 2
Deconv block * 2 2 64 0
Deconv block 2 128 2
Deconv block * 2 2 128 0
Deconv block 2 256 5
Deconv block * 5 2 256 0

Deconv block 2 1 0

We emphasize that from the functionality perspective, a CAE can be easily trained
by noisy (protected)–clean (unprotected) traces pairs. Once the training finishes, the
autoencoder can be used to denoise the leakages from real-world devices.

4 Experimental Results
Different types of noise must be investigated to evaluate the performance of denoising CAE.
At the same time, there are no publicly available datasets concentrating on differences
between noise types. To investigate the precise influence of different sources of noise in
a fair way, we simulated five types of noise/countermeasures that commonly exist in the
devices: Gaussian noise, desynchronization (misalignment), random delay interrupts (RDI),
clock jitters, and shuffling. The simulation approaches are based on previous researches
as well as the observation or implementation of the real devices. In our experiments, we
show the results where the denoising architecture can reduce the GE to 0 (or close value)
within 10 000 attack traces. Note that even higher noise levels are affected by CAE, but
we require more measurements to reach GE close to 0. Additionally, we do not provide
results for smaller levels of noise (i.e., smaller countermeasure effect), as our experiments
consistently show those cases to be easier to attack. To compare the denoising performance
of CAE with the existing techniques commonly used by attackers, we select and benchmark
well-known denoising techniques for each type of noise. More precisely, we use static
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alignment [MOP06] for the treatment of misaligned traces [BHvW12]; frequency analysis
(FA) [Tiu05], and, more specifically, the power spectrum density, to reduce the effect of
RDIs and clock jitters [PHF08,ZDZC09]. For shuffling, additional traces are used during
the profiling phase [VCMKS12]. Finally, as there is, to the best of our knowledge, no
optimal method in denoising the combined noise, FA is selected for attacking the traces
with the combination of the noise and countermeasures. Some additional results are given
in Appendix A.

Throughout the experiments, we use the ASCAD dataset (with fixed key and random
key). Note that the ASCAD dataset is masked, and there is no first-order leakage. As
such, we consider the masked S-box output:

Y (i) = S-box[(p[i]⊕ k[i])⊕ rout]. (4)

In this paper, besides the template attack, we use two machine learning models,
CNNbest and MLPbest introduced in the ASCAD paper [BPS+18]. The CNN architecture
is listed in Table 3, while for MLP, we use six fully-connected layers, each with 200 neurons.
We use an NVIDIA GTX 1080 Ti graphics processing unit (GPU) with 11 Gigabytes of
GPU memory and 3 584 GPU cores. All of the experiments are implemented with the
TensorFlow [AAB+15] computing framework and Keras deep learning framework [C+15].
The time consumption to train a CAE highly depend on the length of the traces, but
for the experiments performed in this paper, a CAE can be trained within one hour, on
average. We note that there is no conceptual limitation on the trace length for CAE, the
only limit comes from the fact that longer traces need more time.

Table 3: CNN architecture used for attacking.
Layer Filter size # of filters Pooling stride # of neurons
Conv block 11 64 2 -
Conv block 11 128 2 -
Conv block 11 256 2 -
Conv block 11 512 2 -
Flatten - - - -
Fully-connected * 2 - - - 4 096

Finally, for the template attack, we selected 20 POIs from the traces according to
the trace variation of the Hamming weight of the intermediate data (S-box output). For
each POI, the minimum distance is set to 5 to avoid selecting continuous points from
the traces. For the selected hyperparameters for MLP and CNN classifiers, we used
Uniform distribution and ReLU activation function. The learning rate is 1e-5, while the
batch size is set to 200. We use Adam optimizer for both models. During the training
phase, we trained the MLP and CNN for 100 and 1 000 epochs, respectively. Finally, 35 000
traces were used for training, 5 000 for validation, and 10 000 for the attack.

We emphasize that we do not aim to find the best attack models but to show how
denoising autoencoders can help improve the performance of various attacks. The quality
of the recovered traces is evaluated by guessing entropy (GE). For a good estimation of
GE, the attack traces are randomly shuffled, and 100 GEs are computed to obtain the
average value.

4.1 Denoising the “Clean” Traces
One should notice that the traces regenerated by CAE have information loss because of the
bottleneck in the middle of the architecture. An ideal CAE can locate as well as precisely
describe the leakage (variation) of the dataset. To evaluate the reconstruction capability,
we first use CAE to denoise the “clean” traces. Here, by “clean”, we consider the original
traces as in the ACAD dataset with no added noise or countermeasures. Still, the traces
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are not clean as they have noise. In this case, the input and output of the CAE are the
same measurements, while the goal of training the model is to learn how to represent the
output with fewer features than at the input. As such, CAE is also an interesting strategy
for feature selection, as only selecting the most important features will lead to improved
recovery when compared to the original traces. We consider this scenario to 1) show that
CAE removes mostly noise (features that do not contribute to the useful information), and
2) validate that if the evaluator applies CAE by mistake, the performance of the attack
will not be reduced.

Here, we use the CNNbest model [BPS+18] for the attack. Interestingly, the SNR [Fis22]
value for the traces reconstructed by CAE slightly increases by 0.05, which confirms that
CAE can neglect random features (such as noise) and focus on the distinguishing ones
and eventually makes the reconstructed trace more “clean”. Furthermore, considering the
variation for each cluster (divided by the Hamming weight or intermediate data), CAE
acts as a regulator to minimize the in-cluster variance, eventually leading to a better SNR.
As expected, the improvement of SNR directly leads to better performance in terms of
GE: for instance, for CNN, we require 831 traces for the correct key if we use the original
traces, while this value decreases to 751 after the traces are reconstructed with CAE.

4.2 Gaussian Noise
The Gaussian noise is the most common type of noise existing in side-channel traces. The
transistor, data buses, the transmission line to the record devices such as oscilloscopes, or
even the work environment can be the source of Gaussian noise (inherent measurement
noise). The noise can also be intentionally introduced by dummy operation or dedicated
noise engine. In terms of trace leakage, the increment of the noise level hides the correlated
patterns and reduces the signal-to-noise (SNR) ratio. Consequently, the noise influences the
effectiveness of an attack, i.e., more traces are needed to obtain the attacked intermediate
data.

To demonstrate the influence of the Gaussian noise, we add a uniformly distributed
random value between -20 to 20 to each point of the trace. The pseudocode for constructing
traces with Gaussian noise is shown in Algorithm 1. An example of the zoom-in view of
two manipulated traces is shown in Figure 2a. Compared with the baseline traces, the
Gaussian noise significantly distorted the shape of the original traces in the amplitude
domain, eventually increasing the difficulties in obtaining the correct key (Figure 2).

300 320 340 360 380 400
Time Samples

−80

−60

−40

−20

0

20

40

Am
pl

itu
de

Trace 1
Trace 2

(a) Gaussian noise: zoom-in view.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g 
En

tro
py

TA
MLP
CNN

(b) Gaussian noise: guessing entropy.

Figure 2: Gaussian noise: demonstration and its influence on guessing entropy.

Next, we denoise the Gaussian noise with trace averaging as well as CAE proposed
in this paper. The GE of denoised traces with 10-trace averaging and CAE are shown
in Figures 3a and 3b, respectively. From the attack perspective, GE converges in both
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Algorithm 1 Add Gaussian Noise.
1: function add_gaussian_noise(trace, noise_level)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: level←randomNumber(−noise_level, noise_level)
6: new_trace[i]← traces[i] + level . add noise to the trace
7: i← i + 1
8: return new_trace

denoising cases when the number of trace increases. CNN attack performance after
denoising with either averaging or denoising autoencoder is significantly improved over the
noisy version: 3 854 averaged traces or 4 880 denoised traces are sufficient to reach GE of
0. It is worth noting that GE for averaged traces is somewhat lower than GE for CAE,
confirming that trace averaging is a successful method in removing the Gaussian noise.
Still, we can conclude that CAE can also remove the Gaussian noise and consequently
improve the attacking efficiency. Interestingly, we see that TA works better with averaging
as pre-processing, while MLP performs similarly regardless of the pre-processing method.
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(a) GE: denoised with averaging.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g 
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 3: Guessing entropy: averaging vs CAE.

4.3 Desynchronization
Well-synchronized traces can significantly improve the correlation of the intermediate data.
The alignment of the traces is, therefore, an essential step for the side-channel attack. To
align the traces, usually, an attacker should select a distinguishable trigger/pattern from
the traces, so that the following part can be aligned using the selected part as a reference.
There are two limitations to this approach. First, the selected trigger/pattern should be
distinctive, so that it will not be obfuscated with other patterns and lead to misalignment.
Second, due to the existence of the signal jitters and other countermeasures, the selected
trigger should be sufficiently close to the points of interest, thus minimizing the noise effect.
From a practical point of view, a good reference that meets both limitations is not always
easy to find. Even with an unprotected device, sometimes the traces synchronization can
be a challenging task.

Different from the Gaussian noise, the desynchronization of the traces adds randomness
to the time domain. To show the effect of the traces desynchronization, we use traces
with a maximum of 50 points of desynchronization. The pseudocode for constructing
traces with desynchronization is shown in Algorithm 2. An example of two zoom-in viewed
traces with different desynchronization levels is given in Figure 4a, while attack results are
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shown in Figure 4b. From the attack results, CNN proves its ability to fight against the
desynchronization effect, as 9 627 traces are sufficient for the correct key when attacking
the noisy traces. Still, considering that the original “clean” traces only needed 831 traces
on average to retrieve the key, the desynchronization degraded the performance of the
attack. Additionally, one can expect that performance to become even worse with an
increased desynchronization level.

Algorithm 2 Add Desynchronization.
1: function add_gaussian_noise(trace, desync_level)
2: new_trace← [] . container for new trace
3: level←randomNumber(0, desync_level)
4: i← 0
5: while i + level < len(trace) do
6: new_trace[i]← traces[i + level] . add desynchronization to the trace
7: i← i + 1
8: return new_trace
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(a) Desynchronization: zoom-in view.
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(b) Desynchronization: guessing entropy.

Figure 4: Desynchronization: demonstration and its influence on guessing entropy.

Next, we attack the denoised traces processed by static alignment and CAE. The GE
are shown in Figures 5a and 5b. GE of the traces denoised by CAE converges faster than
for the static-aligned traces. CAE provides a generic approach to synchronizing the traces,
as by training a CAE with desynchronized-synchronized traces pairs, the model can align
the traces automatically. As a result, compared with static alignment, the number of
required traces to retrieve the key reduces from 1 180 to 822 with CNN (comparable to the
attack result with the original traces), from 8 905 to 7 168 with MLP, and from more than
10 000 to 6 398 with TA, on average. Note that if attacking traces with desynchronization,
we are successful with CNN only, and we require around 10 000 to reach GE of 0.

4.4 Random Delay Interrupts (RDIs)
Desynchronization introduces the global time-randomness to the entire trace. RDIs, on the
other hand, lead to the time-randomness locally. As a type of countermeasure normally
implemented in the software, the existence of RDIs breaks the traces into fragments, thus
significantly increasing the randomness of traces in the time domain and reducing the
correlation of the attacked intermediate data.

We simulate RDIs based on the Floating Mean method (with parameters a=5 and b=3)
introduced in [CK09]. The RDIs implemented in such a way can provide more variance
to the traces when compared with the uniform RDI distribution. To further increase the
randomness of the injected RDIs, a random number (uniformly distributed between 0 and
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(a) GE: denoised with static alignment.
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(b) GE: denoised with CAE.

Figure 5: Guessing entropy: static alignment vs CAE.

1) is first generated when scanning each point of a trace, then compared with a threshold
value. We set the threshold value to 0.5, so the probability of the occurrence of the RDIs
in each feature equals 50%. Moreover, in real implementations, instructions, such as nop,
are used to generate the random delay according to the real implementations. In terms of
power profile, whenever a random delay occurs, instead of flatting the power consumption,
specific patterns, such as peaks, are shown in the power trace. We consider this effect by
generating a small peak by adding a specific value (10) when injecting the random delays
to the traces. The pseudocode for constructing traces with RDIs is shown in Algorithm 3.

Algorithm 3 Add Random Delay Interrupts.
1: function add_rdis(traces, A, B, rdi_occurrence, threshold, rdi_amplitude)
2: a← A . maximum number of RDIs
3: b← B . a value smaller than A
4: new_trace← [] . container for new trace
5: i← 0
6: while i < len(trace) do
7: new_trace[i]← new_trace[i].append(trace[i])
8: if rdi_occurrence > threshold then
9: m←randomNumber(0, a− b)
10: rdi_num←randomNumber(m, m + b) . number of RDIs to be added
11: j ← 0
12: while j < rdi_num do . add RDIs to the trace
13: new_trace[i]← new_trace[i].append(trace[i])
14: new_trace[i]← new_trace[i].append(trace[i] + rdi_amplitude)
15: new_trace[i]← new_trace[i].append(trace[i + 1])
16: j ← j + 1
17: i← i + 1
18: return new_trace

A zoom-in view of two example traces with random RDIs is shown in Figure 6a. The
number of injected RDIs can be obtained by counting the number of peaks. From the traces,
We observe that more randomness was introduced locally to the traces when compared to
the traces with desynchronization, which further influence the attack result of guessing
entropy. From Figure 6b, the best correct key rank of the traces with RDIs is 147 when
using 10 000 traces, indicating that even the CNNbest model is not powerful enough to
extract the useful patterns and retrieve the key. We can conclude that RDIs implemented
in this way dramatically increase the attack difficulty.

The attack result with the frequency analysis (FA) and CAE are shown in Figures 7a
and 7b. With FA, GE slowly decreases when using CNN and TA for the attack, while
the key rank reaches 52 for the best case with TA. On the other hand, the effect of RDIs
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(a) RDIs: zoom-in view.
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(b) RDIs: guessing entropy.

Figure 6: RDIs: demonstration and its influence on guessing entropy.
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(a) GE: frequency analysis.
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(b) GE: denoised with CAE.

Figure 7: Guessing entropy: frequency analysis vs CAE.

has been reduced dramatically with the help of CAE: GE converges significantly faster
when attacking with TA, MLP, and CNN. CNN performance is especially good as it needs
only 1 322 traces on average to reach GE of 0, while TA needs 8 952 traces and MLP 3 398
traces. We can conclude that CAE can recover the original traces from the noisy traces
with RDIs countermeasure.

4.5 Clock Jitters
Clock jitters is a classical hardware countermeasure against side-channel attacks, realized
by introducing the instability in the clock [CDP17]. Comparable to the Gaussian noise
that introduces randomness to every point in the amplitude domain, the clock jitters
increase the randomness for each point in the time domain. The accumulation of the
deforming effect increases the misalignment of the traces and decreases the correlation of
the intermediate data. As a consequence, the attacked intermediate data become more
difficult to retrieve. Here, we simulate the clock jitters by randomly adding or removing
points with a pre-defined range. Similar approaches are used in [CDP17]. More precisely,
we generate a random number r that is uniformly distributed between -4 to 4 to simulate
the clock variation in a magnitude of 8. When scanning each point in the trace, r points
will be added to the trace if r is greater than zero. Otherwise, the following r points in
the trace are deleted. The pseudocode for constructing traces with clock jitters is shown
in Algorithm 4.

Zoom-in viewed traces with clock jitters are shown in Figure 8a. From Figure 8b, it is
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Algorithm 4 Add Clock Jitters.
1: function add_clock_jitters(trace, clock_jitters_level)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new_trace[i]← new_trace[i].append(trace[i])
6: level←randomNumber(0, clock_jitters_level) . level of clock jitters
7: if level < 0 then
8: i← i + level . skip points
9: else
10: j ← 0
11: average_amplitude← (trace[i] + trace[i + 1])/2
12: while j < level do
13: new_trace← new_trace.append(average_amplitude) . add points
14: j ← j + 1
15: i← i + 1
16: return new_trace

clear that all three classifiers are not successful in retrieving the key. A comparison of the
attack results for FA and denoised traces with CAE is shown in Figure 9. Similar to the
previous attack results with the RDIs countermeasure, FA is not able to retrieve the key
within 10 000 traces even for the best attack (MLP with rank 41). The proposed CAE, on
the other hand, successfully reduces the effect of clock jitters. Specifically, with the best
setting for CNN, 8 045 traces are sufficient to obtain the correct key.
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(a) Clock Jitters: zoom-in view.
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(b) Clock Jitters: guessing entropy.

Figure 8: Clock Jitters: demonstration and its influence on guessing entropy.

4.6 Shuffling
As a hiding countermeasure, a classical approach to realize shuffling is by randomizing
the access to the S-box [VCMKS12]. With this method, it becomes more difficult for
attackers to select points of interest or locate part of the traces that are correlated to the
S-box-related intermediate data. Here, we simulate the shuffling effect by gathering the
traces segments that are related to 16 S-box accesses and then cluster them into 16 groups.
Next, for each traces to be manipulated, we randomly select one group and replace the
attack traces part (related to the S-box processing) with the segment in the group. The
pseudocode is shown in Algorithm 52

2We acknowledge that the described algorithm may not produce the same effect as the actual shuffling,
but we consider it to be a valid showcase for the experimental evaluation, and the closest option to simulate
the effect of shuffling.
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(a) GE: frequency analysis.
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(b) GE: denoised with CAE.

Figure 9: Guessing entropy: frequency analysis vs CAE.

Algorithm 5 Add shuffling.
1: function add_shuffling(trace, sbox_seg)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: sbox_idx←randomNumber(3, 16)
6: new_trace[i]← traces[i].replace(sbox_seg[sbox_idx]) . replace sboxs
7: i← i + 1
8: return new_trace

Note that shuffling does not change the shape of the traces dramatically, so we do
not demonstrate the shape of the traces here. Figure 10 shows the attack results for the
shuffling countermeasure. Although the GE is slowly converging for both three attack
methods (rank 32 for the best case with MLP), none of them reaches zero within 10 000
traces.

The results improve when we use additional 10 000 traces for profiling. As can be seen
in Figure 11a, for the best case with MLP, we reach rank two after 10 000 traces, indicating
that deep learning attacks can combine complex features as well as to handle the trace
randomness. CNN is slightly worse, while TA does not manage to converge to a successful
attack (rank 30). The traces denoised with CAE give the best results (Figure 11b), as only
7 754 traces are needed for the correct key when using CNN. TA is somewhat worse, and
its rank equals six after 10 000 traces. We emphasize that with CAE, we use only 10 000
traces and we get better results than with 20 000 traces without using CAE.
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Figure 10: Shuffling: guessing entropy.
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(a) GE: profiling with additional 10 000 traces.
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(b) GE: denoised with CAE.

Figure 11: Guessing entropy: more traces vs CAE

To conclude, the proposed CAE proves its ability to limit the effect of the Gaussian
noise, desynchronization, random delay interrupts, clock jitters, and shuffling. Also, traces
denoised with CAE shows comparable, and in many cases, even better results compared
to specific denoising/signal processing approaches. Finally, denoising autoencoder works
for TA, MLP, and CNN attacks, but for most of the cases, CNN’s performance is the best.

4.7 Combining the Effects of Gaussian Noise and Countermeasures
In the previous section, we add and denoise different types of noise individually. Now,
we investigate an extreme situation by adding all five discussed noise/countermeasures
together and verifying the effectiveness of the CAE approach. To maximize the effectiveness
of each type of noise as well as keep the simulated traces close to the realistic, we added the
noise in the order: shuffling - desynchronization - RDI - clock jitters - Gaussian noise. Note
there would be fewer countermeasures combined in the traces in realistic settings. In such
cases, we expect that the performance of the proposed CAE would be better, as evident
from scenarios when handling only a single countermeasure. We test two different datasets:
AES with a fixed key and AES with random keys. Since there are no specific approaches
in reducing the effect of combined noise sources, we evaluate GE of the noisy traces and
traces after applying frequency analysis and CAE. Note that we do not, for instance,
apply averaging after frequency analysis as then, we do not have enough measurements to
conduct a successful attack.

Similar to the procedure of the previous sections, we calculated the GE of the noisy
and denoised traces and made a comparison between them. A demonstration of the
manipulated traces with all types of noise and countermeasures is presented in Figure 16.
As expected, the three attack methods used in the paper are not able to obtain the correct
key within 10 000 traces. In fact, we observe that the noisy traces do not converge with
the increasing number of traces.

Frequency analysis is not working when dealing with the combination of noise and
countermeasures (which is not surprising as we now have noise sources where this technique
is not sufficient). The GE of denoised traces with CAE, on the other hand, reaches 26
with 10 000 traces when using MLP. Somewhat worse is CNN and it reaches rank 35 after
10 000 traces. This again confirms that the denoising autoencoder can work regardless
of the applied attack technique. What is more, we see that a simpler attack technique
in combination with CAE can outperform more complicated attack techniques (cf. TA
with CAE, and CNN with the frequency analysis). Finally, we can observe that the
attack performance converges slower than for the denoised traces with a single type of
noise, but CAE still proves its capability in removing the combined effect of noise and
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(a) GE: frequency analysis.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g 
En

tro
py

TA
MLP
CNN

(b) GE: denoised with CAE.

Figure 12: Guessing entropy: frequency analysis vs CAE.

countermeasures.

4.7.1 AES with Random Keys

Finally, we verify the performance of the CAE by trying to denoise the AES traces with
random keys. To retrieve the correct key from the leakage traces, we first train the model
with leakage with a random but known key, then use the trained model to attack the
leakages and try to retrieve the unknown key. When comparing with the fixed-key traces,
the randomness of the key introduces more variance into the traces, thus further increasing
the difficulties in denoising the traces. In terms of attack settings, there are 1 400 features
in every trace. The attacked intermediate data was kept the same.
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(a) GE: frequency analysis.
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(b) GE: denoised with CAE

Figure 13: Guessing entropy: frequency analysis vs CAE.

From the attack results, the GE of the noisy traces fluctuates above 100 regardless of
the number of traces (Figure 17). On the other hand, guessing entropy indicates improved
performance as a result of FA and CAE. For the best cases, GE value converges to 56 with
10 000 traces with FA and CNN, and to 21 with CAE and CNN. What is more, again, we
can see that TA with CAE is better than CNN with FA, which confirms that a strong
pre-processing can more than compensate for a “weaker” attack mechanism. Finally, we
conclude that the proposed CAE can denoise the leakage in both fixed key and variable
key scenarios where the results are especially strong if using CNN as the attack mechanism.
What is especially interesting is to observe how even less powerful attacks can produce
better results if denoised with CAE, then a more powerful attack when using the noisy
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traces (e.g., TA after CAE, and CNN without CAE).

4.8 Case Study: From Noisy to Less Noisy – The Black-box Setting
The denoising strategy we proposed in this paper is orientated more toward white-box
settings, as the evaluator has the full control of the device so that the clean traces can
be easily obtained by turning off the countermeasures. The denoising strategy cannot be
directly applied when considering the difficulties in disabling the countermeasures for the
black-box settings. Fortunately, CAE can denoise the traces even when the reference traces
are not perfectly clean. In other words, the less noisy traces generated by the traditional
denoising methods can also be used as the “clean” traces for CAE training.

We investigate noisy-to-less-noisy scenarios with Gaussian noise and desynchronization.
To handle the noisy traces, the traces denoised by averaging (for Gaussian noise) and
static alignment (for desynchronization) are used as the “clean” traces at the output of
the CAE. Note that the traces denoised by these two methods are not perfectly denoised.
Still, CAE can reduce noise levels by mapping the noisy traces to less noisy traces. First,
we denoise the traces with Gaussian noise and desynchronization separately. The results
are given in Figure 14.

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g 
En

tro
py

TA
MLP
CNN

(a) GE (Gaussian noise): train CAE from noisy
to averaged traces.
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(b) GE (desynchronization): train CAE from
noisy to static aligned traces.

Figure 14: Guessing entropy: denoised from less noisy traces.

Compared with the denoised traces using the original clean traces as the reference, the
attack performance for the noise-to-less-noise cases is degraded. Specifically, 3 584 traces
are required to retrieve the correct key when using the clean traces to denoise the Gaussian
noise (white-box setting), while this increases to 7 258 when denoised with averaged traces.
The attack performance degradation is similar in terms of removing desynchronization: 822
traces to attack when denoised from the clean traces and 1 604 traces when denoised from
the static aligned traces. One can expect that with deeper (or improved) CAE models
with improved denoising ability, the variation of the attack performance between different
clean references can be further minimized. Also, note that we do not specifically optimize
the denoising approach, so the denoising performance of the CAE can be further improved
with cleaner traces (e.g., more traces for averaging).

Finally, we denoised the traces with Gaussian noise and desynchronization in a combined
setting. Specifically, 10 000 trace pairs with Gaussian noise (noisy-averaged) and 10 000
trace pairs with desynchronization (noisy-static aligned) are combined and used for training
the CAE. The results are presented in Figure 15.

Interestingly, the joint training method leads to similar performance compared with
the previous results on a single noise source. To be specific, 7 576 traces are needed for
the Gaussian noise and 1 275 for the desynchronization. This again shows that the CAE
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(a) GE (Gaussian noise).
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(b) GE (desynchronization).

Figure 15: Guessing entropy: combined training of CAE.

model can learn and remove different types of noise simultaneously. More precisely, we
can train CAE to remove various types of noise, and it will work even if using traces that
do not have all noise sources.

5 Conclusions and Future Work
In this paper, we introduce a convolutional autoencoder to remove the noise and counter-
measure from the leakage traces. We consider different types of noise and countermeasures:
Gaussian noise, desynchronization, random delay interrupts, clock jitters, and shuffling.
Additionally, we simulate the scenario where all noise types and countermeasures are
combined into the measurements. To strengthen our experimental results, we consider
two types of leakage traces (one encrypted with fixed and another with random keys) and
three attack strategies (CNN, MLP, and TA). The obtained results show that the proposed
CAE can still remove/reduce the noise and find out the underlying ground truth and thus
significantly improve the attack performance.

Our approach is especially powerful in the white-box settings, but we demonstrate it
has potential also in black-box settings. We believe it is especially interesting to consider
denoising autoencoders as a generic denoiser technique since our results indicate it gives
good results, while it is easy to apply it. What is more, our results show that autoencoders
reliably remove noise/countermeasures even if the measurements do not contain all the
noise sources the autoencoder was trained with.

Denoising autoencoder provides an attacker with a powerful tool to pre-process the
traces. We expect this technique could be used to help solve other problems like portabil-
ity [BCH+19]. There, the biggest obstacle stems from the variance among different devices.
These variances introduce the variation of the trace, making the attack model generated
for one device challenging to transfer to another one. With the help of an autoencoder,
this problem can be solved by considering the traces variation as noise and use denoising
autoencoder to remove it. We note that this setting is similar to the scenario with added
Gaussian noise, which indicates that the CAE approach should be very useful in portability.
Finally, in future work, we aim to investigate whether denoising autoencoder could also
work for the masking countermeasures.
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A Additional Results
In Figure 16, we depict results for the AES with the fixed key where all five sources of
noise are combined. Clearly, using 10 000 traces is not enough to break the target with any
of the considered attacks. Similar behavior we observe when attacking AES with random
keys (Figure 17. Interestingly, when considering a fixed key, we see that MLP is by far the
best performing algorithm, while for the scenario with random keys, all three algorithms
perform similarly, where the best performance is seen for CNN. Finally, key rank for the
best performing algorithm is slightly lower when considering fixed key setting, but the
differences are small enough to indicate that both scenarios are too difficult for tested
attacks.
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(b) All in one: guessing entropy.

Figure 16: All in one (fixed key): demonstration and its influence on guessing entropy.
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Figure 17: All in one (random key): guessing entropy.
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