
Scaling Verifiable Computation
Using Efficient Set Accumulators

Alex Ozdemir
Stanford

Riad S. Wahby
Stanford

Barry Whitehat
No Affiliation

Dan Boneh
Stanford

{aozdemir,rsw,dabo}@cs.stanford.edu barrywhitehat@protonmail.com

Abstract
Verifiable outsourcing systems offload a large computation to
a remote server, but require that the remote server provide a
succinct proof, called a SNARK, that proves that the server
carried out the computation correctly. Real-world applications
of this approach can be found in several blockchain systems
that employ verifiable outsourcing to process a large number
of transactions off-chain. This reduces the on-chain work to
simply verifying a succinct proof that transaction process-
ing was done correctly. In practice, verifiable outsourcing of
state updates is done by updating the leaves of a Merkle tree,
recomputing the resulting Merkle root, and proving using a
SNARK that the state update was done correctly.

In this work, we use a combination of existing and novel
techniques to implement an RSA accumulator inside of a
SNARK, and use it as a replacement for a Merkle tree. We
specifically optimize the accumulator for compatibility with
SNARKs. Our experiments show that the resulting system re-
duces costs compared to existing approaches that use Merkle
trees for committing to the current state. These results apply
broadly to any system that needs to offload batches of state
updates to an untrusted server.

1 Introduction

Verifiable outsourcing [4, 13, 15, 16, 21, 32, 45, 47, 49, 52,
56, 61, 78, 79, 96, 106–108, 111–115, 121, 123, 124] is a
technique that enables a weak client to outsource a compu-
tation to a powerful server. The server returns the result of
the computation along with a proof that the computation was
done correctly. The proof must be succinct, which means that
it must be short and cheap to verify. Verifiable outsourcing is
relevant in a number of scenarios, including weak IoT devices,
wearables, and low-power devices.

More recently, verifiable outsourcing has been deployed
in blockchain environments, because on-chain work is
expensive—literally. Here, a batch of k transactions, say
k = 1000, is outsourced to an untrusted server, called an ag-
gregator, for processing. The aggregator (1) verifies that the
transactions are valid (e.g., properly signed), (2) computes
the updated global state resulting from these transactions, and

(3) generates a succinct proof that the aggregator correctly
executed steps (1) and (2). The updated state and the succinct
proof are then sent to the blockchain. In this approach, the
(expensive) on-chain work is reduced to only verifying the
proof—which is fast, taking time independent of the num-
ber of transactions k—and then recording the updated state.
Example systems that operate this way include Rollup [7],
Coda [89], Matter [86], and Zexe [29].

The process described above is called verifiable outsourc-
ing of state update [32]. In more detail, the state is a set
of elements S = {x1, . . . ,xM} from some universe X . The
blockchain (or a low-power device) stores only a succinct
digest of S, e.g., the root of a Merkle tree whose leaves com-
prise the elements of S. The untrusted but powerful aggregator
stores the full set S, in the clear. (Note that we treat S as public
data—privacy is orthogonal to our goal, which is scalability).
When processing a batch of transactions as described above,
the aggregator updates S to produce a new set S′, then com-
putes a new Merkle digest for S′ that it sends to the blockchain
to be verified and recorded. The aggregator’s proof establishes
that its starting state S is consistent with the current digest,
that correctly applying transactions yields the ending state S′,
and that the new digest is consistent with S′.

The succinct proof needed here is called a SNARK [19],
which we define in more detail in the next section. Construct-
ing efficient SNARKs and optimizing their implementation is
a very active area of research [13, 15, 16, 49, 64, 70, 96], with
several new systems just in the last year [11, 37, 43, 44, 62, 63,
85, 122]. A common thread in all of these systems is that the
proving costs are enormous. In particular, proving imposes
multiple-orders-of-magnitude slowdown compared to native
execution [96, 106, 116]; this can be defrayed via parallel
execution, e.g., in clusters [45, 121] or on GPUs [108, 112].

Perhaps more importantly, for widely deployed SNARKs,
proving correctness of large computations requires an amount
of RAM proportional to the computation’s execution time [16,
96]. The result is that, even when proving is distributed across
hundreds of workers, the largest reachable computation sizes
are relatively small: only about 2 billion steps [121]. This
imposes a strict upper bound on the number of transactions k
that can be processed in a single batch.

1

This state of affairs has motivated a large body of work on
computational primitives that yield efficient proofs. Examples
include arithmetic [79, 96, 108], control flow [96, 108, 116],
persistent state [4, 32, 49, 56, 105], and random-access mem-
ory [12, 13, 16, 32, 79, 116]. Our work continues in this
vein, with a focus on reducing proving costs for computations
involving persistent state or random-access memory.

Our work. A Merkle tree [90] is an example of an accu-
mulator [17], a cryptographic primitive that lets one commit
to a set S, and later prove that an element x is a member
of S. Although Merkle trees are used pervasively in today’s
general-purpose verifiable state update applications, in this
work we show that a Merkle tree is not the best choice for large
batches of state updates when S is moderately to very large,
say |S| ≥ 210. In particular, we show that replacing Merkle
trees with RSA-based accumulators [24, 40, 81] significantly
improves proving time and/or reachable computation size.
Our contributions are:

• We define a new operation for RSA accumulators, which
we call MultiSwap, that provides a precise sequential se-
mantics for batched verifiable state updates (§3).

• We synthesize existing and novel techniques for efficiently
implementing MultiSwap (and, more generally, RSA accu-
mulators) in the context of SNARKs (§4). These techniques
include a hash function that outputs provable prime num-
bers, and a new division-intractable hash function. Our
approach makes use of very recent advances in manipulat-
ing RSA accumulators [24].

• We apply our techniques in two contexts (§5). The first,
called Rollup [7, 65, 94], is a technique for batching cryp-
tocurrency transactions off-chain in order to save on-chain
work. The second is a general-purpose RAM abstraction
with long-lived state (i.e., over many proofs), which builds
upon and improves prior work [12, 13, 16, 32, 116].

• We implement and evaluate (§6, §7). In particular, we com-
pare our RSA accumulator implementation to Merkle trees
in two benchmarks: one that measures only set operations,
and one that implements a Rollup-style distributed payment
application. We also compare our RAM abstraction with
existing work via a cost model analysis.

In the set operations benchmark, we find that RSA accu-
mulators surpass 220-element Merkle trees for batches of
≈1,300 operations, and allow for 3.3× more operations to
be performed in the largest proof sizes we consider. In the
Rollup application, RSA accumulators surpass 220-element
Merkle trees for ≈600 transactions, and allow 1.9× more
transactions in the largest proofs. For RAM, we find that
for a RAM of size 220, RSA accumulators surpass Merkle
trees for ≈1000–4000 accesses, depending on write load.

2 Background and definitions

Multisets. A multiset is an unordered collection that may
contain multiple copies of any element. S1]S2 denotes the
union of multisets S1 and S2, i.e., the multiset S3 where each
element x ∈ S3 has multiplicity equal to the sum of the multi-
plicities of x in S1 and S2. S1�S2 denotes the strict difference
of multisets S1 and S2, i.e., the multiset S3 where each element
x ∈ S3 has multiplicity equal to the difference of multiplicities
of x in S1 and S2. Note that S1�S2 is only defined if S2 ⊆ S1.

RSA groups. An RSA group is the group Z×N , i.e., the mul-
tiplicative group of invertible integers modulo N, where N
is the product of two secret primes. We define the RSA quo-
tient group for N as the group Z×N/{±1}. In this group, the
elements x and N− x are the same, meaning that all elements
can be represented by integers in the interval [1,bN/2c]. It is
believed that this group has no element of known order, other
than the identity.

Proofs and arguments. Informally, a proof is a protocol
between a prover P and a PPT verifier V by which P con-
vinces V that ∃υ : R(ι,υ) = 1, for a relation R, ι an input
from V , and υ a (possibly empty) witness from P . A proof
satisfies the following properties:
• Completeness: If ∃υ : R(ι,υ) = 1, then an honest P con-
vinces V except with probability at most εc� 1/2.
• Soundness: If 6 ∃υ : R(ι,υ) = 1, no cheating prover P ?

convinces V except with probability at most εs� 1/2.
If soundness holds only against PPT P ?, this protocol is in-
stead called an argument. When the witness υ exists, one may
also require the proof system to provide knowledge sound-
ness. Informally this means that whenever P convinces V that
∃υ : R(ι,υ) = 1, υ exists and P “knows” a witness υ (slightly
more formally, there exists a PPT algorithm, an extractor, that
can produce a witness via oracle access to P).

Proof of exponentiation. Let G be a finite group of un-
known order. Wesolowski [120] describes a protocol that al-
lows P to convince V that y = xn in G, namely a protocol for
the relation R given by R

(
(n,x,y), ·

)
= 1 ⇐⇒ y = xn ∈G.

The protocol is: on input (n,x,y), V sends to P a random `
chosen from the first 2λ primes.1 P sends back Q= xbn/`c ∈G,
and V accepts only if Q` · xn mod ` = y ∈G holds.

This protocol is complete by inspection. Wesolowski shows
that it is sound if the group G satisfies the adaptive root
assumption, roughly, it is infeasible for an adversary to find a
random root of an element of G chosen by the adversary. The
RSA quotient group Z×N/{±1} is conjectured to satisfy this
assumption when P cannot factor N [23].

Division-intractable hashing. Recall that a hash function
H : X →D is collision resistant if it is infeasible for a PPT

1When this protocol is made non-interactive via the Fiat-Shamir heuristic,
the challenge must instead be drawn from the first 22λ primes [120; 23, §3.3].

2

adversary to find distinct x0,x1 such that H(x0) = H(x1). In-
formally, H is division intractable if the range of H is Z, and
it is infeasible for a PPT adversary to find x̂ and a set {xi} in
X such that x̂ 6∈ {xi} and H(x̂) divides ∏i H(xi). A collision-
resistant hash function that outputs prime numbers is division
intractable. We construct a different division intractable hash
function in Section 4.2.

Pocklington primality certificates. Let p be a prime, and
r < p and a be positive integers. Define p′ = p · r+1. Pock-
lington’s criterion [34] states that if ap·r ≡ 1 mod p′ and
gcd(ar−1, p′) = 1, then p′ is prime. In this case, we say that
(p,r,a) is a Pocklington witness for p′.

Pocklington’s criterion is useful for constructing primality
certificates. For a prime pn, this certificate comprises(

p0,{(ri,ai)}0<i≤n
)

where pi = pi−1 · ri + 1. To check this certificate, first ver-
ify the primality of the small prime p0 (e.g., using a deter-
ministic primality test), then verify the Pocklington witness
(pi−1,ri,ai) for pi, 0 < i ≤ n. If each ri is nearly as large as
pi, the bit lengths double at each step, meaning that the total
verification cost is dominated by the cost of the final step.

2.1 Accumulators
A cryptographic accumulator [17] commits to a collection of
values (e.g., a vector, set, or multiset) as a succinct digest. This
digest is binding, meaning informally that it is computation-
ally infeasible to equivocate about the collection represented
by the digest. In addition, accumulators admit succinct proofs
of membership and, in some cases, non-membership.

Merkle trees. The best-known vector accumulator is the
Merkle tree [90]. To review, this is a binary tree that stores a
vector in the labels of its leaves; the label associated with an
internal node of this tree is the result of applying a collision-
resistant hash H to the concatenation of the children’s labels;
and the digest representing the collection is the label of the
root node.

A membership proof for the leaf at index i is a path through
the tree, i.e., the labels of the siblings of all nodes between
the purported leaf and the root. Verifying the proof requires
computing the node labels along the path and comparing the
final value to the digest (the bits of i indicate whether each
node is the right or left child of its parent). Updating a leaf’s
label is closely related: given a membership proof for the old
value, the new digest is computed by swapping the old leaf
for the new one, then computing the hashes along the path.
Merkle trees do not support succinct non-membership proofs.

The cost of verifying k membership proofs for a vector
comprising 2m values is k ·m evaluations of H. The cost of k
leaf updates is 2 · k ·m evaluations. Membership proofs and
updates cannot be batched for savings.

RSA accumulators. The RSA multiset accumulator [40,
81] represents a multiset S with the digest

JSK = g∏s∈S H(s) ∈G,

where g is a fixed member of an RSA quotient group G and
H is a division-intractable hash function (§2). Inserting a new
element s into S thus requires computing JSKH(s).

To prove membership of s ∈ S, the prover furnishes the
value π = JSK1/H(s), i.e., a H(s)’th root of JSK. This proof is
verified by checking that πH(s) = JSK.

Non-membership proofs are also possible [81], leveraging
the fact that s′ 6∈ S if and only if gcd(H(s′),∏s∈S H(s)) =
1. This means that the Bézout coefficients a,b, i.e., integers
satisfying

a ·H(s′)+b ·∏
s∈S

H(s) = 1

are a non-membership witness, since the above implies that

JSKb · (ga)H(s′) = g

Because a is large and b is small, the proof (ga,b) is succinct.
Insertions, membership proofs, and non-membership

proofs can all be batched [24] via Wesolowski proofs (§2). For
example, since JS]{si}K = JSK∏i si , computing an updated
digest directly requires an exponentiation by ∏i si. In contrast,
checking the corresponding proof only requires computing
and then exponentiating by ∏i si mod `, for ` a prime of less
than 200 bits. This means that the exponentiation (but not the
multiplication) to verify a batch proof has constant size.

2.2 Verifiable computation and SNARKs
Several lines of built systems [13, 15, 16, 21, 32, 47, 49, 61,
79, 96, 106–108, 112, 113, 124] enable the following high-
level model.2 A verifier V asks a prover P to convince it that
y = Ψ(x), where Ψ is a program taking input x and returning
output y. To do so, P produces a short certificate that the
claimed output is correct. Completeness holds with εc = 0;
soundness holds as long as P is computationally bounded,
with εs negligible in a security parameter (§2).

Roughly speaking, these systems comprise two parts. In
the front-end, V compiles Ψ into a system of equations
C (X ,Y,Z), where X ,Y , and Z are (vectors of) formal variables.
V constructs C such that z satisfying C (X = x,Y = y,Z = z)
exists (that is, the formal variable X is bound to the value x,
and so on) if and only if y = Ψ(x). The back-end comprises
cryptographic and complexity-theoretic machinery by which
P convinces V that a witness z exists for X = x and Y = y.

This paper focuses on compilation in the front-end. We
target back-ends derived from GGPR [64] via Pinocchio [96]
(including [15, 16, 70]), which we briefly describe below.

2The description in this section owes a textual and notational debt to the
description in Buffet [116], which works in the same model.

3

Our work is also compatible with other back-ends, e.g., Za-
atar [106], Ligero [2], Bulletproofs [36], Sonic [85], and Au-
rora [14].3

GGPR, Pinocchio and their derivatives instantiate zero-
knowledge Succinct Non-interactive ARguments of Knowl-
edge with preprocessing (zkSNARKs), which are argument
protocols satisfying completeness, knowledge soundness, and
zero knowledge (§2),4 where knowledge soundness and zero
knowledge apply to the assignment to Z. In addition, these
protocols satisfy succinctness: informally, proof length and
verification time are both sublinear in |C | (here, proofs are of
constant size, while V ’s work is O(|X |+ |Y |)). These proto-
cols include a preprocessing phase, in which V (or someone
that V trusts) processes C to produce a structured reference
string (SRS), which is used by P to prove and V to verify.
The cost of the preprocessing phase and the length of the SRS
are O(|C |). The cost of the proving phase is O(|C | log |C |) in
time and O(|C |) in space (i.e., prover RAM).

The system of equations C (X ,Y,Z) is a rank-1 constraint
system (R1CS) over a large finite field Fp. An R1CS is defined
by three matrices, A,B,C ∈ F|C |×(1+|X |+|Y |+|Z|)p . Its satisfiabil-
ity is defined as follows: for W the column vector of formal
variables [1,X ,Y,Z]ᵀ, C (X ,Y,Z) is the system of |C | equa-
tions (A ·W)◦(B ·W) =C ·W , where ◦ denotes the Hadamard
(element-wise) product. In other words, an R1CS C is a con-
junction of |C | constraints in |X |+ |Y |+ |Z| variables, where
each constraint has the form “linear combination times linear
combination equals linear combination.”

These facts outline a computational setting whose costs
differ significantly from those of CPUs. On a CPU, bit oper-
ations are cheap and word-level arithmetic is slightly more
costly. In an R1CS, addition is free, word-level multiplication
has unit cost, and bitwise manipulation and many inequality
operations are expensive; details are given below.

Compiling programs to constraints. A large body of prior
work [13, 16, 32, 79, 96, 106–108, 115, 116] deals with
efficiently compiling from programming languages to con-
straints.

An important technique for non-arithmetic operations is
the use of advice, variables in Z whose values are provided
by the prover. For example, consider the program fragment
x != 0, which cannot be concisely expressed in terms of
rank-1 constraints. Since constraints are defined over Fp, this
assertion might be rewritten as X p−1 = 1, which is true just
when X 6= 0 by Fermat’s little theorem. But this is costly: it
requires O(log p) multiplications. A less expensive way to
express this constraint is Z ·X = 1; the satisfying assignment

3We do not target STARK [11] (which uses a different C representation)
or systems built on GKR [67] and CMT [47], e.g., vRAM [124], Hyrax [117],
and Libra [122] (which restrict C in ways this work does not comprehend).

4We do not target zero-knowledge applications in this work, but our
techniques may be applicable in that setting when combined with prior zero-
knowledge approaches for RSA accumulators [40]; this is future work.

to Z is X−1 ∈ Fp. Since every element of Fp other than 0 has
a multiplicative inverse, this is satisfiable just when X 6= 0.

Comparisons, modular reductions, and bitwise operations
make heavy use of advice from P . For example, the program
fragment y = x1 & x2, where x1 and x2 have bit width b and
& is bitwise AND, is represented by the following constraints:

Z1,0 +2 ·Z1,1 + . . .+2b−1 ·Z1,b−1 = X1

Z2,0 +2 ·Z2,1 + . . .+2b−1 ·Z2,b−1 = X2

Z3,0 +2 ·Z3,1 + . . .+2b−1 ·Z3,b−1 = Y

Z1,0 · (1−Z1,0) = 0
. . .

Z1,b−1 · (1−Z1,b−1) = 0
Z2,0 · (1−Z2,0) = 0

. . .

Z2,b−1 · (1−Z2,b−1) = 0
Z1,0 ·Z2,0 = Z3,0

. . .

Z1,b−1 ·Z2,b−1 = Z3,b−1

Here, the variables Z1,0 . . .Z1,b−1 contain a purported bitwise
expansion of X1, and likewise Z2,0 . . .Z2,b−1 and Z3,0 . . .Z3,b−1
for X2 and Y , respectively. The first three constraints ensure
that the assignment to Z meets this requirement provided that
each Zi, j is assigned either 0 or 1; the remaining constraints
ensure the latter. This operation is known as bit splitting; its
cost for a b-bit value is b+1, so the above program fragment
costs 3 ·b+3 constraints in total. Comparisons and modular
reductions also require bit splitting.

Compiling conditionals to constraints requires expanding
all branches into their corresponding constraints and selecting
the correct result. Loops are similar; loop bounds must be
statically known. For example, the program fragment

if (x1 != 0) { y = x2 + 1 } else { y = x2 * 3 }

compiles to the constraints

Z1 ·X1 = Z2 (1)
Z3 · (Z2−1) = 0 (2)
(1−Z3) ·X1 = 0 (3)

(1−Z3) · (Y −X2−1) = 0 (4)
Z3 · (Y −3 ·X2) = 0 (5)

This works as follows: if X1 = 0, Z2 = 0 by (1), so Z3 = 0
by (2) and Y = X2 + 1 by (4). Otherwise, Z3 = 1 by (3), so
Z2 = 1 by (2), Z1 = X−1

1 by (1), and Y = 3 ·X2 by (5).

Multiprecision arithmetic. xJsnark [79] describes tech-
niques for compiling multiprecision arithmetic to efficient
constraint systems. In brief, large integers are represented as
a sequence of limbs in Fp. The limb width, bl , is defined such

4

that a b-bit number a is represented as η = db/ble limbs {âi},
where a = ∑

η−1
i=0 âi ·2bl ·i. For correctness, the compiler must

track the maximum value of each number and ensure that C
contains constraints that encode a sufficient number of limbs.

Multiprecision operations rely heavily on advice from P .
At a high level, P supplies the result of a multiplication or
addition, and the compiler emits constraints to check that re-
sult. Subtractions and divisions are checked by verifying the
inverse addition or multiplication, respectively. xJsnark de-
scribes a range of optimizations that reduce the required num-
ber of constraints. We leave details to [79], because they are
not necessary to understand our further optimizations (§4.3).

Random-access memory

Programs that make use of RAM—in particular, programs
whose memory accesses depend on the input, and thus cannot
be statically analyzed—present a challenge for compiling to
constraints. Prior work demonstrates three solutions. We now
describe each, and compare costs and functionality below.

Linear scan. The most direct approach to emulating RAM
in constraints is to perform a linear scan [79, 96]. Concretely,
Y = LOAD(Z) compiles to a loop that scans through an array,
comparing the loop index to Z and, if they match, setting Y
to the corresponding value. (STORE is analogous.)

The Pantry approach. In Pantry [32], the authors borrow a
technique from the memory-checking literature [20] based on
Merkle trees [90] (see also §2.1). In particular, Pantry stores
the contents of RAM in the leaves of a Merkle tree whose
root serves as ground truth for the state of memory.

For a LOAD, P furnishes advice comprising a purported
value from memory, plus a Merkle path authenticating that
value. The corresponding constraints encode verification of
the Merkle path, i.e., a sequence of hash function invocations
and an equality check against the Merkle root. For a STORE,
P furnishes, and the constraints verify, the same values as
for a LOAD. In addition, the constraints encode a second
sequence of hash function invocations that compute a new
Merkle root corresponding to the updated memory state.

The BCGT approach. Ben-Sasson et al. [12] introduce,
and other work [13, 16, 79, 116] refines, an approach build-
ing on the observation [3] that one can check a sequence of
RAM operations using an address-ordered transcript, i.e.,
the sequence of RAM operations sorted by address accessed,
breaking ties by execution order. In such a transcript, each
LOAD is preceded either by the corresponding STORE or by
another LOAD from the same address; correctness of RAM
dictates that this LOAD should return the same value as the
preceding operation. (A LOAD from an address to which no
value was previously stored returns a default value, say, 0.)

Leveraging this observation, correctness of memory opera-
tions is compiled to constraints as follows. First, every access
to memory appends a tuple (IDXi,OPi,ADDRi,DATAi) to an

execution-ordered transcript; here, IDXi = i is the index of the
memory operation and OPi is either LOAD or STORE. Then
P furnishes a purported address-ordered transcript T , and
the constraints check its correctness by ensuring that (1) tran-
script T is a permutation of the execution-ordered transcript,
(2) each sequential pair of entries in transcript T is indeed
correctly ordered, and (3) each sequential pair of entries in
transcript T is coherent, i.e., each LOAD returns the value of
the previous STORE (or the default if no such STORE exists).
Check (1) is implemented with a routing network [18, 118].

Costs and functionality. Roughly speaking, for tiny mem-
ories linear scan is cheapest; otherwise, BCGT-style RAM
is.5 In more detail, assume a memory of size 2m, accessed
k times. For a linear scan, each RAM operation costs O(2m)
constraints. (i.e., 2m copies of constraints encoding condi-
tional assignment). For Pantry, each LOAD entails m copies
of constraints encoding a collision-resistant hash function
and each STORE entails 2m such copies, where such hash
functions entail a few hundred to a few thousand constraints
(§6; [15, 32, 79]). For BCGT, each RAM operation costs
O(logk) constraints for the routing network, O(m) constraints
for address comparison, and O(1) constraints for coherence
checking, all with good constants [116, Fig. 5].

Although Pantry-style RAM is costly, it offers functionality
that the other two do not: the ability to pass the full state of a
large RAM from one computation to another. Pantry accom-
plishes this by including in X the Merkle root corresponding
to the initial RAM state; this has constant size (usually one
element of Fp). In contrast, BCGT and linear scan would both
require 2m values in X for a 2m-sized RAM; as discussed
above, this would incur 2m cost for V in verification. (Prior
work [15, 16] uses this approach to partially initialize RAM.)

3 Swap sequences via batched operations

In this section, we define a new primitive, which we call
MultiSwap, that exposes a sequential update semantics for
RSA accumulators (§2.1). MultiSwap takes an accumulator
and a list of pairs of elements, removing the first element from
each pair and inserting the second. The key property of this
primitive is that it is defined in terms of batched insertions and
removals. In Section 4, we show how these batched operations
are efficiently implemented as a system of constraints (§2.2).

In more detail, let S and S′ be multisets, and let
(x1,y1), . . . ,(xn,yn) be a sequence of operations, called swaps,
that replaces each xi by yi in order: (x1,y1) applied to S pro-
duces some new set S1 = S� {x1}]{y1}; then (x2,y2) ap-
plied to S1 produces S2 = S1�{x2}]{y2}, etc. Our goal is to
verify that when the above sequence is applied to S, the result

5An exception is a computation with an enormous number of memory
accesses where Pantry would win. But the number of accesses to reach this
asymptote is well beyond the reach of practical proof systems.

5

is S′ = Sn. Recall from Section 2.1 that RSA accumulators ad-
mit efficient batched insertions (deletions are analogous; §4).
Our question is: how can we use this un-ordered primitive to
implement one with ordered semantics?

Consider the following naïve solution: first verify the
deletions, then verify the insertions. In other words, verify
that there exists some Smid such that S� {xi} = Smid and
Smid]{yi} = S′. The problem with this approach is that it
does not permit certain valid sequences, i.e., those in which
a later swap deletes an item inserted by an earlier swap. (To
see why, notice that Smid only exists if all xi ∈ S.)

Instead, our solution first verifies all the insertions, and then
verifies all the deletions, irrespective of the order in which the
operations are listed. In other words, it verifies the predicate

∃Smid : S]{yi}= Smid ∧ Smid�{xi}= S′ (6)

(Note that Smid�{xi}= S′ is equivalent to S′]{xi}= Smid.)
Intuitively, Equation (6) holds just when each element of an
unordered multiset of swaps {(xi,yi)} can be applied to S in
some order to produce S′. As we discuss below, this multiset
may include cycles, subsets of swaps that have no net effect.

We now give a precise semantics for MultiSwap. Let
MultiSwap(S,σ,S′) denote the predicate that holds just when
Equation (6) is satisfied. Let σ denote an unordered multiset
of swaps {(xi,yi)}. A swap (xi,yi) is valid for S? if xi ∈ S?.
We say that σ is sequentially consistent with respect to S if
there exists some ordering on σ such that all swaps are valid
when applied in that order starting from S. Furthermore, we
say that σ produces S′ from S if S′ is the product of such
an application order to S, and we say that σc is a cycle if it
comprises {(c0,c1),(c1,c2), . . . ,(cn,c0)}.
Lemma 1. MultiSwap(S,σ,S′) holds if and only if there exist
any number of cycles σc

i and cycle-free σ′ ⊆ σ such that
σ = σ′]

⊎
i σc

i , σ′ is sequentially consistent with respect to S,
and σ′ produces S′ from S.

The proof of Lemma 1 is in Appendix A. Section 5 applies
MultiSwap to problems that need sequential semantics for
batched verifiable state updates.

4 Batched operations from constraints

In the previous section we described how the MultiSwap
primitive is built from batched insertions and removals. In
this section we describe these batched operations, the prim-
itives that they are built on, and how those primitives are
implemented as a set of constraints C (§2.2).

Recall (§2.1) that RSA accumulators support batched in-
sertions through an interactive protocol whose final check is

Q` · JSK∏i H∆(yi) mod ` = JS]{yi}K (7)

where J·K denotes a digest; S, the initial multiset; `, a random
prime challenge; {yi}, the inserted elements; H∆, a division-
intractable hash function; and Q, a witness from P . Removing

1

...
...

...
...

H∆ × mody1

H∆ × mody2

H∆ × modyk

expG

expG

×G

HpJSK

JS′K

/k
`

Q
?
=

Figure 1: Insertion proof verification procedure (§4), which
checks that Q is a valid Wesolowski proof (§2) for the ex-
ponentiation JS′K = JSK∏i H∆(yi) on challenge `. To do so, it
computes `= Hp(y1, . . . ,yk) (purple box, bottom left), com-
putes ∏i H∆(yi) mod ` (red and blue boxes, top), computes
the LHS of the verification equation (cyan boxes, bottom
right), and checks that equation (black box, bottom right). H∆

is a division-intractable hash function (§4.2), Hp is a hash to
a prime (§4.1), and G is an RSA quotient group (§2).

elements {xi} is similar, except that S�{xi} is regarded as
the initial multiset and S the final one.6

To instantiate this interactive protocol in constraints, we
apply the Fiat-Shamir heuristic [55], i.e., C computes the
challenge ` by hashing all of the inputs to the protocol.7

Figure 1 illustrates the insertion proof’s verification procedure.
MultiSwap requires two proofs (one for insertion and one for
removal); for this purpose, we hash all inputs to both proofs
to derive a common challenge, as is standard [50].

In the rest of this section we explain how to efficiently
implement the blocks of Figure 1 in constraints. In particular,
we explain how to implement Hp, the prime hash function
used to compute ` (§4.1) and H∆, the division-intractable hash
function used to hash each element (§4.2). We also describe
optimizations for multiprecision operations (§4.3). Finally,
we discuss P ’s cost for generating the witness input Z to
C (§2.2), notably, the digests S]{yi} and S� {xi} and the
corresponding witnesses Q for insertion and removal (§4.4).

6Proofs of non-membership (§2.1) use similar primitives; we do not
discuss them in detail because they are not necessary for MultiSwap.

7This requires that we model the concrete hash function that outputs ` as
a random oracle [8]; similar assumptions are common in practice.

6

4.1 Hashing to primes
The hash function Hp (Fig. 1) generates the challenge ` used
in the Wesolowski proofs of batch insertion and removal.
These proofs are sound when P has negligible probability of
guessing the factors of ` before evaluating Hp [120]. In the
non-interactive setting, one way to ensure this is by choosing `
at random from the first 22λ primes (Fn. 1, §2). In our context,
however, a more efficient approach is for Hp to output slightly
larger primes that are guaranteed by construction to have 2λ

bits of entropy.8 Soundness is identical.
In standard settings (i.e., outside of constraints), a typical

approach (§8) for hashing to a random prime is rejection
sampling. Here, the input is fed to a collision-resistant hash
whose output seeds a pseudorandom generator (PRG), then
the PRG’s outputs are tested in sequence until a prime is
found. Verifying correct execution requires, at the very least,
testing primality of the purported output. This is typically
done with a probabilistic primality test like Miller-Rabin [98].
Such tests, however, generally require many iterations for
soundness, where each iteration involves an exponentiation
modulo the prime being tested. This would be far too costly
if implemented directly in constraints.

Instead, we take advantage of advice from P (§2.2). At a
high level, P helps to recursively construct a Pocklington cer-
tificate (§2) for Hp’s output, where each intermediate prime
pi is the result of hashing Hp’s input. (This is related to prior
approaches; see §8.) This strategy is economical when imple-
mented in constraints, because it uses very little pseudoran-
domness and requires only one exponentiation modulo the
resulting prime, plus a few smaller exponentiations.

We now describe the recursive step used to construct pi
from pi−1. Further below, we describe the base case and give
implementation details. Recall (§2) that a Pocklington witness
for pi comprises (pi−1,ri,ai) such that pi = pi−1 ·ri+1. (If pi
is prime, some ai must exist.) Notice that, given pi−1, one can
find pi by testing candidate ri values until pi−1 ·ri+1 is prime.
To implement this in constraints, we let ri = 2bni · hi + ni,
where ni is a bni-bit number provided by P as advice and
hi is a bhi-bit pseudorandom number (we discuss its genera-
tion below). P furnishes a corresponding ai and C includes
constraints that compute pi and ri, and check the witness.

The base case is p0 = 2bn0 ·h0+n0, for h0 a pseudorandom
number and n0 supplied by P . We fix bn0 + bh0 = 32, i.e.,
p0 < 232, and the constraints test primality of p0 using a de-
terministic 3-round Miller-Rabin test that works for all values
up to 232 [73]. This test requires 3 exponentiations modulo
p0 with exponents less than 32 bits; these are inexpensive.

We choose bit widths bni such that a valid ni exists with
overwhelming probability, then choose bhi subject to the con-
straint that bhi +bni < log pi−1, which ensures that ri < pi−1
as required (§2). The entropy of each pi is ∑

i
j=0 bh j ; four

8In this section, we use entropy to mean (the negative logarithm of) P ’s
probability of guessing the correct value, i.e., the guessing entropy.

Iteration, i 0 1 2 3 4

max. pi bitwidth 32 63 124 245 322
bhi 21 20 49 108 63
bni 11 11 12 13 14

Figure 2: Bitwidths for recursive primality proofs in our sys-
tem. While the bhi sum to 261, there are only 256 bits of
entropy because each hi has its high bit fixed to 1 (§4.1).

rounds suffice for 256 bits of entropy using the parameters
listed in Figure 2. C generates hi by hashing the input to Hp
with a hash function H modeled as a random oracle.

Each iteration yields a prime approximately twice as wide
as the prior iteration’s; meanwhile, the cost of each iteration
is dominated by an exponentiation. This means that our ap-
proach has cost less that that of two exponentiations modulo
the final prime. In contrast, using Miller-Rabin to check a
264-bit prime (which has roughly 256 bits of entropy) would
require 80 exponentiations modulo that prime to give ≈2−80

probability of outputting a composite (because Miller-Rabin
is a probabilistic primality test). Our approach thus saves more
than an order of magnitude and provably outputs a prime.

One final optimization is to force the most significant bit of
each hi to 1; this establishes a lower bound on each pi and on
` (which is the final pi). As we discuss in Section 4.3, having
this lower bound reduces the cost of modular reductions. The
tradeoff is a small loss in entropy, namely, 1 bit per iteration.
Even so, four rounds suffice to produce a 322-bit prime9 with
256 bits of entropy.

4.2 Division-intractable hashing

Coron and Naccache show [48] that a hash function H that
outputs sufficiently large integers is division intractable when
modeled as a random oracle. Informally, this is because in
any randomly-selected set of large (say, 2000 bit) numbers,
each element has a distinct, moderately sized (say, 200 bit)
prime factor with high probability.

Security of this hash function rests on the fact that the
density of integers in the interval [0,α) with factors all less
than µ approaches β−β+o(1) as α→ ∞, where β = logα

logµ . We
conjecture that this density also holds for a large interval
around α, namely,

[
α,α+α

1/8
)
. (This is closely related to a

conjecture on which the elliptic curve factorization method
relies; there, the interval is

[
α−
√

α,α+
√

α
]

[71].)
Our hash function is defined as follows: let ∆ be a pub-

lic 2048-bit integer chosen at random, and let H be a hash
function with codomain

[
0,2256

)
with 128-bit collision resis-

tance. Then H∆(x) = H(x)+∆. Security of this construction
follows from the analysis of [48] in the random oracle model,

9Even though the prime ` comprises only 322 bits, C represents it with
352 (Fig. 3), which is the next multiple of the limb width bl (32 bits; §2.2).

7

assuming the conjecture stated above. Concretely, we conjec-
ture that an adversary making q queries to H∆ has probability
roughly q ·2−128 of breaking division intractability.

H∆’s advantage over prior work is that its implementation in
constraints is much smaller. The system parameter ∆ is baked
into the constraints, and the only dynamic values to compute
are the base hash H(x) and the sum H(x)+∆; using known
techniques [79], this sum is inexpensive. Moreover, since all
hashes must be reduced modulo the challenge ` (Eq. (7))
and H∆(x) mod ` = (H(x)+ (∆ mod `)) mod `, the (costly)
reduction ∆ mod ` can be checked once in the constraints
and the result can be re-used for each H∆(x). We note that
while this approach gives smaller C than hashing to primes
(because H∆ and modular reductions are cheaper), it increases
P ’s work (because H∆’s bit length is longer; §4.4).

4.3 Multiprecision arithmetic optimizations
We describe two optimizations for multiprecision arithmetic
in constraints, building on ideas described in Section 2.2.

Computing greatest common divisor. We observe that ad-
dition and multiplication checks can be leveraged to verify a
statement gcd(x,y) = d by checking three equations over Z:

∃a,b a · x+b · y = d (8)
∃x′ x′ ·d = x

∃y′ y′ ·d = y

In constraints, the existential variables above correspond to
advice provided by P . Verifying coprimality (gcd(x,y) = 1)
reduces to condition (8), i.e., materializing the multiplicative
inverse of x modulo y. We use this simplification in Section 4.1
to verify a Pocklington witness (§2).

Optimizing division and modular reduction. Prior work
implements division and modular reduction for a dividend x
and divisor d by having the prover provide, as advice, the quo-
tient q and remainder r < d such that x= q ·d+r; this equality
is then checked with multiprecision arithmetic (§2.2). For cor-
rectness, C must enforce upper bounds on the bit widths of
q and r via bit splitting (§2.2), which requires as many con-
straints as the sum of the bit widths of q and r.

Since r can range from 0 to d−1, its width is just that of
d. The width of q, however, is slightly more subtle. Since
q’s value is bx/dc, a conservative choice is to assume q is as
wide as x. But this choice is imprecise: q is only as wide
as dlog2 (bxmax/dminc)e, where xmax denotes x’s maximum pos-
sible value, and dmin denotes d’s minimum possible value.
(Intuitively, this is because q is small when d is large.)

As in prior work [79], our system uses a dataflow analysis
to track the maximum value of each number, in order to de-
termine the required representation size. To bound q’s width
more tightly using the above expression, we augment this
dataflow analysis to also track minimum values.

4.4 Optimizing the cost of advice generation
The prior sections have treated P as an advice oracle. We now
discuss P ’s cost in computing this advice. Prior work [116,
121] shows that P ’s (single-threaded) cost per constraint is
≈100 µs or more (this includes, e.g., an elliptic curve point
multiplication per constraint [16, 64, 70, 96]). Computing
most advice values—including for multiprecision operations
and prime hashing—is negligible by comparison. Possible
exceptions are the witnesses for Wesolowski proofs (§2) used
by batch insertion and removal operations (§2.1). (Recall that
one of each operation is required for a MultiSwap; §3.)

The witness for a batch insertion JS]{yi}K= JSK∏i H∆(yi) is
the value JSKb(∏i H∆(yi))/`c. This exponent has length≈2048 ·k
bits for k elements inserted. In microbenchmarks, GMP [66]
computes a 2048-bit exponentiation modulo a 2048-bit N
in ≈2.5 milliseconds (i.e., roughly 25× P ’s per-constraint
proving cost), so computing this value costs roughly the same
as 25 · k constraints, which is inconsequential (§5, Fig. 3).

Batch removal is much more expensive. To prove that re-
moving the elements {xi} from the multiset S yields a new
multiset S′, P must prove that JSK = JS′K∏i H∆(xi), where

q
S′

y
= JS�{xi}K = g∏s∈S�{xi}H∆(s) (9)

No known method for computing JS′K is faster than directly
evaluating this expression because the order of G is unknown
(recall that this computation is in G=Z×N/{±1} where N has
unknown factorization; §2). Meanwhile, this exponent has bit
length ≈2048 ·M, for M the total size of the multiset S′, i.e.,
it costs roughly the same as 25 ·M constraints. (As discussed
in the prior paragraph, given JS′K it is inexpensive to compute
the witness for batch removal, namely, JS′Kb(∏i H∆(xi))/`c).

Even for large accumulators, this cost may be reasonable:
as we show in Section 7, MultiSwap can easily save tens of
millions of constraints compared to Merkle trees. On the other
hand, proof generation can be parallelized [121], whereas at
first glance the exponentiation in (9) appears to be strictly
serial [22, 101]. We observe, however, that since g is fixed, a
pre-computation phase can be used to sidestep this issue [33].
Specifically, for some upper bound 2m on the maximum size
of the accumulator, the above exponent is at most 22048·2m

,
so pre-computing the values gi = g2i·2m

, 0 ≤ i < 2048 (via
successive squaring) turns the above exponentiation into a
2048-way multi-exponentiation [91] (which can be computed
in parallel): for each gi, the exponent is a 2m-bit chunk of the
value ∏s∈S�{xi}H∆(s). Further parallelism is possible simply
by computing more gi with closer spacing.

This precomputation also enables a time-space tradeoff,
via windowed multi-exponentiation [91, 110]. In brief, when
computing a multi-exponentiation over many bases, first split
the bases into groups of size t and compute for each group a
table of size 2t . This turns t multiplications into a table lookup
and one multiplication, for a factor of t speedup. t = 20 is rea-

8

sonable, and reduces the cost of computing the exponentiation
in (9) to roughly the equivalent of 1.25 ·M constraints.

The above pre-computation is a serial process that requires
≈2048 · 2m squarings in G. Assuming that 2048 squarings
takes ≈2.5 milliseconds (i.e., the same amount of time as
a general 2048-bit exponentiation; this is pessimistic), this
precomputation takes≈2m ·2.5 milliseconds. For m= 20, this
is ≈45 minutes; for m = 25, it is ≈1 day. Note, however, that
this pre-computation is entirely untrusted, so it can be done
once by anyone and reused indefinitely for the same g.

Finally, the above precomputation requires materializing
∏s∈S�{xi}H∆(s), which is 231 bits when M = 220. This prod-
uct can be expressed as a highly parallel computation; the
final step is a multiplication of two, 230-bit values, which can
itself be parallelized via a Karatsuba-like approach.

We evaluate P ’s witness generation costs in Section 7.1.

5 Applications of MultiSwap

In this section we discuss two applications of MultiSwap
and compare constraint costs for these applications when
implemented using Merkle swaps and MultiSwaps.

MultiSwap Costs. The first two rows of Figure 3 model the
costs of Merkle swaps and swaps computed via MultiSwap.

A Merkle swap requires hashing the old and new values
and Merkle path verifications for each (§2.1), so the number
of hash invocations is logarithmic in the number of leaves.

For a MultiSwap, each swap requires a H∆ invoca-
tion (§4.2), which comprises an invocation of the underlying
hash H and multiprecision arithmetic to compute the result
and multiply it mod ` (§4, Fig. 1). In addition, each swap is
an input to Hp, which requires another hash invocation. All
of these costs are independent of the number of elements in
the accumulator. MultiSwap also costs a large constant over-
head, however; this is to generate ` (§4.1) and check two
Wesolowski proofs via modular exponentiations (§2, §4).

5.1 Verifiable outsourcing for smart contracts

Blockchain systems [26] like Ethereum [53] enable smart
contracts: computations defined by a blockchain’s users and
executed as part of the block validation procedure. One appli-
cation of smart contracts is implementing a form of verifiable
state update (§1): for global state Γ (stored on the blockchain)
and a transaction γ (submitted by a user), the computation
(1) checks that γ is valid according to some predicate, and if
so (2) updates the global state to a new value Γ′.

Consider, for example, a distributed payment system where
Γ comprises a list of users and their public keys and balances.
Transactions let users send payments to one another. When
Alice wishes to send a payment, she constructs a transaction
γ that includes (1) the target user; (2) the amount to send; and

(3) a digital signature over the prior two items; she submits
this to the smart contract, which verifies it and updates Γ.

A major practical limitation of this approach is that com-
putation, storage, and network traffic are extremely expensive
for smart contracts.10 One solution to this issue, Rollup [7, 65,
94], is an instance of verifiable computation (§2.2): the smart
contract delegates the work of checking transactions to an
untrusted aggregator, and then checks a proof that this work
was done correctly.11 To effect this, users submit transactions
γi to the aggregator rather than directly to the smart contract.
The aggregator assembles these transactions into a batch {γi},
then generates a proof π certifying the correct execution of a
computation Ψ that verifies the batch and updates the global
state from Γ to Γ′. Finally, the aggregator submits π and Γ′

to the smart contract, which verifies the proof and stores the
updated state. Checking this proof is substantially cheaper for
the smart contract than verifying each transaction individually,
and the exorbitant cost of smart contract execution justifies
the aggregator’s cost in generating the proof [115].

In more detail, the constraints C corresponding to Ψ (§2.2)
take the current state Γ as the input X and the updated state
Γ′ as the output Y . P (i.e., the aggregator) supplies the batch
{γi} as part of the witness (i.e., the advice vector Z), meaning
that the smart contract can verify the proof without reading
{γi}. This saves both computation and network traffic.

Notably, though, even reading Γ and Γ′ is too expensive for
the smart contract, as is storing Γ on the blockchain. (Recall
that verifying a proof requires work proportional to the size of
the inputs and outputs; §2.2.) The original Rollup design [7]
addresses this by storing Γ in a Merkle tree (§2.1). The inputs
and outputs of C are just Merkle roots, and only this root is
stored on the blockchain. Each leaf of this tree contains a
tuple (pk,bal,#tx) comprising a user’s public key, their bal-
ance, and a transaction count (which prevents replaying past
transactions). The constraints that verify a transaction in C
thus require two Merkle tree updates, one each for payer and
payee. (Each update comprises two Merkle paths; §2.1).

We observe that a single MultiSwap (§3) can replace all of
the Merkle tree updates for a batch of transactions. In particu-
lar, MultiSwap’s semantics guarantee sequential consistency
of the transactions with respect to Γ and Γ′. And whereas
the per-swap cost of Merkle swaps increase logarithmically
with the number of accounts stored in Γ, the per-swap cost
of MultiSwap is essentially independent of the number of
users. This means that for large batches of transactions and/or
large numbers of users, a MultiSwap-based Rollup requires
far fewer constraints than a Merkle-based one.

Costs. The middle two rows of Figure 3 show costs for
Rollup using Merkle and MultiSwap. Both cases pay to ver-

10Anecdotally, recent Ethereum prices [54] result in storage costs of more
than $1 per kilobyte. Similarly, per-transaction costs are frequently in the
$0.25 to $1 range even when executing minimal computation.

11Rollup is distinct from Optimistic Rollup [58], which does not use cryp-
tographic proofs and is not discussed in this paper.

9

Number of constraints

System Per-Operation Costs Per-Proof Costs

Merkle swap 2(cHe +m · cH)

MultiSwap (§3, §4) 2(cHe + cHin + csplit + c+`
(f)+ c×`

) 4ceG(|`|)+2c×G + cHp + cmod`(bH∆
)

Payments (Merkle swap) Merkle swap ×2 + csig + ctx

Payments (MultiSwap) MultiSwap×2 + csig + ctx MultiSwap

RAM (Merkle-based [32]) (1+w)(cHe +m · cH)

RAM (MultiSwap) MultiSwap+cmem-check MultiSwap

λ security parameter (128) f field width (log2 |F|) (255)
bH∆

bits in division-intractable hash output (2048) bG group element bits (log2 |G|) (2048)
cHe cost of multiset item hash to F (varies) cH cost of F2→ F hash (varies)
cHp cost of prime generation (217703) |`| prime challenge bits (352)
csplit cost of strict bitsplit in F (388) c×G operation cost in G (7563)
csig cost of signature check (12000) w write fraction (RAM) (varies)
ctx cost of tx validity check (255) c×` cost of multiplication, mod ` (479)
m log2 of accumulator capacity (varies) cHin per-operation cost of full-input hash (varies)
cmem-check cost of memory checks, 21+ log2 k+2 ·m for k operations [116, Fig. 5; 79, Appx. B.A] (< 125)
c+`(b) cost of addition with two inputs of maximum width b, mod ` (16+b)
cmod`(b) cost of reduction mod `, with a b-bit input (16+b)
ceG(b) cost of exponentiation with a b-bit exponent, in G (7044b)

Figure 3: Constraint count models for Merkle swaps (§2.1), MultiSwap (§3, §4), Payments (§5.1), and Persistent RAM (§5.2).
The approximate value of each parameter in our implementation (§6, §7) is given in parentheses. See Section 5 for discussion.

ify the payer’s signature and ensure that the payer’s balance is
sufficient. The difference is in the swap costs, which are dis-
cussed above (§5); Rollup requires two swaps per transaction,
one each to update the payer’s and payee’s accounts.

5.2 Efficient persistent RAM

Recall from Section 2.2 that Pantry-style RAM, while expen-
sive, offers unique functionality: the ability to pass the full
state of RAM from one proof to another. This enables compu-
tations over persistent state [32], recursively verifiable state
machine execution [15, 89], and other useful applications.

Unfortunately, the high cost (in constraints) of hash func-
tions (§6) limits the number of Pantry-style RAM opera-
tions that can be used in a computation—especially for large
RAMs [32, 79, 116]. In this section, we show how to use the
batched RSA accumulator construction of Section 4 to address
this issue. Our design yields a persistent RAM abstraction
whose per-access constraint cost is lower than Pantry’s even
at modest RAM sizes, and is nearly insensitive to RAM size.

To begin, notice that Pantry’s RAM abstraction essentially
stores memory values in a fixed-size Merkle tree, executing
a membership proof for each LOAD and a swap for each
STORE. Moreover, since our goal is efficiency, our design will
ideally check all memory operations using a small number of
batched accumulator operations (§4).

This seems to suggest the following (incorrect) approach.

First, replace the Merkle tree with an RSA accumulator,
representing memory locations as 〈addr,data〉 tuples. Then,
verify all LOAD and STORE operations in a batch using
MultiSwap (§3) as follows. For each LOAD from address
δ, P supplies as advice the value ν purportedly stored at δ,
and the constraints encode a swap that replaces the tuple 〈δ,ν〉
with itself. For each STORE of the value ν′ to address δ, P
supplies as advice the value ν purportedly being overwritten,
and the constraints encode the swap (〈δ,ν〉,〈δ,ν′〉).

The reason this approach is incorrect is that it does not en-
force the consistency of LOAD operations with program exe-
cution. In particular, recall (§3) that MultiSwap(S,σ,S′) only
guarantees that S′ is produced by a sequentially-consistent
cycle-free subsequence σ′ ⊆ σ. Since LOAD operations
are self-cycles, they are not included in σ′. This use of
MultiSwap thus only guarantees that σ correctly encodes
STORE operations—LOADs can return any value.

We might attempt to fix this issue by checking LOAD oper-
ations using membership proofs. But this is inefficient: check-
ing such a proof requires the constraints to materialize an
accumulator that contains the value being loaded; meanwhile,
the LOAD might correspond to a prior STORE, in which case
the accumulator against which the proof must be checked
would first have to be computed. In other words, this strategy
makes batching accumulator operations impossible.

Our key insight is that a hybrid of the Pantry and BCGT ap-
proaches solves this issue. At a high level, our design enforces

10

the correctness of LOAD and STORE operations using an
address-ordered transcript (§2.2) while ensuring that this tran-
script is consistent with the initial and final state of RAM us-
ing batched accumulator operations. As above, each memory
location is stored in the accumulator as an 〈addr,data〉 tuple.
As in BCGT-style RAM, the constraints build an execution-
ordered transcript, P supplies an address-ordered transcript
T , and the constraints ensure that T is correctly ordered, co-
herent, and a permutation of the execution-ordered transcript.

For the initial state of RAM, the constraints enforce consis-
tency by ensuring that the first time an address δ is accessed
in T , the tuple 〈δ,ν〉 is removed from the accumulator. If the
first access is a LOAD, ν is the corresponding DATA value
from T . Otherwise, P supplies as advice a claimed ν value
such that 〈δ,ν〉 is in the accumulator. (For now, we assume
that memory location δ has some corresponding tuple in the
accumulator; we discuss uninitialized memory below.) Ob-
serve that this ensures consistency, because a removal is only
possible if 〈δ,ν〉 is indeed in the accumulator.

For the final state of RAM, the constraints enforce consis-
tency by ensuring that the last time an address δ is accessed
in T , the tuple 〈δ,ν′〉 is inserted into the accumulator. The
value ν′ is the corresponding DATA value from T . Together
with the above, this ensures that all of the accesses to address
δ collectively result in the swap (〈δ,ν〉,〈δ,ν′〉).

Constraints for the above checks work as follows. First, for
entry i in T , the constraints compute hi,del = H∆(〈ADDRi,ν〉)
and hi,ins = H∆(〈ADDRi,ν

′〉) (§4.2). Then, for each sequen-
tial pair of entries i, i+1 in T , if ADDRi 6= ADDRi+1, then
entry i must be the last access to ADDRi and entry i+1 must
be the first access to ADDRi+1. Finally, the constraints com-
pute ∏i∈F hi,del mod ` and ∏i∈L hi,ins mod ` (§4), the values
inserted into and removed from the accumulator, respectively,
for F the first-accessor set and L the last-accessor set.

Handling uninitialized memory. A remaining issue is
how to handle the case where memory is uninitialized. Re-
call that in the BCGT approach, a LOAD not preceded by a
STORE to the same address is serviced with a default value,
say, 0. That does not work here, because this approach re-
lies crucially on swapping old values for new ones, to ensure
consistency with both the initial and final accumulators.

A straightforward solution is to ensure that every mem-
ory location is initialized, by executing a setup phase that
constructs an accumulator containing the tuple 〈δ,0〉 for ev-
ery address δ. The cost of constructing this accumulator is
high when the address space is large, since it amounts to one
exponentiation per entry in RAM. Note, however, that this
computation can be parallelized using the pre-computed val-
ues described in Section 4.4, and admits the same time-space
tradeoff described in that section.12

12An alternative solution is to implement, in essence, a shadow mem-
ory [92] indicating which addresses are valid. This is effected by storing a
canary value valid[δ] in the accumulator for each address δ for which some
tuple 〈δ, ·〉 exists. If Ψ attempts to LOAD or STORE from a memory location

Costs. The constraint costs of memory accesses are shown
in the bottom two rows of Figure 3. The Merkle-based RAM
requires two proofs of membership for each STORE, but only
only one for each LOAD [32], so it is slightly cheaper than a
Merkle swap—but logarithmic in RAM size.

The RSA accumulator–based RAM uses one MultiSwap
for all LOADs and STOREs, with attendant per-operation
costs (which are independent of RAM size; §5). It also incurs
extra per-operation costs to check T as described above; these
are logarithmic in the number of accesses but concretely very
inexpensive (§2.2, [116, Fig. 5; 79, Appx. B-A]).

6 Implementation

We implement a library comprising multiprecision arith-
metic, Pocklington prime certification, RSA accumulators,
and Merkle trees. This library extends Bellman [9], a library
for building constraint systems and generating proofs using
the pairing-based argument due to Groth [70]. Based on this
library, we implement two end-to-end applications: one that
verifies a sequence of swaps, and one that verifies a batch of
transactions for a distributed payment system (§5.1).

We also implement or adapt four hash functions: MiMC [1],
which costs 731 constraints (91 rounds of the x7 permutation);
Poseidon [69], which costs 316 constraints; Pedersen [72, 97],
which costs 2753 constraints (based on the JubJub elliptic
curve [28]), and SHA-256 [57], which costs 45567 constraints.
We adapt the latter three hashes from Sapling [104].13

Finally, we implement custom Bellman constraint synthe-
sizers (ConstraintSystems, in the jargon of Bellman) that
allow us to quickly measure a constraint system’s size and
P ’s cost computing a corresponding witness.

We use a 2048-bit RSA quotient group (§2) modulo the
RSA-2048 challenge number [76, 102], and choose a random
2048-bit ∆ to define the division-intractable hash function
H∆ (§4.2); we give concrete values in Appendix B. We syn-
thesize all constraints over the BLS12-381 [27] curve.

In total, our implementation comprises ≈11,300 lines of
Rust. We have released it under an open-source license [10].

7 Evaluation

We evaluate our MultiSwap implementation, comparing it to
Merkle trees by answering the following questions:

δ for which no value exists, P supplies a proof of non-membership (§2.1)
for valid[δ], plus a default value. This obviates the setup phase, but requires
additional constraints to (1) compute H∆(valid[ADDRi]) for each entry in T ,
(2) check a batched non-membership proof, (3) check a batched insertion of
valid[·] values (which can be combined with the swap check), and (4) enforce
correctness of the default value. Further exploration is future work.

13The costs of MiMC, Poseidon, and JubJub depend on the underlying
elliptic curve; we target BLS12-381 [27]. The cost of SHA-256 is ≈30%
higher in Sapling than in prior work [1], but even the best reported costs are
more than 10× the other hashes’ costs. This discrepancy does not change our
results: we focus on Poseidon, which is the best case for Merkle trees (§7.1).

11

(1) How does the cost of a MultiSwap compare to the cost
of Merkle swaps for a batch of swaps? In particular, what
is the break-even point (i.e., the number of operations
beyond which MultiSwap is cheaper), and how do costs
compare for a fixed (large) constraint budget?

(2) What is the effect of hash function cost on the tradeoff
between RSA accumulators and Merkle trees?

We answer the first question by synthesizing constraint
systems for both MultiSwap and Merkle swaps, at varying
set and batch sizes (§7.1). We also synthesize constraints
for the Rollup application (§7.2) and compare the persistent
RAM application using a cost model (§7.3). Our cost metric
is number of constraints; to validate this metric, we measure
end-to-end times for MultiSwap and Merkle swaps (§7.1).

For the second question, we evaluate the break-even point
for MultiSwap versus the cost of the underlying hash function,
for four different hash functions (§7.1).

In sum, we find that MultiSwap breaks even for batch sizes
of at most several thousand operations; for large sets, this
value is several hundred. We also find that MultiSwap’s ad-
vantage is greater when hashing is more expensive.

Baseline. Our baselines are constraint systems (§2.2) that
use Merkle trees (§2.1) to store state. For each baseline, we
fix capacity to be M = 2m, for a range of m values. In all
experiments except persistent RAM, the basic Merkle tree
operation is a swap (§5, Fig. 3). Merkle-based RAMs use a
mix of membership proofs and swaps (§2.1, §2.2); we discuss
further in Section 7.3.

Setup. Except in the hash cost experiment (§7.1), both
Merkle and MultiSwap fix the hash function H (§4.1, §4.2)
as our Poseidon [69] implementation (§6). As we show in
Section 7.1, this is the most favorable choice for the Merkle
baseline, because Poseidon is inexpensive in constraints.

For execution time (§7.1), our testbed has two Intel Xeon
E5-2687Wv4 CPUs (12 physical cores per socket, 48 threads
total) and 128 GiB of RAM, and runs Ubuntu 18.04. We com-
pile with Rust 1.41-nightly (c9290dcee 2020-02-04) [103].

Method. Our primary cost metric is number of constraints,
which we measure with a custom Bellman synthesizer (§6).
We use this metric because P ’s costs (both time and space)
are dominated by constraint count in the back-ends we tar-
get (§2.2). V ’s costs are small and essentially constant.

To validate this metric, in Section 7.1 we measure P ’s and
V ’s time for MultiSwap and Merkle swaps, for 220-element
sets. Limitations of the underlying Bellman and Sapling li-
braries (§6) cause our MultiSwap and Merkle implementa-
tions to unnecessarily resynthesize all constraints when gen-
erating proofs. To sidestep this, for each experiment we mea-
sure total proving time (synthesis, witness computation, and
proof generation), separately measure just synthesis time, and
report the difference. Fixing this issue (by rewriting Bell-
man/Sapling) is future work.

Figure 4: Constraint count v. number of swaps (§7.1). “Merkle
m” denotes a Merkle tree with 2m leaves.

Accumulator Swaps

Merkle 5 263 713
Merkle 10 143 843
Merkle 15 98 892
Merkle 20 75 346
RSA 250 201

(a) Swaps (§7.1).

Accumulator Transactions

Merkle 5 48 463
Merkle 10 37 100
Merkle 15 30 053
Merkle 20 25 256
RSA 47 203

(b) Payments (§7.2).

Figure 5: Number of operations verifiable in 109 constraints
(higher is better).

7.1 MultiSwap versus Merkle swaps
Benchmark. This experiment compares the costs of
MultiSwap and Merkle trees for a computation comprising
only swaps, varying the number of swaps and set size.

Constraint costs. Figure 4 shows the results. The cost of
Merkle trees varies with set size, because the number of hash
invocations depends on this value (§2.1; §5, Fig. 3). In con-
trast, the constraint cost of MultiSwap is independent of the
number of elements in the set; for moderately sized sets (≈210

elements), the per-swap cost is less than for Merkle trees.
On the other hand, MultiSwap pays a large overhead

(≈11 million constraints) to evaluate Hp and verify two
Wesolowski proofs (§4; §5, Fig. 3). Thus, MultiSwap requires
some minimum batch size before it breaks even. For small
sets (say, 25 elements) there is no break-even point; for sets
with 210 or more elements, the break-even point is at most a
few thousand swaps, and decreases with set size.

Figure 5a shows the number of swaps that fit in 109 con-
straints, for different accumulators. (We compare at this size
because it is close to the largest that prior work can han-
dle [121].) Depending on set size, MultiSwap improves reach-
able batch sizes by up to ≈3.3×.

12

Figure 6: Witness computation plus proof generation time v.
number of swaps, for accumulators with 220 elements (§7.1).

Figure 7: Constraint count v. number of swaps, varying hash
function (§7.1). Merkle trees are all of depth 20.

Proving and verifying time. Figure 6 shows proving times
(witness computation plus proof generation) for MultiSwap
and Merkle with sets having 220 elements, for varying batch
sizes. Verification costs ≈7 ms in all cases. MultiSwap has
longer proving times for small batches but shorter times for
large batches, and the break-even point between 1200 and
1600 swaps. This is slightly larger than in Figure 4 because
of the added cost of computing the new accumulator digest
(§4.4).

For an accumulator with 220 elements, computing a new di-
gest after batch removal takes ≈43 seconds and uses ≈4 GiB
of RAM via the preprocessing approach described in Sec-
tion 4.4. For smaller accumulators this cost is correspondingly
smaller. Larger accumulators have slower witness generation,
which affects break-even batch size; we discuss in Section 9.

Effect of hash cost. Figure 7 shows the effect of hash cost
on MultiSwap’s break-even point for sets of 220 elements

Figure 8: Constraint count v. number of transactions (§7.2).
“Merkle m” denotes a Merkle tree with 2m leaves.

(other set sizes are analogous; note that the axes are loga-
rithmic). We measure MiMC, Poseidon, Pedersen/Jubjub,14

and SHA-256 (§6). As expected, in all cases Merkle trees
are cheaper for small numbers of operations. For the least
expensive hash (Poseidon), MultiSwap’s break-even point
is the highest; as hash cost increases, so does MultiSwap’s
advantage. (We report results in all other experiments with
Poseidon, which is the worst case for MultiSwap.)

7.2 Application: payment system

Benchmark. This experiment compares the costs of
MultiSwap and Merkle trees for the Rollup application de-
scribed in Section 5.1. We measure cost versus the number
of transactions (a signature verification, a validity check, and
two swaps). Signatures use the scheme from ZCash [72].

Results. Figure 8 shows the results. In contrast with the
previous experiment, here all accumulator types pay a fixed
overhead per transaction (this is dominated by signature veri-
fication), which reduces MultiSwap’s per-transaction advan-
tage. In this application, set size corresponds to the number
of accounts. As in Section 7.1, MultiSwap does not break
even for the smallest set size. The break-even point for 210

accounts is ≈2000 transactions, and ≈600 for 220 accounts.
Figure 5b shows the number of transactions that fit in 109

constraints, for different accumulators. MultiSwap’s advan-
tage is as large as ≈1.9×, depending on set size.

14Our design (§4) models the underlying hash function as a random oracle.
Thus, Pedersen hashing should not be used for MultiSwap; we use it in this
experiment only to demonstrate the effect of hash cost.

13

Figure 9: Constraint count v. number of accesses (§7.3).
“Merkle m” denotes a Merkle tree with 2m leaves. Ribbons
indicate variation according to write load, from 0 to 100%.

7.3 Application: persistent RAM
Benchmark. This experiment compares the costs of
MultiSwap-based and Pantry’s [32] Merkle-based persistent
RAM 5.2. We compare using the cost model of Figure 3 (§5),
which is derived from prior work [79, 116]; future work is to
port Buffet’s RAM compiler to Bellman and synthesize. We
report cost versus RAM size.

Results. Figure 9 shows the results. For Merkle-based
RAM, bands in the figure represent varying write loads, from
0 (lowest cost) to 100% (highest cost). As in prior experi-
ments, MultiSwap’s cheaper per-operation cost yields a break-
even point of several thousand operations for a large RAM.
This model includes the cost of memory consistency checks
(§2.2, §5.2, Fig. 3); these cost fewer than 100 constraints per
operation and are thus negligible.

8 Related work

Verifiable computation. The literature on verifiable com-
putation is both broad and deep; a somewhat recent sur-
vey [119] gives a thorough treatment of the area’s beginnings.

Our work builds most directly on xJsnark’s [79] multipreci-
sion arithmetic and on the RAM primitives first described
by Ben-Sasson et al. [12] and further refined by Ben-Sasson
et al. [13, 16], in Buffet [116], and in xJsnark. Buffet and
xJsnark both extend lines of work concerned with efficiently
compiling high-level programs to constraints, including Pep-
per [107], Ginger [108], Pinocchio [96], and Pantry [32].

Several other works in this area deal with persistent state.
Pantry [32] was the first to use Merkle trees for stateful compu-
tations, and its persistent RAM primitive inspired ours (§5.2).
vSQL [123] builds a verifiable subset of SQL, building on

the interactive proofs of Goldwasser et al. [67], Cormode et
al. [47], and Thaler [111], and on the polynomial commit-
ments of Papamanthou et al. [95], which build on the work
of Kate et al. [77]. In contrast to the persistent RAM and
multiset abstractions we develop, vSQL exposes a database
abstraction; queries operate on all rows in parallel.

ADSNARK [4] extends the Pinocchio [96] SNARK to sup-
port operations on authenticated data provided by a third party.
Geppetto [49] also extends Pinocchio, allowing the verifier to
commit to inputs for a specific computation and later verify a
proof against that commitment, and also enabling data transfer
between separate constraint systems bundled into one proof.
Fiore et al. [56] take Geppetto’s commitments to inputs a step
further, making them computation independent. In contrast
to a multiset or persistent RAM abstraction, however, all of
these systems require a number of constraints sufficient to
read every input value—in other words, a multiset of size M
implies at least M constraints. Further, they do not efficiently
support programs whose multiset or RAM accesses depend
on inputs and thus cannot be statically analyzed (§2.2).

Spice [105] aims to enable zero-knowledge auditing of
concurrent services. Spice’s amortized cost per state operation
is ≈2× lower than ours for large batches, but its approach
differs from ours in two key ways. First, Spice’s core state
verification primitive requires a number of constraints linear
in the total size of the state; this cost is amortized over a batch
of requests, each containing one or more state operations.
In contrast, MultiSwap operations (§3) have constraint costs
that depend only on the number of state updates, not on total
state size. Second, verification costs in Spice scale with the
number of requests in a batch; in our work, verification cost
is independent of batch size. Piperine [80] optimizes Spice’s
state verification primitive and saves verification work by
combining all requests from a batch into one proof; this yields
verification cost independent of batch size.

Accumulators. Cryptographic accumulators [17] based on
RSA have a long history [5, 40, 81, 84]. The recent work of
Boneh et al. [24] builds upon work by Wesolowski [120] to
construct batched membership and non-membership proofs
for these accumulators. Our work builds directly on this line.

Merkle-based accumulators have also seen extensive
study [38, 90], and related structures have seen applications,
e.g., in the blockchain [99] and PKI contexts [100]. These
works all rely crucially on collision-resistant hashing, which
is expensive when expressed as constraints (§6, §7).

Two other lines of work build accumulators [39, 42, 51, 93]
and vector commitments [41, 82, 83] from bilinear maps. El-
liptic curve operations and pairings appear to be very expen-
sive when compiled to constraints [15], but these lines may
nevertheless be an interesting direction for further study.

Prime generation. A long line of work [30, 31, 68, 74, 75]
aims to efficiently generate pseudorandom prime numbers. In
some cases, uniformly distributed primes [59] are desirable.

14

All of these proceed in “guess-and-check” fashion, which is
inefficient when implemented in constraints (see §4.1). Most
closely, Maurer [87, 88] and Shawe-Taylor [109] describe
prime generation methods based on Pocklington certificates;
Clavier et al. [46] optimize for embedded devices. To our
knowledge, no prior work tackles this problem in our context.

9 Discussion and conclusion

We have shown that in verifiable state applications with mod-
erate to large state, accessed thousands of times, RSA accu-
mulators are less costly than Merkle trees.

There are two caveats: first, RSA accumulators require
a trusted setup. In practice, most SNARKs [15, 64, 70, 96]
also require a trusted setup, so this is not a significant bur-
den. Moreover, it is possible to mitigate trust requirements
by generating an RSA modulus using a multiparty compu-
tation [25, 60]. A conjectured alternative that avoids trusted
setup is a class group of imaginary quadratic order [24, 35];
exploring efficient constraint implementations is future work.

Second, for very large sets (say, > 225) P ’s cost (in time)
for advice generation is high (§4.4). For small batch sizes, this
cost overwhelms the time saved because of reduced constraint
count. Note, however, that there will be some batch size at
which RSA breaks even, since per-swap cost is smaller than
Merkle for ' 210 elements. Moreover, reducing the number of
constraints also reduces P ’s RAM requirements; meanwhile,
P ’s advice generation task requires little memory. This means
that even if an RSA accumulator requires greater total proving
time than a Merkle tree, the RSA accumulator’s use may still
be justified because it reduces the amount of RAM P needs to
generate a proof. Since RAM is a major bottleneck [116, 121]
(§1), such a time-space tradeoff may have significant practical
benefit. Exploring this tradeoff is future work.

Acknowledgments

This work was supported in part by the NSF, the ONR, the
Simons Foundation, the Stanford Center for Blockchain Re-
search, and the Ripple Foundation. The authors thank Justin
Drake, Srinath Setty, and Justin Thaler for helpful comments.

References
[1] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen.

MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In ASIACRYPT, Dec. 2016.

[2] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In ACM
CCS, Oct. / Nov. 2017.

[3] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In ACM STOC, May 1991.

[4] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK:
Nearly practical and privacy-preserving proofs on authenticated data.
In IEEE S&P, May 2015.

[5] N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In EUROCRYPT, May 1997.

[6] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic
curves with prescribed embedding degrees. In SCN, Sept. 2003.

[7] barryWhiteHat. roll_up: Scale ethereum with SNARKs.
https://github.com/barryWhiteHat/roll_up.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM CCS, Nov. 1993.

[9] Bellman circuit library, community edition.
https://github.com/matter-labs/bellman.

[10] Bellman-BigNat.
https://github.com/alex-ozdemir/bellman-bignat.

[11] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero
knowledge with no trusted setup. In CRYPTO, Aug. 2019.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems:
extended abstract. In ITCS, Jan. 2013.

[13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza.
SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In CRYPTO, Aug. 2013.

[14] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward. Aurora: Transparent succinct arguments for R1CS. In
EUROCRYPT, May 2019.

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO, Aug. 2014.

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In
USENIX Security, Aug. 2014.

[17] J. C. Benaloh and M. de Mare. One-way accumulators: A
decentralized alternative to digital sinatures (extended abstract). In
EUROCRYPT, May 1994.

[18] V. Beneš. Mathematical theory of connecting networks and telephone
traffic. Mathematics in Science and Engineering. Elsevier Science,
1965.

[19] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable
collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS, Jan. 2012.

[20] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In FOCS, Oct. 1991.

[21] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable
computation using multiple provers. Cryptology ePrint Archive,
Report 2014/846, 2014. http://eprint.iacr.org/2014/846.

[22] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay
functions. In CRYPTO, Aug. 2018.

[23] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay
functions. Cryptology ePrint Archive, Report 2018/712, 2018.
https://eprint.iacr.org/2018/712.

[24] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for
accumulators with applications to IOPs and stateless blockchains. In
CRYPTO, Aug. 2019.

[25] D. Boneh and M. K. Franklin. Efficient generation of shared RSA
keys (extended abstract). In CRYPTO, Aug. 1997.

[26] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. SoK: Research perspectives and challenges for bitcoin and
cryptocurrencies. In IEEE S&P, May 2015.

[27] S. Bowe. BLS12-381: New zk-SNARK elliptic curve construction.
https://electriccoin.co/blog/new-snark-curve/, Mar.
2017.

[28] S. Bowe. Cultivating Sapling: Faster zk-SNARKs.
https://electriccoin.co/blog/cultivating-sapling-
faster-zksnarks/, Sept. 2017.

15

https://github.com/barryWhiteHat/roll_up
https://github.com/matter-labs/bellman
https://github.com/alex-ozdemir/bellman-bignat
http://eprint.iacr.org/2014/846
https://eprint.iacr.org/2018/712
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/cultivating-sapling-faster-zksnarks/
https://electriccoin.co/blog/cultivating-sapling-faster-zksnarks/

[29] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. Zexe:
Enabling decentralized private computation. Cryptology ePrint
Archive, Report 2018/962, 2018.
https://eprint.iacr.org/2018/962.

[30] J. Brandt and I. Damgård. On generation of probable primes by
incremental search. In CRYPTO, Aug. 1993.

[31] J. Brandt, I. Damgård, and P. Landrock. Speeding up prime number
generation. In ASIACRYPT, Nov. 1993.

[32] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In SOSP, Nov. 2013.

[33] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast
exponentiation with precomputation (extended abstract). In
EUROCRYPT, May 1993.

[34] J. Brillhart, D. H. Lehmer, and J. L. Selfridge. New primality criteria
and factorizations of 2m±1. Math. Comp., 29(130):620–647, Apr.
1975.

[35] J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public
Key Cryptography and Computational Number Theory, 2001.

[36] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In
IEEE S&P, May 2018.

[37] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from
DARK compilers. Cryptology ePrint Archive, Report 2019/1229,
2019. https://eprint.iacr.org/2019/1229.

[38] P. Camacho, A. Hevia, M. A. Kiwi, and R. Opazo. Strong
accumulators from collision-resistant hashing. In ISC, Sept. 2008.

[39] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials.
In PKC, Mar. 2009.

[40] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In
CRYPTO, Aug. 2002.

[41] D. Catalano and D. Fiore. Vector commitments and their applications.
In PKC, Feb. / Mar. 2013.

[42] A. Chepurnoy, C. Papamanthou, and Y. Zhang. Edrax: A
cryptocurrency with stateless transaction validation. Cryptology
ePrint Archive, Report 2018/968, 2018.
https://eprint.iacr.org/2018/968.

[43] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
Cryptology ePrint Archive, Report 2019/1047, 2019.
https://eprint.iacr.org/2019/1047.

[44] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. Cryptology ePrint
Archive, Report 2019/1076, 2019.
https://eprint.iacr.org/2019/1076.

[45] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero
knowledge. In EUROCRYPT, Apr. 2015.

[46] C. Clavier, B. Feix, L. Thierry, and P. Paillier. Generating provable
primes efficiently on embedded devices. In PKC, May 2012.

[47] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, Jan. 2012.

[48] J.-S. Coron and D. Naccache. Security analysis of the
Gennaro-Halevi-Rabin signature scheme. In EUROCRYPT, May
2000.

[49] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile verifiable
computation. In IEEE S&P, May 2015.

[50] R. J. F. Cramer. Modular design of secure yet practical cryptographic
protocols. PhD thesis, Universiteit van Amsterdam, Jan. 1997.

[51] I. Damgård and N. Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. Cryptology ePrint Archive,

Report 2008/538, 2008. http://eprint.iacr.org/2008/538.

[52] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno.
Cinderella: Turning shabby X.509 certificates into elegant
anonymous credentials with the magic of verifiable computation. In
IEEE S&P, May 2016.

[53] Ethereum. https://ethereum.org.

[54] ETH Gas Station. https://ethgasstation.info.

[55] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, Aug. 1987.

[56] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and
B. Parno. Hash first, argue later: Adaptive verifiable computations on
outsourced data. In ACM CCS, Oct. 2016.

[57] Secure hash standard. NIST FIPS PUB 180-4, Aug. 2015.

[58] K. Floersch. Ethereum smart contracts in L2: Optimistic rollup.
https://medium.com/plasma-group/ethereum-smart-
contracts-in-l2-optimistic-rollup-2c1cef2ec537.

[59] P.-A. Fouque and M. Tibouchi. Close to uniform prime number
generation with fewer random bits. In ICALP, July 2014.

[60] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast
distributed RSA key generation for semi-honest and malicious
adversaries. In CRYPTO, Aug. 2018.

[61] M. Fredrikson and B. Livshits. Zø: An optimizing distributing
zero-knowledge compiler. In USENIX Security, Aug. 2014.

[62] A. Gabizon. AuroraLight: Improved prover efficiency and SRS size
in a sonic-like system. Cryptology ePrint Archive, Report 2019/601,
2019. https://eprint.iacr.org/2019/601.

[63] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/2019/953.

[64] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, May
2013.

[65] A. Gluchowski. Optimistic vs. ZK rollup: Deep dive.
https://medium.com/matter-labs/optimistic-vs-zk-
rollup-deep-dive-ea141e71e075.

[66] GNU multiple precision arithmetic library. https://gmplib.org.

[67] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: interactive proofs for muggles. In ACM STOC, May
2008.

[68] J. Gordon. Strong primes are easy to find. In EUROCRYPT, Apr.
1985.

[69] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and
M. Schofnegger. Starkad and Poseidon: New hash functions for zero
knowledge proof systems. Cryptology ePrint Archive, Report
2019/458, 2019. https://eprint.iacr.org/2019/458.

[70] J. Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, May 2016.

[71] J. Hendrik W. Lenstra. Factoring integers with elliptic curves. Annals
of Mathematics, 126(3):649–673, 1987.

[72] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol
specification. https://github.com/zcash/zips/blob/master/
protocol/protocol.pdf.

[73] G. Jaeschke. On strong pseudoprimes to several bases. Mathematics
of Computation, 61(204):915–926, 1993.

[74] M. Joye and P. Paillier. Fast generation of prime numbers on portable
devices: An update. In CHES, Oct. 2006.

[75] M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime
numbers. In CHES, Aug. 2000.

[76] B. Kaliski. RSA factoring challenge. In H. C. A. van Tilborg, editor,
Encyclopedia of Cryptography. Springer, 2005.

16

https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
http://eprint.iacr.org/2008/538
https://ethereum.org
https://ethgasstation.info
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://medium.com/plasma-group/ethereum-smart-contracts-in-l2-optimistic-rollup-2c1cef2ec537
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://medium.com/matter-labs/optimistic-vs-zk-rollup-deep-dive-ea141e71e075
https://gmplib.org
https://eprint.iacr.org/2019/458
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

[77] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size
commitments to polynomials and their applications. In ASIACRYPT,
Dec. 2010.

[78] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi,
and N. Triandopoulos. TRUESET: Faster verifiable set computations.
In USENIX Security, Aug. 2014.

[79] A. E. Kosba, C. Papamanthou, and E. Shi. xJsnark: A framework for
efficient verifiable computation. In IEEE S&P, May 2018.

[80] J. Lee, K. Nikitin, and S. Setty. Replicated state machines without
replicated execution. In IEEE S&P, May 2020.

[81] J. Li, N. Li, and R. Xue. Universal accumulators with efficient
nonmembership proofs. In ACNS, June 2007.

[82] B. Libert, S. C. Ramanna, and M. Yung. Functional commitment
schemes: From polynomial commitments to pairing-based
accumulators from simple assumptions. In ICALP, July 2016.

[83] B. Libert and M. Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In TCC, Feb.
2010.

[84] H. Lipmaa. Secure accumulators from euclidean rings without
trusted setup. In ACNS, June 2012.

[85] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable
structured reference strings. In ACM CCS, Nov. 2019.

[86] Matter network. https://demo.matter-labs.io/explorer/.

[87] U. M. Maurer. Fast generation of secure RSA-moduli with almost
maximal diversity. In EUROCRYPT, Apr. 1990.

[88] U. M. Maurer. Fast generation of prime numbers and secure
public-key cryptographic parameters. Journal of Cryptology,
8(3):123–155, Sept. 1995.

[89] I. Meckler and E. Shapiro. Coda: Decentralized cryptocurrency at
scale. https://cdn.codaprotocol.com/v2/static/coda-
whitepaper-05-10-2018-0.pdf, May 2018.

[90] R. C. Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, Aug. 1988.

[91] B. Möller. Algorithms for multi-exponentiation. In SAC, Aug. 2001.

[92] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE, June 2007.

[93] L. Nguyen. Accumulators from bilinear pairings and applications. In
CT-RSA 2005, Feb. 2005.

[94] On-chain scaling to potentially ~500 tx/sec through mass tx
validation. https://ethresear.ch/t/on-chain-scaling-to-
potentially-500-tx-sec-through-mass-tx-
validation/3477.

[95] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct
computation. In TCC, Mar. 2013.

[96] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE S&P, May 2013.

[97] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, Aug. 1992.

[98] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number
Theory, 12(1):128–138, Feb. 1980.

[99] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov. Improving
authenticated dynamic dictionaries, with applications to
cryptocurrencies. In FC, Apr. 2017.

[100] L. Reyzin and S. Yakoubov. Efficient asynchronous accumulators for
distributed PKI. In SCN, Aug. / Sept. 2016.

[101] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, MIT LCS, Mar. 1996.

[102] The RSA challenge numbers.
https://web.archive.org/web/20130921041734/http:
//www.emc.com/emc-plus/rsa-labs/historical/the-rsa-

challenge-numbers.htm.

[103] Rust programming language. https://www.rust-lang.org/.

[104] Sapling cryptography library, community edition.
https://github.com/matter-labs/sapling-crypto.

[105] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution
of concurrent services in zero-knowledge. In OSDI, Oct. 2018.

[106] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish.
Resolving the conflict between generality and plausibility in verified
computation. In EuroSys, Apr. 2013.

[107] S. T. V. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation practical
(sometimes). In NDSS, Feb. 2012.

[108] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In USENIX Security, Aug. 2012.

[109] J. Shawe-Taylor. Generating strong primes. Electronics Letters,
22(16):875–877, 1986.

[110] E. G. Straus. Addition chains of vectors (problem 5125). Amer. Math.
Monthly, 70:806–808, 1964.

[111] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO, Aug. 2013.

[112] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable
computation with massively parallel interactive proofs. In HotCloud,
June 2012.

[113] V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE S&P,
May 2013.

[114] R. S. Wahby, M. Howald, S. J. Garg, a. shelat, and M. Walfish.
Verifiable ASICs. In IEEE S&P, May 2016.

[115] R. S. Wahby, Y. Ji, A. J. Blumberg, a. shelat, J. Thaler, M. Walfish,
and T. Wies. Full accounting for verifiable outsourcing. In ACM
CCS, Oct. / Nov. 2017.

[116] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and M. Walfish.
Efficient RAM and control flow in verifiable outsourced computation.
In NDSS, Feb. 2015.

[117] R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish.
Doubly-efficient zkSNARKs without trusted setup. In IEEE S&P,
May 2018.

[118] A. Waksman. A permutation network. Journal of the ACM,
15(1):159–163, Jan. 1968.

[119] M. Walfish and A. J. Blumberg. Verifying computations without
reexecuting them: from theoretical possibility to near practicality.
Communications of the Association for Computing Machinery, Feb.
2015.

[120] B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT,
May 2019.

[121] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. DIZK: A
distributed zero knowledge proof system. In USENIX Security, Aug.
2018.

[122] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra:
Succinct zero-knowledge proofs with optimal prover computation. In
CRYPTO, Aug. 2019.

[123] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases. In IEEE S&P, May 2017.

[124] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vRAM: Faster verifiable RAM with program-independent
preprocessing. In IEEE S&P, May 2018.

17

https://demo.matter-labs.io/explorer/
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://web.archive.org/web/20130921041734/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://www.rust-lang.org/
https://github.com/matter-labs/sapling-crypto

A Proof of MultiSwap Consistency

Let σ denote a multiset of swaps. Let inσ denote {y : (x,y) ∈
σ} and let rmσ denote {x : (x,y) ∈ σ}.

Claim 1. Let σ be a multiset of swaps and σc be
a cycle. MultiSwap(S,σ] σc,S′) holds if and only if
MultiSwap(S,σ,S′) does.

Proof: We prove both directions simultaneously, by illus-
trating a bidirectional chain of mutually implicating equalities.
We start with the definition of MultiSwap(S,σ]σc,S′):

S′ = S] inσ]σc � rmσ]σc

S′ = S] inσc] inσ� rmσc � rmσ properties of], �

Since σc is a cycle, we have that inσc = rmσc , so rmσc ⊆
S] inσc , and the removal of rmσc can be moved earlier

S′ = S] inσc � rmσc] inσ� rmσ

S′ = S] inσ� rmσ

This last line is exactly our goal: the statement that
MultiSwap(S,σ,S′) holds.

Claim 2. If σ contains no cycles and MultiSwap(S,σ,S′)
holds, then σ is sequentially consistent with respect to S, pro-
ducing S′.

Proof: Let n be the number of swaps in σ. For a set S and
multiset of swaps τ, define the directed multigraph GS,τ as
a multigraph where the vertices are the universe of multiset
elements, the edges point from each removal to its corre-
sponding insertion, and each vertex is labeled with a multi-
plicity equal to to the multiplicity of that vertex’s element in
S, minus the out-degree, plus the in-degree. Observe that in
G = GS,σ, the multiplicity of each vertex is equal to the mul-
tiplicity of that element in S′. Furthermore, by the predicate
MultiSwap(S,σ,S′) and the soundness of the proofs of inser-
tions and removal, all multiplicities in G are non-negative.

We now construct the sequentially valid ordering of σ.
Since σ has no swap cycles, G has no edge cycles. Thus,
the edges of G can be topologically sorted such that all edges
to a vertex occur before any edge from that vertex. We lift
this edge order to a swap order, observing that in this swap
order, all swaps inserting an element occur before all swaps
removing it.

It suffices to show that when σ is applied to S in this order,
each swap is valid. Let σi denote the first i elements of σ in
the aforementioned order. Thus, GS,σn is equal to G. Further-
more, the order ensures for all i > j and for all vertices v, the
multiplicity of v in GS,σi is at most the multiplicity of v in
GS,σ j . Suppose that the ith element of this order, (xi,yi) were

invalid, where i≤ n. This implies that the multiplicity of xi
in GS,σi is negative. This would imply that the multiplicity of
xi in GS,σn = G were negative, a contradiction. Thus no swap
(xi,yi) is invalid in this order.
Proof of Lemma 1. The reverse direction follows immedi-
ately from the definition of MultiSwap.

We prove the forward direction by (strong) induction on
the size of σ. Say that σ has no cycles. Then the lemma fol-
lows from Claim 2. Otherwise, let τ be a multiset of swaps
and let σc be a cycle such that σ = τ] σc. By Claim 1,
MultiSwap(S,τ,S′) holds. Then, by the inductive hypothe-
sis, τ can be decomposed into cycle-free τ′ and cycles τci such
that τ = τ′]

⊎
i τci and τ′ is sequentially consistent with re-

spect to S, producing S′. By observing that τ′] (
⊎

i τci)]σc

is a decomposition of σ into a cycle-free swap multiset and
cycles, we conclude this direction of the proof.

B Parameter Values

Our RSA accumulators work in G= Z×N/{±1}, where N is
the RSA-2048 challenge number [102], N=0xc7970ceedcc3
b0754490201a7aa613cd73911081c790f5f1a8726f46355
0bb5b7ff0db8e1ea1189ec72f93d1650011bd721aeeacc2
acde32a04107f0648c2813a31f5b0b7765ff8b44b4b6ffc
93384b646eb09c7cf5e8592d40ea33c80039f35b4f14a04
b51f7bfd781be4d1673164ba8eb991c2c4d730bbbe35f59
2bdef524af7e8daefd26c66fc02c479af89d64d373f4427
09439de66ceb955f3ea37d5159f6135809f85334b5cb181
3addc80cd05609f10ac6a95ad65872c909525bdad32bc72
9592642920f24c61dc5b3c3b7923e56b16a4d9d373d8721
f24a3fc0f1b3131f55615172866bccc30f95054c824e733
a5eb6817f7bc16399d48c6361cc7e5.

We randomly selected a 2048-bit offset ∆ for our division-
intractable hash H∆ (§4.2); we use the value ∆=0xf3709c40
772816d668926cae548ffea31f49034ab1b30fb84b595ca
6c126a6646a4341abea2f8b07bf8d366801ac293e5a286a
bb43accdec39ac8f0bc599519cf1e532f9c70b5406c4b65
2ca7da4e1cb102b69953841ae20d4bcab055c5338487ba0
0fe95e821abd381b191dfb77bae3e022ccd818d4064882d
28481ffa2db45093a4deab05f6ebfbadcf11afe7369caea
aaf1f02572348a17f0510b333b8a2d56e67d892f1e1182b
26301d9347ae0a900cff2a0979caddb1a86e04a6cbc9704
d6549e5b3aef0d5c3dc4aba648ed421b0ba37c3f8e8edc1
2ef42b86d8e5fbc0dbd903238ca2e9ed6873ccb68e8103b
5d01b4249bfbe8e70cb4f4983f41df8c8f.

Our evaluation (§7) builds on the BLS12-381 elliptic
curve [27], which is the Barreto-Lynn-Scott curve [6] with pa-
rameter z = -0xd201000000010000 whose subgroup order
is p = 0x73eda753299d7d483339d80809a1d80553bda40
2fffe5bfeffffffff00000001. This is the characteristic of
the field Fp for which we synthesize constraints.

18

	Introduction
	Background and definitions
	Accumulators
	Verifiable computation and SNARKs

	Swap sequences via batched operations
	Batched operations from constraints
	Hashing to primes
	Division-intractable hashing
	Multiprecision arithmetic optimizations
	Optimizing the cost of advice generation

	Applications of `39`42`"613A``45`47`"603AMultiSwap
	Verifiable outsourcing for smart contracts
	Efficient persistent RAM

	Implementation
	Evaluation
	`39`42`"613A``45`47`"603AMultiSwap versus Merkle swaps
	Application: payment system
	Application: persistent RAM

	Related work
	Discussion and conclusion
	Proof of `39`42`"613A``45`47`"603AMultiSwap Consistency
	Parameter Values

