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Abstract

State Machine Replication (SMR) is an important abstraction for a set of nodes to agree on an
ever-growing, linearly-ordered log of transactions. In decentralized cryptocurrency applications,
we would like to design SMR protocols that 1) resist adaptive corruptions; and 2) achieve small
bandwidth and small confirmation time. All past approaches towards constructing SMR fail to
achieve either small confirmation time or small bandwidth under adaptive corruptions (without
resorting to strong assumptions such as the erasure model or proof-of-work).

We propose a novel paradigm for reaching consensus that departs significantly from classical
approaches. Our protocol is inspired by a social phenomenon called herding, where people tend
to make choices considered as the social norm. In our consensus protocol, leader election and
voting are coalesced into a single (randomized) process: in every round, every node tries to
cast a vote for what it views as the most popular item so far: such a voting attempt is not
always successful, but rather, successful with a certain probability. Importantly, the probability
that the node is elected to vote for v is independent from the probability it is elected to vote
for v′ 6= v. We will show how to realize such a distributed, randomized election process using
appropriate, adaptively secure cryptographic building blocks.

We show that amazingly, not only can this new paradigm achieve consensus (e.g., on a batch
of unconfirmed transactions in a cryptocurrency system), but it also allows us to derive the
first SMR protocol which, even under adaptive corruptions, requires only polylogarithmically
many rounds and polylogarithmically many honest messages to be multicast to confirm each
batch of transactions; and importantly, we attain these guarantees under standard cryptographic
assumptions.

1 Introduction

State Machine Replication (SMR), also called consensus, is a core abstraction in distributed sys-
tems [5, 21, 25]: a set of nodes would like to agree on a linearly ordered log of transactions (e.g.,
in a public ledger or decentralized smart contract application), such that two important security
properties, consistency and liveness, are satisfied. Loosely speaking, consistency requires that all
honest nodes’ logs are prefixes of one another and that no node’s log will ever shrink; and liveness
requires that if a client submits a transaction, the transaction will appear in every honest node’s
log in a bounded amount of time.

The classical literature on distributed systems typically considers deployment of consensus in a
single organization (e.g., Google or Facebook), and on a small scale (e.g., a dozen nodes). Typically
these nodes are connected through fast, local-area network where bandwidth is abundant. Thus
the classical consensus literature typically focuses on optimizating the protocol’s round complexity
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which is directly related to the confirmation time — it is well-known that we can design consensus
protocols where confirmation happens in expected constant rounds (i.e., independent of the number
of players) even in the presence of adaptive corruptions [10,14].

In the past decade, due to new blockchain systems such as Bitcoin and Ethereum, SMR protocols
have been deployed in a decentralized setting in an open network. In such a blockchain setting, we
typically have a large number n of nodes who communicate over a diffusion network (where nodes
multicast messages to the whole network); and it is simply not practical to have protocols where
the number of messages to be multicast grows linearly with the number of nodes. In this paper,
we care about achieving SMR in a communication-efficient way: we want both the confirmation
time and the number of bits multicast (to confirm each batch of transactions) to be polylogarithmic
(or even just sublinear) in the number of nodes. More precisely, we refer to an n-party protocol
as being communication efficient if the total number the bits multicast is o(n) · |TXs| · κ, and the
confirmation time is o(n)·κ where κ is a security parameter such that the protocol’s security must be
respected except with negligible in κ probability. Achieving communication efficiency under static
security is easy: one could randomly elect a small committee of poly log κ size and next run any
SMR protocol that may have polynomial bandwidth overhead to confirm a batch of transactions.
If the committee election is random and independent of the choice of corrupt nodes, then except
with negligible in κ probability, the committee’s corrupt fraction approximates the overall corrupt
fraction due to the Chernoff bound. Moreover, under honest majority assumptions, non-committee
members can always be convinced of a decision as long as it is vouched for by the majority of the
committee.

However, in typical blockchain applications (such as cryptocurrencies where the participating
nodes are on an open network), the static corruption model is insufficient for security. Rather, we
need to protect the protocol against adaptive corruptions, where an attacker may, based on the
protocol execution so far, select which parties to attack. The above-mentioned “näıve” committee
election approach miserably fails in the presence of adaptive corruptions: the adversary can always
corrupt all committee members after having observed who they are and completely violate the se-
curity of the protocol. Indeed, obtaining a communication-efficient SMR protocol which withstands
adaptive corruptions has been a long-standing open problem:

Does there exists a communication-efficient SMR protocol that withstands adaptive corruptions?

Nakamoto’s beautiful blockchain protocol (through its analysis in [11,19,20]) was the first protocol
to achieve communication-efficient SMR with adaptive security. This protocol, however, requires
using proofs of work [9], and in particular requires honest players to “waste” as much computation
as the total computational power of adversarial players. Consequently, in recent years, the research
community has focused on removing the use of proofs-of-work and instead rely on standard bounds
on the fraction of adversarial players (e.g., honest majority). In particular, the recent work by
Chen and Micali [6] (see also David et al. [8], and Pass and Shi [23]) demonstrates communication-
efficient SMR protocols with adaptive security without the use of proof-of-work in the so-called
erasures model : in the erasure model, we assume that honest players have the ability to completely
erase/dispose of some some parts of their local state (such that if some player later on gets corrupted,
the erased state cannot be recovered by the attacker). However, as discussed in Canetti et al [4] (and
the references therein) such erasures are hard to perform in software, without resorting to physical
intervention, and the security of the heuristics employed in practice are not well understood. As
such, solutions in the erasure model may not provide an adequate level of security and thus ideally,
we would like to avoid the use of strong erasure assumptions.

In this work, we focus on the design of communication-efficient SMR protocols without proof-
of-work and without assuming the possibility of erasures. As far as we know, the design of such
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protocols is open even in the PKI model and even if assuming, say, 99% of the nodes are honest. We
remark that very recently, a communication-efficient “single-shot” version of consensus, referred to
as “multi-value agreement” (MVA), was achieved by Abraham et al. [2]; as we discuss in detail in
Section 1.2, the validity conditions for MVA is much weaker and thus it is not clear how to extend
these protocols to SMR.

1.1 Our Results

We propose the first communication-efficient SMR protocol with adaptive security (without assum-
ing erasures or proof-of-work), solving the above-mentioned open problem. Our protocol works in
a public-key-infrastructure (PKI) model, assuming a synchronous network, and standard crypto-
graphic assumptions. The protocol tolerates 1

3 − ε fraction of adaptive corruptions where ε is an
arbitrarily small constant, and moreover to achieve a failure probability that is negligible in the
security parameter κ, every transaction tx gets confirmed in poly log κ ·∆ time where ∆ is the max-
imum network delay, and requiring at most |tx| · poly log κ bits of honest messages to be multicast
(assuming that |tx| is at least as large as a suitable computational security parameter).

Theorem 1.1 (Adaptively secure, communication efficient synchronous state machine replication).
Under standard cryptographic hardness assumptions (more precisely, assuming standard bilinear
group assumptions), there exists a synchronous state machine replication protocol which, except
with negligible in κ probability, satisfies consistency and confirms transactions in poly log κ ·∆ time
where ∆ is the maximum network delay — as long as the adversary corrupts no more than 1

3 − ε
fraction of nodes. Moreover, (except with negligible in κ, χ probability) honest nodes only need to
multicast poly log κ · (χ+ |TXs|) bits of messages to confirm every batch of transactions denoted TXs
where χ is a computational security parameter related to the strength of the cryptographic building
blocks involved.1

We remark that our communication complexity bound is asymtotically the same as that achieved
by earlier protocols using either proofs of work or in the erasure model.

1.2 Technical Highlights

Why the problem is more challenging in SMR than in single-shot consensus. We stress
that achieving communication efficiency under adaptive corruptions is more difficult in SMR than
in single-shot consensus. In the latter, a designated sender aims to “broadcast”, for once only, a
(possibly multi-bit) value to everyone, retaining consistency even when the sender is corrupt, and
achieving validity should the sender be honest. Henceforth we refer to the single-shot version as
Multi-Valued Agreement (MVA). In MVA, if the sender is adaptively corrupt, typically no validity
is necessary (or even attainable depending on the concrete definition). Thus it is not clear how to
compose adaptively secure MVA to achieve adaptively secure SMR while preserving communication
efficiency: if the “leader” who is supposed to broadcast the next block (of transactions) becomes
corrupt, the adversary can cause a “bad block” to be confirmed (e.g., a block that censors some to
all outstanding transactions). If only a small number of such “leaders” speak at any point of time,
the adversary can continuously corrupt all leaders that speak until it has exhausted its corruption
budget — such an attack will cause confirmation time to be large.

1If assuming subexponential security of the underlying cryptographic building blocks, χ can be set to poly log κ.
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For this reason, we stress that adaptively secure, communication-efficient MVA does NOT lead
to adaptively secure, communication-efficient SMR in any straightforward manner2. Also note that
even for single-shot consensus, the only known solution that is communication efficient and does
not assume erasures is the recent work by Abraham et al. [2].

Defining “batch agreement” with a quality metric. As mentioned, the validity definition
in the classical notion of MVA is too weak if we wish to construct communication-efficient state
machine replication. One contribution of our paper is to propose a new abstraction which we call
“batch agreement” — on the surface it looks very much like MVA since nodes seek to agree on
the next batch of transactions. However, batch agreement is defined with a quality metric that
is lacking in the standard definition of MVA. We say that a block has good quality iff it contains
all transactions that have been outstanding for a while; and our batch agreement notion requires
that a batch with good quality be chosen even when the “leader” is adaptively corrupt (and upon
corruption it can inject many blocks).

Constructing batch agreement. To understand the novelty of our approach, we first briefly
review existing work. In classical approaches, if only a few number of leaders are elected to speak,
all of them can be adaptively corrupt and made to propose multiple blocks in the same round.
Even if the adversary is not fast enough to erase the good block that leader already proposed while
still honest (i.e., just before it was adaptively corrupted), it can succeed in diverging honest nodes’
voting efforts. For example, newly corrupt node may propose many good blocks and delivering them
in different order to different honest nodes. At this moment, using classical techniques, it does not
seem easy for the honest nodes to coordinate and vote on the same block. As a result, some classical
approaches adopt an approach [18] where nodes jointly discover that no block has gained popular
votes (e.g., by computing a grade), and then they initiate a binary agreement process to jointly
decide to fall back to outputting a default value. Obviously the default value is pre-determined and
cannot contain the set of outstanding transactions and thus does not have good quality.

Our approach departs from all known classical approaches: at the core we describe a new
randomized process through which the network can jointly make a selection and converge to a good
choice, when presented with polynomially many choices. During a batch agreement, a small set
of nodes get elected to propose a block. All of these nodes may be adaptively corrupt and then
made to propose more good or bad blocks. Thus honest nodes are faced with these polynomially
many blocks to choose from, and moreover at any snapshot of time, the set of blocks observed by
different honest nodes may differ, since the blocks do not necessarily arrive at the honest nodes at
the same time.

To converge to a good choice, we start with an initial scoring function that is used to evaluate
the quality of each block itself — basically a block that contains all sufficiently long outstanding
transactions scores high, and a block that censors some of them will score very low. Since nodes may
receive outstanding transactions at slightly different times, honest nodes may end up calculating
different initial scores even for the same block — we carefully craft a initial score function to make
sure that this difference is not too large as long as transactions are propagated to honest nodes
around the same time (indeed, we show that this can be accomplished with small communication
too).

Nodes then are randomly elected to vote on the blocks over time; the votes can serve to
strengthen a block’s score in an additive fashion. At any point of time, an honest node will always

2If communication efficiency is not a concern, we could have n broadcast instances (composed either sequentially
or in parallel) where everyone is given the chance to act as the leader and suggest the next batch of transactions to
confirm; we can then concatenate the outputs of these n broadcasts and treat it as the next block.
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try to vote on the most popular block in its view (i.e., the one with the highest score), but the
voting attempt only succeeds with somewhat small probability such that not too many people need
to send votes. If a node is randomly elected to vote for some block B in some time step, it does not
mean that it is eligible to vote for other blocks; thus adaptively corrupting a node that is elected
to vote does not help the adversary. Since all honest nodes always choose the most popular item so
far, honest nodes’ voting efforts must be somewhat concentrated. After roughly polylogarithmically
many steps, polylogarithmically many honest votes will have been cast. Although at any snapshot
of time, nodes may never agree on the precise score or set of votes for each block, (except with
negligible probability) it must be the case that everyone sees that the same highest-scoring block at
the end, because its final score is significantly larger than the second-best choice. Finally, a block
with an initial score that is too low will also not be selected (except with negligible probability)
because it is too unlikely for it to ever collect enough votes (even when counting corrupt nodes’
votes) to compete with the blocks with good quality.

With our approach, the ability to corrupt a leader on the fly and making it propose many
additional blocks (on top of the good block it already proposed) does not help the adversary; nor
does adaptively corrupting a voter help as mentioned.

2 Technical Roadmap

In this section, we begin by explaining our construction and proofs (of the primary building block)
informally. We then give a more detailed comparison with related work.

2.1 Informal Description of our Protocol

At the core of our SMR construction is a new abstraction called “batch agreement”. Every time
a batch agreement instance is invoked, the nodes reach agreement on a set of transactions such
that transactions that are sufficiently long-pending are guaranteed to be included (except with
negligible probability). The entire SMR protocol simply runs multiple sequential instances of the
batch agreement protocol.

As mentioned earlier, although on the surface it seems similar to the classical notion of Multi-
Valued Agreement (MVA), our notion has a much stronger validity property that is lacking in
classical MVA — specifically, we require that the confirmed block have good quality even when
everyone who is randomly elected to speak is adaptively corrupt.

A herding-inspired protocol. Our protocol is inspired a social phenomenon called herding
where people follow the popular social choice. We show how herding can be leveraged for reaching
consensus. Recall that the adversary controls 1

3 − ε fraction. At a high level, nodes cast votes for
batches of transactions over time. Imagine that in any round t, a node has a certain probability
p = 1

λ∆n of being elected to vote for a particular batch TXs where λ is sufficiently large such that

λ = ω( log κ
ε2

) — henceforth if a node is elected to vote for TXs in round t, we say that the node
“mines” a vote for TXs in round t. Importantly, the probability that a node mines a vote for TXs and
round r is independent of its success probability for TXs′ and round r′ as long as (TXs, r) 6= (TXs′, r′)
— this is important for achieving adaptive security: if the adversary adaptively corrupts a node
that has just cast a vote for TXs, corrupting this node does not make it more or less likely for the
adversary to mine a vote for TXs′ 6= TXs in the same round than corrupting any other node.

In every round, an honest node would always pick the most popular batch (where popularity
will be defined later) in its view, and it will only attempt to vote for this most popular batch —
it will not cast a vote for any other batch even if it might be eligible. If a voting attempt for TXs
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is successful in some round, the node multicasts the new vote as well as all existing votes it has
seen observed for TXs to all other nodes. After some time, every node outputs a batch that has
collected “ample” number of votes (where “ample” will be defined later in Section 2.2); if no such
batch is found, output nothing.

Realizing “mining” with cryptography. So far in the above protocol, we did not fully spec-
ify how to realize the random eligibility election. As we explain later in the paper, this can be
instantiated assuming a Verifiable Random Function (VRF) with appropriate adaptive security
properties.

Assume that every player i has a VRF public key denoted pki that is common knowledge, and
the corresponding VRF secret key ski is known only to player i. For i to determine its eligibility
to vote for TXs in round r, it evaluates (µ, π) := VRF(ski,TXs, r) where µ is the VRF evaluation
outcome and π is a proof attesting to the evaluation outcome. If µ < Dp where Dp is an appropriate
difficulty parameter, node i is deemed eligible to vote for TXs in round r. While only the secret-key
owner can evaluate the VRF, anyone can verify the evaluation outcome. More specifically, any node
that receives the tuple (TXs, r, µ, π) can verify with pki that indeed µ is the correct VRF evaluation
outcome and verify i’s eligibility to vote for TXs in round r. Importantly, a vote received is only
considered valid if its purported round is no greater than the current round number (this prevents
corrupt nodes from mining into the future).

Later in Section 7, we will describe how to instantiate such an adaptively-secure VRF that
satisfies our needs, using techniques from Abhraham et al. [2].

Popularity and initial score. It remains to specify how nodes determine the popularity of a
batch TXs of transactions. The popularity is the sum of an initial score and the number of valid
votes collected so far for TXs. To make sure that the protocol will preferentially select an all-
inclusive batch TXs that omits no long-pending transaction, we design an initial score function
that relies on a discounting mechanism to punish batches that omit long-pending transactions.

Specifically, we say that node i perceives the age of a transaction tx to be α, if at the start of the
batch agreement protocol, exactly α rounds have elapsed since node i first observed tx. We assume
that the underlying network medium satisfies the following “transaction diffusion” assumption: if
any forever honest node observes a transaction tx in round r, then by round r + ∆, all so-far
honest nodes must have observed tx too3. In this way, we are guaranteed that the perceived age
of a transaction tx must be somewhat consistent among all honest nodes. Now, imagine that
the maximum initial score a batch can gain is Smax (to be parametrized later). We will discount
the initial score of a batch TXs exponentially fast w.r.t. the oldest transaction that TXs omits.
Specifically, imagine that node i computes the score of TXs as follows:

scorei(TXs) := Smax ·
(

1− 1

λSmax

) α∗
3∆

(1)

where α∗ is the age (as perceived by node i) of the oldest transaction that is omitted from TXs.
Given the transaction diffusion assumption, it is not difficult to see that every two so-far honest
nodes’ initial score difference for any batch TXs must be less than 1

λ , i.e., honest nodes score every
batch somewhat consistently.

3As discussed in the Supplemental Materials this assumption can be removed in a synchronous network while
preserving communication efficiency.
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2.2 Intuitive Analysis

We can now intuitively argue why such a herding-based protocol satisfies consistency and liveness
under appropriate parameters. Imagine that the protocol is parametrized in the following way
where λ is chosen such that ε2λ = ω(log κ) — for example if ε is a(n arbitrarily small) constant,
then λ may be any super-logarithmic function:

• in an all-honest execution, in expectation, every λ∆ rounds, some node mines a new vote. This
means that each individual mining attempt is successful with probability 1

λ∆n ;

• the protocol is executed for Tend := λ2∆ rounds, i.e., in an all-honest execution, in expectation
a total of λ votes are mined; and

• at the end of the protocol, a node would only output a batch that has gained 2λ
3 or more valid

votes, i.e., a threshold of 2λ
3 is considered ample.

Consistency. To argue consistency, it suffices to argue that any two different batches TXs and
TXs′ cannot both gain ample votes by Tend. This follows from the following observation: forever
honest nodes make only a single mining attempt per round; while eventually corrupt nodes can
make a mining attempt for TXs and one for TXs′ corresponding for each round r (note that once
corrupt, a node can retroactively make mining attempts for past rounds). Thus the total number of
mining attempts made for either TXs or TXs′ must be upper bounded by 4

3 ·n ·Tend. As mentioned
earlier, adaptively corrupting a node that has just mined a vote for TXs does not increase the
adversary’s chance of mining a vote for TXs′ 6= TXs (for any round). Thus by Chernoff bound,
we have that except with exp(−Ω(ε2λ)) probability (which is negligible in κ), the total number of
successfully mined votes (including honest and adversarial) for TXs or TXs′ must be strictly less
than 4λ

3 — this means that the two different batches cannot both have ample votes. To complete
the argument, we need to take a union bound over all pairs of batches. If the adversary and all
nodes are polynomially bounded, then the only batches we care about are those that appear in
some honest node’s view at some point in the execution. Since there are at most polynomially
many such batches, the union bound has only polynomial loss.

Liveness. Liveness crucially relies on the fact that the mining difficulty is large enough, such that
the average time till some node finds the next vote (set to be λ∆) is much larger than the maximum
network delay ∆. Intuitively, this condition is necessary for honest nodes to “concentrate” their
voting efforts on the same batch. Recall that honest nodes would score each batch somewhat
consistently. This means that if a so-far honest node mines a vote for what he thinks is the most
popular batch TXs — if the network delay is small, very soon all so-far honest nodes would find
TXs the most popular batch too, and would mine votes only for TXs. As long as all forever honest
nodes concentrate their mining efforts, by Chernoff bound some batch would attract ample votes
and thus liveness ensues. On the other hand, if the network delay is large w.r.t. to the time it
takes to mine a vote, honest nodes will be mining on different batches and likely no batch will gain
enough votes at the end. We defer a formal argument to the later technical sections.

Validity. For validity, we would like to argue that any batch that honest nodes agree on cannot
omit “long-pending” transactions. To see this, note that except with negligible in κ probability,
the total number of valid votes any batch TXs can gain is at most 1.1λ. Now, if we let Smax := 3λ,
then any batch TXs that omits transactions of age cλ2∆ or higher for an appropriate constant c
must have an initial score less than 1.5λ as perceived by any honest node (recall that honest nodes
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would always assign somewhat consistent scores to every batch). This means that no honest node
should ever attempt to mine a vote for such a batch TXs; and thus TXs cannot gain ample votes.

2.3 Additional Related Work

In the past, the only known protocol that achieves both small bandwidth and small confirmation
time under adaptive corruptions is the celebrated Nakamoto consensus protocol [11, 19, 20, 22],
however, at the price of making very strong, idealized, proof-of-work assumptions. Constrained to
making standard cryptographic assumptions, it is known how to construct adaptively-secure SMR
that achieves either small confirmation time or small bandwidth, but not both.

First, if we allow many nodes to speak at any point of time (i.e., if we did not care about
bandwidth consumption), we can easily construct protocols that achieve small round complexity.
Specifically, it is easy to compose multiple instances of small-round MVA protocols [2, 10, 14] to
attain SMR with small confirmation time (while retaining adaptive security). Basically, in every
round, we can fork n instances of MVA where each node i acts as the designated sender in the i-th
instance, and the log of the SMR is derived by concatenating all instances of all rounds, ordered
first by the round and then by the instance within the round. However, even if the underlying
MVA achieved small bandwidth [2], the derived SMR protocol would be expensive in bandwidth.

In a second class of approaches, we would like to have only a small number of players speak at
any given point of time [1, 6–8, 15, 16, 23, 26] — this is in fact necessary to achieve our notion of
communication efficiency. Past work has suggested multiple ways to construct such protocols:

• One possible approach [1,7,8,15,16,23,26], is inspired by Nakamoto’s longest-chain protocol
but removing the proof-of-work in a permissioned setting assuming a public-key infrastructure
(PKI). Specifically, in such protocols, in every time slot, a node has a chance of being elected
leader. When it is elected leader, it signs the next block extending the current longest chain.
For such protocols to retain consistency and liveness [1, 7, 8, 15, 16, 23, 26], some additional
constraints have to be imposed on the validity of timestamps contained in a blockchain.
Among these works, some use a randomized leader election strategy [7, 16, 16, 23]; and some
use a deterministic leader election process [1, 15,26].

• Another approach, represented by Algorand [6] and improved in subsequent works [2, 18],
is to rely on a classical-style consensus protocol, but in every round, randomly subsample a
small, polylogarithmically size committee to cast votes (e.g., by employing a verifiable random
function).

No matter which approach is taken, an adaptive adversary can continuously corrupt the small
number of players selected to speak until it exhausts its corruption budget. Once corrupt, these
players can cast ambiguous votes or propose equivocating blocks (e.g., those that censor certain
transactions). In all of the above approaches (without assuming erasure), when such an adaptive-
corruption attack is taking place, all blocks confirmed may have bad quality (e.g., censoring certain
transactions), causing confirmation time to be at least Θ(n/s) where s denotes an upper bound on
the number of players who speak in every round.

Communication-efficient single-shot consensus. The recent work by Abraham et al. [2]
achieves adaptive security and communication efficiency without erasures or PoW, but their ap-
proach works only for MVA and does not extend, in any non-trivial fashion, to SMR. As mentioned
sequential or parallel repetition of MVA fails to work for this purpose due to the much weaker
validity requirement of MVA (see the Supplemental Materials for additional explanations). As
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will be obvious soon, although our paper adopts the vote-specific committee election technique
from Abraham et al. [2], we require vastly new techniques to simultaneously achieve both adaptive
security and communication efficiency for SMR.

3 Protocol Execution Model

A protocol refers to an algorithm for a set of interactive Turing Machines (also called nodes) to
interact with each other. The execution of a protocol Π that is directed by an environment Z(1κ)
(where κ is a security parameter), which activates a number of nodes as either honest or corrupt
nodes. Honest nodes faithfully follow the protocol’s prescription, whereas corrupt nodes are con-
trolled by an adversary A(1κ) which reads all their inputs/message and sets their outputs/messages
to be sent.

A protocol’s execution proceeds in rounds that model atomic time steps. At the beginning of
every round, honest nodes receive inputs from an environment Z; at the end of every round, honest
nodes may send outputs to the environment Z.

Corruption model. Z spawns n number of nodes upfront, a subset of which may be corrupt
upfront, and the remaining are honest upfront. During the execution, Z may adaptively corrupt
any honest node. When a node becomes corrupt, A gets access to its local state, and subsequently,
A controls the corrupt node. Henceforth, at any time in the protocol, nodes that remain honest so
far are referred to as so-far honest nodes; and nodes that remain honest till the end of the protocol
are referred to as forever honest nodes4.

Communication model. We assume that there is a function ∆(κ, n) that is polynomial in κ and
n, such that every message sent by a so-far honest node in round r is guaranteed to be received by
a so-far honest recipient at the beginning of round r + ∆ (if not earlier). The adversary can delay
honest message arbitrarily but up to ∆ rounds at the maximum.

All of our protocols will work in the multicast model: honest nodes always send the same
message M to everyone. We assume that when a so-far honest node i multicasts a message M in
some round r, it can immediately become corrupt in the same round and made to send one or more
messages in the same round. However, the message M that was already multicast before i became
corrupt cannot be retracted, and all nodes that are still honest in round r+∆ will have received the
message M . In our paper we will also account for a protocol’s communication efficiency by upper
bounding how many bits of honest messages must be multicast during the protocol. Any message
that is sent by a so-far honest node is an honest message — but if the node becomes corrupt in
the same round and sends another message in the same round, the latter message is treated as a
corrupt message. Since corrupt nodes can send any polynomially many messages, we do not seek
to bound corrupt messages.

In this paper we consider synchronous protocols where the protocol is parametrized with ∆,
i.e., ∆ is hard-wired in the protocol’s description.

Notational convention. Protocol execution is assumed to be probabilistic in nature. We would
like to ensure that certain security properties such as consistency and liveness hold for almost all
execution traces, assuming that both A and Z are polynomially bounded.

Henceforth in the paper, we use the notation EXECΠ(A,Z, κ) to denote a sample of the random-
ized execution of the protocol Π with A and Z, and security parameter κ ∈ N. The randomness in

4Note that “forever honest” is in fact defined w.r.t. the protocol we are concerned with.
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the experiment comes from honest nodes’ randomness, A, and Z, each sampling of EXECΠ(A,Z, κ)
produces an execution trace. We would like that the fraction of execution traces that fail to satisfy
relevant security properties be negligibly small in the security parameter κ. A function negl(·) is
said to be negligible if for every polynomial p(·), there exists some κ0 such that negl(κ) ≤ 1/p(κ)
for every κ ≥ κ0.

Throughout the paper, we assume that n is a polynomial function in κ and ∆ is a polynomial
function in κ and n — we note in the most general setting, ∆ may be dependent on n if, for
example, the network layer builds some kind of diffusion tree or graph to propagate messages.

Definition 3.1 ((ρ,∆)-respecting). We say that (A,Z) is (ρ,∆)-respecting w.r.t. protocol Π iff
for every κ ∈ N, with probability 1 in EXECΠ(A,Z, κ), every honest message is delivered within ∆
rounds and moreover (A,Z) adaptively corrupts at most ρ fraction of nodes.

When the context is clear, we often say that (A,Z) is (ρ,∆)-respecting omitting saying which
protocol Π is of interest.

4 Scoring Agreement

We define an abstraction called scoring agreement — this is at the of our batch agreement con-
struction. We rely on a herding-based protocol to achieve it. In a scoring agreement protocol,
each node starts with an element from some known universe U . Each node can evaluate an initial
score for each element from U . The scoring agreement protocol seeks to reach agreement on some
element with from U that is scored relatively highly by (almost) all forever honest nodes.

4.1 Definition of Scoring Agreement

Syntax. A scoring agreement protocol, henceforth denoted Πscore is parametrized with a universe
U that defines valid values. Moreover, suppose that there is a publicly known, polynomial-time
computable function (also denoted U for convenience) for verifying whether a value v belongs to U .

The environment Z instructs all nodes to start the protocol at the same time (treated as round 0
for the current protocol instance). When a node is instructed to start by Z, it additionally receives
the following as input from Z:

1. a value vi ∈ U ;

2. an efficiently computable function scorei : U → R that can assign an initial, real-valued score
for any value v ∈ U ; note that different nodes can receive different scoring functions.

Later when employed in our batch agreement, the value will be blocks of transactions.

Constraints on Z. We require that the following conditions hold with probability 1:

• ϑ-somewhat-consistent initial scoring: for every v ∈ U , for any initially honest i and j, it holds
that |scorei(v)− scorej(v)| < ϑ.

• High initial scores: for every forever honest i, let vi be i’s input — it must be that there is no
v′ ∈ U such that scorei(v

′) > scorei(vi).

The first condition above requires that initially honest nodes receive relatively consistent scoring
functions from Z, i.e., they assign somewhat consistent initial scores for every element in the
universe. The second condition requires that every forever honest node’s input must be the highest
scoring element in the universe (as perceived by the node itself).
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Security properties. We want a protocol where nodes reach agreement on a value in U . We say
that a protocol Πscore (parametrized with U and ∆) satisfies a certain property w.r.t. (A,Z), iff
there exists some negligible function negl(·) such that for all κ ∈ N, for all but negl(κ) fraction of
the execution traces sampled from EXECΠscore(A,Z, κ), that property holds. In particular, we care
about the the following properties.

• Consistency. If a so-far honest node i outputs v ∈ U and a so-far honest node j outputs v′ ∈ U ,
it must hold that v = v′.

• d-Validity. Suppose that for some B ∈ R, there exists subset S of forever honest nodes of size at
least (1

3 +0.5ε)n, such that for every i ∈ S, i received an input value vi satisfying scorei(vi) ≥ B.
Then, if any so-far honest node outputs v∗ ∈ U , then there must exist an initially honest node
i∗ such that scorei∗(v

∗) ≥ B − d.

In other words, if sufficiently many forever honest nodes receive a high-scoring input value and
some honest node outputs v, then it cannot be that all honest nodes assign v a relatively low
initial score.

• Tend-Liveness. Every forever honest node terminates and outputs a value in round Tend.

4.2 Message-Specific Random Eligibility Election

To achieve small communication bandwidth, we use a technique proposed in Abraham et al. [2] for
vote-specific, random eligibility election. A node with the identifier i should only send a message
m if it is determined to be eligible for sending m — otherwise the the message m will be discarded
by so-far honest nodes.

Random eligibility election with cryptography. Imprecisely speaking such random eligibility
election is performed with the help of a Verifiable Random Function (VRF) [17]: assume that every
player i has a VRF public key denoted pki that is common knowledge, and the corresponding VRF
secret key ski is known only to player i. For i to determine its eligibility for sending m, it evaluates
(µ, π) := VRF(ski,m) where µ is the VRF evaluation outcome and π is a proof attesting to the
evaluation outcome. If µ < Dp where Dp is an appropriate difficulty parameter, node i is deemed
eligible for sending the message m. While only the secret-key owner can evaluate the VRF, anyone
can verify the evaluation outcome. More specifically, suppose that node i additionally attaches the
pair (µ, π) when sending the message m; then, any node that receives the tuple (m, µ, π) can verify
with pki that indeed µ is the correct VRF evaluation outcome and verify i’s eligibility for m.

Now for technical reasons we will, for the time being, assume that such a VRF exists and
moreover can resist adaptive attacks: specifically, even when the adversary can selectively open
the secret keys of a subset of the honest nodes, the remaining honest nodes’ VRFs will still give
pseudo-random evaluation outcomes. Later in Section 7, we will describe how to instantiate such
an adaptively-secure VRF that satisfies our needs, using techniques from Abraham et al. [2].

Remark 4.1 (Subtleties regarding the use of VRF). Although earlier works such as Algorand [6]
and others [8, 13, 23] also rely on a VRF; they do not use the vote-specific election technique;
and this is why these earlier works must rely on erasures to achieve adaptive security. Abraham
et al. [2] relies on vote-specificity to remove the erasure assumption, but their technique works
only for agreement on a single bit as explained in Section 2.3 and the Supplemental Materials.
Finally, although not explicitly noted, Algorand [6] and other prior works [8] also require that the
VRF be adaptively secure (i.e., honest VRF evaluations must remain pseudorandom even when the
adversary can selectively open honest nodes’ keys) — these earlier works rely on a random oracle to
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achieve such adaptive security. In our work, we instantiate such an adaptively secure VRF without
relying on random oracles.

Random eligibility election in an idealized model. Henceforth for simplicity, in our protocol
description we will abstract away the cryptographic details and instead assume that an idealized
oracle Fmine exists that takes care of eligibility election — but later in Section 7, we will explain
how to instantiate Fmine with adaptively secure cryptographic primitives. Specifically, Fmine is a
trusted (i.e., incorruptible) party that performs the following — we assume that Fmine has been
parametrized with an appropriate probability p:

1. Upon receiving mine(m) from node i, if the coin Coin[m, i] has not been recorded, flip a random
coin b that is 1 with probability p and is 0 with probability 1 − p. Record Coin[m, i] := b and
return Coin[m, i]

2. Upon receiving verify(m, i) from any node, if the coin Coin[m, i] has been recorded, return its
value; else return 0.

Basically, for node i to check its eligibility for the message m, it calls Fmine.mine(m) — hence-
forth for simplicity we also call this act “mining a vote for m”.

4.3 Herding-Based Scoring Agreement Protocol

The protocol Πscore is parametrized with some universe U . We describe the protocol in the Fmine-
hybrid world, and later in Section 7 we show how to remove the Fmine idealized assumption.

1. Parameters. Recall that the adversary controls 1
3 − ε fraction. Let λ be large enough such that

ε2λ = ω(log κ); e.g., if ε is a(n arbitrarily small) constant then λ can be any super-logarithmic
function.

The mining difficulty parameter is set such that if all nodes were honest, on average exactly
1 vote (among all nodes) would be successfully mined every λ∆ number of rounds. In other
words, each mining attempt is successful with probability 1

λ∆n where n is the total number of
nodes.

2. Mining. In each round t, for every value v ∈ U node i has observed so-far, node i computes
its popularity by adding v’s initial score and the number of valid votes seen so far for v. Next,
node i picks the most popular value v ∈ U that has been observed (breaking ties arbitrarily).
The node i then contacts Fmine.mine(v, t) to mine a vote for the message (v, t) — if successful,
node i multicasts (v, t, i) as well as all valid votes that it has observed so far for the value v.

3. Vote validity. A node can verify the validity of a received vote (v, t, i), by calling Fmine.verify(v, t, i).
If a vote (v, t, i) is received where t is greater than the node’s round number, discard the vote.

4. Terminate. Every node runs the protocol for Tend = λ2∆ number of rounds, at the end of which
the node attempts to output a value based on the following rule: the node has observed at least
2λ
3 valid votes for any value v ∈ U , then output v; else output nothing.

4.4 Theorem Statements for Scoring Agreement

We summarize this section with the following theorem statements, the proofs of which are deferred
to Section 8.
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Theorem 4.2 (Security of scoring agreement). Assume that ε2λ = ω(log κ). The above Fmine-
hybrid scoring agreement protocol satisfies consistency, 2λ

3 -validity, and λ2∆-liveness against any
(1

3−ε,∆)-respecting, non-uniform p.p.t. (A,Z) that satisfies the constraints5 specified in Section 4.1.

When the choice of λ is polylogarithmic in κ, the protocol achieves polylogarithmic multi-
cast communication complexity, i.e., only polylogarithmically many honest messages are multicast
regardless of how (A,Z) behaves.

Theorem 4.3 (Communication efficiency of scoring agreement). Suppose that log1.1 κ ≤ λ ≤ log2 κ
and that n is polynomial in κ. Then, for any (A,Z), there is a negligible function negl(·) such that
except with negl(κ) probability over the choice of EXECΠscore(A,Z, κ) where Πscore denotes the above
Fmine-hybrid scoring agreement protocol, honest nodes multicast no more than log3 κ ·Θ(`+ log κ)
bits of messages where ` is the number of bits for encoding each element in U .

5 Batch Agreement

In this section, we first define a new abstraction called batch agreement, a primitive that allows
nodes to agree on a batch of transactions, such that long-pending transactions (for some notion
of long-pending) must be included in the output batch. Our state machine replication protocol
will simply sequentially compose multiple instances of batch agreement to agree on batches of
transactions over time (see Section 6).

We show that one can construct batch agreement from scoring agreement by choosing an ap-
propriate scoring function that severely discounts batches that omit sufficiently old transactions.

5.1 Formal Definition of Batch Agreement

Syntax. Suppose that nodes receive transactions as input from the environment Z over time. We
assume that Z respects the following transaction diffusion assumption with probability 1 — later
in the Supplemental Materials we shall describe how to remove this assumption while preserving
communication efficiency:

Transaction diffusion assumption: If some forever honest node receives a transaction tx as input
in some round t, then all so-far honest nodes must have received tx as input by the end of round
t+ ∆.

Remark 5.1 (About the transaction diffusion assumption). One way to remove this assumption
is to have every node echo the tx upon first seeing it — in real-world peer-to-peer networks such
as those adopted by Bitcoin or Ethereum, everyone echoing the same message should charge only
once to the communication cost. Later in the Supplemental Materials we discuss how to remove
this assumption for synchronous networks requiring only a small number of so-far honest nodes to
echo each tx.

The environment Z starts all nodes in the same round denoted rstart. When starting an initially
honest node i, Z informs node i a set of transactions that are already confirmed — the same set
of confirmed transactions, henceforth denoted TXsconfirmed must be provided to all honest nodes.

At the end of the batch agreement protocol, every forever honest node must have output a
batch of transactions.

5See the “Syntax” and “Constraints on Z” paragraphs.
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Security properties. We require the following security properties. Specifically, there is a negligi-
ble function negl(·) such that for all but negl(κ) fraction of execution traces, the following properties
must hold:

• Consistency. If a so-far honest node outputs TXs and another so-far honest node outputs TXs′

in the batch agreement protocol, it must be that TXs = TXs′.

• Tend-Liveness. Let Tend = poly(κ, n,∆) be a polynomial function in κ, n, and ∆. Every node
that remains honest in round rstart + Tend must have output a batch by round rstart + Tend.

• D-Validity. If D ≤ rstart and some forever honest node has observed a transaction tx /∈
TXsconfirmed by round rstart −D where rstart is the start of the batch agreement protocol, then
tx must appear in any forever honest node’s output batch.

5.2 Batch Agreement from Scoring Agreement

Intuition. It is easy to construct a batch agreement protocol from scoring agreement in the
synchronous setting. The idea is to rely on a scoring function such that a batch would receive a
significant penalty if long-pending transactions were excluded. To obtain liveness, we also need that
initially honest nodes assign somewhat consistent initial scores to every batch. This is guaranteed
by leveraging transaction diffusion assumption: a fresh transaction is propagated to all nodes at
most ∆ apart. This means that so-far honest nodes have a somewhat consistent view of any
transaction’s age. We design our scoring function to make sure that if the transaction diffusion
assumption holds, then all honest nodes would assign somewhat consistent initial scores to every
batch. Finally, we also need that initially honest nodes receive high-scoring inputs — this is also
guaranteed because an honest node always tries to include all pending transactions observed so far
in its input batch.

Detailed protocol. We now describe the batch agreement protocol which is build from a scoring
agreement instance denoted Πscore.

• Input. Start a scoring agreement instance denoted Πscore, and choose the input to Πscore

as follows: let TXs be the set of outstanding transactions in the node’s view so far. Input
TXs\TXsconfirmed to Πscore.

• Initial scoring function. Given a set of transactions TXs, its initial score is computed as the
following by node i. Let tx /∈ TXs ∪ TXsconfirmed be the earliest transaction (not in TXs ∪
TXsconfirmed) which node i has observed so far, and suppose that node i observed tx in round t
— if there is no such tx, we simply let t := rstart. Then, the initial score of TXs is computed as:

scorei(TXs) := 3λ ·
(

1− 1

3λ2

)b rstart−t
3∆ c

• Output. Now execute the scoring agreement protocol Πscore for Tend number of rounds, and
output whatever it outputs.

Theorem 5.2 (Synchronous batch agreement). Suppose that λ(κ) > 0.5 for sufficiently large κ.
For any 0 < ρ < 1, any ∆, suppose that (A,Z) is non-uniform p.p.t. and (ρ,∆)-respecting and also
respects the assumptions stated in Section 5.1. Assume that the scoring agreement protocol employed
in the above batch agreement construction satisfies consistency, λ-validity, and Tend-liveness against
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(A,Z). Then the above batch agreement protocol in the Fmine-hybrid world achieves consistency,
Tend-liveness, and Θ(λ∆)-validity against (A,Z).

Proof. Consistency follows directly from the consistency of the scoring agreement. Tend-liveness of
the batch agreement would follow if the scoring agreement also satisfies Tend-liveness — to show
the latter, observe that

1. Due to the transaction diffusion assumption, for any valid batch TXs any two initially honest
nodes’ scores are at most 1

λ apart; and

2. All initially honest nodes score their own input 3λ.

It remains to prove Θ(λ∆)-validity. If some forever honest node has observed a transaction
tx ∈ TXsconfirmed by round rstart − cλ∆ ≥ 0 for some appropriate constant c, then for any initially
honest node i, it must have observed tx by round t = rstart− cλ∆ + ∆, by the transaction diffusion
assumption; for any batch TXs that does not contain tx, we have that

scorei(TXs) = 3λ ·
(

1− 1

3λ

)b rstart−t
3∆ c

≤ 3λ ·
(

1− 1

3λ

) cλ∆−∆
3∆

For an appropriate constant c = 20 we have that
(
1− 1

3λ

)(cλ−1)/3 ≤ 0.5 for any λ > 0.5; therefore
scorei(TXs) ≤ 1.5λ. Recall that every initially honest node will score its own input value 3λ.
Thus cλ∆-validity of the batch agreement follows from the λ-validity of the scoring agreement
instance.

Communication efficiency. Suppose that the above synchronous batch agreement adopts the
scoring agreement protocol devised in Section 4; and further, assume that log1.1 κ ≤ λ ≤ log2 κ.
Then, due to Theorem 4.3, it is not difficult to see that regardless of (A,Z)’s behavior, except with
negligible in κ probability, forever honest nodes multicast no more than log3 κ ·Θ(|TXactive|+ log κ)
bits of messages in the synchronous batch agreement protocol where TXactive := TXsall\TXsconfirmed

denotes the set of all transactions each of which observed by at least one so-far honest node by
the end of the batch agreement protocol (denoted TXsall), subtracting those that were already
confirmed prior to the start of the batch agreement instance (denoted TXsconfirmed). Recall that
the environment Z informs nodes of the TXsconfirmed set prior to starting a batch agreement instance.

6 SMR from Batch Agreement

6.1 Definition of State Machine Replication

State machine replication has been a central abstraction in the 30 years of distributed systems
literature. In a state machine replication protocol, a set of nodes seek to agree on an ever-growing
log over time. We require two critical security properties: 1) consistency, i.e., all forever honest
nodes’ logs agree with each other although some nodes may progress faster than others; 2) liveness,
i.e., transactions received by initially honest nodes as input get confirmed in all forever honest
nodes’ logs quickly. We now define what it formally means for a protocol to realize a “state
machine replication” abstraction.

Syntax. In a state machine replication protocol, in every round, a node receives as input a set of
transactions txs from Z at the beginning of the round, and outputs a LOG collected thus far to Z
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at the end of the round. As before, we assume that Z respects the transaction diffusion assumption
with probability 1. In other words, two so-far honest nodes observe any transaction tx within ∆
rounds apart.

Security. Let Tconfirm(κ, n,∆) be a polynomial function in the security parameter κ, the number
of nodes n, and the maximum network delay ∆.

Definition 6.1. We say that a state machine replication protocol Π satisfies consistency (or Tconfirm-
liveness resp.) w.r.t. some (A,Z), iff there exists a negligible function negl(·), such that for any
κ ∈ N, except with negl(κ) probability over the choice of view ← EXECΠ(A,Z, κ), consistency (or
Tconfirm-liveness resp.) is satisfied:

• Consistency: A view satisfies consistency iff the following holds:

– Common prefix. Suppose that in view, a so-far honest node i outputs LOG to Z in round t, and
a so-far honest node j outputs LOG′ to Z in round t′ (i and j may be the same or different),
it holds that either LOG � LOG′ or LOG′ � LOG. Here the relation � means “is a prefix of”.
By convention we assume that ∅ � x and x � x for any x.

– Self-consistency. Suppose that in view, a node i is honest during rounds [t, t′], and outputs
LOG and LOG′ in rounds t and t′ respectively, it holds that LOG � LOG′.

• Liveness: A view satisfies Tconfirm-liveness iff the following holds: if in some round t ≤ |view| −
Tconfirm, some forever honest node either received from Z an input set txs that contains some
transaction tx or has tx in its output log to Z in round t, then, for any node i honest in any
round t′ ≥ t+ Tconfirm, let LOG be the output of node i in round t′, it holds that tx ∈ LOG.

Intuitively, liveness says that transactions input to an initially honest node get included in forever
honest nodes’ LOGs within Tconfirm time; and further, if a transaction appears in some forever
honest node’s LOG, it will appear in every forever honest node’s LOG within Tconfirm time.

6.2 Constructing State Machine Replication from Batch Agreement

It is relatively straightforward how to construct state machine replication from batch agreement:
basically, all nodes start a batch agreement instance in round 0 henceforth denoted Πbatch[0]; as
soon as the i-th batch agreement instance Πbatch[i] outputs a batch, a node immediately starts a
next batch agreement instance denoted Πbatch[i + 1]. At any time, a node outputs a sequential
concatenation of all batches that have been output so far by batch agreement instances6. For
every instance of batch agreement, the confirmed set TXsconfirmed provided as input consists of
all transactions that have been output by previous instances (i.e., these transactions need not be
confirmed again).

Theorem 6.2 (State machine replication). Let ∆ be any polynomial function in κ and n and let
0 < ε < 1 be any positive constant. Suppose that (A,Z) is (1

3−ε,∆)-respecting and moreover respects
the assumptions stated in Section 6.1. Assume that the batch agreement protocol adopted satisfies
consistency, T -liveness, and D-validity w.r.t. (A,Z), then the above state machine replication
protocol satisfies consistency and (2T +D)-liveness w.r.t. (A,Z).

6The state machine replication protocol above invokes many instances of batch agreement which may then invoke
one or more instances of scoring agreement. Recall that each scoring agreement instance calls Fmine. For composition,
calls to Fmine are tagged with an instance identifier. Here the instance identifier contains a pair: first the identifier
of the batch agreement instance and then the identifier of the scoring agreement.
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Proof. Consistency follows directly from the consistency of batch agreement. Moreover, (2T +D)-
liveness follows from the fact that if Z inputs a tx to some forever honest node in round r, then
consider the first batch agreement instance that is started (by some honest node) in round r + D
or after: it takes up to T time till the this batch agreement instance ends by T -liveness of the
batch agreement, and the immediate next batch agreement instance will surely output tx if tx is
not output earlier by D-validity of the batch agreement.

Communication efficiency. For analyzing communication efficiency, let us assume that we adopt
the batch agreement protocol described in Section 5; further, assume that ε is an arbitrarily small
constant and that λ = log1.1 κ. For some transaction tx, suppose that round r is the first round in
which some forever honest node observes tx. Then, starting from round r, the transaction tx will be
confirmed after poly log κ number of batch agreement instances, and thus it will contribute to the
TXactive set of poly log κ number of such instances. Recall that for each batch agreement instance,
except with negligible in κ probability, only log3 κ · Θ(|TXactive| + log κ) bits of honest messages
are multicast. Thus, the bits of honest messages multicast, amortized to each tx, is bounded by
|tx| · poly log κ for some suitable polynomial poly(·) except with negligible in κ probability.

7 Removing the Idealized Functionality Fmine

So far, all our protocols have assumed the existence of an Fmine ideal functionality. In this sec-
tion, we describe how to instantiate the protocols in the real world. Our techniques follow the
approach described by Abraham et al. [2]. Although this part is not a contribution of our paper,
for completeness, we describe all the building blocks and the approach in a self-contained manner,
borrowing some text from Abraham et al. [2].

7.1 Preliminary: Adaptively Secure Non-Interactive Zero-Knowledge Proofs

We use f(κ) ≈ g(κ) to mean that there exists a negligible function ν(κ) such that |f(κ)− g(κ)| <
ν(κ).

A non-interactive proof system henceforth denoted nizk for an NP language L consists of the
following algorithms.

• crs← Gen(1κ,L): Takes in a security parameter κ, a description of the language L, and generates
a common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L, and
produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and outputs 0 (reject) or
1 (accept).

Perfect completeness. A non-interactive proof system is said to be perfectly complete, if an
honest prover with a valid witness can always convince an honest verifier. More formally, for any
(stmt, w) ∈ L, we have that

Pr [crs← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure computational zero-knowledge. Non-erasure zero-knowledge requires that under
a simulated CRS, there is a simulated prover that can produce proofs without needing the witness.
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Further, upon obtaining a valid witness to a statement a-posteriori, the simulated prover can explain
the simulated NIZK with the correct witness.

We say that a proof system (gen,P,V) satisfies non-erasure computational zero-knowledge iff
there exists a probabilistic polynomial time algorithms (gen0,P0,Explain) such that

Pr
[
crs← gen(1κ),AReal(crs,·,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← gen0(1κ),AIdeal(crs0,τ0,·,·)(crs0) = 1

]
,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness r and obtains the
proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs the simulated prover π ← P0(crs0, τ0, stmt, %)
with randomness % and without a witness, and then runs r ← Explain(crs0, τ0, stmt, w, %) and out-
puts (π, r).

Perfect knowledge extraction. We say that a proof system (gen,P,V) satisfies perfect knowl-
edge extraction, if there exists probabilistic polynomial-time algorithms (gen1,Extr), such that for
all (even unbounded) adversary A,

Pr [crs← gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1)← gen1(1κ) : A(crs1) = 1] ,

and moreover,

Pr

[
(crs1, τ1)← gen1(1κ); (stmt, π)← A(crs1);
w ← Extr(crs1, τ1, stmt, π)

:
V(crs1, stmt, π) = 1
but (stmt, w) /∈ L

]
= 0

7.2 Adaptively Secure Non-Interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the following algorithms:

• crs← Gen(1κ): Takes in a security parameter κ, and generates a common reference string crs.

• C ← com(crs, v, %): Takes in crs, a value v, and a random string %, and outputs a committed
value C.

• b ← ver(crs, C, v, %): Takes in a crs, a commitment C, a purported opening (v, %), and outputs
0 (reject) or 1 (accept).

Computationally hiding under selective opening. We say that a commitment scheme
(gen, com, ver) is computationally hiding under selective opening, iff there exists a probabilistic
polynomial time algorithms (gen0, com0,Explain) such that

Pr
[
crs← gen(1κ),AReal(crs,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← gen0(1κ),AIdeal(crs0,τ0,·)(crs0) = 1

]
where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r and obtains the com-
mitment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the simulated algorithm C ← comm0(crs0, τ0, %)
with randomness % and without v, and then runs r ← Explain(crs0, τ0, v, %) and outputs (C, r).

Perfectly binding. A commitment scheme is said to be perfectly binding iff for every crs in the
support of the honest CRS generation algorithm, there does not exist (v, %) 6= (v′, %′) such that
com(crs, v, %) = com(crs, v′, %′).

Theorem 7.1 (Instantiation of our NIZK and commitment schemes [12]). Assume standard bilinear
group assumptions. Then, there exists a proof system that satisfies perfect completeness, non-erasure
computational zero-knowledge, and perfect knowledge extraction. Further, there exist a commitment
scheme that is perfectly binding and computationally hiding under selective opening.
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Proof. The existence of such a NIZK scheme was shown by Groth et al. [12] via a building block
that they called homomorphic proof commitment scheme. This building block can also be used to
achieve a commitment scheme with the desired properties.

7.3 NP Language Used in Our Construction

In our construction, we will use the following NP language L. A pair (stmt, w) ∈ L iff

• parse stmt := (µ, c, crscomm,m), parse w := (sk, s);

• it must hold that c = comm(crscomm, sk, s), and PRFsk(m) = µ.

7.4 Compilation to Real-World Protocols

We can remove the Fmine oracle by leveraging cryptographic building blocks including a pseudo-
random function family, a non-interactive zero-knowledge proof system that satisfies computational
zero-knowledge and computational soundness, a perfectly correct and semantically secure public-
key encryption scheme, and a perfectly binding and computationally hiding commitment scheme.

Earlier in Section 4, we informally have described the intuition behind our approach. In this
section we provide a formal description of how to compile our Fmine-hybrid protocols into real-world
protocols using cryptography. Using this compilation technique, we can compile our Fmine-hybrid
state machine replication protocol to the real world. Our techniques are essentially the same as
Abraham et al. [2], but we describe it in full for completeness.

• Trusted PKI setup. Upfront, a trusted party runs the CRS generation algorithms of the
commitment and the NIZK scheme to obtain crscomm and crsnizk. It then chooses a secret PRF
key for every node, where the i-th node has key ski. It publishes (crscomm, crsnizk) as the public
parameters, and each node i’s public key denoted pki is computed as a commitment of ski using
a random string si. The collection of all users’ public keys is published to form the PKI, i.e.,
the mapping from each node i to its public key pki is public information. Further, each node i
is given the secret key (ski, si). Remark 7.2 later mentions how multiple protocol instances can
share the same PKI.

• Instantiating Fmine.mine. Recall that in the ideal-world protocol a node i calls Fmine.mine(m)
to mine a vote for a message m. Now, instead, the node i calls µ := PRFski(m), and computes
the NIZK proof

π := nizk.P((µ, pki, crscomm,m), (ski, si))

where si the randomness used in committing ski during the trusted setup. Intuitively, this zero-
knowledge proof proves that the evaluation outcome µ is correct w.r.t. the node’s public key
(which is a commitment of its secret key).

The mining attempt for m is considered successful if µ < Dp where Dp is an appropriate difficulty
parameter such that any random string of appropriate length is less than Dp with probability p
— the probability p is selected in the same way as the earlier Fmine-hybrid world protocols.

Recall that earlier in our Fmine-hybrid protocols, every message multicast by a so-far honest node
i is a mined message of the form (m : i) where node i has successfully called Fmine.mine(m).
Each such mined message (m, i) that node i wants to multicast is translated to the real-world
protocol as follows: we rewrite (m : i) as (m, i, µ, π) where the terms µ and π are those generated
by i in place of calling Fmine.mine(m) in the real world (as explained above). Note that in our
Fmine-hybrid protocols a node j 6= i may also relay a message (m : i) mined by i — in the real
world, node j would be relaying (m, i, µ, π) instead.
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• Instantiating Fmine.verify. In the ideal world, a node would call Fmine.verify to check the
validity of mined messages upon receiving them, In the real-world protocol, we perform the
following instead: upon receiving the mined message (m, i, µ, π), a node can verify the message’s
validity by checking:

1. µ < Dp where p is an appropriate difficulty parameter that depends on the type of the mined
message; and

2. π is indeed a valid NIZK for the statement formed by the tuple (µ, pki, crscomm,m). The tuple
is discarded unless both checks pass.

Remark 7.2 (Protocol composition in the real world.). The real-world protocol may invoke mul-
tiple instances of scoring agreement each with a unique instance identifier. In the real world, all
instances share the same PKI. Recall that in the Fmine-hybrid world, every call to Fmine is prefixed
with the instance identifier. Specifically, in the calls Fmine.mine(m) and Fmine.verify(m, i), one
can imagine that the m part is tagged with the instance identifier. In the real world, this means
that the message m passed to the PRF and the NIZK’s prover and verifier is prefixed with the
instance identifier too.

Now using the same proofs as Abraham et al. [2], we can prove that the compiled real-world
protocols enjoy the same security properties as the Fmine-hybrid protocols. Since the proofs follow
identically, we omit the details and simply refer the reader to Abraham et al. [2]. We thus obtain
the following theorem, by observing that in the real world protocol, each vote is of the form
(TXs, r, i, µ, π) where µ and π has length χ where χ is a cryptographic security parameter.

Theorem 7.3 (Real-world protocol: synchronous state machine replication). Under standard cryp-
tographic hardness assumptions (more precisely, the existence of universally composable, adap-
tively secure non-interactive zero-knowledge and commitments [12]), there exists a synchronous
state machine replication protocol that satisfies consistency and poly log κ ·∆-liveness against any
non-uniform p.p.t., (1

3 − ε,∆)-respecting (A,Z) where poly(·) is a suitable polynomial function
and ε is an arbitrarily small positive constant. Moreover, honest nodes only need to multicast
poly log κ · (χ + |TXs|) bits of messages to confirm every batch of transactions denoted TXs where
χ is a computational security parameter related to the strength of the cryptographic building blocks
involved.

Proof. Note our techniques for instantiating Fmine with actual cryptography is borrowed from
Abraham et al. [2]. Their proof for showing that that the real-world protocol preserves the security
properties proved in the ideal world is immediately applicable to our case.

8 Deferred Proofs for Scoring Agreement

In all of our proofs, we will by default assume that (A,Z) is non-uniform p.p.t., (1
3−ε,∆)-respecting,

and moreover, respects the assumptions stated in Section 4.1 (see the “Syntax” and “Constraints
on Z” paragraphs).

8.1 Consistency

We first prove that the protocol satisfies consistency.

Lemma 8.1 (Consistency). Except with at most poly(κ) · exp(−Θ(ε2λ)) probability, no two so-far
honest nodes can output different values in U .
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Proof. We fix two values v 6= v′, and give an upper bound on the probability that both values are
output by so-far honest nodes. Observe that this happens only if there are at least 2λ

3 votes for

each of the values, which means in total there are at least 4λ
3 votes for either value.

We next consider how many mining attempts there can be for value v or v′ among the T := λ2∆
rounds. Observe that each forever honest node attempts to mine for at most one vote labeled with
each round, where a (possibly adaptively) corrupted node can mine for both v and v′ labeled with
each round. Since the fraction of forever honest node is at least 2

3 + ε, the total number of vote
mining attempts for either v or v′ is at most (2

3 + ε) · n · T + (1
3 − ε) · 2n · T = (4

3 − ε) · nT .
Observing that the mining difficulty probability is 1

λ∆n and the mining events over different
values, rounds and nodes are independent, by Chernoff Bound, the probability that there are at
least 4λ

3 votes for either v or v′ is at most exp(−Θ(ε2λ)).

Independence Remark. Note that the outcome of a vote mining can affect what values an adaptively
corrupted node will mine for. However, the important point is that the outcomes of the mining are
independent, and there is a sure upper bound on the number of mining attempts, such that the
Chernoff Bound can be applied above.

Since each node can perform only polynomial-time computation, and the entire transcript is
polynomally bounded, it suffices to take union bound over poly(κ) number of unordered pairs of
values to give the desired probability.

8.2 Validity

We next prove that the protocol satisfies d-validity for d = 2λ
3 . When an execution is fixed, we can

define B to be the largest value such that there exists a subset S of forever-honest nodes of size at
least (1

3 + 0.5ε)n, such that for every i ∈ S, i received an input value vi satisfying scorei(vi) ≥ B.

Lemma 8.2 (d-Validity). Fix d = 2λ
3 , the following event happens with at most poly(κ)·exp(−Θ(ε2λ))

probability: there is some so-far honest node that outputs some value v∗ ∈ U , but for every initially
honest node j, it holds that scorej(v

∗) < B − d.

Proof. Fix some value v∗ such that some so-far honest node outputs v∗. Suppose S is the set of
(1

3 + 0.5ε)n forever honest nodes in the hypothesis such that each i ∈ S has some vi such that
scorei(vi) ≥ B, but scorei(v

∗) < B − d. Then, we first show that the event in the lemma implies
that there must be at least d = 2λ

3 votes for v∗ from nodes outside S.
Observe that for the first node i in S to vote for v∗, there must be at least d votes nodes outside

S to compensate for the difference between scorei(vi) and scorei(v
∗). On the other hand, if there

are no votes from S for v∗, then any so-far honest node that outputs v∗ must see at least 2λ
3 = d

votes, which must all come from nodes outside S.
Recall that there are at most (2

3 − 0.5ε)n nodes outside S. Within the T = λ2∆ rounds, the
mining difficulty for each node for v∗ is 1

λ∆n . Hence, the expected number of votes for v∗ from
nodes outside S is at most (2

3 − 0.5ε)λ. By Chernoff Bound, the probability that these nodes can

produce at least d = 2λ
3 votes for v∗ is at most exp(−Θ(ε2)λ).

Taking union bound over poly(κ) possible values contained in the polynomially sized transcript
gives the result.

8.3 Liveness

For proving liveness, we assume that the “somewhat consistent initial score” condition is satisfied
with the parameter ϑ = 1

λ (see also Section 4.1).
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Convergence Opportunity. We say that a round t ≥ λ∆ is a convergence opportunity, if there is
exactly one so-far honest node that successfully mines a vote in round t; moreover, no so-far honest
nodes successfully mine votes within ∆ rounds after t. No condition is placed on corrupted nodes.

The following lemma relates the number of convergence opportunities to the number of votes
observed by a node for its most popular value.

Henceforth in Lemma 8.3 Corollary 8.4, when the execution we refer to is clear from the context,
we use I to denote the set of initially honest nodes, and let M := minj∈I scorei(vj).

Lemma 8.3 (Convergence Opportunities and Votes). Consider any execution: for each r ≥ 1,
after ∆ rounds following the r-th convergence opportunity, any so-far honest node i has observed
at least M − scorei(v) + r(1− ϑ) votes for its most popular value v.

Proof. We show by induction on r. For r = 0, in order for a value v to be the most popular for node i,
node i must have observed enough votes to compensate for the difference scorei(vi) − scorei(v) ≥
M − scorei(v).

Assume that claim is true for some r ≥ 0. Suppose the (r + 1)-st convergence opportunity due
to a vote for value v by the so-far honest node i.

For node i, right before the (r + 1)-st convergence opportunity, at least ∆ rounds must have
passed since the r-th convergence opportunity. The induction hypothesis says that node i has
observed at least M − scorei(v) + r(1 − ϑ) votes for its most popular value v. Together with the
new vote that node i has mined for the (r+ 1)-st convergence opportunity, node i has observed at
least M − scorei(v) + 1 + r(1 − ϑ) votes for v. Observe that for any value v′ to overtake v to be
node i’s most popular value, it will need at least M − scorei(v

′) + 1 + r(1 − ϑ) votes; hence, the
result holds for node i.

For any other so-far honest node j, after ∆ rounds following the (r + 1)-st convergence oppor-
tunity, all the votes for v associated with the r-th convergence opportunity due to node i will have
reached node j. Hence, if v̂ is a most popular value for node j at this moment, it must be the case
that its popularity implies that the number of votes for v̂ observed by node j is at least:

(M − scorei(v) + 1 + r(1− ϑ)) + scorej(v)− scorej(v̂) ≥M − scorej(v̂) + (r + 1)(1− ϑ)

where the last inequality follows because scorej(v)− scorei(v) ≥ −ϑ. Similarly, for any other value
v′ to overtake v̂ and become node j’s most popular value, it must need at least M − scorej(v

′) +
(r + 1)(1− ϑ) votes to be seen by node j. This completes the inductive step and the proof of the
lemma.

Corollary 8.4 (Liveness). Suppose ϑ ≤ 1
λ ≤ Θ(ε). Except with at most exp(−Θ(ε2λ)) probability,

every forever-honest honest will have output some value by the end of round Tend.

Proof. For any forever-honest node i, from our “high initial scores” assumption that it will not
see any value v′ such that scorei(v

′) > scorei(vi), it follows that for any u ∈ U , M − scorei(u) ≥
scorei(vi)− scorei(u)−ϑ ≥ −ϑ, where the inequality M ≥ scorei(vi)−ϑ follows from the following:

M = min
j∈I

scorej(vj) ≥ min
j∈I

(scorei(vj)− ϑ) ≥ scorei(vi)− ϑ

where the first inequality follows from the “ϑ-somewhat-consistent initial scoring” assumption.
In view of Lemma 8.3, it suffices to show that except with at most exp(−Θ(ε2λ)) probability,

the number of convergence opportunities is at least 2λ
3 (1 + Θ(ε)), which implies that for each node,

its most popular value has received at least 2λ
3 votes.
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Observe that if h is the number of so-far honest nodes not in S, the probability that a round
is a convergence opportunity is around hp(1 − p)h·∆+h−1 ≥ 2

3λ∆(1 + Θ(ε))(1 − Θ( 1
λ)), where the

inequality holds because h ≥ (2
3 + 1

3ε)n, and p = 1
nλ∆ Hence, the expected number of convergence

opportunities over the Tend − λ∆ rounds is at least 2λ
3 (1 + Θ(ε)).

Even though that the events of different rounds being convergence opportunities are not inde-
pendent, Lemma 8.5 shows that a measure concentration result still holds. Setting the parameters
h = (2

3 + ε)n, H = n, p = 1
λ∆n , T = λ2∆ in Lemma 8.5, we have that except with exp(−Θ(ε2λ))

probability, the number of convergence opportunities is at least 2λ
3 (1 + Θ(ε)).

Finally, during the last convergence opportunity by a so-far honest node, all the votes will be
multicast to all nodes. Hence, all so-far honest nodes will see some value with at least 2λ

3 votes
after ∆ more rounds.

Lemma 8.5 (Measure Concentration for Convergence Opportunities). Suppose in each of T + ∆
rounds, each of at least h but at most H so-far honest nodes mines a vote successfully with probability
p.

Then, except with probability at most exp(−Θ(ε2Tp0), the number of rounds in which there is
exactly one successful vote and followed by ∆ rounds of no votes is at least (1 + Θ(ε)− 2Hp∆)Tp0,
where p0 := hp(1− p)H .

Proof. The proof is adapted from [24, Lemma 1].
Let Y be the number of rounds within [1..T ] in which there is exactly one successful vote. Since

the probability that a round has exactly one vote is at least p0 := hp(1 − p)H and the events for
different rounds are independent, by Chernoff Bound, except with probability exp(−Θ(ε2Tp0)), the
random variable Y is at least (1− ε

100)Tp0.
For 1 ≤ i ≤ R := d(1 + ε)Tp0e, define the indicator random variable Zi ∈ {0, 1} that equals 1

iff after the i-th round that has exactly one successful vote, there is at least one successful vote
within the next ∆ rounds. By the union bound, Pr[Zi = 1] ≤ Hp∆. Define Z :=

∑R
i=1 Zi.

Next, observe that the random variables Zi’s are independent. The reason is that right after
the ith round in which there is exactly one successful vote, when the next successful vote happens
will determine the value of Zi, but the i + 1st round with exactly one successful vote will happen
afterwards.

By Hoeffding’s Inequality, we have that

Pr[Z ≥ Hp∆R+
ε

100
·R] ≤ exp(−Θ(ε2R))

By the union bound, except with probability at most exp(−Θ(ε2Tp0), Y − Z ≥ (1 − ε
10 −

2Hp∆)Tp0, which is also a lower bound on the number of convergence opportunities.

8.4 Communication Efficiency

We now prove the communication efficiency of our scoring agreement protocol described in Sec-
tion 4.3, that is, Theorem 4.3.

Recall that log1.1 κ ≤ λ ≤ log2 κ. By Chernoff bound, for every value v ∈ U , except with
negligible in κ probability. at most 1.1λ votes (honest or adversarial) are successfully mined for
the value v during the course of execution.

So-far honest nodes only multicast a message whenever it successfully mines a vote. When it
multicasts, it not only multicasts the newly mined vote, but also all votes it has already observed
for the relevant value in U — recall that except with negligible in κ probability, there are at most
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1.1λ such votes. Obviously, in the Fmine-hybrid world, every vote can be encoded with Θ(log κ+ `)
bits since both n and the number of rounds are polynomial in κ.

Summarizing the above, except with negligible probability, the total number of honest votes
multicast is upper bounded by log3 κ for sufficiently large κ, and thus the total number of bits
multicast by so-far honest nodes is upper bounded by log3 κ ·Θ(log κ+ `).

9 Conclusion and Open Questions

In this paper, we proposed a novel paradigm for reaching consensus that is inspired by a social
phenomenon called herding. Through this novel paradigm, we construct a state machine replication
protocol that simultaneously achieves communication efficiency and adaptive security — to the best
of our knowledge this was previously not possible with classical-style approaches without making
strong assumptions such as erasures or the existence of proof-of-work oracles.

Our work naturally leaves open several questions:

1. Can we achieve a similar result for partially synchronous or asynchronous networks?

2. The best known small-round, communication-inefficient synchronous state machine replication
protocol can tolerate minority corruptions [3,14,18]. Therefore, another natural question is: can
we have a similar result for synchronous networks, but tolerating up to minority corruptions (thus
matching the resilience of the best known small-round but communication inefficient protocol)?
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Supplementary Materials

A Removing the Transaction Diffusion Assumption

Recall that our definitions of batch agreement and state machine replication assumed that the
following transaction diffusion assumption is respected with probability 1: if some forever honest
node receives a transaction tx as input in some round t, then all so-far nodes must have received tx
as input by the end of round t+ ∆. In other words, honest nodes observe any transaction within ∆
rounds from each other. In this section, we show how to remove this assumption while preserving
communication efficiency,

It is sufficient to describe how to remove the assumption in an Fmine-hybrid world. We can then
remove the Fmine assumption using adaptively-secure cryptography as we explained in Section 7.

Message types. We introduce two types of messages, echo, and notify:

• echo messages do not need to be mined. In our protocol honest nodes will flip local coins to
probabilistically elect themselves to echo every new transaction they see;

• notify messages need to be mined for the message to be valid. If a node i calls Fmine.mine(notify,m)
and the outcome is successful, then node i is eligible for echoing the message m by sending
(notify,m : i).

The mining difficulty for notify messages is set such that each mining attempt is successful with
probability λ

n where n is the total number of nodes and λ is large enough such that ε2λ = ω(log κ).
Without loss of generality we may assume that λ < n.

Diffusion protocol. We can adopt the following protocol to realize the transaction diffusion
assumption, blowing up the effective network delay by only a polylogarithmic (in κ) factor:

For every transaction tx a node has newly observes, it immediately initiates a “diffusion attempt”
for tx:

1. Whenever a node i sees a new tx that has not been observed before, call Fmine.mine(notify, tx),
and if successful, multicast (notify, tx : i).

2. At any point of time if the node has observed 2λ
3 notify messages for tx from distinct nodes,

end the diffusion attempt for tx.

3. When the diffusion attempt for tx first starts (i.e., when tx is first observed), flip a local random
coin and echo (i.e., multicast) the transaction tx to everyone with probability p = λ

n . With every
2∆ amount of time that elapses (until the diffusion attempt stops), double the probability of
echo and retry echoing.

Theorem A.1 (Diffusion protocol in a synchronous network). Assume that (A,Z) is (1
3 − ε,∆)-

respecting where ε is an arbitrarily small constant and ∆ is some polynomial in κ and n. There
exists an appropriate polynomial poly(·) such that except for a negligible in κ fraction of execution
traces, the following holds: if ever a forever honest node observes tx in round r, then by round
r + poly log κ ·∆, all so-far honest nodes must have observed tx; moreover, only poly log κ · |tx| bits
of honest messages will have been multicast in total.

Proof. Fix some tx. We first prove the following useful claim.
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Claim A.2. If ever a so-far honest node successfully sends an echo or a notify message for tx,
then except with negligible probability, in 2∆ rounds, every so-far honest node will have terminated
their diffusion attempt for tx.

Proof. A so-far honest node would send its notify message to everyone. Thus in ∆ rounds, all
forever honest nodes would attempt to mine a notify message for tx. In another ∆ rounds, except
with negligible probability, every so-far node would have seen 2λ

3 notify messages for tx.

We now continue with the proof of Theorem A.1. Even if only a single forever honest node,
denoted i, observes tx by round r, since it doubles its probability of echoing every 2∆ rounds till it
terminates, in poly log κ ·∆ rounds, one of the following must have happened except with negligible
probability:

• node i has terminated its diffusion attempt for tx — in this case node i must have observed
2λ
3 notify messages for tx, and by Chernoff bound, except for a negligible fraction of the

execution traces, one of these notify messages must have been sent by a forever honest node.

• node i has sent echo for tx.

In either case, we have that by round r+ poly log κ ·∆, some forever honest node must have sent a
notify or an echo message for tx. It follows by Claim A.2 that by round r+poly log κ·∆+∆, all so-
far honest nodes must have terminated their diffusion attempt for tx for some suitable polynomial
poly(·).

It remains to prove communication efficiency. Suppose that in some execution trace, so-far
honest nodes try to send echo message for tx with probabilities p1, p2, . . . over time. Let µ(r) be
the sum of these probabilities by some round r. Due to the Chernoff bound, except with negligible
probability, when µ(r∗) first reaches poly log κ in some round r∗ for some fixed polynomial poly(·),
there is at least one honest successful attempt at echoing tx — thus by Claim A.2, in another 2∆
steps, every so-far honest node will have terminated their diffusion attempt for tx.

Also due to Chernoff bound, by this round r∗, the total number of honest echo messages for tx
multicast by round r∗ cannot exceed 2poly log κ. The communication efficiency claim then follows
by observing that the total honest echo messages for tx multicast by round r + 2∆ cannot be
more than 4× larger than by round r; and moreover, by Chernoff bound, except with negligible
probability, the total number of honest notify messages for tx is upper bounded by 1.1λ.

B Additional Comparison with Related Work

As mentioned, the recent work by Abraham et al. [2] achieves adaptive security and communication
efficiency without erasures or PoW, but their approach works only for agreement on a single bit.
There does not seem to be any non-trivial method to extend their approach multi-valued agreement
as we explain below. A most straightforward approach is to attempt parallel repetition of bit
agreement. However, in Abraham et al. [2], to agree on each bit may require multiple epochs, and
in each epoch a random node may be elected leader whose job, partly, is to propose the bit to be
agreed upon. Thus, if we adopt parallel repetition, each bit agreed upon will likely be proposed
by different leaders (a subset of which may even be malicious). When the multiple bits come
from different leaders, there is no guarantee that their combination will be a valid value from the
universe (e.g., in a real-world cryptocurrency system, a transaction need a well-formed signature
to be valid).

27



Another straightforward attempt is to have the leader elected directly propose multiple bits.
However, Abraham et al.’s technique [2] works only if the leader election is bit-specific, i.e., the
coin that determines a node’s eligibility for proposing the bit 0 is independent of the coin that
determines its eligibility for proposing the bit 1. When the universe of valid values U is large, we
cannot tie the value to the leader election — since otherwise the adversary can try many values
from U and almost surely guarantee that for every epoch, some corrupt node will be elected to
propose some valid value from U — on the other hand, Abraham et al. [2]’s technique works only
if occasionally in some epoch, a single honest node makes a unique proposal.
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