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Abstract. This paper constructs efficient non-interactive arguments for correct evaluation of arith-
metic and boolean circuits with proof size O(d) group elements, where d is the multiplicative depth of
the circuit, under falsifiable assumptions. This is achieved by combining techniques from SNARKs and
QA-NIZK arguments of membership in linear spaces. The first construction is very efficient (the proof
size is ≈ 4d group elements and the verification cost is ≈ 4d pairings and O(n+n′+d) exponentiations,
where n is the size of the input and n′ of the output) but one type of attack can only be ruled out
assuming the knowledge soundness of QA-NIZK arguments of membership in linear spaces. We give an
alternative construction which replaces this assumption with a decisional assumption in bilinear groups
at the cost of approximately doubling the proof size. The construction for boolean circuits can be made
zero-knowledge with Groth-Sahai proofs, resulting in a NIZK argument for circuit satisfiability based
on falsifiable assumptions in bilinear groups of proof size O(n+ d).

Our main technical tool is what we call an “argument of knowledge transfer”. Given a commitment C1

and an opening x, such an argument allows to prove that some other commitment C2 opens to f(x),
for some function f , even if C2 is not extractable. We construct very short, constant-size, pairing-based
arguments of knowledge transfer with constant-time verification for any linear function and also for
Hadamard products. These allow to transfer the knowledge of the input to lower levels of the circuit.

1 Introduction

This paper deals with the problem of constructing non-interactive publicly verifiable arguments of knowledge
under falsifiable assumptions to prove that a circuit φ is correctly evaluated in two different settings.

In one such possible setting, all of the input of the circuit φ is known. In this case, the argument does
not need to be zero-knowledge and can leak partial information. This is the typical situation in verifiable
computation in which a resource-limited device delegates a costly computation to a more powerful machine.

Another important setting requires the input and output to be partially or totally hidden and the argu-
ment to be zero-knowledge. This is interesting from a theoretical perspective as CircuitSat is usually taken to
be the standard NP complete problem. On the practical side, often the best way to prove a large, complicated
statement in zero-knowledge is to encode it as a circuit and prove that it is satisfiable. Further, CircuitSat
is considered a sort of benchmark to evaluate the efficiency of zero-knowledge proofs.

Succinct Non-Interactive Arguments of Knowledge or SNARKs in bilinear groups have been a phenomenal
success in both of these scenarios [15,29,8,1,16]. These arguments are succinct, more specifically, they are
constant size, that is, not dependent on the circuit size, and extremely efficient also concretely (3 group
elements in the best constructions [16]). They are also very fast to verify, which is a very interesting feature
in practice, as in many scenarios verification is performed many times. However, these constructions still
suffer from some problems, like long trusted parameters, heavy computation for the prover and reliance on
non-falsifiable computational assumptions. Further, it is a well-known fact that the latter is unavoidable for
succinct arguments in the non-interactive setting [11].

Non-falsifiable assumptions offer great efficiency at the price of less understood security guarantees. The
problem is that it is not possible to efficiently check if the adversary effectively breaks the assumption, which
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results in non-explicit security reductions [33] which inherently do not allow to choose concrete security pa-
rameters meaningfully. Therefore, it is interesting to construct arguments with properties similar to SNARKs
(short proof size, fast verification) for correct circuit evaluation that avoid falsifiable assumptions.

When the input of the circuit is public, SNARKs can be used to prove that the circuit is correctly evaluated
while avoiding falsifiable assumptions. Indeed, since it is possible to check if a prover breaks soundness (as
the input is public), the tautological assumption “the scheme is sound” is already falsifiable. For the case
where at least some part of the input is secret, the same trivial solution can be used if the prover additionally
commits to the input with some commitment which is extractable under falsifiable assumptions.3 However,
these trivial solutions require circuit dependent assumptions.

The goal of this paper is to design efficient constructions both in terms of proof size and verification
complexity from milder (falsifiable, circuit independent) assumptions.

1.1 Our Results

We construct an argument for proving that an arithmetic circuit φ : Znp → Zn′p is correctly evaluated. We
give two instantiations, the first one with proof size (3d+ 2)G1 + (d+ 2)G2 and where verification requires
4d + 6 parings and O(n + n′ + d) exponentiations, for d the depth of the circuit. We give a less efficient
scheme where both proof size and verification cost are approximately the double of the first construction,
more concretely, the proof size is (6d+ 3)G1 + (2d+ 3)G2 and the verification requires 8d+ 9 pairings.

For the first construction, we need to rely on the knowledge soundness of QA-NIZK arguments of mem-
bership in linear spaces, which has only been proven in the generic group model [5]. The second argument
is fully based on falsifiable assumptions. The first one is an assumption that falls into the Matrix Decisional
Diffie-Hellman assumption framework of Escala et al. [4] extended in asymmetric groups, where the challenge
matrix is given in both groups. The size of the matrix depends on q, for q being the maximum number of
multiplicative gates with the same multiplicative depth in the circuit. The second assumption is also a q-type
assumption and similar to the q-SFrac Assumption of [12].

For boolean circuits, the argument can be made zero-knowledge with O((n−npub) + d) proof size, where
npub is the public input size.

1.2 Our Techniques

Circuit Satisfiability can be represented as a set of quadratic and linear equations. It would seem that it
suffices to find aggregated proofs of satisfiability of these equations to get sublinear proofs in the number of
wires circuit wires. For instance, a natural strategy would be to commit to wires with shrinking commitments
and use any constant-size QA-NIZK argument of membership in linear spaces (e.g. [26]) to give an aggregated
proof that the affine constraints hold and use “aggregated” variants of GS Proofs [19] such as [14,2] for the
quadratic constraints.

The reason why this approach fails is that when using shrinking commitments it is unclear what are the
guarantees provided by QA-NIZK arguments since they are not proofs of knowledge (w.r.t. general PPT
adversaries and not generic ones). Similarly, the arguments for quadratic equations are commit-and-prove
schemes which require binding commitments to the solution of the equation.

Knowledge Transfer Arguments. Our solution is to divide the set of constraints into d sets of quadratic
and affine constraints, one per multiplicative level of the circuit. Namely, if φ : Znp → Zn′p is an arithmetic
circuit of depth d, we express correct evaluation at level i as the following system:

– (quadratic constraints) cij = aijbij for j = 1, . . . , ni.

– (affine constraints) aij , bij are affine combinations of output wires of previous levels,

3 Essentially the only such commitment known is bit to bit encryption, e.g. Groth-Sahai commitments to bits.
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that is aij , bij , cij represent, respectively, the left, right and output of the jth gate at level i. Our technical
innovation is to eliminate the need for binding commitments to the wires at all levels of the circuit by
“transferring” knowledge of the input to lower levels.

More specifically, given adversarially chosen shrinking commitments Li (resp. Ri, Oi) to all the left (resp.
right, output) wires at level i, we first give a constant-size argument with constant-time verification which
proves:

If (ai, bi, Li, Ri, Oi) is such that Li, Ri open to ai, bi then Oi opens to ci = ai ◦ bi.

We think of this building block as a “quadratic knowledge transfer argument”, as it shows that if an adversary
knows an opening for left and right wires, it also knows an opening of the output wires at the next level.
This property is formalized as a promise problem because the verifier of the argument never checks that
Li, Ri open to ai, bi (otherwise the verification of the argument would be linear in the witness). Using a
quadratic arithmetic program encoding [8] of the quadratic constraints we prove soundness under a certain
q-assumption.

With this building block, the problem of constructing the argument is reduced to arguing that left
and right wires are correctly assigned, i.e. proving that affine constraints are satisfied. We build a “linear
knowledge transfer” argument with constant proof size and verification time showing that:

Given an opening of the commitments to the output wires O1, . . . , Oi which is consistent with L1, . . . , Li
and R1, . . . , Ri then it is also consistent with Li+1 and Ri+1.

Correct evaluation of the circuit can be easily proven by combining these two building blocks. Since the
input of the circuit is public and the shrinking commitments we use are deterministic, a consistent assignment
O1, L1, R1, . . . , Od, Ld, Rd of the circuit wires is known by the reduction in the proof of soundness. A successful
soundness adversary must output another assignment which disagrees with it starting from some level i. If the
adversary outputs as part of its proof L1, . . . , Li, R1, . . . , Ri, O1, . . . , Oi−1, O

∗
i , with O∗i 6= Oi, the reduction

knows openings of Li, Ri and it can break the soundness of the quadratic knowledge transfer argument. On
the other hand, if it sends L1, . . . , L

∗
i , R1, . . . , R

∗
i , O1, . . . , Oi−1, where either L∗i 6= Li or R∗i 6= Ri, then it

knows valid openings of Oj until level i−1 and it can break the soundness of the “linear knowledge transfer”
argument.

To construct the linear knowledge transfer argument, we use QA-NIZK arguments of membership in linear
spaces [21,22,28,26,14]. Although soundness of these arguments can be proven under standard assumptions,
it turns out that traditional soundness is not what we need in this setting. Indeed, to see this, suppose we
want to prove that two shrinking, deterministic commitments open to the same value. Let M,N be the
commitment keys. If C1 = Mw and C2 = Nw are commitments to the same value, obviously(

C1

C2

)
∈ Im

(
M
N

)
. (1)

Let π a QA-NIZK proof of membership in linear spaces for (1). In our linear knowledge transfer argument,
π should convince the verifier that:

“If C1 = Mw for some known w, and π verifies, then C2 = Nw.”

The problem is that for any w′ such that C1 = Mw = Mw′, an adversary can set C2 = Nw′ and compute
π honestly with w′. In other words, the adversary can “switch witnesses” without breaking the soundness
of the QA-NIZK argument. So standard soundness does not help to argue that the left and right wires are
consistently evaluated with lower levels of the circuit.

On the other hand, the “witness switching attack” is easy to rule out, as it requires the attacker to know
two openings for C1, but this breaks the binding property of the first commitment. However, because the
commitment is shrinking we do not know how to extract w′ to get a reduction to the binding property unless
we use the knowledge soundness property of the QA-NIZK Argument as proven (in the generic group model)
in [5].
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Soundness of the Linear Argument under Standard Assumptions. One of our main technical
contributions is to show that such witness switching attacks are not possible under a certain decisional
assumption in bilinear groups. To get back to our example, our first observation is that, using the linear
properties of the QA-NIZK arguments of membership in linear spaces, a break of the knowledge transfer
property can be turned into a proof of membership π† for a vector of the form ( 0

C ), where C = C2−Nw 6= 0.
The crs of the QA-NIZK argument system is of the form A,B = M>K1 + N>K2,KA, for some matrix

A and a random matrices K1,K2. A proof for (C1, C2) must be of the form C>1 K1 + C>2 K2 (unless one
solves some computationally hard problem). Intuitively, is not easy to construct π† since it must be of the
form π† = C>K2 and hence an adversary must somehow find an element in the kernel of M (which is in
general a hard problem, otherwise the commitment is not binding) in order to eliminate any dependence on
K1 in B. However, in the security proof it is not clear how to extract such element in the kernel of M, which
is of the same size of w, only from C and π†, which are of constant size. To bypass this problem, we assume
that a stronger decisional assumption related to M holds, namely that it is hard to decide membership in
the image of M> (a type of Matrix Diffie-Hellman assumption [4]). Specifically, we assume that M>K1 is
pseudo-random and, using this decisional assumption, we can jump to game where K2 is information theo-
retically hidden and then there is an exponentially low probability of computing π† = C>K2. To do this, we
need to find a way around the problem that there is still some information about K1 which is leaked trough
the crs of QA-NIZK arguments of [26] as KA =

(
K1A
K2A

)
, where A is either a (k + 1)× k matrix for general

linear spaces or a k × k matrix when the linear spaces are generated by witness samplable distributions. To
solve this, we use the fact that, information theoretically, part of K1 is never leaked through KA when A is
a (k+ 1)× k matrix. We leave it as an open question to achieve a similar result when A is a k× k to exploit
witness samplability.

Zero-Knowledge. In all our subarguments the verification equations are pairing product equations, so they
can be made zero-knowledge with Groth-Sahai proofs [19]. However, our proof uses in a fundamental way
that the input of the verification is public. Therefore, this only works when the commitment to the input is
extractable. The resulting scheme is not practical as this is only possible with bit-by-bit commitments to the
input. However, it can be easily extended to boolean circuits with a proof size of O(n−npub +n′+ d) group
elements (where npub is the size of the public input), which is an interesting improvement over state-of-the-
art, as all constructions in the crs model under falsifiable assumptions are linear in the circuit size (see [17]
and concrete improvements thereof, mainly [14]).

1.3 Previous Work

CRS NIZK for NP from Falsifiable Assumptions. Groth, Ostrovsky, and Sahai [17] constructed a
NIZK proof system for boolean CircuitSat only from standard assumptions. Both the the size of the proof
(in group elements) and the verifier’s complexity (in group operations) depend asymptotically on the circuit
size. The construction can be extended to arithmetic circuits using [19]. Several concrete improvements in
the proof size can be done with recent results in the QA-NIZK setting [21,22,28,26,14] but we are not aware
of any asymptotic improvements.

A trivial approach to reduce the proof size is to encrypt the witness using fully homomorphic encryption
[9] and let the verifier evaluate the circuit homomorphically. Building on this idea, and using hybrid fully
homomorphic encryption, Gentry et al. [10] constructed a proof of size n+ poly(λ). While this shows that it
is theoretically possible to build proofs of size independent of the circuit size under standard assumptions,
they need to give NIZK proofs for correct key generation of FHE keys and correct evaluations of the FHE
encryption algorithm and decryption algorithms.4 These NIZK proofs, in general, need to represent the
statements as boolean circuits and therefore they are of lower practical interest. Furthermore, note that the
verifier needs to homomorphically evaluate the circuit using the FHE scheme, so its runtime is proportional
to the circuit size.

4 Note that using the celebrated recent results of Peikert and Shiehian [36] this scheme can be based solely on the
LWE assumption.
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A very recent result constructs proofs of size proportional to the circuit size plus an additive overhead
in the security parameter (as opposed to multiplicative as in our work) in pairing based groups [25]. For
NC1, one of the constructions is of size n (independent of the circuit size) plus an additive overhead in the
security parameter. Although the verifier’s runtime is proportional to the circuit size, it may be possible to
preprocess the circuit dependent part and add it to the crs so that the verifier’s runtime is only proportional
to the size of the input. On the downside, the size of the crs is O(n3) as well as the underlying security
assumption which is a q-assumption with q of size O(n3). Furthermore, the additive overhead might be large
as it hides a NIZK proof (computed with [17]) for the correct decryption of a ciphertex. Such a NIZK proof
requires representing the decryption algorithm as a boolean circuit and to commit to each circuit wire.

Verifiable Computation. Kalai et al. [23], based on [13] and the sum-check protocol of Lund et al. [30],
constructed the first publicly verifiable non-interactive delegation scheme for boolean circuits from a simple
constant size assumption in bilinear groups. Their crs is circuit dependent but it can be universal using a crs
for the universal circuit. 5. The verifier’s runtime is O((n+d)polylog(s)), and the communication complexity
is O(d · polylog(s)) group elements, where s is the size of the circuit, and in most other parameters it is far
from being efficient (crs size, prover complexity).

As explained in [23] there’s a vast literature on verifiable computation (apart from the already mentioned)
which can be roughly classified into a) designated verifier schemes [7,24], b) schemes under very strong
assumptions: “knowledge of exponent” type (e.g. [8,35]), generic or algebraic group model (e.g.[16,31]), as-
sumptions related to obfuscation, or homomorphic encryption [34] or c) interactive arguments [13]. Note that
all these constructions are incomparable to ours as long as they either rely on arguably stronger assumptions
(b) or are in a different model (a and c).

2 Preliminaries

Given some distribution D we denote by x ← D the process of sampling x according to D. For a finite set
S, x← S denotes an element sampled from the uniform distribution over S.

Bilinear Groups. Let G be some probabilistic polynomial time algorithm which on input 1λ, where λ
is the security parameter, returns the group key which is the description of an asymmetric bilinear group
gk = (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime order p, the elements P1,P2 are
generators of G1,G2 respectively, e : G1 × G2 → GT is an efficiently computable, non-degenerate bilinear
map, and there is no efficiently computable isomorphism between G1 and G2.

Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT = e(P1,P2). With this
notation, e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in boldface. Given a matrix T = (ti,j), [T]γ
is the natural embedding of T in Gγ , that is, the matrix whose (i, j)th entry is ti,jPγ . We use the notation
(a, b) to refer to a elements of G1 and b elements of G2.

In refers to the identity matrix in Zn×np , 0m×n to the all-zero matrix in Zm×np (simply I and 0, respectively,
if n and m are clear from the context).

Lagrangian Pedersen Commitments. Given an arbitrary set R = {r1, . . . , rm} ⊂ Zp, we define the jth
Lagrange interpolation polynomial as:

λj(X) =
∏
` 6=j

(X − r`)
(rj − r`)

.

5 There’s the technicality that a verifier running in time sub-linear in the circuit size can not even read the circuit,
which is part of the input of the universal circuit. For this reason, they restricted the circuits to be log space
uniform boolean cicuits
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It is a well known fact that given a set of values xj , j = 1, . . . ,m, P (X) =
∑m
j=1 xjλj(X) is the unique

polynomial of degree at most m− 1 such that P (rj) = xj . The Lagrangian Pedersen commitment in Gγ for
some γ ∈ {1, 2} to a vector x ∈ Zmp is defined as

Comck(x) =

m∑
i=1

xj [λj(s)]γ = [P (s)]γ ,

where the commitment key is ck = ([λ1(s)]γ , . . . , [λm(s)]γ), for s← Zp. It is computationally binding under
the m-DLog assumption.

We also consider vectors of Lagrangian Pedersen commitments defined as [P (s)]γ =
∑m
i=1 xi[λi(s)]γ ∈

Gksγ , where s ∈ Zksp for some ks ∈ N and λi(s) is just (λi(s1), . . . , λi(sks))>.

2.1 Cryptographic Assumptions

Definition 1. Let k ∈ N. We call D`,k (resp. Dk) a matrix distribution if it outputs in PPT time, with

overwhelming probability matrices in Z`×kp (resp. in Z(k+1)×k
p ). For a matrix distribution Dk, we denote as

Dk the distribution of the first k rows of the matrices sampled according to Dk.

Assumption 1 Let D`,k be a matrix distribution and gk ← G(1λ). For all non-uniform PPT adversaries A
and relative to gk ← G(1λ), A← D`,k,w ← Zkp, [z]γ ← G`γ and the coin tosses of adversary A,

1. the Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-MDDHγ) holds if

|Pr[A(gk, [A]γ , [Aw]γ) = 1]− Pr[A(gk, [A]γ , [z]γ) = 1]| ≤ negl(λ),

2. the Split Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-SMDDHγ) holds if

|Pr[A(gk, [A]1, [A]2, [Aw]γ) = 1]− Pr[A(gk, [A]1, [A]2, [z]γ) = 1]| ≤ negl(λ).

Two examples of interesting distributions are the following:

Lk : A =


s1 0 ... 0
0 s2 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 ... sk
1 1 ... 1

 LGR,k : A =


λR1 (s1) λ

R
1 (s2) ... λ

R
1 (sk)

λR2 (s1) λ
R
2 (s2) ... λ

R
2 (sk)

.

.

.

.

.

.

.
.
.

.

.

.

λR` (s1) λ
R
` (s2) ... λ

R
` (sk)

 ,

where si ← Zp and R = {r1, . . . , rN} ⊂ Zp. The assumption associated to the first distribution is the k-Lin
family. The assumption associated to the second one is new to this paper and is the (R, k)-Lagrangian As-
sumption. In our construction, we will use the LGR,2-SMDDH1 assumption (for N the maximum number of
gates of the same multiplicative depth). In App. D we argue about the generic hardness of the LGR,2-MDDHγ
assumption in symmetric bilinear groups, which implies the generic hardness of LGR,2-SMDDH1 in asym-
metric bilinear groups.

We note that for all interesting distributions Dk, we can assume that the Dk-MDDH Assumption is
generically hard in k-linear groups and in particular, that every k× k minor is invertible with overwhelming
probability.

The Kernel Diffie-Hellman Assumption [32] says one cannot find a non-zero vector in one of the groups
which is in the co-kernel of A. We also use a generalization in bilinear groups which says one cannot find a
pair of vectors in Gk+1

1 × Gk+1
2 such that the difference of the vector of their discrete logarithms is in the

co-kernel of A.

Assumption 2 Let D`,k be a matrix distribution. For all non-uniform PPT adversaries A and relative to
gk ← G(1λ), A← D`,k,w ← Zkp, [z]γ ← G`γ and the coin tosses of adversary A,

1. the Find-Rep Assumption holds if

Pr
[
r ← A(gk, [A]1, [A]2) : rTA = 0

]
= negl(λ),
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2. the Kernel Matrix Diffie-Hellman Assumption holds in Gγ [32] if

Pr
[
[r]3−γ ← A(gk, [A]γ) : r>A = 0

]
= negl(λ),

3. the Split Kernel Matrix Diffie-Hellman Assumption [14] holds if

Pr
[
[r]1, [s]2 ← A(gk, [A]1, [A]2) : r 6= s ∧ r>A = s>A

]
= negl(λ).

The Find-Rep Assumption for the LGR,`,k MDH Assumption is equivalent to solving k instances of the q-
Dlog Assumption in both groups, in which the adversary receives q powers of si, i = 1, . . . , k in both groups
and computes si ∈ Zp. This follows from the observation that if r is a solution of the Find-Rep problem, it
can be associated to a polynomial which is 0 in si for all i = 1, . . . , k and its factorization allows to compute
si.

We note that the Split Decisional and Split Kernel MDH Assumptions are generically hard in asymmetric
bilinear groups for all distributions for which the non split variant is hard in symmetric bilinear groups
whenever k ≥ 2.

Finally, we introduce an assumption which is similar to the q-SFrac Assumption considered in [12], but
in the source group.

Assumption 3 (R-RSDH Assumption) Let R be an arbitrary set of integers of cardinal q. The R-
Rational Strong Diffie-Hellman Assumption holds in G1 if the following probability is negligible in λ:

Pr

[
e([z]1, [1]2) = e([w]1, [t(s)]2)

z 6= 0

∣∣∣∣ gk ← G(1λ);

([z]1, [w]1)← A
(
gk,R,

{
[si]1,2

}q−1
i=1

, [sq]2

)]
,

where t(s) =
∏
r∈R(s − r), and the probability is taken over gk ← G(1λ), s ← Zp and the coin tosses of

adversary A.

It is important to note that it is possible to check if an adversary has succeeded in breaking the assumption,
since the value [t(s)]2 can be constructed as a linear combination of {[si]2}qi=1 given R.

The intuition why the assumption is generically hard is as follows. Since [z]1, [w]1 are given in the group
G1, the adversary must construct them as a linear combinations of all elements it has received in G1, which
are ([1]1, [s]1, . . . , [s

q−1]1). On the other hand, the adversary can only win if z/t(s) = w, but the adversary can
only find a non-trivial solution generically if z is constructed as a (non-zero) multiple of t(X) =

∏
r∈R(X−r)

evaluated at s. But this is not possible because in G1 it only receives powers of s of degree at most q − 1
and t(X) is of degree q.

3 Arithmetic Circuits

Arithmetic circuits are acyclic directed graphs where the edges are called wires and the vertices are called
gates. Gates with in-degree 0 are labeled by variables Xi, i = 1, . . . , n or with a constant field element, the
rest of the gates are either labeled with × and are referred to as multiplication gates or with + and are
called addition gates. In this work we consider only fan-in 2 multiplication gates and the circuit is defined
over a field Zp, where p is the order of some cryptographically useful bilinear group. Each circuit computes

a function φ : Znp → Zn′p .
Let G be the set of multiplicative gates of the circuit excluding multiplication-by-constant gates. We

denote by m the cardinal of this set. For simplicity and without loss of generality, we may assume all outputs
of the circuit to be the output of some multiplication gate.

For our construction of Sect. 5, we partition the set G of multiplicative gates of the circuit into different
levels. More precisely, we define {Gi}d

′

i=1, where Gi, for i = 1, . . . , d′, is the set of gates G ∈ G such that
the maximum of gates in G evaluated in any path from the input of the circuit to an input of G is i − 1.
The minimal such d′ for which the partition exists is the multiplicative depth of the circuit, which we
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always denote by d. Further, we define G0 to be the set of n0 variable inputs. If G ∈ Gi, we say that G
has multiplicative depth i. Let ni be the cardinal of Gi. With this notation, a circuit computes a function
φ : Zn0

p → Znd
p , i.e. n = n0, n′ = nd and the number of multiplication gates is

∑d
i=1 ni.

We now consider an encoding of circuit satisfiability where the variables are divided according to their
multiplicative depth. For each gate in Gi, i ∈ {1, . . . , d} the circuit is correctly evaluated if the output of the
gate is the product of two multivariate polynomials of degree 1 where the variables are outputs of gates of
less multiplicative depth, that is, the output of gates in Gj , for some j, 0 ≤ j ≤ i− 1.

Lemma 1. Let φ : Zn0
p → Znd

p , be a circuit of multiplicative depth d and with m gates. For i ∈ {1, . . . , d},
define ni as the number multiplication gates at level i. There exist

a) variables Cij, i = 0, . . . , d, j = 1, . . . , ni,

b) variables Aij, Bij, i = 1, . . . , d, j = 1, . . . , ni,

b) constants fij , gij , fijk`, gijk` ∈ Zp, i = 1, . . . , d, k = 0, . . . , i− 1, j = 1, . . . , ni, ` = 1, . . . , nk

such that, for every (x1, . . . , xn0) ∈ Zn0
p , if we set C0j = xj, for all j = 1, . . . , n0, then φ(x1, . . . , xn0) =

(y1, . . . , ynd
) and for each i ∈ {1, . . . , d}, Aij , Bij , Cij are evaluated respectively to the left, the right and the

output wires of the jth gate at level i, if and only if the following equations are satisfied:

1. (Quadratic Constraints). For each i = 1, . . . , d, if j = 1, . . . , ni: Cij = AijBij .

2. (Affine Constraints) Aij = fij +
∑i−1
k=0

∑nk

`=1 fijk`Ck` and Bij = gij +
∑i−1
k=0

∑nk

`=1 gijk`Ck`.

3. (Correct Output) Cdj = yj, j = 1, . . . , nd.

Given an arithmetic circuit φ : Zn0
p → Znd

p , we can define the witness for correct evaluation of φ(x) = y
as a tuple (a, b, c), where a = (a1, . . . ,ad), b = (b1, . . . , bd), c = (c0, . . . , cd), si = (si1, . . . , sini

) for any
s ∈ {a, b, c}. The tuple is an an assignment to Aij , Bij and Cij which satisfies the equations described in
Lemma 1.

Using standard techniques due to [8], quadratic constraints can be written as a polynomial divisibility
problem.

Lemma 2. (QAP for the Hadamard Product) Let (ai, bi, ci) ∈ (Zni
p )3, ni ∈ N. Let R = {r1, . . . , rN} ⊂ Zp

be a set of elements of Zp for some N ≥ ni and let λi(X) =
∏
j 6=i

X − rj
ri − rj

. Define

pi(X) =

 ni∑
j=1

aijλj(X)

 ni∑
j=1

bijλj(X)

−
 ni∑
j=1

cijλj(X)

 .

Then, ci = ai ◦ bi if and only if pi(X) = hi(X)t(X), where t(X) =
∏
r∈R(X − r) and hi(X) ∈ Zp[X] is a

polynomial of degree at most N − 2.

Proof. By definition, pi(rj) = aijbij − cij , so pi(X) is divisible by t(X) if and only if aijbij − cij = 0 for all
j = 1, . . . , ni.

On the other hand, for each i, affine constraints can be written also as polynomial relations. That
is, for any set R = {r1, . . . , rN} such that N ≥ ni, there exist families of polynomials V = {vi, vik`},
W = {wi, wik`} of degree N − 1 such that (a, b, c) is a valid witness if and only if

∑ni

j=1 aijλj(X) =

vi(X) +
∑i−1
k=0

∑nk

`=1 cklvik`(X) and
∑ni

j=1 bijλj(X) = wi(X) +
∑i−1
k=0

∑nk

`=1 cklwik`(X). It suffices to define

vi(X) =
∑ni

j=1 fijλj(X), vik`(X) =
∑ni

j=1 fijk`λj(X), wi(X) =
∑ni

j=1 gijλj(X), wik`(X) =
∑ni

j=1 gijk`λj(X).
The proof follows by evaluating the equations in the points rj ∈ R.
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K(gk,R):
Sample s← Z∗p;
Output crs =(
gk, {

[
λ1(s)]γ , . . . , [λm(s)]γ

}
γ∈{1,2},{

[si]1
}
i∈{1,...,m−2}, [t(s)]2

)
.

P(crs,a, b):
`(X) =

∑m
i=1 aiλi(X);

r(X) =
∑m
i=1 biλi(X);

o(X) =
∑m
i=1 ciλi(X);

h(X) = (`(X)r(X)− o(X))/t(X);
[L]1 = [`(s)]1; [R]2 = [r(s)]2;
[O]1 = [o(s)]1; [H]1 = [h(s)]1;
Output [H]1.V(crs,a, b, [L]1, [R]2, [O]1, [H]1):

Check if:
e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2);
output 1 in this case and 0 otherwise.

Fig. 1. Our argument for Hadamard products. λi(X) is the ith Lagrange polynomial associated to R, a set of Zp of
cardinal m, t(X) is the polynomial which has as roots all the elements of R. Both a and b are m-dimensional vectors
in Zp.

4 Arguments of Knowledge Transfer

In this section we construct what we informally name “knowledge transfer argument” for both linear and
quadratic equations. The name captures the idea that these arguments ensure that if a valid opening is
known for some committed value, then an opening is also known for another commitment and this second
opening is a certain quadratic or linear function of the original opening.

Formally, the prover needs to prove membership in a language L of the form (w, C,D), where w is the
opening of a shrinking commitment C. The statement is that “if C opens to w, then D opens to F (w)”.
Since typically there is an exponential number of possible openings of C, the language would not make sense
without w, i.e. the statement “there exists an opening w of C such that D opens to F (w)” would most
probably be always true.

Deciding membership in L can be done efficiently with a number of operations which is proportional to
the size of the statement. Our verifier, however, does not use w for verification (i.e. it never checks that w
is a valid opening of C) and does only a constant number of public key operations (ignoring the need to
read w as part of the statement). When using these subarguments in the full argument for correct circuit
evaluation, the verifier never reads w but w is uniquely determined by the context.

This is formalized as a promise problem defined by a language of good instances LY ES and of bad
instances LNO. Completeness guarantees that proofs are accepted for all instances of LY ES , while soundness
guarantees that no argument will be accepted for instances of LNO. The promise is that “w is an opening
of C” and nothing is claimed when x /∈ (LY ES ∪ LNO) (i.e. when the promise does not hold). A formal
definition of QA arguments for promise problems can be found in App. A.2.

4.1 Argument for Hadamard Products

Let m ∈ N. We give an argument for the promise problem defined by languages Lquad
Y ES ,L

quad
NO , which are

parameterized by m ∈ N and a Lagrangian Pedersen commitment key ck = ([Λ]1, [Λ]2) and are defined as

Lquad
Y ES =

{
(a, b, [L]1, [R]2, [O]1) : c = a ◦ b
and [L]1 = [Λ]1a, [R]2 = [Λ]2b, [O]1 = [Λ]1c

}
,

Lquad
NO =

 (a, b, [L]1, [R]2, [O]1) : c = a ◦ b,
[L]1 = [Λ]1a and [R]2 = [Λ]2b,
but [O]1 6= [Λ]1c

 .
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Perfect completeness. The argument described in Fig. 1 has perfect completeness as the values [L]1, [O]1
can be computed from {[λi(s)]1 . . . , [λm(s)]1}, and [R]2 from {[λi(s)]2 . . . , [λm(s)]2}. Further, by definition,
the polynomial `(X)r(X)− o(X) takes the value aibi − ci = 0 at point ri ∈ R. Therefore, `(X)r(X)− o(X)
is divisible by t(X), so h(X) is well defined. Further, the degree of H is at most m− 2 (since `(X)r(X) has
degree 2m− 2 and t(X) has degree m) and thus [H]1 can be computed from

{
[s]1, . . . , [s

m−2]1
}

.
Computational Soundness. We argue that if A produces an accepting proof for (a, b, c, [L]1, [R]2, [O]1) ∈
Lquad
NO then we can construct an adversary B against the (R,m)-Rational Strong Diffie-Hellman Assumption.

Given a challenge gk,
{

[si]1
}m−1
i=1

,
{

[si]2
}m
i=1

, adversary B can simulate the common reference string perfectly
because λi(X) is a polynomial whose coefficients in Zp depend only on R of degree at most m−1. Therefore,
[λi(s)]1, [λi(s)]2 can be computed from {si}m−1i=1 in both the source groups. On the other hand, t(X) is a
polynomial with coefficients in Zp which depend only on R of degree at most m. So [t(s)]2 can be computed
in G2 given {[si]2}mi=1.

AdversaryA outputs (a, b, c, [L]1, [R]2, [O
†]1, [H

†]1) which is accepted by the verifier and (a, b, c, [L]1, [R]2, [O
†]1) ∈

Lquad
NO , which in particular means that, for L = `(s), R = r(s), the equation

e([L]1, [R]2)− e([O†]1, [1]2) = e([H†]1, [t(s)]2) (2)

holds but O† 6= O(s).
Since adversary B received a, b as part of A’s output, it can run the honest prover algorithm and obtain

O, H which satisfy that
e([L]1, [R]2)− e([O]1, [1]2) = e([H]1, [t(s)]2) (3)

and O = O(s).
Subtracting equations (2) and (3), we get e([O† − O]1, [1]2) = e([H† − H]1, [t(s)]2). Therefore, ([O† −

O]1, [H
† −H]1) is a solution to the (R,m)-Rational Strong Diffie-Hellman Assumption.

We note that the verification algorithm never uses (a, b) which are part of the statement. When using
the scheme as a building block, we omit (a, b) from the input of the verifier of the quadratic relations.

4.2 Argument for Linear Languages

Let gk be a bilinear group of order p and `1, `2, n ∈ N and [M]1 ∈ G`1×n1 , [N]1 ∈ G`2×n1 be some matrices
sampled from some distributions M,N . We give two different arguments for the promise problem defined
by languages Llin

Y ES ,Llin
NO, which are parameterized by gk, [M]1, [N]1 and are defined as:

Llin
Y ES = {(w, [u]1, [v]1) : [u]1 = [M]1w, [v]1 = [N]1w}
Llin
NO = {(w, [u]1, [v]1) : [u]1 = [M]1w, [v]1 6= [N]1w}.

The arguments are simply the QA-NIZK Arguments of membership in linear spaces for general and
witness samplable distributions as presented by Kiltz and Wee [26] (which generalize previous constructions
[27,22]). Both arguments are very similar and can be easily written in a unified way. The idea is to use the

arguments to prove that there exists a witness w such that

(
u
v

)
=

(
M
N

)
w. Intuitively, assuming that it

is hard to find non-trivial (w,w′) such that [u]1 = [M]1w = [M]1w
′, this would prove that [v]1 = [N]1w.

However, finding a security proof is not simple.
For witness samplable distributions, we only know a proof in the generic group model. The proof is a

trivial consequence of the knowledge soundness property of QA-NIZK arguments which has already been
used in previous works [5]. It has a proof size of k group elements when instantiated for the k-Lin Assumption.

Our main technical contribution is to prove soundness for the promise problem for general distributions
(not necessarily witness samplable) assuming the hardness of the decisional problem for the distribution
associated to matrix M (the M>-MDDH Assumption). It has a proof size of k + 1 group elements when
instantiated for the k-Lin Assumption.

In Fig. (2) we describe the QA-NIZK argument of membership in linear spaces for witness samplable
and general distributions (the only difference between these two cases is the definition of D̃k), as presented
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K(gk, [M]1, [N]1):// M ∈ Z`1×np ,N ∈ Z`2×np

K1 ← Z`1×kp ; K2 ← Z`2×kp ;

K =

(
K1

K2

)
;

Sample A← D̃k;
[B]1 = [M>K1 + N>K2]1;
C1 = K1A; C2 = K2A; C = KA
return crs = (gk, [B]1, [A]2, [C]2).

P(crs, [u]1, [v]1,w):
return [π]1 = w>[B]1;

V(crs, [u]1, [v]1, [π]1):
Check if:
e([π]1, [A]2) =
e([u>]1, [C1]2) + e([v>]1, [C2]2)

Fig. 2. The LinD̃k
argument for proving membership in linear spaces. The matrix A is either sampled from a dis-

tribution D̃k = Dk or from a distribution D̃k = Dk, such that the Dk-KerMDH assumption holds. In the latter case
k = k + 1 while in the former case k = k.

K∗(gk, [M]1, [N]1): // M ∈ Z`1×np ,N ∈ Z`2×np

Sample A← Dk;

C1 ← Z`1×kp ; C2 ← Z`2×kp ; C =

(
C1

C2

)
; K1,2 ← Z`1p ; K2,2 ← Z`2p ;

K2,1 = (C2 −K2,2A)A
−1 ∈ Z`2×kp ; [z]1 = [M>]1K1,2;

[B]1 = ([M>C1A
−1 − zAA

−1
+ N>K2,1]1, [z]1 + [N>]1K2,2);

return crs = (gk, [B]1, [A]2, [C]2).

Fig. 3. The modified crs generation algorithm used in Lemma 3.

in [26]. The difference with the original presentation in [26] is that we separate the key K in blocks K1,K2

associated to M,N, which will be convenient for the proof. Perfect completeness, perfect zero-knowledge
and computational soundness under any Dk-KerMDH Assumption is proven [26].

Soundness of LinD̃k
, w.r.t. the language Llin

NO, is a direct consequence of Lemma 3.

Lemma 3. For any adversary A and for any N ∈ Z`2×np , let

εA = Pr

 v 6= 0
π = v>K2

∣∣∣∣ M←M; N← N ;
crs← K(gk, [M]1, [N]1);
([v]1, [π]1)← A(crs, [M]1, [N]1)

 .
1. When D̃k = Dk and M is witness samplable, if A is generic there exists a PPT adversary B such that

εA ≤ AdvM-FindRep(B) + negl(λ).

2. When D̃k = Dk, there exists a PPT adversary B such that εA ≤ AdvM>-MDDH(B) + 1/p,

where M> is the distribution which results from sampling matrices from M and transposing them.

Proof. (Lemma 3.1.) The proof is a direct consequence of the fact that scheme from Fig. 2 is an argument
of knowledge in the generic group model, as proven by Fauzi et al. [5, Theorem 2]. Indeed, if this is the case
there exists an extractor which given A outputs a witness w∗ such that ( 0

v ) = ( M
N )w∗. Since v 6= 0, then

w∗ 6= 0 and w∗ ∈ Znp is a non-trivial element in the kernel of M, breaking the M-FindRep assumption6.

Proof. (Lemma 3.2). The proof follows from the indistinguishability of the following games

Game0: This game runs the adversary as in Lemma 3.

6 For the distribution M> used in Sect. 5 this assumption is equivalent to the m-DLog assumption.
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Game1: This game is exactly as Game0 but the crs is computed using algorithm K∗, as defined in Fig. 3, and
the winning condition is

v 6= 0 and π = (v>(C2 −K2,2A)A
−1
,v>K2,2),

where A is the last row of A and A is the first k × k block of A.
Game2: This game is exactly as Game1 but z ← Znp .

We now prove some Lemmas which show that the games are indistinguishable. Lemmas 4 and 5 show that
the adversary has essentially the same advantage of winning in any game. Lemma 6 says that the adversary
has negligible probability of winning in Game2. Lemma 3.2 follows from the composition of lemmas 4, 5 and
6.

Lemma 4. For any (unbounded) algorithm A we have Pr[Game1(A) = 1] = Pr[Game0(A) = 1].

Proof. If we define K1,1 = (C1 −K1,2A)A
−1

and K =

(
K1

K2

)
=

(
K1,1 K1,2

K2,1 K2,2

)
, we observe that the output

of K∗ is well formed and the winning condition is the same as in the previous game, since

[B]1 = ([M>C1A
−1 − zAA

−1
+ N>K2,1]1, [z]1 + [N>]1K2,2)

= ([M>K1,1 + N>K2,1]1, [M
>K1,2 + N>K2,2]1) = [M>K1 + N>K2]1, and

KA =

(
(C1 −K1,2A)A

−1
K1,2

(C2 −K2,2A)A
−1

K2,2

)(
A
A

)
=

(
C1 −K1,2A + K1,2A
C2 −K2,2A + K2,2A

)
= C,

and by definition π = (v>(C2 −K2,2A)A
−1
,v>K2,2) = (v>K2,1,v

>K2,2) = v>K2.
Therefore we just need to argue that the distribution of K is the same in both games. But this is an

immediate consequence of the fact that for every value of (C,K1,1,K2,1) there exists a unique value of
(K1,2,K2,2) which is compatible with C = KA. Indeed, C = KA ⇐⇒ Ci = Ki,1A + Ki,2A, i = 1, 2 ⇐⇒
(Ci −Ki,2A)A

−1
= Ki,1, i = 1, 2.

Lemma 5. For any PPT algorithm A there exists a PPT algorithm B such that |Pr[Game1(A) = 1] −
Pr[Game0(A) = 1]| ≤ AdvM>-MDDH(B).

Proof. We construct an adversary B that receives the challenge ([M>]1, [z
∗]1), where z∗ is either M>r,

r ← Z`1p , or z∗ ← Znp . B computes the crs running K∗(gk, [M]1, [N]1) but replaces [z]1 with [z∗]1, and then

runs A as in game Game1. It follows that Pr[B([M>]1, [z
∗]1) = 1|z∗ = M>r] = Pr[Game1(A) = 1] and

Pr[B([M∗]1, [z
∗]1) = 1|z∗ ← Znp ] = Pr[Game2(A) = 1] and the lemma follows.

Lemma 6. For any (unbounded) algorithm A, Pr[Game2(A) = 1] ≤ 1/p.

Proof. We will show that, conditioned on A,C,B,M,N, the matrix K2,2 is uniformly distributed. Since it
holds that BA = (M>,N>)C, we get that the first k columns of B, namely B1, are completely determined
by B2, the last column of B. Indeed

(B1,B2)A = (M>,N>)C ⇐⇒ B1 = ((M>,N>)C−B2A)A
−1
.

Hence, conditioning in A,C,B2,M,N doesn’t alter the probability. We have that B2 = z+ N>K2,2, which
consists of n equations on n+ `2 variables. It follows that there are `2 free variables. Then K2,2 is uniformly
distributed and hence completely hidden to the adversary.

Note that
π = v>K2 =⇒ π2 = v>K2,2,

where π2 is the last element of π. Given that v 6= 0, the last equation only holds with probability 1/p and
so A’s probability of winning.
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The knowledge transfer property is a direct consequence of Lemma 3.

Theorem 1. For any adversary A against the soundness of Lin with respect to Llin
NO, it holds that:

1. When D̃k = Dk, M is witness samplable, if A is generic then there exists a PPT adversary B such that
εA ≤ AdvM-FindRep(B) + negl(λ).

2. When D̃k = Dk, there exist adversaries B1 and B2 such that

AdvLin(A) ≤ AdvDk-KerMDH(B1) + AdvM>-MDDH(B2) + 1/p.

Proof. Both for the witness samplable and the general case, given an adversary that produces a valid proof
for a statement in Llin

NO, successful attacks can be divided in two categories.

Type I: In this attack [π]1 6= [u>]1K1 + [v>]1K2.
Type II: In this type of attack [π]1 = [u>]1K1 + [v>]1K2.

Type I attacks are not possible when k = k, because proofs are unique, i.e. there is only one value of π which
can satisfy the verification equation. Type I attacks are computationally infeasible when k = k + 1, as they
can be used to construct an adversary B1 against the Dk-KerMDH assumption.7 Adversary B1 receives a
challenge [A]2 and then runs the soundness experiment for A. When A outputs ([u]1, [v]1, [π]1), B1 outputs
[π†]1 = [π]1 − [u>]1K1 − [v>]1K2 6= 0. Since [π]1 is accepted by the verifier we get that e([π]1, [A]2) =
e([u>]1, [C1]2) + e([v>]1, [C2]2) and then π†A = πA−u>K1A− v>K2A = πA−u>C1 − v>C2 = 0. We
conclude that the success probability of a type I attack is bounded by AdvDk-KerMDH(B1).

For type II attacks, for both types of distributions, since [π]1 = [u>]1K1 + [v>]1K2 is a valid proof

for
(

[u]1
[v]1

)
, then, by linearity of the verification equation, π† = π − w>B is a valid proof for

(
0

[v†]1

)
=(

[u]1−[M]1w
[v]1−[N]1w

)
. Since v 6= Nw, we conclude that an attacker of type II can be turned into an attacker B2 for

Lemma 3.

4.3 Extension to SMDDH Assumptions

In Sect. 5 the crs includes M in both groups, i.e. [M]1, [M]2. This implies that we need to prove Lemma 3
even when the adversary is given [M]1, [M]2. But this is not a problem, since we can build an adversary for
Lemma 5 against theM>-SMDDHG1

assumption. Similarly, we can prove that Theorem 1 holds, even when
the adversary is given [M]1, [M]2, assuming the hardness of the M>-SMDDH assumption.

4.4 Extension to Bilateral Linear Spaces

In Sect. 5 we need a QA-NIZK argument for bilateral linear spaces [14], which are linear spaces split between
G1 and G2. In [14], a QA-NIZK argument for such languages is given, which is very close to the argument
of membership in (unilateral) linear spaces of [26]. In Fig. (4) we describe the QA-NIZK argument of [14]
adapted to matrices with 3 blocks. The proof of the knowledge transfer property is essentially the same as
in the unilateral case and can be found in App. C.

5 A New Argument for Correct Arithmetic Circuit Evaluation

In this section we describe our construction for proving correct evaluation of an arithmetic circuit. It makes
use of two subarguments: a quadratic and a linear “knowledge transfer” subarguments. The reason why
we use the term “knowledge transfer” is because these arguments will ensure that, if the prover knows a
witness for the circuit evaluation up to level i which is also a valid opening up to level i of a set of shrinking

7 This part of the proof follows essentially the same lines of the first constant-size QA-NIZK arguments for linear
spaces of Libert et al.[27] which were later simplified and generalized by Kiltz and Wee [26].
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K(gk, [M]1, [N]1, [P]2):
// M ∈ Z`1×np ,N ∈ Z`2×np ,P ∈ Z`3×np

K1 ← Z`1×kp ; K2 ← Z`2×kp ; K3 ← Z`3×kp

K> =
(
K>1 ,K

>
2 ,K

>
3

)
;

Sample A← D̃k; Γ← Zn×kp

[B]1 = [M>K1 + N>K2 + Γ]1;
[D]2 = [P>K3 − Γ]2;
C1 = K1A; C2 = K2A;
C3 = K3A: C = KA
return crs = (gk, [B]1, [D]2, [A]1,2,
[C1]2, [C2]2, [C3]1).

P(crs, [u]1, [v1]1, [v2]2,w):

ρ← Zkp;
[π]1 = w>[B]1 + [ρ]1;
[θ]1 = w>[D]2 − [ρ]2;
return ([π]1, [θ]2).

V(crs, [u]1, [v1]1, [v2]2, [π]1, [θ]2):
Check if:
e([π]1, [A]2)− e([u>]1, [C1]2)
−e([v>1 ]1, [C2]2) =
e([θ]2, [A]1)− e([v>2 ]2, [C3]1)

Fig. 4. The BLinD̃k
argument for proving membership in bilateral linear spaces. The matrix A is either sampled

from a distribution D̃k = Dk or from a distribution D̃k = Dk, such that the Dk-SKerMDH assumption holds. In the
latter case k = k + 1 while in former case k = k. Since the D1-SKerMDH is false [14] for any D1, it should hold that
k ≥ 2.

commitments to the corresponding wires, it also knows a valid opening to the commitments of the wires at
level i+ 1.

Since the input of the circuit is public, the idea is that these arguments allow to “transfer” the knowledge
of the witness for correct evaluation (a consistent assignment to all wires) to lower levels of the circuit.
Any adversary against soundness needs to break the “chain” of consistent evaluations at some point and
thus, break the soundness of one of the two subarguments. This technique allows us to avoid using binding
commitments to the wires at each level, while still being able to define what it means to break soundness.
Intuitively, the difficulty we have to circumvent is to reason about whether the openings of shrinking commit-
ments satisfy a certain equation without assuming that the adversary is generic, as there are many possible
such openings.

The reason why we use two arguments is natural given characterization of circuits given in Sect. 3. The
variables Aij (resp. Bij , Cij) describe correct assignments to the j-th left (resp. right, output) wire at level i.
We use the quadratic knowledge transfer property to ensure that a certain value Oi is a valid (deterministic,
not hiding) commitment to all the outputs at level i if Li−1 and Ri−1 are valid commitments (i.e. consistent
with the input) to all the right and left wires at the previous level. On the other hand, we encode the
affine constraints as membership in linear spaces and use the linear knowledge transfer argument to ensure
that Li,Ri are valid commitments to all left and right wires at level i if Oj for j = 1, . . . , i − 1 are valid
commitments to the previous levels.

Throughout this section, Rφ represents a relation Rφ = {(gk,x,y) : φ(x) = y} where gk is an asymmetric
bilinear group of order p and φ : Zn0

p → Znd
p as described in Sect. 3 and N = maxi=1,...,d ni is the maximum

number of multiplicative gates of same multiplicative depth. The construction is parameterized by a value
ks, following the dicussion in Sect. 4.2 on the security properties of the linear knowledge transfer argument.

This section is organized as follows: we first show how to encode affine constraints as membership in
linear spaces, then we present the description of our argument in terms of the two subarguments and give
the (sketched) proof of security, and finally we discuss its efficiency.

5.1 Encoding Affine Constraints as Membership in Linear Spaces

We translate the affine constraints described in the circuit encoding of Sect. 3 as membership of ([O]1, [L]1, [R]2)

in a linear subspace of Gn+(2d−1)ks
1 ×Gdks2 .

We write in matrix form the expression of (x, [O]1, [L]1, [R]2) in terms of the internal wires of the circuit,
following Sect. 3. The commitments to the output values [O]1 should satisfy that [Oi]1 = [Λi]1ci, where
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Λi = (λ1(s), . . . , λni(s)) and λj(X) is the jth Lagrangian polynomial for some R = {r1, . . . , rN} ⊂ Zp and
the input x = c0 is public. These constraints can be expressed in matrix form in equation (4):

x
O1

O2

O3

...
Od−1


=



I 0 0 0 . . . 0
0 Λ1 0 0 . . . 0
0 0 Λ2 0 . . . 0
0 0 0 Λ3 0
...

...
...

. . .

0 0 0 0 . . . Λd−1





c0
c1
c2
c3
...

cd−1


(4)

We denote the matrix on the right hand side of (4) as M, so this equation reads ( x
O ) = Mc. On the other

hand, the constraints satisfied by the left wires in terms of the output wires of previous levels can be written
in matrix form as shown in equation (5):

L1

L2

L3

...
Ld

 =


F1,0 0 0 . . . 0
F2,0 F2,1 0 . . . 0
F3,0 F3,1 F3,2 . . . 0

...
...

...
. . .

...
Fd,0 Fd,1 Fd,2 . . . Fd,d−1




c0
c1
c2
...

cd−1

+


L̂1

L̂2

L̂3

...

L̂d

 , (5)

that is, for each i, Li =
∑i−1
k=0 Fi,kck + L̂i, where

Fi,k =
(∑nk

j=1 fijk1λj(s),
∑nk

j=1 fijk2λj(s), . . .
∑nk

j=1 fijknk
λj(s)

)
=
(
vik1(s), vik2(s), . . . viknk

(s)
)

(6)

and L̂i =
∑ni

j=1 fijλj(s) = vi(s), for the constants which are defined in Lemma 1. We denote the matrix on

the right hand side of equation (5) as N, so this equation reads L = Nc + L̂. The constraints satisfied by
the right wires in terms of the output wires of previous levels can be written in a similar form as shown in
equation (7): 

R1

R2

R3

...
Rd

 =


G1,0 0 0 . . . 0
G2,0 G2,1 0 . . . 0
G3,0 G3,1 G3,2 . . . 0

...
...

...
. . .

...
Gd,0 Gd,1 Gd,2 . . . Gd,d−1




c0
c1
c2
...

cd−1

+


R̂1

R̂2

R̂3

...

R̂d

 , (7)

that is, for each i, Ri =
∑i−1
k=0 Gi,kck + R̂i, where

Gi,k =
(∑nk

j=1 gijk1λj(s),
∑nk

j=1 gijk2λj(s), . . .
∑nk

j=1 gijknk
λj(s)

)
=
(
wik1(s), wik2(s), . . . wiknk

(s)
)
, (8)

and R̂i =
∑ni

j=1 gijλj(s) = wi(s). We denote the matrix on the right hand side of equation (7) as P, so this

equation reads R = Pz + R̂.

With the notation defined, satisfaction of the affine constraints can be written as

(
[O′]1

[L]1−[L̂]1

[R]2−[R̂]2

)
∈ Im

(
[M]1
[N]1
[P]2

)
,

where [O′]1 =
(

[x]1
[O]1

)
. That is, the linear constraints are satisfied if a certain vector is in a subspace generated

by some matrix which depends on the circuit.
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5.2 New Argument

In this section we describe our construction for proving correct evaluation of an arithmetic circuit.

Setup(Rφ): Pick s← Zksp . Generate crsφ = (crsφ,1, . . . , crsφ,ks), where crsφ,i ← Quad.K(gk, {[sji ]1}
N−1
j=1 , {[s

j
i ]2}Nj=1)

is the crs for the quadratic knowledge transfer argument defined in Fig. 1. Express affine constraints (equa-
tions 4),(5), and (7)) which define circuit satisfiability as membership in the image of ([M>]1, [N

>]1, [P
>]2)>

as explained in Sect. 5.1. Generate a crs for the bilateral linear knowledge transfer argument defined in
Fig. 4 for ([M>]1, [N

>]1, [P
>]2)>.

Prove(crs, (x,y,a, b, c) ∈ Rφ): Given the input x, the output y, and (a, b, c) a valid assignment to left, right
and output wires as described in Lemma 1, the prover proceeds as follows:

1. For each i ∈ {1, . . . , d}, commit to ai, ci in Gks1 and to bi in Gks2 as: [Li]1 =
∑ni

j=1 aij [λj(s)]1 =

[Λi]1ai, [Ri]2 =
∑ni

j=1 bi,j [λj(s)]2 = [Λi]2bi, [Oi]1 =
∑ni

j=1 cij [λj(s)]1 = [Λi]1ci.

2. (Quadratic Constraints) For each i ∈ {1, . . . , d}, and each j ∈ {1, . . . , ks}, compute a proof Πquad
i,j

that the vector ai ◦ bi, which is the componentwise product of the openings of [Lij ]1, [Rij ]2, is an
opening of [Oij ]1.

3. (Linear Constraints) Compute a proof Π lin that [Li]1 and [Ri]2 are commitments to the correct
evaluation of all the left and right wires at level i, for all i ∈ {1, . . . , d}, that is, that they satisfy the
affine linear constraints which relate them to the outputs of gates at levels j = 0, . . . , i− 1.

4. Output (C = ([L]1, [R]2, [O]1), Πquad, Π lin) as the proof, where Πquad = {Πquad
i,j : i = 1, . . . , d, j =

1, . . . , ks}.
Verify(crs, (x,y), (C, Πquad, Π lin)): Output 1 if the following two checks are successful and 0 otherwise:

1. Verify Πquad, Π lin.

2. Check that [Od]1 =
∑nd

j=1[λj(s)]1yj .

Security. Perfect completeness is obvious, because if (x,y,a, b, c) is a valid witness for satisfiability, then
it satisfies both linear and quadratic constraints because of the characterization of Sect. 3 and the definition
of M,N,P presented in Sect. 5.1.

Let A be an adversary against the soundness of the scheme. We construct an adversary B1 against the
quadratic knowledge transfer argument, B2,0, . . . ,B2,d−1 against the linear knowledge transfer argument.

Adversary B1 receives the common reference string of the quadratic subargument, which includes (gk,
{

[si]1
}N−1
i=1

,{
[si]2

}N
i=1

) and samples αj ← Z∗p, j = 2, . . . , ks. It defines s = s1, sj = αjsj and computes the crs of
the quadratic argument for sj , j = 1, . . . , ks from the received values. It then creates the common ref-
erence string of the full argument in the natural way, by defining the matrices M,N,P from the crs of
the quadratic subargument and sampling the rest of the secret key. When it receives an accepting proof
(C = ([L]1, [R]2, [O]1), Πquad, Π lin) from adversary A for some statement (x,y), adversary B1 computes the
full witness for correct evaluation (a, b, c) from x. The adversary searches for indexes i, j such that [Lij ]1
and [Rij ]2 are commitments to ai and bi but [Oij ]1 is not a valid commitment to ai◦bi, and it aborts if these
indexes do not exist. From αj , adversary A computes µ = (µ1, . . . , µni

) ∈ Zni
p such that λ`(sj) = µ`λ`(s)

and ν ∈ Zp such that νt(sj) = t(s). It returns (ai ◦ µ, bi ◦ µ, [Lij ]1, [Rij ]2, [Oij ]1), as an instance of Lquad
NO

together with an accepting proof [νHij ]1.

Adversary B2,i, i = 0, . . . , d − 1 receives a common reference string of the linear subargument for the

language associated to the first i+ 1 (resp. i+ 2, i+ 2) blocks of rows and the first
∑i
j=0 ni columns of M

(resp. N,P). That is, Mi,Ni are defined as:

Mi =

 I 0
Λ1

. . .
0 Λi

 , Ni =

 F1,0 0 ... 0
F2,0 F2,1 ... 0

...
...

. . .
...

Fi+1,0 Fi+1,1 ... Fi+1,i

 ,
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and Pi is defined similarly. Using the linear properties of the crs, B2,i computes the common reference string
of the full argument.8 When it receives an accepting proof (C = ([L]1, [R]2, [O]1)}di=1, Π

quad, Π lin) from
adversary A for some statement (x,y), adversary B2,i computes the full witness (a, b, c). It then checks if
[O1]1, . . . , [Oi]1 are commitments to c1, . . . , ci but either [Li+1]1 or [Ri+1]2 are not valid commitments to
ai or bi. If this is not the case, it aborts. Else it outputs (c1, . . . , ci, [O1]1, . . . , [Oi], [L1]1 − [L̂1], [Li+1]1 −
[L̂i+1], [R1]2− [R̂1]2, . . . , [Ri+1]2− [R̂i+1]2) together with its corresponding proof, which adversary B2,i can
compute from the proof given by adversary A and the secret values it sampled to extend the crs of the
subargument to the full crs (this is possible using the linearity of the proof, full details are in App. E.).

For every successful adversary A at least one of the adversaries B1,B2,0, . . . ,B2,d−1 does not abort. This
is because if the statement is false there must be some point in the “chain” where either [Li]1, [Ri]2 are
honestly computed but [Oi]1 is not, or [Oi]1 is honestly computed but [Li+1] or [Ri+1] is not.

The linear knowledge transfer argument at level i is based on the L2-SKerMDH and the M>i -SMDDHG1

assumptions. The latter reduces to the LRR,ks-SMDDHG1
and the SXDH assumptions as proven in App. E.

Based on this proof, we can state the following Theorem.

Theorem 2. Let (gk, φ : Zn0
p → Znd

p ,R) be a bilinear group of order p, an arithmetic circuit and a set of
Zp of cardinal N = maxi=1,...,d ni. For any adversary A against the soundness of the argument defined above
there exist adversaries B1,B2,B3,B4 such that:

Advsnd(A) ≤AdvR-RSDH(B1) + dAdvL2-SKerMDH(B2) + dksAdvLGR,ks-SMDDHG1
(B3)+

dmin(N − ks, d) log ksAdvSXDH(B4) +
d(1 + ks)

p
.

Note that the most efficient, secure choice is ks = 2 and then the largest security loss factor is dmin(N −
ks, d) ≤ d ·N , which is at most the number of multiplicative gates in the circuit.

5.3 Efficiency

In the most efficient instantiation, the proof size is (3d + 2, d + 2) group elements and naive verification
requires to compute 3d pairings for the quadratic relations and 2(n0 + 3d + 4) for the linear part, and nd
exponentiations in G1 for the output. Using the “bilinear batching” techniques of Herold et al. [20] the
number of pairings can be reduced to n0 + 3d + 4 for the linear part. Since the input is known in Zp, n0
pairings in this part can be replaced by n0 exponentiations in GT . Finally, using standard batching techniques
[6], the number of pairings for the quadratic part can be reduced to d + 2. As a result the total number of
pairings required for verification is 4d+6, plus n0 exponentiations in GT and O(n0 +d+nd) exponentiations
in the source group.

In the instantiation which is secure under standard assumptions, the proof size is (6d+ 3, 2d+ 3) group
elements and naive verification requires to compute 6d pairings for the quadratic relations and 2(n0 +6d+6)
for the linear part, and using the same batching techniques the number of pairings required for verification
is 8d+ 9.

5.4 Adding Zero-Knowledge

In this section we argue how to add zero-knowledge to the argument for correct arithmetic circuit evaluation
of Sect. 5.2. The same discussion applies for the argument for boolean circuit satisfiability discussed in
Sect. 6.1 for boolean circuits.

We have to distinguish two different situations. In the first one the input is public, and we can easily
modify our proof so that it reveals nothing about the internal evaluation steps. When the input or part of
the input must be secret, which is the most useful case, the circuit input cannot be part of the verifier’s

8 We can assume w.l.o.g. that the crs for the linear knowledge transfer associated to Mi,Ni,Pi includes
{[sj ]1,2}N−1

j=1 , [s
N
j ], as this does not compromise security.
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input, at least not in the clear. A natural idea is to let the prover commit to it. The problem is that our
“knowledge transfer” idea requires the reduction in the soundness proof to know this secret input, which
means that the commitment to the input must be extractable so that we can efficiently extend it to a vector
of correct evaluations (a, b, c). Even in a QA-NIZK setting where we can efficiently open the commitments,
they are only F -extractable [3] (under falsifiable assumptions), which means that we can only extract in the
source groups but not in Zp. This leaves us only with a couple of solutions, all of them unsatisfactory.

One of them is to commit to inputs bitwise and prove that this is done correctly. This is not acceptable
in terms of concrete efficiency for arithmetic circuits, but it is a practical approach for boolean circuits.

The second one is to use a commitment to the input which is extractable under knowledge assumptions.
Of course, then our construction is no longer secure under falsifiable assumptions, but it is interesting that it
indicates a tradeoff in SNARK constructions: longer proof size and verification costs (Θ(d) group elements/
pairings, respectively) but weaker assumptions (only the input needs to be extracted and not the full witness).

In any case, we leave for future work to explore the possibilities of this or other mixed approaches (like
using ROM based constructions for extracting the input). We now give the technical details on how to
add zero-knowledge to our argument for correct circuit evaluation, distinguishing the two aforementioned
situations.

Adding Zero-knowledge to Correct Evaluation of Middle Wires. This step is straightforward.
The argument is changed so that [L]1, [R]2, [O]1 are not given in the clear, but instead the prover gives
GS commitments [19] to each of its components. For the quadratic argument, it gives a GS Proof that the
verification equation is satisfied, that is, for each i it proves in zk that the pairing product equation:

e([Li]1, [Ri]2)− e([Oi]1, [1]2) = e([Hi]1, [T ]2)

is satisfied, where [Li]1, [Ri]2, [Oi]1, [Hi]1 are hidden committed values.
For the linear argument, it suffices to give a GS proof of satisfiability of the verification equation in Fig. 4.

In its most efficient instantiation, the verification equation in Fig. 4 consists of 2 pairing product equations
and hence the GS proof consists of 8 elements of each group. An alternative, more efficient approach (which
requires only (2, 2) group elements) for the linear argument proves that the vectors of committed elements
are in a certain linear (bilateral) space. The idea is quite simple but details are a bit cumbersome, so we
explain it in App. F.

Hiding the input and output. Finally, we discuss how to use our results in a scenario where not only
the middle wires should be hidden but also the input and the output. In this case the prover should commit
to the input and the output with perfectly binding commitments (cx,dy).

The commitment to the input should be extractable. For instance, cx can be just the concatenation
of GS commitments to the inputs provided the prover submits also a proof of knowledge of their opening
(giving additional bitwise commitments and a proof that cx is of the right form, or a proof with knowledge
assumptions or in the ROM). In any case, we require cx to be algebraic, that is, it should be possible to
write it as cx = [E]1x+ [V]1r, where r is the vector of randomness and matrices E, V are described in the
commitment key (we can also allow cx to have components in both G1,G2, in which case E and V will be
split). The only difference with the case where the commitment is public is that in the first n0 rows of M

the identity matrix should be replaced by E and an additional column of the form
(
V, 0

)>
should be added.

The prover should also give a GS proof that dy opens to the same value as [Od]1.

6 Boolean Circuits

We extend our results to any boolean circuit φ : {0, 1}n0 → {0, 1}nd . The gates of φ are assumed to have
fan-in two but otherwise they can be of any type (excluding non-interesting or trivial gate types). The
construction relies on the characterization of these gates as quadratic functions of the inputs. We list below
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the 10 gate types allowed for the circuit φ, along with its expression as a quadratic function. The list of gates
is taken from [1], which observe that the last remaining 6 gate types depend mostly on one input and are
not used often.
AND(a, b, c): ab = c NAND(a, b, c): 1− ab = c
OR(a, b, c): 1− (1− a)(1− b) = c NOR(a, b, c): (1− a)(1− b) = c
XOR(a, b, c): b(1− a) + a(1− b) = c XNOR(a, b, c): 1− a(1− b)− b(1− a) = c

G1(a, b, c) = (c = a ∧ b): (1− a)b = c G2(a, b, c) = (c = a ∧ b): 1− (1− a)b = c

G3(a, b, c) = (c = a ∧ b): a(1− b) = c G4(a, b, c) = (c = a ∧ b): 1− a(1− b) = c.
From this characterization we slice the circuit into several quadratic and affine constraints similar to

the arithmetic case. As before, we partition the set of gates G of a given circuit φ into different subsets Gi
according to the depth, ni is cardinal of the gates at level i and we assume that gates at each level are
ordered in some way and they are denoted as Gi1, . . . , Gini

.
For each level i, we define variables Cij , j = 1, . . . , ni which will encode the output of gate j at level i.

The gate Gij will be correctly evaluated if Cij = Gij(Aij , Bij), where Aij = CkL`L and Bij = CkR`R for
some indexes 0 ≤ kL, kR < i, 1 ≤ `L ≤ nkL and 1 ≤ `R ≤ nkR , which depend on i, j and which are specified
by the circuit description. That is, the left wire of Gij should be the output of the `Lth gate at level kL and
the right wire the output of the `Rth gate at level kR.

Lemma 7. Let φ : {0, 1}n0 → {0, 1}nd , be a circuit of multiplicative depth d with ni gates at level i. There
exist

a) variables Cij, i = 0, . . . , d, j = 1, . . . , ni,
b) variables Aij , Bij, i = 1, . . . , d, j = 1, . . . , ni,
c) constants fijk`, gijk` ∈ {0, 1}, i = 1, . . . , d, k = 0, . . . , i− 1, j = 1, . . . , ni, ` = 1, . . . , nk,
d) constants βij , γij , εij , δij ∈ Zp, i = 1, . . . , d, j = 1, . . . , ni, which depend on the type of gate Gij,

such that, for every (x1, . . . , xn0) ∈ {0, 1}n0 , if we set C0,j = xj, for all j = 1, . . . , n0, then φ(x) = y and
Aij, Cij are evaluated to the left and output of the jth gate at level i, if and only if the following equations
are satisfied:

1. (Quadratic constraints). For each i = 1, . . . , d, for all j = 1, . . . , ni,

Cij = AijBij +Aijβij +Bijγij + εij , (9)

2. (Affine constraints) Aij =
∑i−1
k=0

∑nk

`=1 fijk`Ck` and Bij =
∑i−1
k=0

∑nk

`=1 gijk`Ck`.
3. (Correct Output) For all j = 1, . . . , nd, Cdj = yj.

Proof. For the (i, j)th circuit gate, a description of the circuit φ specifies the gate type and indexes (ki,j,L, `i,j,L)
which indicate the left and right wire. Therefore, from the quadratic expression of boolean gates for boolean
circuit satisfiability, correct evaluation of Gij is expressed as:

Cij = Cki,j,L,`i,j,LCki,j,R,`i,j,Rαij + Cki,j,L,`i,j,Lβij + Cki,j,R,`i,j,R γ̂ij + εij ,

for some αij , βij , γ̂ij , εij ∈ Z which depend on the gate type. This can be rewritten as an equation over Zp
as:

Cij = Cki,j,L,`i,j,L(Cki,j,R,`i,j,Rαij) + Cki,j,L,`i,j,Lβij + (Cki,j,R,`i,j,Rαij)(α
−1
ij γ̂ij) + εij . (10)

For any (i, j) we define the constant fijk` and gijk` to be 0 everywhere except for fijki,j,L`i,j,L = 1 and

gijki,j,R`i,j,R = αij . Therefore, if Aij =
∑i−1
k=0

∑nk

`=1 fijk`Ck` = Cki,j,L,`i,j,L and Bij =
∑i−1
k=0

∑nk

`=1 gijk`Ck` =
Cki,j,R,`i,j,R and equation (10) which expresses correct evaluation of gate (i, j) can be rewritten as:

Cij = AijBij +Aijβij +Bijγij + εij , (11)

where γij = α−1ij γ̂ij .
Obviously, this implies that if c0,j = xj , and the linear constraints are satisfied, then the rest of the

output wires are also consistent with xj and we conclude that cnd,j is the output corresponding to this
input. Therefore, if cnd,j = yj , we can conclude that φ(x) = y.
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To achieve succinct ness, quadratic equations which encode correct gate evaluation are represented as a
divisibility relation with the usual polynomial aggregation technique.

Lemma 8. Let R ⊂ Zp be a set of cardinal N and let λj(X) be the associated Lagrangian polynomials and
t(X) the polynomial whose roots are the elements of R. Let φ : {0, 1}n0 → {0, 1}nd , be any circuit such
that N = maxi=1,...,d ni. There exist some unique polynomials uL,i(X), uR,i(X), u0,i(X) of degree at most
N − 1 which are efficiently computable from the circuit description and such that for any tuple (ai, bi, ci) ∈
({0, 1}ni)3, if

`i(X) =

ni∑
j=1

ajλj(X), ri(X) =

ni∑
j=1

bjλj(X), oi(X) =

ni∑
j=1

cjλj(X),

it holds that ai, vecci are consistent assignments to the left and output values of gates at level i if and only
if t(X) divides pi(X), where

pi(X) = `i(X)ri(X) + `i(X)uL,i(X) + r(X)uR,i(X) + u0,i(X)− oi(X).

Proof. The proof is a direct consequence of Lemma 7. Indeed, it suffices to define uL,i(X), uR,i(X), u0,i(X) to
take the values uL,i(rj) = βij , uR,i(rj) = γij and u0,i(rj) = εij for j = 1, . . . , ni and 0 for j = ni + 1, . . . , N .
Therefore, pi(rj) = aijbij +aijβij + bijγij + εij − cij . This proves that if equation (11) is satisfied then pi(X)
is divisible by t(X), since it is 0 in all of its roots. Finally, the polynomials uL,i(X), uR,i(X), u0,i(X) can be
efficiently computed from the circuit description, as they depend only on N and the type of each gate.

6.1 A New Argument for Correct Boolean Circuit Evaluation

From Lemma 7, we can design an argument for boolean circuit satisfiability based on falsifiable assumptions,
similar as in Sect. 5. The argument is based on a quadratic and a linear “knowledge transfer” subarguments.
The value [Ri]2 is now defined as [Ri]2 =

∑ni

j=1 αijbijλj(s). The linear argument is identical to the arithmetic
case.

For the quadratic argument, now the prover needs to show (aggregating the proof at each level i for
j = 1, . . . , ni) that the quadratic equations Cij = AijBij +Aijβij +Bijγij + εij are satisfied, whereas before
the equations were Cij = AijBij . However, the security proof is almost identical to the arithmetic case.

Indeed, the verification equation of the quadratic argument is adapted to the new equation type, i.e. For
each level i = 1, . . . , d, and each j = 1, . . . , ks given commitments [Lij ]1, [Rij ]2, [Oij ]1, and some value [Hij ]1
the quadratic argument checks if

e([Lij ]1, [Rij ]2) + e([Lij ]1, [uL,i(sj)]2) + e([uR,i(sj)]1, [Rij ]2) + e([u0,i(sj)]1, [1]2)

− e([Oij ]1, [1]2) = e([Hij ]1, [T ]2),

where uL,i(X), uR,i(X), u0,i(X) are the polynomials associated to the gate constants at level i. To prove
soundness, given an opening of [Lij ]1 and [Rij ]2 which is not consistent with [Oij ], it suffices to compute
[O′ij ]1, [H

′
ij ]1 consistent with these openings and subtract the two verification equations to find a solution to

the R-Rational Strong Diffie-Hellman Assumption.

Zero-Knowledge. The argument can be made zero-knowledge for the middle wires by proving with the GS
proof system that the argument for correct circuit evaluation is satisfied, as discussed in Sect. 5.4 for the
arithmetic case. The input can also be hidden provided it is encrypted with an extractable commitment. In
the boolean case this can be done in a relatively efficient way, for example under the DDH Assyumption with
GS commitments. The cost of giving the committed secret inputs and a proof that they open to {0, 1} using
the GS proof system is (6(n0−npub), 6(n0−npub)) group elements. It can be reduced to (2(n0−npub)+10, 10)
group elements under standard assumptions using the results of González and Ràfols [14], but at the price
of having a crs quadratic in n0 and to (2n0 + 4, 6) with a linear crs under a non-standard (falsifiable)
(n0 − npub)-assumption similar to the q-Target Strong Diffie-Hellman Assumption using the results of Daza
et al. [2].
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14. A. González, A. Hevia, and C. Ràfols. QA-NIZK arguments in asymmetric groups: New tools and new construc-
tions. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 605–629.
Springer, Heidelberg, Nov. / Dec. 2015. 2, 3, 4, 7, 13, 14, 20, 25, 28

15. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, Dec. 2010. 1

16. J. Groth. On the size of pairing-based non-interactive arguments. In M. Fischlin and J.-S. Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. 1, 5

17. J. Groth, R. Ostrovsky, and A. Sahai. New techniques for noninteractive zero-knowledge. J. ACM, 59(3):11,
2012. 4, 5

18. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, Apr. 2008. 23

19. J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput., 41(5):1193–
1232, 2012. 2, 4, 18
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A Security Definitions

A.1 Dual-mode commitments and Groth-Sahai proofs [18].

Groth-Sahai proofs allow to prove satisfiability of quadratic equations in bilinear groups in the non-interactive
setting. More precisely, Groth-Sahai proofs deal with equations of the form

my∑
j=1

ajyj +

mx∑
i=1

bixi +

mx,my∑
i,j=1

γi,jxiyj = t,

in which the set of variables is divided into two disjoint subsets X = {x1, . . . , xmx
} and Y = {y1, . . . , ymy

},
and depending on the type of equation X,Y ⊂ Zp (quadratic equations in Zp), X ⊂ Zp,Y ⊂ Gγ (multi-
exponentiation equations in Gγ) for γ ∈ {1, 2} or X ⊂ G1 and Y ⊂ G2 (pairing product equations).

The scheme can be seen as a commit-and-prove scheme [3], where in the first step the prover gives
commitments to the solutions, and in the second provides a proof that these commitments verify the corre-
sponding equation. In particular, the commitments used are dual-mode commitments, that is, commitments
that can be either perfectly binding or perfectly hiding, and we can move from one to the other with an
indistinguishable change of security game. More precisely, Groth-Sahai commitments to field elements z ∈ Zp
and group elements [z]s ∈ G are, respectively:

Com(z;w) = z [u]s + w[u1]s, Com([z]s;w1, w2) =

[
0
z

]
s

+ w1[u1]s + w2[u2]s,

where [u]s, [u1]s, [u2]s are vectors in G2 given in the commitment key, and their definitions depend on
whether we want the commitments to be perfectly binding or perfectly hiding.

Groth-Sahai proofs are sound, witness-indistinguishable and, in many cases, zero-knowledge. More pre-
cisely, the proof is always zero-knowledge for quadratic equations in Zp and multi-exponentiation equations,
and also for pairing product equations provided that t = 1.

A.2 Quasi-Adaptive NIZK Arguments

We consider a more general definition of QA-NIZK arguments for promise problems. In this case we consider
two languages LY ES and LNO defined by relations RY ES,ρ,RNO,ρ s.t. RY ES,ρ ∩RNO,ρ = ∅, which in turn
are completely determined by some parameter ρ sampled from a distribution Dgk . Note that the original
definition of QA-NIZK is the particular case when Rρ = RY ES,ρ and RNO,ρ is the complement of Rρ.

We say that Dgk is witness samplable if there exists an efficient algorithm that samples (ρ, ω) from a
distribution Dpar

gk such that ρ is distributed according to Dgk , and membership of ρ in the parameter language
Lpar can be efficiently verified with ω. While the Common Reference String can be set based on ρ, the zero-
knowledge simulator is required to be a single probabilistic polynomial time algorithm that works for the
whole collection of relations RY ES,gk .

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations RY ES,gk =
{RY ES,ρ}ρ∈sup(Dgk ) and RNO,gk = {RNO,ρ}ρ∈sup(Dgk ) with parameters sampled from a distribution Dgk over
associated parameter language Lpar, if there exists a probabilistic polynomial time simulator (S1,S2), such
that for all non-uniform PPT adversaries A1, A2, A3 we have:

Quasi-Adaptive Completeness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ); (x,w)← A1(gk , ψ);
π ← P(ψ, x,w) : V(ψ, x, π) = 1 if RY ES,ρ(x,w)

]
= 1.

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ);
(x, π)← A2(gk , ψ) : V(ψ, x, π) = 1 and ∀w RNO,ρ(x,w)

]
≈ 0.

23



Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← K0(1λ); ρ← Dgk ;ψ ← K1(gk , ρ) : AP(ψ,·,·)
3 (gk , ψ) = 1] =

Pr[gk ← K0(1λ); ρ← Dgk ; (ψ, τ)← S1(gk , ρ) : AS(ψ,τ,·,·)
3 (gk , ψ) = 1]

where

– P(ψ, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof π if (x,w) ∈ RY ES,ρ.
Otherwise, it outputs ⊥.

– S(ψ, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated proof S2(ψ, τ, x) if (x,w) ∈
RY ES,ρ and ⊥ if (x,w) /∈ RY ES,ρ.

Note that ψ is the CRS in the above definitions. We assume that ψ contains an encoding of ρ, which is thus
available to V.

In this work algorithm K0 always samples the group key for an asymmetric bilinear group. For this reason
we will always omit K0.

B An Example

We illustrate how our encoding for circuit satisfiability which divides the linear constraints into different
levels works.

Example 1. φ : Z4
p → Zp, φ(x1, x2, x3, x4) = (((x1+2x2)(x3+x4))(3+4x2))((x2+x4)x1). If we set C0,j = xj ,

j = 1, 2, 3, 4, then C(x1, x2, x3, x4) = c and Ci,j is a valid assignment of the jth multiplication gate at level
i if and only if the following equations are satisfied:

– Level 1: • C1,1 = A1,1B1,1 A1,1 = (C0,1 + 2C0,2), B1,1 = (C0,3 + C0,4) • C1,2 = A1,2B1,2, A1,2 =
(C0,2 + C0,4), B1,1 = C0,1.

– Level 2: • C2,1 = A2,1B2,1, A2,1 = C1,1 B2,1 = (3 + 4C0,2).

– Level 3: • C3,1 = A3,1B3,1, A3,1 = C2,1, B3,1 = C1,2.

– Correct output: C3,1 = y.

The Lagrangian Pedersen commitments for each level and each side are defined as:

– Level 1: • L1 = (C0,1 + 2C0,2)λ1 + (C0,2 + C0,4)λ2 • R1 = (C0,3 + C0,4)λ1 + C0,1λ2.

– Level 2: • L2 = C1,1λ1 • R2 = 4C0,2λ1.

– Level 3: •L3 = C2,1λ1 • R3 = C1,2λ1,

and the affine term (L̂1, R̂1, L̂2, R̂2, L̂3, R̂3) = (0, 0, 0, 3λ1, 0, 0). In matrix form,

c0,1
c0,2
c0,3
c0,4
L1

R1

L2

R2

L3

R3


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
λ1 2λ1 0 λ2 0 0 0
λ2 0 λ1 λ1 0 0 0
0 0 0 0 λ1 0 0
0 4λ1 0 0 0 0 0
0 0 0 0 0 λ1 0
0 0 0 0 0 0 λ1





c0,1
c0,2
c0,3
c0,4
c1,1
c1,2
c2,1


+



0
0
0
0
0

3λ1
0


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C Argument of Knowledge Transfer for Bilateral Linear Languages

González et al. constructed arguments of membership in linear languages where the matrix generating the
language is divided between the two base groups [14]. Such bilateral languages occur naturally in the context
of quadratic equations in asymmetric groups. For instance, to prove that an commitment opens to 0 or 1,
the usual strategy is to commit to x in G1 and y in G2 and prove that x = y, and that x(y − 1) = 0. More
generally, for other quadratic equations one needs to commit to different variables and prove linear and
quadratic relations among them. In order to use the pairing to verify quadratic equations, they must lie in
different source groups. Therefore, linear relations between both vectors is naturally expressed as membership
in a “bilateral” matrix. This will be case in section 5 when the vectors correspond the left and right wires of
a specific level and the output of the previous level.

The Scheme. Let `1, `2, `3, n ∈ N and [M]1 ∈ G`1×n1 , [N]1 ∈ G`2×n1 , [P]2 ∈ G`3×n2 . We give an argument for
the promise problem defined by languages Llin

Y ES ,Llin
NO, which are parameterized by [M]1, [N]1, [P]2 and are

defined as

Llin
Y ES =

{
(w, [u]1, [v1]1, [v2]2) :

[u]1 = [M]1w and
[v1]1 = [N]1w, [v2]2 = [P]1w

}
Llin
NO =

{
(w, [u]1, [v1]1, [v2]2) :

[u]1 = [M]1w and
[v1]1 6= [N]1w or [v2]2 6= [P]2w

}
.

We use the QA-NIZK argument of membership of bilateral linear spaces of [14] for the linear language

generated by

(
[M]1
[N]1
[P]2

)
. As in the non bilateral case, when the matrices [M]1, [N]1, [P]2 are witness samplable

we can use the most efficient of the two arguments described in [14]. Again, in that case we can prove the
knowledge transfer property only in the generic group model. If we want to get security based on standard
MDDH assumptions we have to use the less efficient scheme of [14], which has an overhead in the proof
of one additional group element for each base group (3 elements in each source group in the most efficient
instantiation, which is for k = 2).

The full argument is described in Figure 4.

Security Proof. We now prove security properties satisfied by the argument in figure 4. It is proven in [14]
that the argument satisfies perfect completeness, perfect zero-knowledge and computational soundness under
the Split Kernel MDH Assumption. For computational soundness, the intuition is that the argument is very
close to the argument of membership in (unilateral) linear spaces of [26] for witness samplable matrices, but
where the information is divided in different groups G1,G2. Since part of the argument of [26] is information
theoretic, the key step in the proof of [14] is to make sure that this splitting in two groups does not leak
additional information.

We now proceed to prove the proof of knowledge transfer property, which is our technical contribution.
For this, we rely on a Lemma 9 analogous to Lemma 3. Similarly as in the non-bilateral case, we will prove
such lemma if A is sampled from the Dk distribution based on a standard decisional assumption. However,
when A is sampled from the Dk distribution, we are only able to give a generic proof (Lemma 13). For
the standard proof we require M to be sampled from a distribution M`1×n such that the M>`1×n-MDDH
assumption holds. For the generic proof we only require that the M`1×n-FindRep assumption holds.

Lemma 9. Assume that D̃k = Dk. For any PPT adversary A and for any N ∈ Z`2×np there exists a PPT
adversary B such that

Pr

M←M`1×n; crs← K(gk, [M]1, [N]1, [P]2);
([v1]1, [v2]2, [π]1, [θ]2)← A(crs, [M]1, [N]1, [P]2) :
( v1
v2

) 6= 0 and π + θ = v>1 K2 + v>2 K3

 ≤ AdvM`1×n-MDDH(B) + 1/p
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K∗(gk, [M]1, [N]1, [P]2): // M ∈ Z`1×np ,N ∈ Z`2×np ,P ∈ Z`3×np

Sample A← Dk;
C1 ← Z`1×kp ; C2 ← Z`2×kp ; C3 ← Z`3×kp ; C> =

(
C>1 ,C

>
2 ,C

>
3

)
K1,2 ← Z`1p ; K2,2 ← Z`2p ; K3,2 ← Z`3p ; K>∗,2 =

(
K>1,2,K

>
2,2,K

>
3,2

)
∈ Z1×(`1+`2+`3)

p

K1,1 = (C1 −K1,2A)A
−1 ∈ Z`1×kp ; K2,1 = (C2 −K2,2A)A

−1 ∈ Z`2×kp ;

K3,1 = (C3 −K3,2A)A
−1 ∈ Z`3×kp ; K>∗,1 =

(
K>1,1,K

>
2,1,K

>
3,1

)
∈ Zk×(`1+`2+`3)p

K =

K1

K2

K3

 =
(
K∗,1,K∗,2

)
=

K1,1 K1,2

K2,1 K2,2

K3,1 K3,2

 ∈ Z(`1+`2+`3)×(k+1)
p ;

[z]1 = [M>]1K1,2; Γ← Zn×(k+1)
p ;

[B]1 = ([M>K1,1 + N>K2,1]1, [z]1 + [N>]1K2,2) + [Γ]1;
[D]2 = ([P>K3,1]2, [P

>K3,2]2)− [Γ]2
return crs = (gk, [B]1, [D]2, [A]1,2, [C1]2, [C2]2, [C3]1).

Fig. 5. The modified crs generation algorithm used in Lemma 9. Matrix A ∈ Zk×k
p is the submatrix containing the

first k rows of A, while A is the last row of A. Note that A is invertible with overwhelming probability.

Proof. The proof follows from the indistinguishability of the following games.

Game0: This game runs the adversary as in lemma 9.
Game1: This game is exactly as Game0 but the crs is computed using K∗, as defined in figure 5, and the

wining condition is

( v1
v2

) 6= 0 and π + θ =
(v>1 (C2 −K2,2A)A

−1
,v>1 K2,2)+

(v>2 (C3 −K3,2A)A
−1
,v>2 K3,2)

Game2: This game is exactly as Game1 but z ← Znp .

Lemmas 10 and 11 shows that the adversary has essentially the same advantage of winning in any game.
Lemma 12 says that the adversary has negligible probability of winning in Game2. The main lemma follows
from the composition of lemmas 10, 11, and 12.

Lemma 10. For any (unbounded) A we have Pr[Game1(A) = 1] = Pr[Game0(A) = 1].

Proof. The only differences between Game0 and Game1 are:

1. In Game0 the matrix K∗,1 is uniform, while in Game1 the matrix C is uniform.
2. The winning conditions.

For 1), note that (C,K∗,1) is uniformly distributed over the solutions to C = KA, for any A,K∗,1, in both
games. Indeed, the system of equations C = KA consists of (`1 + `2 + `3)k equations on in 2(`1 + `2 + `3)k
variables and hence there are (`1 + `2 + `3)k dependent variables and the space of solutions is of dimension
(`1+`2+`3)k. Since in both games (C,K∗,1) are uniformly sampled from a space of dimension (`1+`2+`3)k,
it suffices to show that they are indeed solutions. For Game0 is direct, and for Game1 note that given A,K∗,1,

C = KA is equivalent to C = K∗,1A + K∗,2A ⇐⇒ K∗,1 = (C−K∗,2A)A
−1

.

For 2), note that by definition π+θ = (v>1 (C2−K2,1A)A
−1
,v>1 K2,1)+(v>2 (C3−K3,1A)A

−1
,v>2 K3,1) =

(v>1 K1,1,v
>
1 K2,2) + (v>2 K3,2,v

>
2 K3,1) = v>1 K2 + v>2 K3.

Lemma 11. For any PPT A there exists a PPT B such that |Pr[Game1(A) = 1] − Pr[Game0(A) = 1]| ≤
AdvM`1×n-MDDH(B).

26



Proof. We construct an adversary B that receives the challenge [M∗]1, [z
∗]1, where z is either M>r, r ← Z`1p ,

or z∗ ← Z`1p . B computes the crs running K∗([M∗]1, [N]1, [P]2) but replaces [z]1 with [z∗]1, and then

runs A as in game Game1. It follows that Pr[B([M∗]1, [z
∗]1) = 1|z∗ = M>r] = Pr[Game1(A) = 1] and

Pr[B([M∗]1, [z
∗]1) = 1|z∗ ← Z`1p ] = Pr[Game2(A) = 1] and the lemma follows.

Lemma 12. For any (unbounded) A, Pr[Game2(A) = 1] ≤ 1/p.

Proof. We will show that, conditioned on A,C,D,B,M,N, the matrices K2,2,K3,2 are uniformly dis-
tributed. Since the event A,C,D,B,M,N is the same as A,C,D + B,Γ,M,N and Γ is independent
from K2,2,K3,2, conditioning on A,C,D,B,M,N is the same as conditioning on A,C,D + B,M,N.

Since it holds that (B + D)A = (M>,N>,P>)C, we get that the first k columns of E = B + D, namely
E1, are completely determined by E2, the last column of E. Indeed

(E1,E2)A = (M>,N>,P>)C ⇐⇒ E1 = ((M>,N>,P>)C−E2A)A
−1
.

Hence, conditioning in A,C,E2,M,N doesn’t alter the probability. We have that E2 = z+N>K2,2+P>K3,2,
which consists of n equations on n + `2 + `3 variables. It follows that there are `2 + `3 free variables and
then K2,2 and K3,2 are uniformly distributed. We conclude that K2,2 and K3,2 are completely hidden to the
adversary.

Note that

π + θ = v>1 K2 + v>2 K3 =⇒ π2 + θ2 = v>1 K2,2 + v>2 K3,2,

where π2,θ2 are respectively the last elements of π,θ. Since ( v1
v2

) 6= 0, the last equation only holds with
probability 1/p and so A’s probability of winning.

Now we give a generic proof in the case D̃k = Dk.

Lemma 13. Assume D̃ = Dk. For any generic adversary A and for any N ∈ Z`2×np ,P ∈ Z`3×np there exists
a PPT adversary B such that

Pr

M←M`1×n; crs← K(gk, [M]1, [N]1, [P]2);
([v]1, [π]1)← A(crs, [M]1, [N]1, [P]2) :
( v1
v2

) 6= 0 and π + θ = v>1 K2 + v>2 K3

 ≤ AdvM`1×n-FindRep(B) + negl(λ).

Proof. (Sketch) The proof is a direct consequence of the fact that scheme from figure 4 is an argument of
knowledge in the generic group model, which ca be proven using a nutural adaptation of the proof of Fauzi
et al. [5, Theorem 2]. Indeed, if this is the case there exists an extractor which given A outputs a witness w∗

such that
(

0
v1
v2

)
=
(

M
N
P

)
w∗. Since ( v1

v2
) 6= 0, then w∗ 6= 0 and w∗ is an element in the kernel of M. Hence,

we can build an adversary B which breaks the M`1×n-FindRep assumption.

Finally we prove the knowledge transfer property.

Theorem 3. For any adversary A against the knowledge transfer propery of Lin there exists adversaries B1
and B2 such that

AdvLin(A) ≤ AdvDk-KerMDH(B1) + AdvM`1×n-MDDH(B2) + 1/p.

Proof. Given an adversary that produces a valid proof for a statement in Llin
NO, successful attacks can be

divided in two categories.

Type I: In this attack π + θ 6= u>K1 + v1K2 + v2K3.

Type II: In this type of attack π + θ = u>K1 + v1K2 + v2K3.
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For type I attacks we construct an adversary B1 against the Dk-SKerMDH assumption.9 The adversary B1
receives a challenge [A]1,2 and then runs the knowledge transfer experiment for A itself. When A outputs
([u]1, [v]1, [v2], [π]1, [θ]2), B1 outputs [π†]1 = [π]1 − [u>]1K1 − [v>1 ]1K2, [θ

†]2 = [θ]2 − [v>2 ]2K3. Since
[π]1, [θ]2 is accepted by the verifier we get that e([π]1, [A]2)−e([u>]1, [C1]2)−e([v>1 ]1, [C2]2) = e([θ]2, [A]1)−
e([v>2 ]2, [C3]1) and then (π†+θ†)A = πA+θA−u>K1A−v>1 K2A−v>2 K3 = πA+θA−u>C1−v>1 C2−
v>2 C3 = 0. We conclude the success probability of a type I attack is bounded by AdvDk-SKerMDH(B1).

For type II attacks, since [π]1, [θ]2 such that π + θ = u>K1 + v1K2 + v>2 K3 is a valid proof for(
[u]1
[v1]1
[v2]2

)
, then, by linearity of the verification equation, π† = π −w>B,θ† = θ −w>D is a valid proof for( 0

[v†1]1

[v†2]2

)
=

(
[u]1−[M]1w
[v1]1−[N]1w
[v2]2−[P]2w

)
. Since ( v1

v2
) 6= ( N

P )w, we conclude that an attacker of type II can be turned into

an attacker B2 for Lemma 9, and then its success probability is bounded by AdvM`1×n-MDDH(B2) + 1/p.

D Generic Hardness

We give some preliminary results on the study the generic hardness of the LGR,k-MDDH Assumption in
(symmetric) bilinear groups inspired by [4], and the PhD Thesis of Gottfried Herold. We leave as an open
problem to study the security of the assumption formally. Generic security in the symmetric case implies
security in the asymmetric setting when matrices are given in both sides.

Recall the definition of the Lagrangian distribution is

LGR,k : A =


λR1 (s1) λ

R
1 (s2) ... λ

R
1 (sk)

λR2 (s1) λ
R
2 (s2) ... λ

R
2 (sk)

.

.

.

.

.

.

.
.
.

.

.

.

λR` (s1) λ
R
` (s2) ... λ

R
` (sk)

 ,

for some N ≥ `.
We first transform the problem into a simpler equivalent one. We define:

LG∗R,k : A =


λ̂R1 (s1) λ̂

R
1 (s2) ... λ̂

R
1 (sk)

λ̂R2 (s1) λ̂
R
2 (s2) ... λ̂

R
2 (sk)

.

.

.

.

.

.

.
.
.

.

.

.

λ̂R` (s1) λ̂
R
` (s2) ... λ̂

R
` (sk)

 ,

where λ̂Ri (X) =
∏
j 6=i(X − rj). This distribution is the one obtained from the original one after multiplying

each row i by
∏
j 6=i(ri − rj). The decisional problems associated to these matrices are obviously equivalent.

That is, if we define:

D =


∏
j 6=i(r1 − rj)

. . . ∏
j 6=i(r` − rj)

 ∈ Z`×`p ,

then

LG∗R,k : A = DA′,A′ ← LGR,k.

Obviously this distribution defines an equivalent MDDH assumption, as given a challenge ([A]1, [z]1) for the
LGR,k-MDDH assumption, there is an efficiently computable invertible transformation which maps it to a
LG∗R,k-MDDH (multiplication by D).

Now we give some evidence LG∗R,k-MDDH Assumption for k = 2 in symmetric bilinear groups and leave
it as an open problem to study general hardness for larger k.

9 This part of the proof follows essentially the same lines of the first constant-size QA-NIZK arguments for linear
spaces of Libert et al.[27] which were later translated to the bilateral case in [14].
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We study the minors of the matrix of polynomials:

(A(X1, X2)|Z) =

λ̂
R
1 (X1) λ̂R2 (X2) Z1

...
...

...

λ̂R` (X1) λ̂R` (X2) Z`

 ,

which are:

∆a,b,c =

∣∣∣∣∣∣
λ̂a(X1) λ̂a(X2) Za
λ̂b(X1) λ̂b(X2) Zb
λ̂c(X1) λ̂c(X2) Zc

∣∣∣∣∣∣ = (X1 −X2)
(
Za(rc − rb)

∏
j 6=b,c

(X1 − rj)(X2 − rj)

+ Zb(ra − rc)
∏
j 6=a,c

(X1 − rj)(X2 − rj) + Zc(rb − ra)
∏
j 6=a,b

(X1 − rj)(X2 − rj)
)
.

For ` = 3, the intuition is that generically, the only function which is 0 in case Z is in the span of
A(X1, X2) and not zero otherwise is the determinant10. To break the assumption it should be computable
as a degree 2 polynomial of Z, {Xi

1, X
i
2} (we can assume w.l.o.g. that {Xi

1, X
i
2} is computable from the

Lagrangians {λj(X1), λj(X2)}).
But the determinant of this matrix cannot be computed given the powers of X1 and X2, because the

terms Zi are multiplied by a polynomial which has monomials of the form Xi
1X

j
2 and which are not available

to the adversary, for some i, j 6= 0.
On the other hand, for ` > 2, we also need to check that no linear combination of ∆a,b,c results in a

non-zero polynomial in variables Z whose coefficients are polynomials in Zp[X1, X2] which are in the span
of {Xi

1, X
i
2}. But for any a, the terms going with Za are either 0 or divisible by (X1 − r1)(X2 − r1), so it is

not possible to construct a linear combination of these determinants in the span of {Xi
1, X

i
2}.

A fully formal analysis of the assumption and application of the results of Herold to this specific matrix
distribution is left for future work.

E Full Proof of Soundness of the Argument for Correct Arithmetic Circuit
Evaluation

Given n = (n0, . . . , nd) the number of gates at each level associated to a circuit φ over Zp, a bilinear group
of order p, N = maxi=1,...,d ni and some set R ⊂ Zp of cardinal N , we define the distribution

Mi : M>
i =


In0

0
Λ>1

. . .

0 Λ>i

 ,

where Λi = (λ1(s), . . . , λni(s)), for (λ1(s), . . . , λN (s))> ← LGR,ks .
The security of the linear knowledge transfer argument at level i reduces to theM>i -SMDDHG1

assump-
tion or to the Mi-FindRep assumption in the generic group model.

It is straighforward to reduce these assumptions to to a matrix distribution of size independent of i.

Lemma 14. For i ≥ 2 and any adversary A1,A2, there exist adversaries B1,B2 such that

AdvMi-SMDDHG1
(A1) ≤ min(N − ks, i) AdvLGR,ks-SMDDHG1

(B1),

AdvMi-FindRep(A2) ≤ AdvLGR,ks-FindRep(B2), (12)
10 This is inspired by the work of [4] says that the best strategy to break decisional hardness for an adversary (for

distributions with certain properties) in the case of ` = k + 1 is to compute the determinant of the matrix with
an additional column which is the challenge vector. If the matrix is computable with m-linear maps then the
assumption is hard in m-linear groups.
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Proof. Both equations are a straightforward consequence of the block structure of matrices Mi, plus the fact
that the challenge of a D`,k-MDDH Assumption can be fully randomized with a security loss of ` − k, as
proven in [4].

We prove a more sophisticated lemma that proves that the reduction is tight with respect to the
LGR,ks-SMDDH assumption (as ks ≤ 2), while it has a loss proportional to min(N − ks, i) · log ks with
respect to the SXDH assumption. This is a more concrete bound than the trivial approach since SXDH is a
static assumption and it should be harder than the LGR,ks -SMDDHG1

assumption.

Lemma 15. For any adversary A, there exist adversaries B1,B2 such that

AdvMi-SMDDHG1
(A) ≤ks

p
+ ksAdvLGR,ks-SMDDHG1

(B1)+

min(N − ks, i) log ksAdvSXDH(B2). (13)

Proof. We assume for simplicity that n1 = n2 . . . = ni = N and hence Λ1 = Λ2 = . . . = Λi = ΛN . We define
Λ = ΛN . It is not hard to see that this is w.l.o.g. as the case where these matrices are not equal can be
reduced to this one eliminating some extra rows. We show the inequality by slightly modifying the original
challenge as follows:

w0

Λ>w1

...
Λ>wks

Λ>wks+1

...
Λ>wi


γ

,



w0

Λ>w1

...
Λ>wks

Λ>(w1| · · · |wks)δks+1

...
Λ>(w1| · · · |wks)δi


γ

,



w0

z1
...
zks

(z1| · · · |zks)δks+1

...
(z1| · · · |zks)δi,


γ

,



w0

z1
...
zks
zks+1

...
zi,


γ

,

where wj ← Zksp , δi ← Zksp , zj ← Zksp . Note that the fourth vector is uniformly distributed over Gγ .
The first and second vectors follow the same distribution conditioned on (w1| · · · |wks) being a full rank

matrix. Since this holds with probability at least ks/p, it follows that the first and second vectors are
statistically indistinguishable.

The indistinguishability of the second and third vector follows from a reduction to ks instances of the
LGR,ks assumption (for each instance the challenge is zi for i = 1, . . . , ks), which in turn can be reduced to
one instance of the LGR,ks assumption (with security loss of a factor ks) using a standard hybrid argument.

The indistinguishability of the third and fourth vectors follows from a reducion to (i − ks) instances
of the UN,ks-MDDHγ assumption, the uniform distribution over ZN×ksp (where the (i − ks) challenges are
the blocks ks to i of the vectors). Follwing [4], this reduction can be done with a security loss proportional
to min(N − ks, i). The UN,ks-MDDHγ assumption can be reduced to the UN,1-MDDHγ assumption with a
loss factor of log ks as using the techniques from [37]. Finally, the UN,1-MDDHγ assumption can be tightly
reduced to the U2-MDDHγ assumption, which is just DDHγ , using similar techniques to [22].

Finally, we give some missing details of the proof of computational soundness of the full argument.
The only part of the proof that was missing was to argue how to extend the crs for the full argument

given the crs of the linear knowledge transfer argument for Mi,Ni,Pi and also how to use the linearity of
the proof to use the output of the adversary against the soundness of the full argument. For i = 0, . . . , d− 1,
adversary B2,i receives a crs for computed on input

Mi =


I 0

Λ1

. . .

0 Λi

 ,Ni+1 =

 F1,0 0
...

. . .

Fi+1,0 · · · Fi+1,i

 ,Pi+1 =

 G1,0 0
...

. . .

Gi+1,0 · · · Gi+1,i

 .
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which is of the form

[Mi]1, [Ni]1, [Pi]2,
[B]1 = [M>

i K1 + N>i+1K2 + Γ]1, [D]2 = [P>i+1K3 − Γ]2
[C1]2 = [K1A]2, [C1]2 = [K2A]2, [C3]1 = [K3A]1, [A]1, [A]2,

,

for some random matrices K1 ∈ Ziks×kq ,K2,K3 ∈ Z(i+1)ks×k
q ,Γ ∈ Z(n1+...+ni)×k

q . It picks random K1,K2,K3 ←
Z(d−i−1)×k
q ,Γ← Z(ni+1+...+nd−1)×k

q and computes a new crs

[M]1, [N]1, [P]2,

[( B
0 )]1 + [M>

i K1 + N>i+1K2 +
(
0
Γ

)
]1,

[( D
0 )]2 + [P>i+1K2 −

(
0
Γ

)
]2,

[K1A]2, [K2A]2, [K3A]1, [A]1, [A]2,

,

where Xi and Xi denotes, respectively, the first i and last t− i rows of a matrix X ∈ Zt×mq , respecting the
block structure of the matrix (e.g. matrix M is composed of blocks of ks rows, then Mi is formed by the

last (d− 1− i)ks rows). Define also K` =
(

K`

K`

)
,Γ =

(
Γ
Γ

)
. Note that

( B
0 ) + M>

i K1 + N>i+1K2 +
(
0
Γ

)
=
(

M>i K1

0

)
+
(

N>i+1K2

0

)
+
(

Γ
0

)
+ M>

i K1 + N>i+1K2 +
(
0
Γ

)
= (M

>
i ,M

>
i )
(

K1

K1

)
+ (N

>
i+1,N

>
i+1)

(
K2

K2

)
+
(

Γ
Γ

)
= M>K1 + N>K2 + Γ

Simlarly, ( D
0 ) + P>i+1K3 −

(
0
Γ

)
= P>K3 − Γ and hence the new crs is distributed exactly as an honestly

generated crs.
Adversary B2,i simulates A with the new crs until it outputs (x, [O]1, [L]1, [R]2, ΠQ, ΠL = ([π]1, [θ]2)).

Then, Bi computes

[π†]1 = [π]1 − [Oi]
>
1 K1 − [Li+1 − L̂i+1]>1 K1

[θ†]2 = [θ]2 − [Ri+1 − R̂i+1]>1 K3

Since the proof is accepted by the verifier, we get that

πA−O>K1A + (L− L̂)>K2A = θA− (R− R̂)>K3A

=⇒π†A−O>i K1A− (Li+1 − L̂i+1)>K2A = θ†A− (Ri+1 − R̂i+1)>K3A.

and ([π†]1, [θ
†]2) is a valid proof for (x,Oi,Li+1−L̂i+1,Ri+1−R̂i+1). Adversary B2,i outputs (ci,Oi,Li+1−

L̂i+1,Ri+1 − R̂i+1) together with ([π†]1, [θ
†]2).

If Oi = Mici but Li+1 6= Fi+1c + L̂i+1 or Ri+1 6= Gi+1c + R̂i+1, then Li+1 − L̂i+1 6= Ni+1ci or

Ri+1 − R̂i+1 6= Pi+1ci. It follows that B2,i breaks the knowledge transfer property of Blin.

F Zero Knowledge Argument of Linear Knowledge Transfer

Given [M]1, [N]1, [P]2 it is straightforward to find matrices [M̃]1, [Ñ]1, [P̃]2 such that
x

[O]1
[L]1 − [L̂]1
[R]2 − [R̂]2

 ∈ Im

 [M]1
[N]1
[P]2

⇐⇒


x
[cO]1

[cL]1 − [cL̂]1
[cR]2 − [cR̂]2

 ∈ Im


 [M̃]1

[Ñ]1
[P̃]2


 , (14)
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where [c>
L̂

]1, [c>
R̂

]2 are commitments (with 0 randomness) to the public constants and cW , forW ∈ {L,R,O},
is the vector of commitments toW . For example, for the simpler case ks = 1, [c>

L̂
]1 = [(L̂1, 0, L̂2, 0, ..., L̂d, 0)]1

and [c>
R̂

]2 = [(R̂1, 0, R̂2, 0, ..., R̂d, 0)]2,

M̃ =


I 0 0 . . . 0 0 0 0 . . . 0
0 Λ1 0 . . . 0 0 U 0 . . . 0
0 0 Λ2 . . . 0 0 0 U . . . 0
...

...
... . . .

...
0 0 0 0 . . . Λd−1 0 0 . . . U


where U =

(
u1, u2

)
is the matrix whose columns are the commitment keys to elements of G1 in the

SXDH instantiation of GS proofs. If ri ∈ Z2
p is the randomness of the GS commitment to Oi, obviously,

[cO]1 = [M̃]1
(
x, c1, . . . cd

)>
. Similar matrices Ñ, P̃ can be derived from N,P and the commitment key so

that equation (14) holds.
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